1
|
Kawaguchi A, Kirino N, Inoue K. Biological Control for Grapevine Crown Gall Evaluated by a Network Meta-Analysis. PLANTS (BASEL, SWITZERLAND) 2023; 12:572. [PMID: 36771655 PMCID: PMC9921260 DOI: 10.3390/plants12030572] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 01/25/2023] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
Grapevine crown gall (GCG), which is caused by Allorhizobium vitis (=Rhizobium vitis) tumorigenic strains, is the most important disease of grapevine around the world. Previously, nonpathogenic A. vitis strains VAR03-1, ARK-1, ARK-2, and ARK-3 were identified as promising biological control agents, but the control effects of each strain were not directly compared and assessed in the field because field trials were conducted in different fields and years. Thus, the results of the control effects obtained from 16 field trials in 12 years from 2006 to 2017 were analyzed and evaluated by a linear mixed model (LMM) and a network meta-analysis (NMA). The results of the LMM strongly indicate that the factor "antagonistic strain" was significantly related to the biological control activity in this study, but the other factors, "concentration of cell suspension", "field", and "year", were not. Then, the results of 16 field trials were combined in an NMA. The estimated relative risk (RR) after treatment with ARK-1, ARK-2, ARK-3, VAR03-1, and K84 were 0.16, 0.20, 0.22, 0.24, and 0.74, respectively. In conclusion, strain ARK-1 was the best antagonist regardless of the concentration of the cell suspension, field, and year differences, and it can be recommended to control GCG.
Collapse
Affiliation(s)
- Akira Kawaguchi
- Western Region Agricultural Research Center (WARC) (Kinki, Chugoku and Shikoku Regions), National Agriculture and Food Research Organization (NARO), 6-12-1 Nishifukatsu-cho, Fukuyama 721-8514, Hiroshima, Japan
| | - Namiko Kirino
- Research Institute for Agriculture, Okayama Prefectural Technology Center for Agriculture, Forestry and Fisheries, 1174-1 Koudaoki, Akaiwa City 709-0801, Okayama, Japan
| | - Koji Inoue
- Research Institute for Agriculture, Okayama Prefectural Technology Center for Agriculture, Forestry and Fisheries, 1174-1 Koudaoki, Akaiwa City 709-0801, Okayama, Japan
| |
Collapse
|
2
|
Biocontrol of Grapevine Crown Gall Performed Using Allorhizobium vitis Strain ARK-1. Appl Microbiol 2022. [DOI: 10.3390/applmicrobiol2040075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Grapevine crown gall (GCG), which is caused by tumorigenic Allorhizobium vitis (=Rhizobium vitis), is the most important bacterial disease in grapevine, and its economic impact on grapevine is very high. When young vines develop GCG, they often die, whereas older vines may show stress and poor growth depending on the severity of GCG, because GCG interferes with the vascular system of the grapevine trunk and prevents nutrient flow, leading to inferior growth and death. Viticultural practices and chemical control designed to inhibit GCG are only partially effective presently; thus, a biocontrol procedure could be a desirable and effective approach for GCG prevention. This article reviews the practical use of biocontrol options for GCG inhibition that involve using nonpathogenic and antagonistic A. vitis strains. In these studies, screening tests of biocontrol agents discovered nonpathogenic A. vitis strains VAR03-1, ARK-1, ARK-2, and ARK-3. After dipping grapevine roots in a suspension of candidate strains prior to planting in the field, treatment using ARK-1 was shown to significantly reduce the number of plants with GCG. A meta-analysis indicated that ARK-1 is very useful for controlling crown gall in various plant species, including grapevine. It was reported that when a mixture of ARK-1 and a tumorigenic strain was examined in grapevines, the expression levels of several virulence genes of the virulent strain were significantly lower. ARK-1 can reduce the pathogen population in grapevines and gall incidence. Moreover, ARK-1 can prime the induction of certain defense genes of grapevine. These results indicate that ARK-1 has a unique biocontrol mechanism and that it is a promising new biocontrol agent to control GCG.
Collapse
|
3
|
Xi H, Grist J, Ryder M, Searle IR. Complete Genome Sequence Data for the Grapevine Crown Gall-Inhibiting Bacteria Allorhizobium vitis F2/5. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2022; 35:174-176. [PMID: 34713721 DOI: 10.1094/mpmi-09-21-0223-a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Affiliation(s)
- Hangwei Xi
- School of Biological Sciences, The University of Adelaide, Adelaide, 5005, Australia
| | - Josh Grist
- School of Biological Sciences, The University of Adelaide, Adelaide, 5005, Australia
| | - Maarten Ryder
- School of Agriculture, Food and Wine, The University of Adelaide, Adelaide, 5064, Australia
| | - Iain R Searle
- School of Biological Sciences, The University of Adelaide, Adelaide, 5005, Australia
| |
Collapse
|
4
|
Nguyen-Huu T, Doré J, Aït Barka E, Lavire C, Clément C, Vial L, Sanchez L. Development of a DNA-Based Real-Time PCR Assay To Quantify Allorhizobium vitis Over Time in Grapevine ( Vitis vinifera L.) Plantlets. PLANT DISEASE 2021; 105:384-391. [PMID: 32734845 DOI: 10.1094/pdis-04-20-0732-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Allorhizobium vitis is the primary causal pathogen of grapevine crown gall disease. Because this endophytic bacterium can survive as a systemic latent (symptomless) infection in grapevine, detecting and monitoring its development in planta is of great importance. In plant bacteria studies, plate counting is routinely used as a simple and reliable method to evaluate the bacterial population level in planta. However, isolation techniques are time-consuming and present some disadvantages such as the risk of contamination and the need for fresh samples for research. In this study, we developed a DNA-based real-time PCR assay that can replace the classical method to monitor the development of Allorhizobium vitis in grapevine plantlets. Primers targeting Allorhizobium vitis chromosomic genes and the virulent tumor-inducing plasmid were validated. The proposed quantitative real-time PCR technique is highly reliable and reproducible to assess Allorhizobium vitis numeration at the earliest stage of infection until tumor development in grapevine plantlets. Moreover, this low-cost technique provides rapid and robust in planta quantification of the pathogen and is suitable for fundamental research to monitor bacterial development over time.
Collapse
Affiliation(s)
- Trong Nguyen-Huu
- Unité EA 4707 Résistance Induite et Bioprotection des Plantes, SFR Condorcet FR Centre National de la Recherche Scientifique (CNRS) 3417, Université de Reims Champagne-Ardenne, Reims, France
| | - Jeanne Doré
- UMR Ecologie Microbienne, CNRS, National Research Institute for Agriculture, Food and Environment, VetAgro Sup, Université Claude-Bernard Lyon, Université de Lyon, F-69622 Villeurbanne, Lyon, France
| | - Essaïd Aït Barka
- Unité EA 4707 Résistance Induite et Bioprotection des Plantes, SFR Condorcet FR Centre National de la Recherche Scientifique (CNRS) 3417, Université de Reims Champagne-Ardenne, Reims, France
| | - Céline Lavire
- UMR Ecologie Microbienne, CNRS, National Research Institute for Agriculture, Food and Environment, VetAgro Sup, Université Claude-Bernard Lyon, Université de Lyon, F-69622 Villeurbanne, Lyon, France
| | - Christophe Clément
- Unité EA 4707 Résistance Induite et Bioprotection des Plantes, SFR Condorcet FR Centre National de la Recherche Scientifique (CNRS) 3417, Université de Reims Champagne-Ardenne, Reims, France
| | - Ludovic Vial
- UMR Ecologie Microbienne, CNRS, National Research Institute for Agriculture, Food and Environment, VetAgro Sup, Université Claude-Bernard Lyon, Université de Lyon, F-69622 Villeurbanne, Lyon, France
| | - Lisa Sanchez
- Unité EA 4707 Résistance Induite et Bioprotection des Plantes, SFR Condorcet FR Centre National de la Recherche Scientifique (CNRS) 3417, Université de Reims Champagne-Ardenne, Reims, France
| |
Collapse
|
5
|
Pacifico D, Squartini A, Crucitti D, Barizza E, Lo Schiavo F, Muresu R, Carimi F, Zottini M. The Role of the Endophytic Microbiome in the Grapevine Response to Environmental Triggers. FRONTIERS IN PLANT SCIENCE 2019; 10:1256. [PMID: 31649712 PMCID: PMC6794716 DOI: 10.3389/fpls.2019.01256] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 09/09/2019] [Indexed: 05/25/2023]
Abstract
Endophytism within Vitis represents a topic of critical relevance due to the multiple standpoints from which it can be approached and considered. From the biological and botanical perspectives, the interaction between microorganisms and perennial woody plants falls within the category of stable relationships from which the plants can benefit in multiple ways. The life cycle of the host ensures persistence in all seasons, repeated chances of contact, and consequent microbiota accumulation over time, leading to potentially high diversity compared with that of herbaceous short-lived plants. Furthermore, grapevines are agriculturally exploited, highly selected germplasms where a profound man-driven footprint has indirectly and unconsciously shaped the inner microbiota through centuries of cultivation and breeding. Moreover, since endophyte metabolism can contribute to that of the plant host and its fruits' biochemical composition, the nature of grapevine endophytic taxa identities, ecological attitudes, potential toxicity, and clinical relevance are aspects worthy of a thorough investigation. Can endophytic taxa efficiently defend grapevines by acting against pests or confer enough fitness to the plants to endure attacks? What are the underlying mechanisms that translate into this or other advantages in the hosting plant? Can endophytes partially redirect plant metabolism, and to what extent do they act by releasing active products? Is the inner microbial colonization necessary priming for a cascade of actions? Are there defined environmental conditions that can trigger the unleashing of key microbial phenotypes? What is the environmental role in providing the ground biodiversity by which the plant can recruit microsymbionts? How much and by what practices and strategies can these symbioses be managed, applied, and directed to achieve the goal of a better sustainable viticulture? By thoroughly reviewing the available literature in the field and critically examining the data and perspectives, the above issues are discussed.
Collapse
Affiliation(s)
- Davide Pacifico
- Institute of Biosciences and BioResources (IBBR), National Research Council of Italy (CNR), Corso Calatafimi, Palermo, Italy
| | - Andrea Squartini
- Department of Agronomy, Food, Natural Resources, Animals and the Environment, University of Padua, Legnaro, Italy
| | - Dalila Crucitti
- Institute of Biosciences and BioResources (IBBR), National Research Council of Italy (CNR), Corso Calatafimi, Palermo, Italy
| | | | | | - Rosella Muresu
- Institute for the Animal Production System in Mediterranean Environment (ISPAAM), National Research Council (CNR), Sassari, Italy
| | - Francesco Carimi
- Institute of Biosciences and BioResources (IBBR), National Research Council of Italy (CNR), Corso Calatafimi, Palermo, Italy
| | | |
Collapse
|
6
|
The Ecology of Agrobacterium vitis and Management of Crown Gall Disease in Vineyards. Curr Top Microbiol Immunol 2019; 418:15-53. [PMID: 29556824 DOI: 10.1007/82_2018_85] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
Abstract
Agrobacterium vitis is the primary causal agent of grapevine crown gall worldwide. Symptoms of grapevine crown gall disease include tumor formation on the aerial plant parts, whereas both tumorigenic and nontumorigenic strains of A. vitis cause root necrosis. Genetic and genomic analyses indicated that A. vitis is distinguishable from the members of the Agrobacterium genus and its transfer to the genus Allorhizobium was suggested. A. vitis is genetically diverse, with respect to both chromosomal and plasmid DNA. Its pathogenicity is mainly determined by a large conjugal tumor-inducing (Ti) plasmid characterized by a mosaic structure with conserved and variable regions. Traditionally, A. vitis Ti plasmids and host strains were differentiated into octopine/cucumopine, nopaline, and vitopine groups, based on opine markers. However, tumorigenic and nontumorigenic strains of A. vitis may carry other ecologically important plasmids, such as tartrate- and opine-catabolic plasmids. A. vitis colonizes vines endophytically. It is also able to survive epiphytically on grapevine plants and is detected in soil exclusively in association with grapevine plants. Because A. vitis persists systemically in symptomless grapevine plants, it can be efficiently disseminated to distant geographical areas via international trade of propagation material. The use of healthy planting material in areas with no history of the crown gall represents the crucial measure of disease management. Moreover, biological control and production of resistant grape varieties are encouraging as future control measures.
Collapse
|
7
|
Kawaguchi A, Nita M, Ishii T, Watanabe M, Noutoshi Y. Biological control agent Rhizobium (=Agrobacterium) vitis strain ARK-1 suppresses expression of the essential and non-essential vir genes of tumorigenic R. vitis. BMC Res Notes 2019; 12:1. [PMID: 30602384 PMCID: PMC6317203 DOI: 10.1186/s13104-018-4038-6] [Citation(s) in RCA: 195] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 12/24/2018] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE To gain insights into the virulence suppressive mechanism of a nonpathogenic strain of Rhizobium vitis ARK-1, we co-inoculated ARK-1 with a tumorigenic (Ti) strain of R. vitis to examine the expression of two essential virulence genes (virA and virG) and one non-essential gene (virD3) of the Ti strain at the wound site of grapevine. RESULTS Co-inoculation of ARK-1 with a Ti strain VAT03-9 at a 1:1 cell ratio into grapevine shoots resulted in significantly lower expression of the virulence genes virA, virD3, and virG of VAT03-9 at 1 day after inoculation compared with those when shoots were inoculated only with VAT03-9. ARK-1 was not able to catabolize acetosyringone, which is the plant-derived metabolites inducing the entire vir regulon in Ti strains, suggesting the direct effect of ARK-1 on the induction of broad range of vir genes of R. vitis Ti strains.
Collapse
Affiliation(s)
- Akira Kawaguchi
- Western Region Agricultural Research Center, National Agriculture and Food Research Organization (NARO), 6-12-1 Nishifukatsu-cho, Fukuyama, Hiroshima 721-8514 Japan
| | - Mizuho Nita
- AHS Jr. Agricultural Research and Extension Center, School of Plant and Environmental Sciences, Virginia Polytechnic Institute and State University, 595 Laurel Grove Rd, Winchester, VA 22602 USA
| | - Tomoya Ishii
- Graduate School of Environmental and Life Science, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama, 700-8530 Japan
| | - Megumi Watanabe
- Graduate School of Environmental and Life Science, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama, 700-8530 Japan
| | - Yoshiteru Noutoshi
- Graduate School of Environmental and Life Science, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama, 700-8530 Japan
| |
Collapse
|
8
|
Barton IS, Fuqua C, Platt TG. Ecological and evolutionary dynamics of a model facultative pathogen: Agrobacterium and crown gall disease of plants. Environ Microbiol 2018; 20:16-29. [PMID: 29105274 PMCID: PMC5764771 DOI: 10.1111/1462-2920.13976] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 10/20/2017] [Accepted: 10/25/2017] [Indexed: 01/09/2023]
Abstract
Many important pathogens maintain significant populations in highly disparate disease and non-disease environments. The consequences of this environmental heterogeneity in shaping the ecological and evolutionary dynamics of these facultative pathogens are incompletely understood. Agrobacterium tumefaciens, the causative agent for crown gall disease of plants has proven a productive model for many aspects of interactions between pathogens and their hosts and with other microbes. In this review, we highlight how this past work provides valuable context for the use of this system to examine how heterogeneity and transitions between disease and non-disease environments influence the ecology and evolution of facultative pathogens. We focus on several features common among facultative pathogens, such as the physiological remodelling required to colonize hosts from environmental reservoirs and the consequences of competition with host and non-host associated microbiota. In addition, we discuss how the life history of facultative pathogens likely often results in ecological tradeoffs associated with performance in disease and non-disease environments. These pathogens may therefore have different competitive dynamics in disease and non-disease environments and are subject to shifting selective pressures that can result in pathoadaptation or the within-host spread of avirulent phenotypes.
Collapse
Affiliation(s)
- Ian S. Barton
- Department of Biology, Indiana University, Bloomington, IN, USA
| | - Clay Fuqua
- Department of Biology, Indiana University, Bloomington, IN, USA
| | - Thomas G. Platt
- Division of Biology, Kansas State University, Manhattan, KS, USA
| |
Collapse
|
9
|
KAWAGUCHI A, INOUE K, TANINA K, NITA M. Biological control for grapevine crown gall using nonpathogenic Rhizobium vitis strain ARK-1. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2017; 93:547-560. [PMID: 29021507 PMCID: PMC5743857 DOI: 10.2183/pjab.93.035] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 05/31/2017] [Indexed: 06/07/2023]
Abstract
Crown gall of grapevine, which is caused by tumorigenic Rhizobium vitis, is the most important bacterial disease of grapevine throughout the world. Screening tests of biological control agents resulted in the discovery of a nonpathogenic R. vitis strain ARK-1. By soaking grapevine roots with a cell suspension of strain ARK-1 prior to planting in the field, ARK-1 treatment significantly reduced the number of plants with crown gall symptoms. Several field trials result indicated that ARK-1 was very useful in the field, not only for grapevine but also for various other plant species. In experiments where a mixture of ARK-1 and a tumorigenic strain at a 1 : 1 cell ratio was examined in vitro and in planta, expression levels of the virulence genes virD2 and virE2 of the tumorigenic strain were significantly lower. The suppression of virulence genes, which can result in a reduction of gall formation and the pathogen population, seems to be a unique mechanism of ARK-1. These results indicated that ARK-1 is a promising new agent to control grapevine crown gall.
Collapse
Affiliation(s)
- Akira KAWAGUCHI
- Western Region Agricultural Research Center, National Agriculture and Food Research Organization (NARO), Hiroshima, Japan
| | - Koji INOUE
- Research Institute for Agriculture, Okayama Prefectural Technology Center for Agriculture, Forestry and Fisheries, Okayama, Japan
| | - Koji TANINA
- Research Institute for Agriculture, Okayama Prefectural Technology Center for Agriculture, Forestry and Fisheries, Okayama, Japan
| | - Mizuho NITA
- AHS Jr. Agricultural Research and Extension Center, Department of Plant Pathology, Physiology, and Weed Science, Virginia Polytechnic Institute and State University, VA, U.S.A.
| |
Collapse
|
10
|
Jung SM, Hur YY, Preece JE, Fiehn O, Kim YH. Profiling of Disease-Related Metabolites in Grapevine Internode Tissues Infected with Agrobacterium vitis. THE PLANT PATHOLOGY JOURNAL 2016; 32:489-499. [PMID: 27904455 PMCID: PMC5117857 DOI: 10.5423/ppj.ft.08.2016.0163] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 10/04/2016] [Accepted: 10/05/2016] [Indexed: 06/06/2023]
Abstract
Green shoot cuttings of 10 different grapevine species were inoculated with Agrobacterium vitis to find disease-related metabolites in the grapevine. Crown galls formed 60 days after inoculation varied in gall severity (GS) evaluated by gall incidence (GI) and gall diameter (GD), which were classified into three response types as RR (low GI and small GD), SR (high GI and small GD), and SS (high GI and large GD), corresponding to resistant, moderately resistant, and susceptible responses, respectively. In this, 4, 4, and 2 Vitis species were classified into RR, SR, and SS, respectively. Gas chromatography mass spectrometry (GC-MS) analysis of the grapevine stem metabolites with A. vitis infection showed 134 metabolites in various compound classes critically occurred, which were differentially clustered with the response types by the principal component analysis. Multivariate analysis of the metabolite profile revealed that 11 metabolites increased significantly in relation to the response types, mostly at post-inoculation stages, more prevalently (8 metabolites) at two days after inoculation than other stages, and more related to SS (7 metabolites) than RR (3 metabolites) or SR (one metabolite). This suggests most of the disease-related metabolites may be rarely pre-existing but mostly induced by pathogen infection largely for facilitating gall development except stilbene compound resveratrol, a phytoalexin that may be involved in the resistance response. All of these aspects may be used for the selection of resistant grapevine cultivars and their rootstocks for the control of the crown gall disease of the grapevine.
Collapse
Affiliation(s)
- Sung-Min Jung
- Fruit Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Wanju 55365,
Korea
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826,
Korea
| | - Youn-Young Hur
- Fruit Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Wanju 55365,
Korea
| | - John E. Preece
- National Clonal Germplasm Repository, United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Davis, CA 95616,
USA
| | - Oliver Fiehn
- Department of Molecular and Cellular Biology and Genome Center, University of California, Davis, CA 95616,
USA
| | - Young-Ho Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826,
Korea
| |
Collapse
|
11
|
Grapevine (Vitis vinifera) Crown Galls Host Distinct Microbiota. Appl Environ Microbiol 2016; 82:5542-52. [PMID: 27371584 DOI: 10.1128/aem.01131-16] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 06/27/2016] [Indexed: 01/05/2023] Open
Abstract
UNLABELLED Crown gall disease of grapevine is caused by virulent Agrobacterium strains and establishes a suitable habitat for agrobacteria and, potentially, other bacteria. The microbial community associated with grapevine plants has not been investigated with respect to this disease, which frequently results in monetary losses. This study compares the endophytic microbiota of organs from grapevine plants with or without crown gall disease and the surrounding vineyard soil over the growing seasons of 1 year. Amplicon-based community profiling revealed that the dominating factor causing differences between the grapevine microbiota is the sample site, not the crown gall disease. The soil showed the highest microbial diversity, which decreased with the distance from the soil over the root and the graft union of the trunk to the cane. Only the graft union microbiota was significantly affected by crown gall disease. The bacterial community of graft unions without a crown gall hosted transient microbiota, with the three most abundant bacterial species changing from season to season. In contrast, graft unions with a crown gall had a higher species richness, which in every season was dominated by the same three bacteria (Pseudomonas sp., Enterobacteriaceae sp., and Agrobacterium vitis). For in vitro-cultivated grapevine plantlets, A. vitis infection alone was sufficient to cause crown gall disease. Our data show that microbiota in crown galls is more stable over time than microbiota in healthy graft unions and that the microbial community is not essential for crown gall disease outbreak. IMPORTANCE The characterization of bacterial populations in animal and human diseases using high-throughput deep-sequencing technologies, such as 16S amplicon sequencing, will ideally result in the identification of disease-specific microbiota. We analyzed the microbiota of the crown gall disease of grapevine, which is caused by infection with the bacterial pathogen Agrobacterium vitis. All other Agrobacterium species were found to be avirulent, even though they lived together with A. vitis in the same crown gall tumor. As has been reported for human cancer, the crown gall tumor also hosted opportunistic bacteria that are adapted to the tumor microenvironment. Characterization of the microbiota in various diseases using amplicon sequencing may help in early diagnosis, to serve as a preventative measure of disease in the future.
Collapse
|
12
|
Zheng D, Burr TJ. Inhibition of Grape Crown Gall by Agrobacterium vitis F2/5 Requires Two Nonribosomal Peptide Synthetases and One Polyketide Synthase. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2016; 29:109-118. [PMID: 26575143 DOI: 10.1094/mpmi-07-15-0153-r] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Agrobacterium vitis nontumorigenic strain F2/5 is able to inhibit crown gall disease on grapevines. The mechanism of grape tumor inhibition (GTI) by F2/5 has not been fully determined. In this study, we demonstrate that two nonribosomal peptide synthetase (NRPS) genes (F-avi3342 and F-avi5730) and one polyketide synthase gene (F-avi4330) are required for GTI. Knockout of any one of them resulted in F/25 losing GTI capacity. We previously reported that F-avi3342 and F-avi4330 but not F-avi5730 are required for induction of grape tissue necrosis and tobacco hypersensitive response. F-avi5730 is predicted to encode a single modular NRPS. It is located in a cluster that is homologous to the siderophore vicibactin biosynthesis locus in Rhizobium species. Individual disruption of F-avi5730 and two immediate downstream genes, F-avi5731 and F-avi5732, all resulted in reduced siderophore production; however, only F-avi5730 was found to be required for GTI. Complemented F-avi5730 mutant (ΔF-avi5730(+)) restored a wild-type level of GTI activity. It was determined that, over time, populations of ΔF-avi4330, ΔF-avi3342, and ΔF-avi5730 at inoculated wound sites on grapevine did not differ from those of ΔF-avi5730(+) indicating that loss of GTI was not due to reduced colonization of wound sites by mutants.
Collapse
Affiliation(s)
- Desen Zheng
- Department of Plant Pathology and Plant-Microbe Biology, New York State Agricultural Experimental Station, Cornell University, 630 W. North Street Geneva, NY 14456, U.S.A
| | - Thomas J Burr
- Department of Plant Pathology and Plant-Microbe Biology, New York State Agricultural Experimental Station, Cornell University, 630 W. North Street Geneva, NY 14456, U.S.A
| |
Collapse
|
13
|
Kawaguchi A. Reduction in pathogen populations at grapevine wound sites is associated with the mechanism underlying the biological control of crown gall by rhizobium vitis strain ARK-1. Microbes Environ 2014; 29:296-302. [PMID: 25077443 PMCID: PMC4159041 DOI: 10.1264/jsme2.me14059] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 06/13/2014] [Indexed: 11/12/2022] Open
Abstract
A nonpathogenic strain of Rhizobium (=Agrobacterium) vitis, ARK-1, limited the development of grapevine crown gall. A co-inoculation with ARK-1 and the tumorigenic strain VAT07-1 at a 1:1 cell ratio resulted in a higher population of ARK-1 than VAT07-1 in shoots without tumors, but a significantly lower population of ARK-1 than VAT07-1 in grapevine shoots with tumors. ARK-1 began to significantly suppress the VAT07-1 population 2 d after the inoculation. This result indicated that ARK-1 reduced the pathogen population at the wound site through biological control. Although ARK-1 produced a zone of inhibition against other tumorigenic Rhizobium spp. in in vitro assays, antibiosis depended on the culture medium. ARK-1 did not inhibit the growth of tumorigenic R. radiobacter strain AtC1 in the antibiosis assay, but suppressed the AtC1-induced formation of tumors on grapevine shoots, suggesting that antibiosis by ARK-1 may not be the main mechanism responsible for biological control.
Collapse
Affiliation(s)
- Akira Kawaguchi
- Research Institute for Agriculture, Okayama Prefectural Technology Center for Agriculture, Forestry and Fisheries, 1174–1 Koudaoki, Akaiwa City, Okayama 709–0801,
Japan
| |
Collapse
|