1
|
Ito T. First reports of several viruses and a viroid including a novel vitivirus in Japan, found through virome analysis of bulk grape genetic resources. Virus Genes 2024; 60:684-694. [PMID: 39162928 DOI: 10.1007/s11262-024-02101-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 08/12/2024] [Indexed: 08/21/2024]
Abstract
Virome analysis was performed on 174 grape genetic resources from the National Agriculture and Food Research Organization, Japan. A total of 20 bulk samples was prepared by grouping the vines into batches of 6-10 plants. Each of the bulk samples was analyzed using high-throughput sequencing, which detected 27 viruses and 5 viroids, including six viruses and one viroid reported in Japan for the first time (grapevine viruses F, L, and T, grapevine Kizil Sapak virus, grapevine Syrah virus 1, grapevine satellite virus, and grapevine yellow speckle viroid 2). In addition, a novel vitivirus was detected with a maximum nucleotide sequence identity of only 58% to its closest relative, grapevine virus A (GVA). The genome of this novel virus was 7,461 nucleotides in length and encoded five open reading frames showing the typical genomic structure of vitiviruses. Phylogenetic trees of vitiviruses placed it in a distinct position nearest to GVA or grapevine virus F (GVF) in genomes and amino acids of deduced replication-associated protein (RAP) and coat protein (CP). The amino acid sequence identities of RAP and CP with GVA, GVF, and other vitiviruses were a maximum of 53% and 73%, respectively, which were significantly below the species demarcation threshold of 80% in the genus. The low identity and phylogenetic analyses indicate the discovery of a novel vitivirus species provisionally named grapevine virus P.
Collapse
Affiliation(s)
- Takao Ito
- Institute for Plant Protection, National Agriculture and Food Research Organization (NARO), Akitsu, Higashihiroshima, Hiroshima, 739-2494, Japan.
| |
Collapse
|
2
|
Belkina D, Karpova D, Porotikova E, Lifanov I, Vinogradova S. Grapevine Virome of the Don Ampelographic Collection in Russia Has Concealed Five Novel Viruses. Viruses 2023; 15:2429. [PMID: 38140672 PMCID: PMC10747563 DOI: 10.3390/v15122429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
In this study, an analysis of the virome of 51 grapevines from the Don ampelographic collection named after Ya. I. Potapenko (Russia) was performed using high-throughput sequencing of total RNA. A total of 20 previously described grapevine viruses and 4 viroids were identified. The most detected were grapevine rupestris stem pitting-associated virus (98%), hop stunt viroid (98%), grapevine Pinot gris virus (96%), grapevine yellow speckle viroid 1 (94%), and grapevine fleck virus (GFkV, 80%). Among the economically significant viruses, the most present were grapevine leafroll-associated virus 3 (37%), grapevine virus A (24%), and grapevine leafroll-associated virus 1 (16%). For the first time in Russia, a grapevine-associated tymo-like virus (78%) was detected. After a bioinformatics analysis, 123 complete or nearly complete viral genomes and 64 complete viroid genomes were assembled. An analysis of the phylogenetic relationships with reported global isolates was performed. We discovered and characterized the genomes of five novel grapevine viruses: bipartite dsRNA grapevine alphapartitivirus (genus Alphapartitivirus, family Partitiviridae), bipartite (+) ssRNA grapevine secovirus (genus Fabavirus, family Secoviridae) and three (+) ssRNA grapevine umbra-like viruses 2, -3, -4 (which phylogenetically occupy an intermediate position between representatives of the genus Umbravirus and umbravirus-like associated RNAs).
Collapse
Affiliation(s)
- Daria Belkina
- Skryabin Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect, 33, Build. 2, 119071 Moscow, Russia; (D.B.)
- North Caucasian Federal Scientific Center of Horticulture, Viticulture, Wine-Making, 40 Years of Victory Street, Build. 39, 350901 Krasnodar, Russia
| | - Daria Karpova
- Skryabin Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect, 33, Build. 2, 119071 Moscow, Russia; (D.B.)
- North Caucasian Federal Scientific Center of Horticulture, Viticulture, Wine-Making, 40 Years of Victory Street, Build. 39, 350901 Krasnodar, Russia
| | - Elena Porotikova
- Skryabin Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect, 33, Build. 2, 119071 Moscow, Russia; (D.B.)
| | - Ilya Lifanov
- Skryabin Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect, 33, Build. 2, 119071 Moscow, Russia; (D.B.)
| | - Svetlana Vinogradova
- Skryabin Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect, 33, Build. 2, 119071 Moscow, Russia; (D.B.)
- North Caucasian Federal Scientific Center of Horticulture, Viticulture, Wine-Making, 40 Years of Victory Street, Build. 39, 350901 Krasnodar, Russia
| |
Collapse
|
3
|
Silva JMF, Melo FL, Elena SF, Candresse T, Sabanadzovic S, Tzanetakis IE, Blouin AG, Villamor DEV, Mollov D, Constable F, Cao M, Saldarelli P, Cho WK, Nagata T. Virus classification based on in-depth sequence analyses and development of demarcation criteria using the Betaflexiviridae as a case study. J Gen Virol 2022; 103. [DOI: 10.1099/jgv.0.001806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Currently, many viruses are classified based on their genome organization and nucleotide/amino acid sequence identities of their capsid and replication-associated proteins. Although biological traits such as vector specificities and host range are also considered, this later information is scarce for the majority of recently identified viruses, characterized only from genomic sequences. Accordingly, genomic sequences and derived information are being frequently used as the major, if not only, criteria for virus classification and this calls for a full review of the process. Herein, we critically addressed current issues concerning classification of viruses in the family Betaflexiviridae in the era of high-throughput sequencing and propose an updated set of demarcation criteria based on a process involving pairwise identity analyses and phylogenetics. The proposed framework has been designed to solve the majority of current conundrums in taxonomy and to facilitate future virus classification. Finally, the analyses performed herein, alongside the proposed approaches, could be used as a blueprint for virus classification at-large.
Collapse
Affiliation(s)
- João Marcos Fagundes Silva
- Departamento de Biologia Celular, Instituto de Ciências Biológicas, University of Brasília, Brasília 70910-900, Brazil
| | - Fernando Lucas Melo
- Departamento de Fitopatologia, Instituto de Biología Integrativa de Sistemas, University of Brasília, Brasília 70910-900, Brazil
| | - Santiago F. Elena
- The Santa Fe Institute, Santa Fe, NM 87501, USA
- Instituto de Biología Integrativa de Sistemas (I2 13 SysBio), CSIC-Universitat de València, Paterna 14 46980 València, Spain
| | - Thierry Candresse
- Univ. Bordeaux, INRAE, UMR 1332 BFP, 33140 Villenave d’Ornon, France
| | - Sead Sabanadzovic
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS 39762, USA
| | | | - Arnaud G. Blouin
- Virology-Phytoplasmology Laboratory, Agroscope, 1260 Nyon, Switzerland
| | | | - Dimitre Mollov
- USDA-ARS Horticultural Crops Disease and Pest Management Research Unit, Corvallis, OR, 97330, USA
| | - Fiona Constable
- Department of Jobs Precincts and Regions, Agriculture Victoria Research, Agribio, Bundoora, VIC 3083, Australia
| | - Mengji Cao
- National Citrus Engineering and Technology Research Center, Citrus Research Institute, Southwest University, Beibei, Chongqing 400712, PR China
| | - Pasquale Saldarelli
- National Research Council of Italy (CNR), Institute for Sustainable Plant Protection (IPSP), Via Amendola 122/D, 70126 Bari, Italy
| | - Won Kyong Cho
- College of Biotechnology and Bioengineering, Sungkyunkwan University, Seoburo 2066, Suwon 16419, Gyeonggi, Republic of Korea
| | - Tatsuya Nagata
- Departamento de Biologia Celular, Instituto de Ciências Biológicas, University of Brasília, Brasília 70910-900, Brazil
| |
Collapse
|
4
|
Rastgou M, Roumi V, Noris E, Matić S, Ercisli S. Phylogenetic Marker Selection and Protein Sequence Analysis of the ORF5 Gene Product of Grapevine Virus A. PLANTS (BASEL, SWITZERLAND) 2022; 11:1118. [PMID: 35567118 PMCID: PMC9104223 DOI: 10.3390/plants11091118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/17/2022] [Accepted: 04/18/2022] [Indexed: 06/15/2023]
Abstract
Grapevine virus A (GVA), the type species of the Vitivirus genus, is one of the causal agents of the Kober stem grooving disease of the rugose wood complex and one of the most frequently detected viruses in grapevine. There is little information on GVA gene(s) marker useful for phylogenetic analysis. To this aim, a total of 403 leaf samples were collected from vineyards of East and West Azarbaijan provinces in the Northwestern provinces of Iran during 2014-2016 and tested by DAS-ELISA and RT-PCR using ORF5-specific primers. GVA was detected in 56 symptomatic samples, corresponding to 14% of infection, while it was not detected in asymptomatic samples. The ORF5 (p10) protein sequence of eight Iranian isolates was compared to other vitiviruses, showing that the most conserved region resides in the N-terminus, carrying an arginine-rich motif followed by a zinc-finger motif. Next, to define a robust phylogenetic marker representative of the whole genome sequence suitable for phylogenetic and evolutionary studies, phylogenetic trees based on the full genome sequences of all the available GVA isolates and on individual genomic regions were constructed and compared. ORF1, which encodes the RNA-dependent RNA polymerase, was found to be the best phylogenetic marker for GVA classification and evolution studies. These results can be used for further research on phylogenetic analyses, evolution history, epidemiology, and etiology of rugose wood complex, and to identify control measures against GVA and other vitiviruses.
Collapse
Affiliation(s)
- Mina Rastgou
- Department of Plant Protection, Faculty of Agriculture, Urmia University, Urmia 5756151818, Iran
| | - Vahid Roumi
- Department of Plant Protection, College of Agriculture, University of Maragheh, Maragheh 5518183111, Iran;
| | - Emanuela Noris
- Institute for Sustainable Plant Protection, National Research Council of Italy (IPSP-CNR), 10135 Turin, Italy; (E.N.); (S.M.)
| | - Slavica Matić
- Institute for Sustainable Plant Protection, National Research Council of Italy (IPSP-CNR), 10135 Turin, Italy; (E.N.); (S.M.)
| | - Sezai Ercisli
- Department of Horticulture, Faculty of Agriculture, Ataturk University, Erzurum 25240, Turkey;
| |
Collapse
|
5
|
Navrotskaya E, Porotikova E, Yurchenko E, Galbacs ZN, Varallyay E, Vinogradova S. High-Throughput Sequencing of Small RNAs for Diagnostics of Grapevine Viruses and Viroids in Russia. Viruses 2021; 13:2432. [PMID: 34960701 PMCID: PMC8709451 DOI: 10.3390/v13122432] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 11/16/2022] Open
Abstract
The use of high-throughput sequencing (HTS) technology has led to significant progress in the identification of many viruses and their genetic variants. In this study, we used the HTS platform to sequence small RNAs (sRNAs) of grapevine to study the virome. Isolation of RNA was performed using symptomatic grapevines collected from commercial vineyards in Krasnodar Krai in 2017-2018. To determine the viromes of vineyards, we used an integrated approach that included a bioinformatic analysis of the results of sRNA HTS and the molecular method RT-PCR, which made it possible to identify 13 viruses and 4 viroids. Grapevine leafroll-associated virus 4 (GLRaV-4), Grapevine Syrah Virus-1 (GSyV-1), Raspberry bushy dwarf virus (RBDV), Australian grapevine viroid (AGVd), and Grapevine yellow speckle viroid 2 (GYSVd-2) were identified for the first time in Russia. Out of 38 samples analyzed, 37 had mixed infections with 4-11 viruses, indicating a high viral load. Analysis of the obtained sequences of fragments of virus genomes made it possible to identify recombination events in GLRaV-1, GLRaV-2, GLRaV-3, GLRaV-4, GVT, GPGV, GRSPaV, GVA, and GFLV. The obtained results indicate a wide spread of the viruses and a high genetic diversity in the vineyards of Krasnodar Krai and emphasize the urgent need to develop and implement long-term strategies for the control of viral grapevine diseases.
Collapse
Affiliation(s)
- Emiliya Navrotskaya
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, 119071 Moscow, Russia; (E.N.); (E.P.)
| | - Elena Porotikova
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, 119071 Moscow, Russia; (E.N.); (E.P.)
| | - Eugeniya Yurchenko
- Federal State Budgetary Scientific Institution ‘North Caucasian Federal Scientific Horticulture and Viticulture Center’, Protection and Plant Biotechnology Scientific Center, Head, 40 Years of Victory Street 39, 350072 Krasnodar, Russia;
| | - Zsuzsanna Nagyne Galbacs
- Genomics Research Group, Department of Plant Pathology, Institute of Plant Protection, Hungarian University of Agriculture and Life Sciences, Szent-Gyorgyi Albert Street 4, H-2100 Godollo, Hungary; (Z.N.G.); (E.V.)
| | - Eva Varallyay
- Genomics Research Group, Department of Plant Pathology, Institute of Plant Protection, Hungarian University of Agriculture and Life Sciences, Szent-Gyorgyi Albert Street 4, H-2100 Godollo, Hungary; (Z.N.G.); (E.V.)
| | - Svetlana Vinogradova
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, 119071 Moscow, Russia; (E.N.); (E.P.)
| |
Collapse
|
6
|
Orfanidou CG, Moraki K, Panailidou P, Lotos L, Katsiani A, Avgelis A, Katis NI, Maliogka VI. Prevalence and Genetic Diversity of Viruses Associated with Rugose Wood Complex in Greek Vineyards. PLANT DISEASE 2021; 105:3677-3685. [PMID: 34085849 DOI: 10.1094/pdis-02-21-0266-re] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Rugose wood is one of the most important disease syndromes of grapevine, and it has been associated with at least three viruses: grapevine rupestris stem pitting-associated virus (GRSPaV), grapevine virus A (GVA), and grapevine virus B (GVB). All three viruses show a worldwide distribution pattern, and their genetic composition has been the focus of extensive research in past years. Despite their first record in Greece almost 20 years ago, there is a lack of knowledge on the distribution and genetic variability of their populations in Greek vineyards. In this context, we investigated the distribution of GRSPaV, GVA, and GVB in rootstocks, self-rooted vines, and grafted grapevine cultivars originating from different geographic regions that represent important viticultural areas of Greece. Three new reverse transcription-PCR assays were developed for the reliable detection of GRSPaV, GVA, and GVB. Our results indicated that GVA is the most prevalent in Greek vineyards, followed by GRSPaV and GVB. However, virus incidence differed among self-rooted and grafted grapevine cultivars or rootstocks tested. Selected isolates from each virus were further molecularly characterized to determine their phylogenetic relationships. All three viruses exhibited high nucleotide diversity, which was depicted in the constructed phylogenetic trees. Isolates from Greece were placed in various phylogroups, reinforcing the scenario of multiple introductions of GVA, GVB, and GRSPaV in Greece and highlighting the effect of different transmission modes in the evolutionary course of the three viruses.
Collapse
Affiliation(s)
- C G Orfanidou
- Laboratory of Plant Pathology, Faculty of Agriculture, Forestry and Natural Environment, School of Agriculture, 54124, Thessaloniki, Greece
| | - K Moraki
- Laboratory of Plant Pathology, Faculty of Agriculture, Forestry and Natural Environment, School of Agriculture, 54124, Thessaloniki, Greece
| | - P Panailidou
- Laboratory of Plant Pathology, Faculty of Agriculture, Forestry and Natural Environment, School of Agriculture, 54124, Thessaloniki, Greece
| | - L Lotos
- Laboratory of Plant Pathology, Faculty of Agriculture, Forestry and Natural Environment, School of Agriculture, 54124, Thessaloniki, Greece
| | - A Katsiani
- Laboratory of Plant Pathology, Faculty of Agriculture, Forestry and Natural Environment, School of Agriculture, 54124, Thessaloniki, Greece
| | - A Avgelis
- Department of Agriculture, Hellenic Mediterranean University, 71004 Heraklion, Crete
| | - N I Katis
- Laboratory of Plant Pathology, Faculty of Agriculture, Forestry and Natural Environment, School of Agriculture, 54124, Thessaloniki, Greece
| | - V I Maliogka
- Laboratory of Plant Pathology, Faculty of Agriculture, Forestry and Natural Environment, School of Agriculture, 54124, Thessaloniki, Greece
| |
Collapse
|
7
|
Porotikova E, Terehova U, Volodin V, Yurchenko E, Vinogradova S. Distribution and Genetic Diversity of Grapevine Viruses in Russia. PLANTS 2021; 10:plants10061080. [PMID: 34072229 PMCID: PMC8229536 DOI: 10.3390/plants10061080] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 05/25/2021] [Accepted: 05/25/2021] [Indexed: 12/02/2022]
Abstract
Viral diseases can seriously damage the vineyard productivity and the quality of grape and wine products. Therefore, the study of the species composition and range of grapevine viruses is important for the development and implementation of strategies and tactics to limit their spread and increase the economic benefits of viticulture. In 2014–2019, we carried out a large-scale phytosanitary monitoring of Russian commercial vineyards in the Krasnodar region, Stavropol region and Republic of Crimea. A total of 1857 samples were collected and tested for the presence of Grapevine rupestris stem pitting-associated virus (GRSPaV), Grapevine virus A (GVA), Grapevine leafroll-associated virus-1 (GLRaV-1), Grapevine leafroll-associated virus-2 (GLRaV-2), Grapevine leafroll-associated virus-3 (GLRaV-3), Grapevine fanleaf virus (GFLV), and Grapevine fleck virus (GFkV) using RT-PCR. Out of all samples tested, 54.5% were positive for at least one of the viruses (GRSPaV, GVA, GLRaV-1, GLRaV-2, GLRaV-3, GFLV, GFkV) in the Stavropol region, 49.8% in the Krasnodar region and 49.5% in the Republic of Crimea. Some plants were found to be infected with several viruses simultaneously. In the Republic of Crimea, for instance, a number of plants were infected with five viruses. In the Krasnodar region and the Republic of Crimea, 4.7% and 3.3% of the samples were predominantly infected with both GFkV and GRSPaV, whereas in the Stavropol region, 6% of the selected samples had both GLRaV-1 and GVA infections. We carried out a phylogenetic analysis of the coat protein genes of the detected viruses and identified the presence of GVA of groups I and IV, GRSPaV of groups BS and SG1, GLRaV-1 of group III, GLRaV-2 of groups PN and H4, GLRaV-3 of groups I and III. The results obtained make it possible to assess the viral load and the distribution of the main grapevine viruses on plantations in the viticultural zones of Russia, emphasizing the urgent need to develop and implement long-term strategies for the control of viral diseases of grapes.
Collapse
Affiliation(s)
- Elena Porotikova
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, 119071 Moscow, Russia; (E.P.); (U.T.)
| | - Uliana Terehova
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, 119071 Moscow, Russia; (E.P.); (U.T.)
| | - Vitalii Volodin
- All-Russian National Scientific Research Institute of Vine and Wine Growing “Magarach” Ras, Str. Kirova 31, 298600 Yalta, Crimea;
| | - Eugeniya Yurchenko
- North Caucasian Regional Research Institute of Horticulture and Viticulture, 40 Years of Victory Street 39, 350072 Krasnodar, Russia;
| | - Svetlana Vinogradova
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, 119071 Moscow, Russia; (E.P.); (U.T.)
- Correspondence:
| |
Collapse
|
8
|
Balsak SC, Buzkan N. Prevalence and genetic variability of grapevine virus A in Turkish autochthonous grapevine varieties. Arch Virol 2021; 166:943-947. [PMID: 33495897 DOI: 10.1007/s00705-021-04953-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 11/24/2020] [Indexed: 11/26/2022]
Abstract
This work describes the first molecular characterization of grapevine virus A (GVA) in Turkish grapevine varieties based on the coat protein gene. RT-PCR detection revealed a high infection rate of GVA in two major viticultural areas, Eastern Mediterranean (EM) and Southeast Anatolia (SEA). The number of infected varieties was higher in SEA, where very ancient and traditional cultivars are in use and no foreign grapevine material has been introduced. High nucleotide and amino acid sequence similarity were seen between the Turkish GVA isolates and the reference isolates in group I and II. The viral isolates from the same location and cultivars were not phylogenetically related.
Collapse
Affiliation(s)
- Selin Ceren Balsak
- Sütçü Imam University, Agriculture Faculty, Plant protection Department, Kahramanmaraş, Turkey
| | - Nihal Buzkan
- Sütçü Imam University, Agriculture Faculty, Plant protection Department, Kahramanmaraş, Turkey.
| |
Collapse
|
9
|
Yahaya A, Dangora DB, Alabi OJ, Zongoma AM, Kumar PL. Detection and diversity of maize yellow mosaic virus infecting maize in Nigeria. Virusdisease 2019; 30:538-544. [PMID: 31890753 PMCID: PMC6917682 DOI: 10.1007/s13337-019-00555-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 11/15/2019] [Indexed: 01/10/2023] Open
Abstract
Maize yellow mosaic virus (MaYMV; genus Polerovirus; family Luteoviridae) was recently characterized from maize in China and subsequently detected in mixed infection with sugarcane mosaic virus (genus Potyvirus; family Potyviridae) in sugarcane and itch grass in Nigeria. This study was conducted to understand the status and genetic diversity of MaYMV in maize fields in the northern guinea savannah region of Nigeria. A survey was conducted in 2017 and maize (n = 90) and itch grass (n = 10) plants suspected of virus infection based on appearance of mosaic and/or yellowing symptoms were sampled in Kaduna (n = 65) and Katsina (n = 35) states. The samples were screened individually by reverse transcription polymerase chain reaction using the genus-specific primers targeting poleroviruses and potyviruses Pol-G-F and Pol-G-R primers encompassing the partial P1-P2 fusion protein and coat protein genes of poleroviruses and primer pair CI-For & CI-Rev encompassing the partial cylindrical inclusion proteins of most potyviruses. A subset of amplified DNA fragments was cloned, Sanger-sequenced, and the obtained sequences were bioinformatically analyzed along with corresponding sequences from GenBank. The ~ 1.1 Kb polerovirus fragment was detected in 32.2% (29/90) of the maize samples while all 10 itch grass samples tested negative. BLASTN analysis of sequences derived from six polerovirus samples confirmed the virus identity as MaYMV. In pairwise comparisons, the MaYMV sequences derived in this study shared 97-99% nucleotide identity with sequences of other MaYMV isolates available in the NCBI GenBank. Phylogenetic analysis revealed the segregation of global MaYMV sequences into three host-independent clusters with pattern of geographic structuring.
Collapse
Affiliation(s)
- Adama Yahaya
- Department of Botany, Faculty of Life Sciences, Ahmadu Bello University (ABU), Zaria, Kaduna State Nigeria
| | - Danladi B. Dangora
- Department of Botany, Faculty of Life Sciences, Ahmadu Bello University (ABU), Zaria, Kaduna State Nigeria
| | - Olufemi J. Alabi
- Department of Plant Pathology and Microbiology, Texas A&M AgriLife Research and Extension Center, Weslaco, TX USA
| | - Aisha M. Zongoma
- Department of Botany, Faculty of Life Sciences, Ahmadu Bello University (ABU), Zaria, Kaduna State Nigeria
| | - P. Lava Kumar
- International Institute of Tropical Agriculture (IITA), Oyo Road, Ibadan, Nigeria
| |
Collapse
|
10
|
Analyses of virus/viroid communities in nectarine trees by next-generation sequencing and insight into viral synergisms implication in host disease symptoms. Sci Rep 2019; 9:12261. [PMID: 31439919 PMCID: PMC6706421 DOI: 10.1038/s41598-019-48714-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 08/09/2019] [Indexed: 01/02/2023] Open
Abstract
We analyzed virus and viroid communities in five individual trees of two nectarine cultivars with different disease phenotypes using next-generation sequencing technology. Different viral communities were found in different cultivars and individual trees. A total of eight viruses and one viroid in five families were identified in a single tree. To our knowledge, this is the first report showing that the most-frequently identified viral and viroid species co-infect a single individual peach tree, and is also the first report of peach virus D infecting Prunus in China. Combining analyses of genetic variation and sRNA data for co-infecting viruses/viroid in individual trees revealed for the first time that viral synergisms involving a few virus genera in the Betaflexiviridae, Closteroviridae, and Luteoviridae families play a role in determining disease symptoms. Evolutionary analysis of one of the most dominant peach pathogens, peach latent mosaic viroid (PLMVd), shows that the PLMVd sequences recovered from symptomatic and asymptomatic nectarine leaves did not all cluster together, and intra-isolate divergent sequence variants co-infected individual trees. Our study provides insight into the role that mixed viral/viroid communities infecting nectarine play in host symptom development, and will be important in further studies of epidemiological features of host-pathogen interactions.
Collapse
|
11
|
Yahaya A, Dangora DB, Kumar PL, Alegbejo MD, Gregg L, Alabi OJ. Prevalence and Genome Characterization of Field Isolates of Sugarcane Mosaic Virus (SCMV) in Nigeria. PLANT DISEASE 2019; 103:818-824. [PMID: 30806574 DOI: 10.1094/pdis-08-18-1445-re] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Maize and sugarcane are two economically important crops often grown in adjacent fields or co-cultivated in the northern guinea savannah agroecological zone, a major cereal production region of Nigeria. This study was conducted to determine the prevalence of mosaic disease in sugarcane and maize fields in the northern guinea savannah agroecological zone and to molecularly characterize the associated sugarcane mosaic virus (SCMV, genus Potyvirus) isolates. Surveys were conducted from June to July 2015, and sugarcane mosaic disease (SCMD) incidence was assessed across 21 farmer's fields. Mean SCMD incidence varied across states with ∼82% (308/376), ∼66% (143/218), and ∼67% (36/54) recorded in Kaduna, Kano, and Katsina states, respectively. RT-PCR analysis of 415 field-collected samples using genus-specific primers confirmed potyvirus infection in 63.7% (156/245) of sugarcane, 29.7% (42/141) of maize crops, and 45% (13/29) of itch grass samples. Cloning and sequencing of gene-specific DNA amplicons from a subset of 45 samples (sugarcane = 33, maize = 9, itch grass = 3) confirmed their specificities to SCMV. Phylogenetic analysis of the partial gene sequences showed that they all belong to a single monophyletic clade of SCMV. These results were supported by analysis of complete polyprotein sequences of representative maize and sugarcane isolates from Nigeria. Both isolates shared 94.9%/97.3% complete polyprotein nucleotide (nt)/amino acid (aa) identities with each other and 75.2%/97.6% nt/aa identities with corresponding sequences of global SCMV isolates. The detection of identical populations of SCMV isolates in both crop species and a weed host suggests possible vector mediated interspecies spread within cereal landscapes in the study area with implications for the integrated and sustainable management of SCMD in cereal cropping systems in Nigeria.
Collapse
Affiliation(s)
- Adama Yahaya
- 1 Department of Botany, Ahmadu Bello University, Zaria, Kaduna State, Nigeria
| | - Danladi B Dangora
- 1 Department of Botany, Ahmadu Bello University, Zaria, Kaduna State, Nigeria
| | - P Lava Kumar
- 2 International Institute of Tropical Agriculture (IITA), PMB 5320, Ibadan, Nigeria
| | - Matthew D Alegbejo
- 3 Department of Crop Protection, Ahmadu Bello University, Zaria, Kaduna State, Nigeria; and
| | - Lori Gregg
- 4 Department of Plant Pathology & Microbiology, Texas A&M AgriLife Research & Extension Center, Weslaco, TX 78596, USA
| | - Olufemi J Alabi
- 4 Department of Plant Pathology & Microbiology, Texas A&M AgriLife Research & Extension Center, Weslaco, TX 78596, USA
| |
Collapse
|
12
|
Adiputra J, Kesoju SR, Naidu RA. The Relative Occurrence of Grapevine leafroll-associated virus 3 and Grapevine red blotch virus in Washington State Vineyards. PLANT DISEASE 2018; 102:2129-2135. [PMID: 30226418 DOI: 10.1094/pdis-12-17-1962-re] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Vineyard surveys were conducted for three consecutive seasons in eastern Washington State, the major grapevine-growing region in the state, to document the occurrence of Grapevine leafroll-associated virus 3 (GLRaV-3) and Grapevine red blotch virus (GRBV). The majority of samples were collected from red-berried wine grape (Vitis vinifera) cultivars exhibiting symptoms of or suspected for grapevine leafroll (GLD) and red blotch (GRBD) diseases. A limited number of samples from white-berried cultivars were collected randomly due to the lack of visual symptoms. Samples were collected from a total of 2,063 grapevines from 18 red-berried cultivars and seven white-berried cultivars planted in eight American Viticultural Areas and tested for GLRaV-3 and GRBV using RT-PCR and PCR, respectively. The results showed 67.77% and 6.01% of total samples positive for GLRaV-3 and GRBV, respectively, and 9.06% of samples positive for both viruses. About 17% of samples tested negative for the two viruses, but some of these samples were positive for GLRaV-2 and GLRaV-4. Overall results indicated that GLRaV-3 was more common than GRBV, independent of cultivars and the geographic origin of samples. Due to variability in symptoms in red-berried cultivars, virus-specific diagnostic assays were deemed necessary for reliable identification of GLRaV-3 and GRBV and to differentiate GLD and GRBD symptoms from those induced by biotic and abiotic stresses in vineyards. A multiplex PCR protocol was developed for simultaneous detection of GLRaV-3 and GRBV in grapevine samples. A global phylogenetic analysis of GRBV genome sequences revealed segregation of virus isolates from Washington State vineyards into two distinct clades, with the majority of isolates belonging to clade II.
Collapse
Affiliation(s)
- Jati Adiputra
- Department of Plant Pathology, Irrigated Agriculture Research and Extension Center, Washington State University, Prosser, WA 99350
| | - Sandya R Kesoju
- Department of Agriculture, Columbia Basin College, Pasco, WA 99301
| | - Rayapati A Naidu
- Department of Plant Pathology, Irrigated Agriculture Research and Extension Center, Washington State University, Prosser, WA 99350
| |
Collapse
|
13
|
Thekke-Veetil T, Ho T, Postman JD, Martin RR, Tzanetakis IE. A Virus in American Blackcurrant ( Ribes americanum) with Distinct Genome Features Reshapes Classification in the Tymovirales. Viruses 2018; 10:v10080406. [PMID: 30081487 PMCID: PMC6115964 DOI: 10.3390/v10080406] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 07/16/2018] [Accepted: 07/26/2018] [Indexed: 12/15/2022] Open
Abstract
A novel virus with distinct genome features was discovered by high throughput sequencing in a symptomatic blackcurrant plant. The virus, tentatively named Ribes americanum virus A (RAVA), has distinct genome organization and molecular features bridging genera in the order Tymovirales. The genome consists of 7106 nucleotides excluding the poly(A) tail. Five open reading frames were identified, with the first encoding a putative viral replicase with methyl transferase (MTR), AlkB, helicase, and RNA dependent RNA polymerase (RdRp) domains. The genome organization downstream of the replicase resembles that of members of the order Tymovirales with an unconventional triple gene block (TGB) movement protein arrangement with none of the other four putative proteins exhibiting significant homology to viral proteins. Phylogenetic analysis using replicase conserved motifs loosely placed RAVA within the Betaflexiviridae. Data strongly suggest that RAVA is a novel virus that should be classified as a species in a new genus in the Betaflexiviridae or a new family within the order Tymovirales.
Collapse
Affiliation(s)
- Thanuja Thekke-Veetil
- Department of Plant Pathology, Division of Agriculture, University of Arkansas System, Fayetteville, AR 72701, USA.
| | - Thien Ho
- Department of Plant Pathology, Division of Agriculture, University of Arkansas System, Fayetteville, AR 72701, USA.
| | - Joseph D Postman
- National Clonal Germplasm Repository, United States Department of Agriculture, Corvallis, OR 97333, USA.
| | - Robert R Martin
- Horticultural Crops Research Unit, United States Department of Agriculture, Corvallis, OR 97331, USA.
| | - Ioannis E Tzanetakis
- Department of Plant Pathology, Division of Agriculture, University of Arkansas System, Fayetteville, AR 72701, USA.
| |
Collapse
|
14
|
Sabella E, Pierro R, Luvisi A, Panattoni A, D’Onofrio C, Scalabrelli G, Nutricati E, Aprile A, De Bellis L, Materazzi A. Phylogenetic analysis of viruses in Tuscan Vitis vinifera sylvestris (Gmeli) Hegi. PLoS One 2018; 13:e0200875. [PMID: 30021001 PMCID: PMC6051638 DOI: 10.1371/journal.pone.0200875] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 07/05/2018] [Indexed: 12/19/2022] Open
Abstract
The health status of the native grapevine Vitis vinifera subsp. sylvestris (Gmeli) Hegi in natural areas in Europe has received little attention. A survey was carried out on wild grapevines in Tuscany (Italy), where isolates of the Grapevine rupestris stem pitting virus (GRSPaV), Grapevine leafroll-associated virus 1 and 3 (GLRaV-1 and GLRaV-3) and Grapevine virus A (GVA) were detected. The complete coat protein (CP) region of these isolates was sequenced to investigate the relationship of the viral variants from Tuscan wild grapevines with isolates from different geographical origins. According to the phylogenetic analyses, GLRaV-1 and GLRaV-3 isolates from Tuscan wild grapevines clustered with isolates from cultivated grapevines with nucleotide sequence identities ranging from 66% to 87% and from 72.5% to 99% respectively, without any correlation between the distribution and geographical origin. Conversely, GRSPaV and GVA isolates clustered together with other Italian isolates from V. vinifera with nucleotide sequence identities ranging from 71.14% to 96.12% and from 73.5% to 92%, respectively. Our analysis of the whole amino acid sequences revealed a high conservation level for the studied proteins explained by a selective pressure on this genomic region, probably due to functional constraints imposed on CP, such as specific interactions with cellular receptors in the insect vectors necessary for successful transmission. In addition, analyses of genetic recombination suggest no significant point mutations that might play a significant role in genetic diversification. The dN/dS ratio also estimated a low number of non-silent mutations, highlighting the purifying selective pressure. The widespread distribution of the Rugose wood complex (GRSPaV and GVA associated disease) in comparison with the Grapevine Leafroll associated viruses (GLRaV-1 and -3) could explain the major geographical correlation found for the viral variants detected in Tuscany.
Collapse
Affiliation(s)
- Erika Sabella
- Department of Biological and Environmental Sciences and Technologies, University of Salento, via Prov.le Monteroni, Lecce, Italy
| | - Roberto Pierro
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto, Pisa, Italy
| | - Andrea Luvisi
- Department of Biological and Environmental Sciences and Technologies, University of Salento, via Prov.le Monteroni, Lecce, Italy
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto, Pisa, Italy
| | - Alessandra Panattoni
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto, Pisa, Italy
| | - Claudio D’Onofrio
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto, Pisa, Italy
| | - Giancarlo Scalabrelli
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto, Pisa, Italy
| | - Eliana Nutricati
- Department of Biological and Environmental Sciences and Technologies, University of Salento, via Prov.le Monteroni, Lecce, Italy
| | - Alessio Aprile
- Department of Biological and Environmental Sciences and Technologies, University of Salento, via Prov.le Monteroni, Lecce, Italy
| | - Luigi De Bellis
- Department of Biological and Environmental Sciences and Technologies, University of Salento, via Prov.le Monteroni, Lecce, Italy
| | - Alberto Materazzi
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto, Pisa, Italy
| |
Collapse
|
15
|
Molecular characterization and detection of a novel vitivirus infecting blackberry. Arch Virol 2018; 163:2889-2893. [DOI: 10.1007/s00705-018-3931-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 05/07/2018] [Indexed: 10/28/2022]
|
16
|
Gao R, Xu Y, Candresse T, He Z, Li S, Ma Y, Lu M. Further insight into genetic variation and haplotype diversity of Cherry virus A from China. PLoS One 2017; 12:e0186273. [PMID: 29020049 PMCID: PMC5636130 DOI: 10.1371/journal.pone.0186273] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 09/28/2017] [Indexed: 02/03/2023] Open
Abstract
Cherry virus A (CVA) infection appears to be prevalent in cherry plantations worldwide. In this study, the diversity of CVA isolates from 31 cherry samples collected from different orchards around Bohai Bay in northeastern China was analyzed. The complete genome of one of these isolates, ChYT52, was found to be 7,434 nt in length excluding the poly (A) tail. It shares between 79.9-98.7% identity with CVA genome sequences in GenBank, while its RdRp core is more divergent (79.1-90.7% nt identity), likely as a consequence of a recombination event. Phylogenetic analysis of ChYT52 genome with CVA genomes in Genbank resulted in at least 7 major clusters plus additional 5 isolates alone at the end of long branches suggesting the existence of further phylogroups diversity in CVA. The genetic diversity of Chinese CVA isolates from 31 samples and GenBank sequences were analyzed in three genomic regions that correspond to the coat protein, the RNA-dependent RNA polymerase core region, and the movement protein genes. With few exceptions likely representing further recombination impact, the trees various trees are largely congruent, indicating that each region provides valuable phylogenetic information. In all cases, the majority of the Chinese CVA isolates clustering in phylogroup I, together with the X82547 reference sequence from Germany. Statistically significant negative values were obtained for Tajima's D in the three genes for phylogroup I, suggesting that it may be undergoing a period of expansion. There was considerable haplotype diversity in the individual samples and more than half samples contained genetically diverse haplotypes belonging to different phylogroups. In addition, a number of statistically significant recombination events were detected in CVA genomes or in the partial genomic sequences indicating an important contribution of recombination to CVA evolution. This work provides a foundation for elucidation of the epidemiological characteristics and evolutionary history of CVA populations.
Collapse
Affiliation(s)
- Rui Gao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yunxiao Xu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | | | - Zhen He
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, China
| | - Shifang Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuxin Ma
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- UMR 1332 BFP, INRA, Univ. Bordeaux, Villenave d’Ornon Cedex, France
| | - Meiguang Lu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
17
|
Armijo G, Schlechter R, Agurto M, Muñoz D, Nuñez C, Arce-Johnson P. Grapevine Pathogenic Microorganisms: Understanding Infection Strategies and Host Response Scenarios. FRONTIERS IN PLANT SCIENCE 2016; 7:382. [PMID: 27066032 PMCID: PMC4811896 DOI: 10.3389/fpls.2016.00382] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 03/13/2016] [Indexed: 05/18/2023]
Abstract
Grapevine (Vitis vinifera L.) is one of the most important fruit crop worldwide. Commercial cultivars are greatly affected by a large number of pathogenic microorganisms that cause diseases during pre- and/or post-harvest periods, affecting production, processing and export, along with fruit quality. Among the potential threats, we can find bacteria, fungi, oomycete, or viruses with different life cycles, infection mechanisms and evasion strategies. While plant-pathogen interactions are cycles of resistance and susceptibility, resistance traits from natural resources are selected and may be used for breeding purposes and for a sustainable agriculture. In this context, here we summarize some of the most important diseases affecting V. vinifera together with their causal agents. The aim of this work is to bring a comprehensive review of the infection strategies deployed by significant types of pathogens while understanding the host response in both resistance and susceptibility scenarios. New approaches being used to uncover grapevine status during biotic stresses and scientific-based procedures needed to control plant diseases and crop protection are also addressed.
Collapse
Affiliation(s)
| | | | | | | | | | - Patricio Arce-Johnson
- Laboratorio de Biología Molecular y Biotecnología Vegetal, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de ChileSantiago, Chile
| |
Collapse
|
18
|
Genomic variability and molecular evolution of Asian isolates of sugarcane streak mosaic virus. Arch Virol 2016; 161:1493-503. [PMID: 26973230 DOI: 10.1007/s00705-016-2810-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Accepted: 02/29/2016] [Indexed: 10/22/2022]
Abstract
Sugarcane streak mosaic virus (SCSMV), an economically important causal agent of mosaic disease of sugarcane, is a member of the newly created genus Poacevirus in the family Potyviridae. In this study, we report the molecular characterization of three new SCSMV isolates from China (YN-YZ211 and HN-YZ49) and Myanmar (MYA-Formosa) and their genetic variation and phylogenetic relationship to SCSMV isolates from Asia and the type members of the family Potyviridae. The complete genome of each of the three isolates was determined to be 9781 nucleotides (nt) in size, excluding the 3' poly(A) tail. Phylogenetic analysis of the complete polyprotein amino acid (aa) sequences (3130 aa) revealed that all SCSMV isolates clustered into a phylogroup specific to the genus Poacevirus and formed two distinct clades designated as group I and group II. Isolates YN-YZ211, HN-YZ49 and MYA-Formosa clustered into group I, sharing 96.8-99.5 % and 98.9-99.6 % nt (at the complete genomic level) and aa (at the polyprotein level) identity, respectively, among themselves and 81.2-98.8 % and 94.0-99.6 % nt (at the complete genomic level) and aa (at the polyprotein level) identity, respectively, with the corresponding sequences of seven Asian SCSMV isolates. Population genetic analysis revealed greater between-group (0.190 ± 0.004) than within-group (group I = 0.025 ± 0.001 and group II = 0.071 ± 0.003) evolutionary divergence values, further supporting the results of the phylogenetic analysis. Further analysis indicated that natural selection might have contributed to the evolution of isolates belonging to the two identified SCSMV clades, with infrequent genetic exchanges occurring between them over time. These findings provide a comprehensive analysis of the population genetic structure and driving forces for the evolution of SCSMV with implications for global exchange of sugarcane germplasm.
Collapse
|
19
|
New Insights into Asian Prunus Viruses in the Light of NGS-Based Full Genome Sequencing. PLoS One 2016; 11:e0146420. [PMID: 26741704 PMCID: PMC4704818 DOI: 10.1371/journal.pone.0146420] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 12/16/2015] [Indexed: 11/20/2022] Open
Abstract
Double stranded RNAs were purified from five Prunus sources of Asian origin and submitted to 454 pyrosequencing after a random, whole genome amplification. Four complete genomes of Asian prunus virus 1 (APV1), APV2 and APV3 were reconstructed from the sequencing reads, as well as four additional, near-complete genome sequences. Phylogenetic analyses confirmed the close relationships of these three viruses and the taxonomical position previously proposed for APV1, the only APV so far completely sequenced. The genetic distances in the respective polymerase and coat protein genes as well as their gene products suggest that APV2 should be considered as a distinct viral species in the genus Foveavirus, even if the amino acid identity levels in the polymerase are very close to the species demarcation criteria for the family Betaflexiviridae. However, the situation is more complex for APV1 and APV3, for which opposite conclusions are obtained depending on the gene (polymerase or coat protein) analyzed. Phylogenetic and recombination analyses suggest that recombination events may have been involved in the evolution of APV. Moreover, genome comparisons show that the unusually long 3’ non-coding region (3' NCR) is highly variable and a hot spot for indel polymorphisms. In particular, two APV3 variants differing only in their 3’ NCR were identified in a single Prunus source, with 3' NCRs of 214–312 nt, a size similar to that observed in other foveaviruses, but 567–850 nt smaller than in other APV3 isolates. Overall, this study provides critical genome information of these viruses, frequently associated with Prunus materials, even though their precise role as pathogens remains to be elucidated.
Collapse
|
20
|
Goszczynski DE. Brief report of the construction of infectious DNA clones of South African genetic variants of grapevine virus A and grapevine virus B. SPRINGERPLUS 2015; 4:739. [PMID: 26640751 PMCID: PMC4661162 DOI: 10.1186/s40064-015-1517-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 11/06/2015] [Indexed: 11/27/2022]
Abstract
Background Recent research results strongly suggest that certain genetic variants of grapevine virus A (GVA) and grapevine virus B (GVB), two members of the Vitivirus genus of the family Betaflexiviridae, are the cause of Shiraz disease and corky bark disease of grapevines in South Africa, respectively. To investigate this hypothesis, work was undertaken to construct DNA clones of these viruses. Findings and conclusions Biologically viable and stable DNA clones of genetic variants of GVA and GVB B from South Africa were constructed. The clones share 76.3, 73.2 and 85.2, 77.6 % nt sequence similarity with corresponding clones constructed in Italy and Israel. The results suggest that a derivative of a mini binary vector pCB302 is superior to pCAMBIA1305.1 for the construction of infectious and stable DNA clones of vitiviruses. Successful construction of such DNA clones of GVA and GVB reported in this study is a clear step towards fulfilling Koch’s 3rd postulate in investigating the aetiology of Shiraz disease and corky bark disease.
Collapse
Affiliation(s)
- D E Goszczynski
- Plant Protection Research Institute, Agricultural Research Council, Private Bag X134, Queenswood, Pretoria, 0121 South Africa
| |
Collapse
|
21
|
Marais A, Faure C, Mustafayev E, Candresse T. Characterization of New Isolates of Apricot vein clearing-associated virus and of a New Prunus-Infecting Virus: Evidence for Recombination as a Driving Force in Betaflexiviridae Evolution. PLoS One 2015; 10:e0129469. [PMID: 26086395 PMCID: PMC4472227 DOI: 10.1371/journal.pone.0129469] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 05/08/2015] [Indexed: 11/26/2022] Open
Abstract
Double stranded RNAs from Prunus samples gathered from various surveys were analyzed by a deep-sequencing approach. Contig annotations revealed the presence of a potential new viral species in an Azerbaijani almond tree (Prunus amygdalus) and its genome sequence was completed. Its genomic organization is similar to that of the recently described Apricot vein clearing associated virus (AVCaV) for which two new isolates were also characterized, in a similar fashion, from two Japanese plums (Prunus salicina) from a French germplasm collection. The amino acid identity values between the four proteins encoded by the genome of the new virus have identity levels with those of AVCaV which fall clearly outside the species demarcation criteria. The new virus should therefore be considered as a new species for which the name of Caucasus prunus virus (CPrV) has been proposed. Phylogenetic relationships and nucleotide comparisons suggested that together with AVCaV, CPrV could define a new genus (proposed name: Prunevirus) in the family Betaflexiviridae. A molecular test targeting both members of the new genus was developed, allowing the detection of additional AVCaV isolates, and therefore extending the known geographical distribution and the host range of AVCaV. Moreover, the phylogenetic trees reconstructed with the amino acid sequences of replicase, movement and coat proteins of representative Betaflexiviridae members suggest that Citrus leaf blotch virus (CLBV, type member of the genus Citrivirus) may have evolved from a recombination event involving a Prunevirus, further highlighting the importance of recombination as a driving force in Betaflexiviridae evolution. The sequences reported in the present manuscript have been deposited in the GenBank database under accession numbers KM507061-KM504070.
Collapse
Affiliation(s)
- Armelle Marais
- INRA, UMR 1332 BFP, Villenave d’Ornon, France
- Université de Bordeaux, UMR 1332 BFP, Villenave d’Ornon, France
- * E-mail:
| | - Chantal Faure
- INRA, UMR 1332 BFP, Villenave d’Ornon, France
- Université de Bordeaux, UMR 1332 BFP, Villenave d’Ornon, France
| | - Eldar Mustafayev
- Genetic Resource Institute of the Azerbaijan National Academy of Sciences, Baku, Azerbaijan
| | - Thierry Candresse
- INRA, UMR 1332 BFP, Villenave d’Ornon, France
- Université de Bordeaux, UMR 1332 BFP, Villenave d’Ornon, France
| |
Collapse
|