1
|
Bradai M, Tan H, Gao M, Aguilar E, Lozano‐Durán R. A reporter tomato line to track replication of a geminivirus in real time and with cellular resolution. PLANT BIOTECHNOLOGY JOURNAL 2025; 23:709-711. [PMID: 39636681 PMCID: PMC11869168 DOI: 10.1111/pbi.14531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/22/2024] [Accepted: 11/18/2024] [Indexed: 12/07/2024]
Affiliation(s)
- Mariem Bradai
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant SciencesChinese Academy of SciencesShanghaiChina
- Present address:
Phytopathology, TUM School of Life SciencesTechnical University of MunichFreising‐WeihenstephanGermany
| | - Huang Tan
- Department of Plant Biochemistry, Centre for Plant Molecular Biology (ZMBP)Eberhard Karls UniversityTübingenGermany
| | - Man Gao
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant SciencesChinese Academy of SciencesShanghaiChina
- Department of Plant Biochemistry, Centre for Plant Molecular Biology (ZMBP)Eberhard Karls UniversityTübingenGermany
| | - Emmanuel Aguilar
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant SciencesChinese Academy of SciencesShanghaiChina
- Present address:
Departamento de Biología Celular, Genética y Fisiología, Instituto de Hortofruticultura Subtropical y Mediterránea ‘La Mayora’, Universidad de Málaga‐Consejo Superior de Investigaciones Científicas (IHSM‐UMA‐CSIC)Universidad de MálagaMálagaSpain
| | - Rosa Lozano‐Durán
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant SciencesChinese Academy of SciencesShanghaiChina
- Department of Plant Biochemistry, Centre for Plant Molecular Biology (ZMBP)Eberhard Karls UniversityTübingenGermany
| |
Collapse
|
2
|
Koeda S, Fortes IM, Rodríguez-López MJ, Fernández-Muñoz R, Moriones E. Resistance to the Insect Vector Bemisia tabaci Enhances the Robustness and Durability of Tomato Yellow Leaf Curl Virus Resistance Conferred by Ty-1. PLANT DISEASE 2025; 109:399-409. [PMID: 39306688 DOI: 10.1094/pdis-06-24-1281-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2025]
Abstract
Tomato yellow leaf curl virus (TYLCV) is a begomovirus (genus Begomovirus, family Geminiviridae) transmitted persistently by the whitefly Bemisia tabaci. It causes tomato yellow leaf curl disease (TYLCD), resulting in significant yield losses worldwide. TYLCD is controlled mainly by using F1 hybrid tomato cultivars harboring the TYLCV resistance gene Ty-1. However, infected Ty-1-bearing tomato plants accumulate viral DNA, which may eventually lead to the emergence of a resistance-breaking TYLCV variant. Recently, a B. tabaci-resistant tomato line derived from the introgression of type IV leaf glandular trichomes and acylsucrose secretion from wild tomato (Solanum pimpinellifolium) was shown to effectively control the spread of TYLCV. In this study, we combined B. tabaci resistance and Ty-1-based TYLCV resistance to increase the robustness and durability of the TYLCD resistance mediated by Ty-1 in tomato plants. Specifically, we characterized and used a Group 2-like isolate of the Israel strain of TYLCV (TYLCV-IL-G2) that contributes to TYLCD epidemics in southeastern Spain. A comparison with isolates of the previously identified TYLCV variant revealed TYLCV-IL-G2 has a similar host range, but it induces a slightly more severe TYLCD in Ty-1-bearing tomato plants. Moreover, we demonstrated that acylsucrose-producing B. tabaci-resistant tomato plants can limit the spread of TYLCV-IL-G2 better than a near-isogenic line lacking type IV trichomes and unable to secrete acylsucrose. Pyramiding Ty-1-based TYLCV resistance and B. tabaci resistance provided by type IV glandular trichomes helped to decrease the effects of TYLCV on Ty-1-bearing tomato plants as well as the likelihood of TYLCV evolution in infected plants.
Collapse
Affiliation(s)
- Sota Koeda
- Faculty of Agriculture, Kindai University, Nara 631-8505, Japan
| | - Isabel M Fortes
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" (IHSM), Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Estación Experimental "La Mayora" E-29750, Algarrobo-Costa, Málaga, Spain
| | - Maria J Rodríguez-López
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" (IHSM), Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Estación Experimental "La Mayora" E-29750, Algarrobo-Costa, Málaga, Spain
| | - Rafael Fernández-Muñoz
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" (IHSM), Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Estación Experimental "La Mayora" E-29750, Algarrobo-Costa, Málaga, Spain
| | - Enrique Moriones
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" (IHSM), Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Estación Experimental "La Mayora" E-29750, Algarrobo-Costa, Málaga, Spain
| |
Collapse
|
3
|
Cao X, Huang M, Wang S, Li T, Huang Y. Tomato yellow leaf curl virus: Characteristics, influence, and regulation mechanism. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 213:108812. [PMID: 38875781 DOI: 10.1016/j.plaphy.2024.108812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/05/2024] [Accepted: 06/07/2024] [Indexed: 06/16/2024]
Abstract
Tomato yellow leaf curl virus (TYLCV), a DNA virus belonging to the genus Begomovirus, significantly impedes the growth and development of numerous host plants, including tomatoes and peppers. Due to its rapid mutation rate and frequent recombination events, achieving complete control of TYLCV proves exceptionally challenging. Consequently, identifying resistance mechanisms become crucial for safeguarding host plants from TYLCV-induced damage. This review article delves into the global distribution, dispersal patterns, and defining characteristics of TYLCV. Moreover, the intricate interplay between TYLCV and various influencing factors, such as insect vectors, susceptible host plants, and abiotic stresses, plays a pivotal role in plant-TYLCV interactions. The review offers an updated perspective on recent investigations focused on plant response mechanisms to TYLCV infection, including the intricate relationship between TYLCV, whiteflies, and regulatory factors. This comprehensive analysis aims to establish a foundation for future research endeavors exploring the molecular mechanisms underlying TYLCV infection and the development of plant resistance through breeding programs.
Collapse
Affiliation(s)
- Xue Cao
- College of Agriculture and Forestry Sciences, Linyi University, Linyi, Shandong Province, 276000, China
| | - Mengna Huang
- College of Agriculture and Forestry Sciences, Linyi University, Linyi, Shandong Province, 276000, China
| | - Shimei Wang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Tea Science, Guizhou University, Guiyang, Guizhou Province, 550025, China
| | - Tong Li
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Tea Science, Guizhou University, Guiyang, Guizhou Province, 550025, China.
| | - Ying Huang
- College of Agriculture and Forestry Sciences, Linyi University, Linyi, Shandong Province, 276000, China.
| |
Collapse
|
4
|
Sandra N, Mandal B. Emerging evidence of seed transmission of begomoviruses: implications in global circulation and disease outbreak. FRONTIERS IN PLANT SCIENCE 2024; 15:1376284. [PMID: 38807782 PMCID: PMC11130427 DOI: 10.3389/fpls.2024.1376284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/09/2024] [Indexed: 05/30/2024]
Abstract
Begomoviruses (family Geminiviridae) are known for causing devastating diseases in fruit, fibre, pulse, and vegetable crops throughout the world. Begomoviruses are transmitted in the field exclusively through insect vector whitefly (Bemisia tabaci), and the frequent outbreaks of begomoviruses are attributed largely due to the abundance of whitefly in the agri-ecosystem. Begomoviruses being phloem-borne were known not be transmitted through seeds of the infected plants. The recent findings of seed transmission of begomoviruses brought out a new dimension of begomovirus perpetuation and dissemination. The first convincing evidence of seed transmission of begomoviruses was known in 2015 for sweet potato leaf curl virus followed by several begomoviruses, like bhendi yellow vein mosaic virus, bitter gourd yellow mosaic virus, dolichos yellow mosaic virus, mungbean yellow mosaic virus, mungbean yellow mosaic India virus, pepper yellow leaf curl Indonesia virus, tomato leaf curl New Delhi virus, tomato yellow leaf curl virus, tomato yellow leaf curl Sardinia virus, and okra yellow mosaic Mexico virus. These studies brought out two perspectives of seed-borne nature of begomoviruses: (i) the presence of begomovirus in the seed tissues derived from the infected plants but no expression of disease symptoms in the progeny seedlings and (ii) the seed infection successfully transmitted the virus to cause disease to the progeny seedlings. It seems that the seed transmission of begomovirus is a feature of a specific combination of host-genotype and virus strain, rather than a universal phenomenon. This review comprehensively describes the seed transmitted begomoviruses reported in the last 9 years and the possible mechanism of seed transmission. An emphasis is placed on the experimental results that proved the seed transmission of various begomoviruses, factors affecting seed transmission and impact of begomovirus seed transmission on virus circulation, outbreak of the disease, and management strategies.
Collapse
Affiliation(s)
- Nagamani Sandra
- Seed Pathology Laboratory, Division of Seed Science and Technology, Indian Agricultural Research Institute, New Delhi, India
| | - Bikash Mandal
- Advanced Centre for Plant Virology, Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
5
|
Bandoo RA, Kraberger S, Varsani A. Two Novel Geminiviruses Identified in Bees ( Apis mellifera and Nomia sp.). Viruses 2024; 16:602. [PMID: 38675943 PMCID: PMC11053556 DOI: 10.3390/v16040602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 04/10/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Members of the Geminviridae family are circular single-stranded DNA plant-infecting viruses, some of which impact global food production. Geminiviruses are vectored by sap-feeding insects such as leafhoppers, treehoppers, aphids, and whiteflies. Additionally, geminivirus sequences have also been identified in other insects such as dragonflies, mosquitoes, and stingless bees. As part of a viral metagenomics study on honeybees and solitary bees (Nomia sp.), two geminivirus genomes were identified. These represent a novel citlodavirus (from honeybees collected from Westmoreland, Jamaica) and a mastrevirus-like genome (from a solitary bee collected from Tempe, Arizona, USA). The novel honeybee-derived citlodavirus genome shares ~61 to 69% genome-wide nucleotide pairwise identity with other citlodavirus genome sequences and is most closely related to the passion fruit chlorotic mottle virus identified in Brazil. Whereas the novel solitary bee-derived mastrevirus-like genome shares ~55 to 61% genome-wide nucleotide identity with other mastreviruses and is most closely related to tobacco yellow dwarf virus identified in Australia, based on pairwise identity scores of the full genome, replication-associated protein, and capsid protein sequences. Previously, two geminiviruses in the Begomovirus genus were identified in samples of stingless bee (Trigona spp.) samples. Here, we identify viruses that represent two new species of geminiviruses from a honeybee and a solitary bee, which continues to demonstrate that plant pollinators can be utilized for the identification of plant-infecting DNA viruses in ecosystems.
Collapse
Affiliation(s)
- Rohan Antonio Bandoo
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
- The Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ 85287, USA
| | - Simona Kraberger
- The Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ 85287, USA
| | - Arvind Varsani
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
- The Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ 85287, USA
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ 85287, USA
- Structural Biology Research Unit, Department of Integrative Biomedical Sciences, University of Cape Town, Rondebosch, Cape Town 7700, South Africa
| |
Collapse
|
6
|
Romero-Rodríguez B, Petek M, Jiao C, Križnik M, Zagorščak M, Fei Z, Bejarano ER, Gruden K, Castillo AG. Transcriptional and epigenetic changes during tomato yellow leaf curl virus infection in tomato. BMC PLANT BIOLOGY 2023; 23:651. [PMID: 38110861 PMCID: PMC10726652 DOI: 10.1186/s12870-023-04534-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/17/2023] [Indexed: 12/20/2023]
Abstract
BACKGROUND Geminiviruses are DNA plant viruses that cause highly damaging diseases affecting crops worldwide. During the infection, geminiviruses hijack cellular processes, suppress plant defenses, and cause a massive reprogramming of the infected cells leading to major changes in the whole plant homeostasis. The advances in sequencing technologies allow the simultaneous analysis of multiple aspects of viral infection at a large scale, generating new insights into the molecular mechanisms underlying plant-virus interactions. However, an integrative study of the changes in the host transcriptome, small RNA profile and methylome during a geminivirus infection has not been performed yet. Using a time-scale approach, we aim to decipher the gene regulation in tomato in response to the infection with the geminivirus, tomato yellow leaf curl virus (TYLCV). RESULTS We showed that tomato undergoes substantial transcriptional and post-transcriptional changes upon TYLCV infection and identified the main altered regulatory pathways. Interestingly, although the principal plant defense-related processes, gene silencing and the immune response were induced, this cannot prevent the establishment of the infection. Moreover, we identified extra- and intracellular immune receptors as targets for the deregulated microRNAs (miRNAs) and established a network for those that also produced phased secondary small interfering RNAs (phasiRNAs). On the other hand, there were no significant genome-wide changes in tomato methylome at 14 days post infection, the time point at which the symptoms were general, and the amount of viral DNA had reached its maximum level, but we were able to identify differentially methylated regions that could be involved in the transcriptional regulation of some of the differentially expressed genes. CONCLUSION We have conducted a comprehensive and reliable study on the changes at transcriptional, post-transcriptional and epigenetic levels in tomato throughout TYLCV infection. The generated genomic information is substantial for understanding the genetic, molecular and physiological changes caused by TYLCV infection in tomato.
Collapse
Affiliation(s)
- Beatriz Romero-Rodríguez
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" (IHSM "La Mayora"), Universidad de Málaga-Consejo Superior de Investigaciones Científicas (UMA-CSIC), Boulevard Louis Pasteur, 49, Málaga, 29010, Spain
| | - Marko Petek
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna Pot 111, 1000, Ljubljana, Slovenia
| | - Chen Jiao
- Boyce Thompson Institute, Cornell University, Ithaca, NY, USA
- The Key Lab of Molecular Biology of Crop Pathogens and Insects of Ministry of Agriculture, The Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Maja Križnik
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna Pot 111, 1000, Ljubljana, Slovenia
| | - Maja Zagorščak
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna Pot 111, 1000, Ljubljana, Slovenia
| | - Zhangjun Fei
- Boyce Thompson Institute, Cornell University, Ithaca, NY, USA
| | - Eduardo R Bejarano
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" (IHSM "La Mayora"), Universidad de Málaga-Consejo Superior de Investigaciones Científicas (UMA-CSIC), Boulevard Louis Pasteur, 49, Málaga, 29010, Spain
| | - Kristina Gruden
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna Pot 111, 1000, Ljubljana, Slovenia
| | - Araceli G Castillo
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" (IHSM "La Mayora"), Universidad de Málaga-Consejo Superior de Investigaciones Científicas (UMA-CSIC), Boulevard Louis Pasteur, 49, Málaga, 29010, Spain.
| |
Collapse
|
7
|
Sáez C, Kheireddine A, García A, Sifres A, Moreno A, Font-San-Ambrosio MI, Picó B, López C. Further Molecular Diagnosis Determines Lack of Evidence for Real Seed Transmission of Tomato Leaf Curl New Delhi Virus in Cucurbits. PLANTS (BASEL, SWITZERLAND) 2023; 12:3773. [PMID: 37960129 PMCID: PMC10650430 DOI: 10.3390/plants12213773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/26/2023] [Accepted: 11/02/2023] [Indexed: 11/15/2023]
Abstract
Begomoviruses (family Geminiviridae) cause serious diseases in many crop families. Since 2013, the Spanish isolate of tomato leaf curl New Delhi virus (ToLCNDV) has been a limiting factor for cucurbits production in the Mediterranean basin, forcing farmers to adapt new management and control techniques. Although it is well-known that begomoviruses are naturally transmitted by the whitefly Bemisia tabaci, the capacity of these viruses to be vertically transmitted through seeds remains controversial. Clarifying the potential ToLCNDV seed transmission is essential to understand the epidemiology of this threating-for-cucurbits virus and to design appropriate control strategies. We assessed ToLCNDV distribution in the leaves, flowers and seeds of the infected plants of susceptible Cucumis melo accessions and toleration to the infected genotypes of Cucurbita moschata by conventional and quantitative PCR. We analyzed whether the viral particle was transmitted to offspring. We also evaluated ToLCNDV presence in commercial seeds of cucurbits (zucchini (Cucurbita pepo), melon (C. melo), cucumber (Cucumis sativus) and watermelon (Citrullus lanatus)) and in their progenies. As the assayed seedlings remained symptomless, we increased the reliability and accuracy of detection in these samples by searching for replicative forms of ToLCNDV by combining Southern blot hybridization and rolling-circle amplification (RCA). However, integral genomic DNA was not identified in the plants of offspring. Although the seedborne nature of ToLCNDV was confirmed, our results do not support the transmission of this virus from contaminated seeds to progeny.
Collapse
Affiliation(s)
- Cristina Sáez
- Institute for the Conservation and Breeding of Valencian Agro-Diversity, Universitat Politècnica de València (COMAV-UPV), Camino de Vera s/n, 46022 Valencia, Spain; (A.K.); (A.S.); (B.P.)
- Centro de Biotecnología y Genómica de Plantas UPM-INIA and E.T.S. Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, 28031 Madrid, Spain
| | - Amina Kheireddine
- Institute for the Conservation and Breeding of Valencian Agro-Diversity, Universitat Politècnica de València (COMAV-UPV), Camino de Vera s/n, 46022 Valencia, Spain; (A.K.); (A.S.); (B.P.)
| | - Arcadio García
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas—Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain;
| | - Alicia Sifres
- Institute for the Conservation and Breeding of Valencian Agro-Diversity, Universitat Politècnica de València (COMAV-UPV), Camino de Vera s/n, 46022 Valencia, Spain; (A.K.); (A.S.); (B.P.)
| | | | - María Isabel Font-San-Ambrosio
- Instituto Agroforestal Mediterráneo, Universitat Politècnica de València (IAM-UPV), Camino de Vera s/n, 46022 Valencia, Spain;
| | - Belén Picó
- Institute for the Conservation and Breeding of Valencian Agro-Diversity, Universitat Politècnica de València (COMAV-UPV), Camino de Vera s/n, 46022 Valencia, Spain; (A.K.); (A.S.); (B.P.)
| | - Carmelo López
- Institute for the Conservation and Breeding of Valencian Agro-Diversity, Universitat Politècnica de València (COMAV-UPV), Camino de Vera s/n, 46022 Valencia, Spain; (A.K.); (A.S.); (B.P.)
| |
Collapse
|
8
|
Fortes IM, Fernández-Muñoz R, Moriones E. Crinivirus Tomato Chlorosis Virus Compromises the Control of Tomato Yellow Leaf Curl Virus in Tomato Plants by the Ty-1 Gene. PHYTOPATHOLOGY 2023; 113:1347-1359. [PMID: 36690608 DOI: 10.1094/phyto-09-22-0334-r] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Tomato yellow leaf curl disease (TYLCD) causes severe damage to tomato crops in warm regions of the world, and is associated with infections of several whitefly (Bemisia tabaci)-transmitted single-stranded (ss)DNA begomoviruses (genus Begomovirus, family Geminiviridae). The most widespread begomovirus isolates associated with TYLCD are those of the type strain of the Tomato yellow leaf curl virus species, known as Israel (TYLCV-IL). The Ty-1 gene is widely used in commercial tomato cultivars to control TYLCV-IL damage, providing resistance to the virus by restricting viral accumulation and tolerance to TYLCD by inhibiting disease symptoms. However, several reports suggest that TYLCV-IL-like isolates are adapting to the Ty-1 gene and are causes of concern for possibly overcoming the provided control. This is the case with TYLCV-IL IS76-like recombinants that have a small genome fragment acquired by genetic exchange from an isolate of Tomato yellow leaf curl Sardinia virus, another begomovirus species associated with TYLCD. Here we show that TYLCV-IL IS76-like isolates partially break down the TYLCD-tolerance provided by the Ty-1 gene and that virulence differences might exist between isolates. Interestingly, we demonstrate that mixed infections with an isolate of the crinivirus (genus Crinivirus, family Closteroviridae) species Tomato chlorosis virus (ToCV), an ssRNA virus also transmitted by B. tabaci and emerging worldwide in tomato crops, boosts the breakdown of the TYLCD-tolerance provided by the Ty-1 gene either with TYLCV-IL IS76-like or canonical TYLCV-IL isolates. Moreover, we demonstrate the incorporation of the Ty-2 gene in Ty-1-commercial tomatoes to restrict (no virus or virus traces, no symptoms) systemic infections of recombinant TYLCV-IL IS76-like and canonical TYLCV-IL isolates, even in the presence of ToCV infections, which provides more robust and durable control of TYLCD.
Collapse
Affiliation(s)
- Isabel M Fortes
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" (IHSM), Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Estación Experimental "La Mayora", E-29750 Algarrobo-Costa, Málaga, Spain
| | - Rafael Fernández-Muñoz
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" (IHSM), Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Estación Experimental "La Mayora", E-29750 Algarrobo-Costa, Málaga, Spain
| | - Enrique Moriones
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" (IHSM), Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Estación Experimental "La Mayora", E-29750 Algarrobo-Costa, Málaga, Spain
| |
Collapse
|
9
|
Fiallo-Olivé E, Navas-Castillo J. Begomoviruses: what is the secret(s) of their success? TRENDS IN PLANT SCIENCE 2023; 28:715-727. [PMID: 36805143 DOI: 10.1016/j.tplants.2023.01.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 01/16/2023] [Accepted: 01/26/2023] [Indexed: 05/13/2023]
Abstract
Begomoviruses constitute an extremely successful group of emerging plant viruses transmitted by whiteflies of the Bemisia tabaci complex. Hosts include important vegetable, root, and fiber crops grown in the tropics and subtropics. Factors contributing to the ever-increasing diversity and success of begomoviruses include their predisposition to recombine their genomes, interaction with DNA satellites recruited throughout their evolution, presence of wild plants as a virus reservoir and a source of speciation, and extreme polyphagia and continuous movement of the insect vectors to temperate regions. These features as well as some controversial issues (replication in the insect vector, putative seed transmission, transmission by insects other than B. tabaci, and expansion of the host range to monocotyledonous plants) will be analyzed in this review.
Collapse
Affiliation(s)
- Elvira Fiallo-Olivé
- Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora' (IHSM-UMA-CSIC), Consejo Superior de Investigaciones Científicas, 29750 Algarrobo-Costa, Málaga, Spain.
| | - Jesús Navas-Castillo
- Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora' (IHSM-UMA-CSIC), Consejo Superior de Investigaciones Científicas, 29750 Algarrobo-Costa, Málaga, Spain
| |
Collapse
|
10
|
Gomathi Devi R, Jothika C, Sankari A, Lakshmi S, Malathi VG, Renukadevi P. Seed Transmission of Begomoviruses: A Potential Threat for Bitter Gourd Cultivation. PLANTS (BASEL, SWITZERLAND) 2023; 12:1396. [PMID: 36987084 PMCID: PMC10057619 DOI: 10.3390/plants12061396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 06/19/2023]
Abstract
Bitter gourd (Momordica charantia L.), one of the valued vegetable crops in India, is severely affected by yellow mosaic disease caused by two begomoviruses, tomato leaf curl New Delhi virus (ToLCNDV) and bitter gourd yellow mosaic virus (BgYMV). The symptoms are yellowing, distortion of leaf, puckering, and malformed fruits. Increased incidence of the disease and appearance of symptoms even in young emerging seedling stage were suggestive of seed transmission of the viruses, which was examined in detail. To study the seed transmission, two sources-seeds of elite hybrids H1, H2, H3, H4, and Co1 procured from a seed market; and seeds from infected plants in the farmer's field were tested. Detection of the virus by DAS-ELISA using polyclonal antibody indicated embryo infection up to 63%, 26%, 20%, and 10% in hybrids H1, H2, H3, and H4, respectively, for market-procured seeds. In PCR analysis with primers specific for ToLCNDV and BgYMV, infection by ToLCNDV was as high as 76% and mixed infection was 24%. In contrast, in seeds derived from field-infected plants, the percentage detection was less. Grow-out tests with market-procured seeds revealed no transmission for BgYMV compared with 5% transmission for ToLCNDV. Whether seed-borne inocula could serve as an inoculum for new infection in a field and further progress of the disease was investigated in a microplot study. The study clearly revealed variation in seed transmission between different sources, lots, cultivars, and viruses. The virus present in symptomatic and asymptomatic plants was easily transmitted by whitefly. In another microplot experiment, the potential of seed-borne virus as inoculum was proved. There was 43.3% initial seed transmission in the microplot, increasing to 70% after release of 60 whiteflies.
Collapse
Affiliation(s)
- Ravisankar Gomathi Devi
- Department of Plant Pathology, Tamil Nadu Agricultural University, Coimbatore 641003, Tamil Nadu, India
| | - Chinnaraj Jothika
- Department of Plant Pathology, Tamil Nadu Agricultural University, Coimbatore 641003, Tamil Nadu, India
| | - Arjunan Sankari
- Department of Vegetable Science, Tamil Nadu Agricultural University, Coimbatore 641003, Tamil Nadu, India
| | - Sethuraman Lakshmi
- Department of Seed Science and Technology, Tamil Nadu Agricultural University, Coimbatore 641003, Tamil Nadu, India
| | - Varagur Ganesan Malathi
- Retired Scientist, ICAR-IARI, GI, Sree Kumaran Hill Crest Apartment, Coimbatore 641046, Tamil Nadu, India
| | - Perumal Renukadevi
- Department of Plant Pathology, Tamil Nadu Agricultural University, Coimbatore 641003, Tamil Nadu, India
| |
Collapse
|
11
|
Fortes IM, Pérez-Padilla V, Romero-Rodríguez B, Fernández-Muñoz R, Moyano C, Castillo AG, De León L, Moriones E. Begomovirus Tomato Leaf Curl New Delhi Virus Is Seedborne but Not Seed Transmitted in Melon. PLANT DISEASE 2023; 107:473-479. [PMID: 35771117 DOI: 10.1094/pdis-09-21-1930-re] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Seed transmission can be of considerable relevance to the dissemination of plant viruses in nature and for their prevalence and perpetuation. Long-distance spread of isolates of the begomovirus species Tomato leaf curl New Delhi virus (genus Begomovirus, family Geminiviridae) has recently occurred from Asia to the Middle East and the Mediterranean Basin. Here, we investigated the possible transmission by melon (Cucumis melo L.) seeds of a tomato leaf curl New Delhi virus (ToLCNDV) isolate of the "Spain" strain widely distributed in the Mediterranean area as an alternative mechanism for long-distance spread. PCR amplification detection of ToLCNDV in floral parts and mature seeds of melon plants reveals that this virus is seedborne. "Seedborne" is defined as the ability of a virus to be carried through seeds, which does not necessarily lead to transmission to the next generation. Treatment with a chemical disinfectant significantly reduced the detectable virus associated with melon seeds, suggesting ToLCNDV contamination of the external portion of the seed coat. Also, when the internal fraction of the mature seed (seed cotyledons + embryo) was analyzed by quantitative PCR amplification, ToLCNDV was detectable at low levels, suggesting the potential for viral contamination or infection of the internal portions of seed. However, grow-out studies conducted with melon progeny plants germinated from mature seeds collected from ToLCNDV-infected plants and evaluated at early (1-leaf) or at late (20-leaf) growth stages did not support the transmission of ToLCNDV from seeds to offspring.
Collapse
Affiliation(s)
- Isabel M Fortes
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" (IHSM), Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Estación Experimental "La Mayora", E-29750 Algarrobo-Costa, Málaga, Spain
| | - Verónica Pérez-Padilla
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Ctra. de La Coruña, km 7.5, E-28040 Madrid, Spain
| | - Beatriz Romero-Rodríguez
- IHSM, Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Área de Genética, Facultad de Ciencias, Universidad de Málaga, E-29071, Málaga, Spain
| | - Rafael Fernández-Muñoz
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" (IHSM), Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Estación Experimental "La Mayora", E-29750 Algarrobo-Costa, Málaga, Spain
| | - Cristina Moyano
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Ctra. de La Coruña, km 7.5, E-28040 Madrid, Spain
| | - Araceli G Castillo
- IHSM, Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Área de Genética, Facultad de Ciencias, Universidad de Málaga, E-29071, Málaga, Spain
| | - Leandro De León
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Ctra. de La Coruña, km 7.5, E-28040 Madrid, Spain
| | - Enrique Moriones
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" (IHSM), Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Estación Experimental "La Mayora", E-29750 Algarrobo-Costa, Málaga, Spain
| |
Collapse
|
12
|
Vo TTB, Troiano E, Lal A, Hoang PT, Kil EJ, Lee S, Parrella G. ToLCNDV-ES infection in tomato is enhanced by TYLCV: Evidence from field survey and agroinoculation. Front Microbiol 2022; 13:954460. [PMID: 36425034 PMCID: PMC9679516 DOI: 10.3389/fmicb.2022.954460] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 09/28/2022] [Indexed: 11/09/2022] Open
Affiliation(s)
- Thuy Thi Bich Vo
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, South Korea
| | - Elisa Troiano
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Portici, Italy
| | - Aamir Lal
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, South Korea
| | - Phuong Thi Hoang
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, South Korea
| | - Eui-Joon Kil
- Department of Plant Medicals, Andong National University, Andong, South Korea
| | - Sukchan Lee
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, South Korea
| | - Giuseppe Parrella
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Portici, Italy
- *Correspondence: Giuseppe Parrella,
| |
Collapse
|
13
|
Qureshi MA, Lal A, Nawaz-ul-Rehman MS, Vo TTB, Sanjaya GNPW, Ho PT, Nattanong B, Kil EJ, Jahan SMH, Lee KY, Tsai CW, Dao HT, Hoat TX, Aye TT, Win NK, Lee J, Kim SM, Lee S. Emergence of Asian endemic begomoviruses as a pandemic threat. FRONTIERS IN PLANT SCIENCE 2022; 13:970941. [PMID: 36247535 PMCID: PMC9554542 DOI: 10.3389/fpls.2022.970941] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/05/2022] [Indexed: 06/16/2023]
Abstract
Plant viruses are responsible for the most devastating and commercially significant plant diseases, especially in tropical and subtropical regions. The genus begomovirus is the largest one in the family Geminiviridae, with a single-stranded DNA genome, either monopartite or bipartite. Begomoviruses are transmitted by insect vectors, such as Bemisia tabaci. Begomoviruses are the major causative agents of diseases in agriculture globally. Because of their diversity and mode of evolution, they are thought to be geographic specific. The emerging begomoviruses are of serious concern due to their increasing host range and geographical expansion. Several begomoviruses of Asiatic origin have been reported in Europe, causing massive economic losses; insect-borne transmission of viruses is a critical factor in virus outbreaks in new geographical regions. This review highlights crucial information regarding Asia's four emerging and highly destructive begomoviruses. We also provided information regarding several less common but still potentially important pathogens of different crops. This information will aid possible direction of future studies in adopting preventive measures to combat these emerging viruses.
Collapse
Affiliation(s)
- Muhammad Amir Qureshi
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, South Korea
| | - Aamir Lal
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, South Korea
| | | | - Thuy Thi Bich Vo
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, South Korea
| | | | - Phuong Thi Ho
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, South Korea
| | - Bupi Nattanong
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, South Korea
| | - Eui-Joon Kil
- Department of Plant Medicals, Andong National University, Andong, South Korea
| | | | - Kyeong-Yeoll Lee
- Division of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, South Korea
| | - Chi-Wei Tsai
- Department of Entomology, National Taiwan University, Taipei, Taiwan
| | - Hang Thi Dao
- Plant Protection Research Institute, Hanoi, Vietnam
| | | | - Tin-Tin Aye
- Department of Entomology, Yezin Agricultural University, Yezin, Myanmar
| | - Nang Kyu Win
- Department of Plant Pathology, Yezin Agricultural University, Yezin, Myanmar
| | - Jangha Lee
- Crop Breeding Research Center, NongWoo Bio, Yeoju, South Korea
| | - Sang-Mok Kim
- Plant Quarantine Technology Center, Animal and Plant Quarantine Agency, Gimcheon, South Korea
| | - Sukchan Lee
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, South Korea
| |
Collapse
|
14
|
Paslay C, Ali A. First Report of Tomato Yellow Leaf Curl Virus Infecting Pepper and Tomato in Oklahoma. PLANT DISEASE 2022; 107:973. [PMID: 35961018 DOI: 10.1094/pdis-04-22-0927-pdn] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Tomato yellow leaf curl virus (TYLCV), (genus Begomovirus and family Geminiviridae) is one of the devastating viruses infecting tomatoes (Solanum Lycopersicon) and could have a significant impact on tomato production worldwide (Moriones and Navas-Castillo, 2000; Rybicki, 2015; Perez-Padilla et al. 2019). TYLCV was first reported in the United States (US) in 1997 in Florida (Polston et al. 1999) and since then it has been reported in several other states but not in Oklahoma (de Sa et al. 2008). Both pepper (Capsicum spp.) and tomato are grown in >50 counties of Oklahoma for fresh produce in the local market, and for processing industries. During a survey in 2021, pepper (bell pepper cv SV3964) and tomato (cv grand marshall) plants grown in a commercial field in Bixby, Oklahoma, showed typical virus-like symptoms including yellowing, leaf curling, cupping, twisting, and mottling (Fig. 1). Estimated disease incidence was 10% in both crops. In addition, whiteflies (Bemisia tabaci) were also observed on these plants. Twenty symptomatic samples from pepper (n=16) and tomato (n=4) plants, and four asymptomatic from pepper (n=2) and tomato (n=2) plants were collected and brought to the Plant Virology Lab at the University of Tulsa for further analysis Total RNA was extracted from all samples using the Spectrum Plant Total RNA Kit (Sigma-Aldrich, LOT: SLCG7913). RNA from two symptomatic samples, one each from pepper and tomato (named BX6 and BX11, respectively) were subjected to high-throughput sequencing (HTS) on the NextSeq 500/550 high-output kit v2.5 (Illumina, USA) at the genomic facility, Oklahoma State University (Stillwater, OK, USA). A total of 22,385,404 (average length 73.6 bp) and 19,012,605 (average length 73.7 bp) trim pair-end for both samples (BX6 and BX11) were assembled using CLC Genomics Workbench (v12.0.3) (Qiagen, Inc) and subjected to BLASTn analysis. The three contigs: 393 bp (coverage 363.24X), 670 bp (coverage 489.92X), and 990 bp (coverage 112.96X) for BX6 isolate, and four contigs: 393 bp (coverage 341.64X), 668 bp (coverage 457.23X), 814 bp (coverage 107.86X), and 990 bp (coverage 93.71X), for BX11 isolate, showed from 96 to 99% nucleotide (nt) identities with movement protein, capsid protein, C3, V2, C4, AC1, AC2, AC3 protein genes of the TYLCV isolates from Australia, China, Iran, Mexico, South Korea, and the US. The HTS data did not reveal any other viral sequence in these two samples. To further confirm the presence of TYLCV in these samples, three overlapping TYLCV-specific primer pairs (Supplementary Table 1) were designed based on the alignment of complete genome sequences of TYLCV isolates present in the Genbank. Total DNA was extracted from fresh leaf tissues of BX6 and BX11 samples using the Plant DNA Kit (Omega BIO-TEK,) and used in the PCR assay. The expected PCR products (814 bp, 1,085 bp and 1,068 bp) were generated from both samples providing further evidence of TYLCV infection. To obtain the complete genome sequence, these PCR amplified DNA fragments of both isolates were gel extracted and cloned using the pGEM-T® Easy Vector system. Three independent clones of each fragment were sequenced and analyzed by Sanger sequencing. The resulting consensus sequences were used in a BLASTn search against the GenBank and had the highest identities (99-99.2%) with TYLCV sequences. The overlapping consensus nt sequence of the BX6 isolate was 2,782 nt (Accession no ON321843), whereas that of BX11 was 2,777 nt (Accession no ON785706) showed 99.2% and 99.0% nt identities with the corresponding sequence of TYLCV isolates (KX347141 and KX347142) respectively from Australia. The nt identity between BX6 and BX11 was 99.7%. Further screening by PCR of the remaining 18 symptomatic field samples (pepper, n=15 and tomatoes, n=3) revealed TYLCV infection in two pepper and all three tomato samples consistent with the greater susceptibility of tomato. None of the asymptomatic pepper and tomato samples were positive for TYLCV. DNA from both BX6 and BX11 samples was also used in the rolling circle amplification (RCA) assay (TempliPhi Amplification Kit, Cytiva) and the presence of circular TYLCV DNA was detected. Our results demonstrated the presence of TYLCV infection in these symptomatic pepper and tomato plants. This is the first report of TYLCV infecting pepper or tomato in open fields in Oklahoma. Further surveys are needed to determine the incidence of TYLCV and the presence of its vector in other counties throughout Oklahoma.
Collapse
Affiliation(s)
- Caleb Paslay
- The University of Tulsa, Biological Sceince, Tulsa, Oklahoma, United States;
| | - Akhtar Ali
- University of Tulsa, Biological Science, 800 S Tucker Dr, Tulsa, Oklahoma, United States, 74104-9700;
| |
Collapse
|
15
|
Bhattacharjee B, Hallan V. Geminivirus-Derived Vectors as Tools for Functional Genomics. Front Microbiol 2022; 13:799345. [PMID: 35432267 PMCID: PMC9010885 DOI: 10.3389/fmicb.2022.799345] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 02/03/2022] [Indexed: 11/24/2022] Open
Abstract
A persistent issue in the agricultural sector worldwide is the intensive damage caused to crops by the geminivirus family of viruses. The diverse types of viruses, rapid virus evolution rate, and broad host range make this group of viruses one of the most devastating in nature, leading to millions of dollars' worth of crop damage. Geminiviruses have a small genome and can be either monopartite or bipartite, with or without satellites. Their ability to independently replicate within the plant without integration into the host genome and the relatively easy handling make them excellent candidates for plant bioengineering. This aspect is of great importance as geminiviruses can act as natural nanoparticles in plants which can be utilized for a plethora of functions ranging from vaccine development systems to geminivirus-induced gene silencing (GIGS), through deconstructed viral vectors. Thus, the investigation of these plant viruses is pertinent to understanding their crucial roles in nature and subsequently utilizing them as beneficial tools in functional genomics. This review, therefore, highlights some of the characteristics of these viruses that can be deemed significant and the subsequent successful case studies for exploitation of these potentially significant pathogens for role mining in functional biology.
Collapse
Affiliation(s)
- Bipasha Bhattacharjee
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Plant Virology Laboratory, Division of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
| | - Vipin Hallan
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Plant Virology Laboratory, Division of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
| |
Collapse
|
16
|
Adhab M, Alkuwaiti NA. Geminiviruses occurrence in the middle east and their impact on agriculture in Iraq. GEMINIVIRUS : DETECTION, DIAGNOSIS AND MANAGEMENT 2022:171-185. [DOI: 10.1016/b978-0-323-90587-9.00021-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
|
17
|
Kil EJ, Byun HS, Hwang H, Lee KY, Choi HS, Kim CS, Lee S. Tomato Yellow Leaf Curl Virus Infection in a Monocotyledonous Weed (Eleusine indica). THE PLANT PATHOLOGY JOURNAL 2021; 37:641-651. [PMID: 34897255 PMCID: PMC8666239 DOI: 10.5423/ppj.ft.11.2021.0162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/11/2021] [Accepted: 11/14/2021] [Indexed: 05/26/2023]
Abstract
Tomato yellow leaf curl virus (TYLCV) is one of the most important plant viruses belonging to the genus Begomovirus of the family Geminiviridae. To identify natural weed hosts that could act as reservoirs of TYLCV, 100 samples were collected at a TYLCV-affected tomato farm in Iksan from 2013 to 2014. The sample weeds were identified as belonging to 40 species from 18 families. TYLCV was detected in 57 samples belonging to 28 species through polymerase chain reaction using root samples including five species (Eleusine indica, Digitaria ciliaris, Echinochloa crus-galli, Panicum dichotomiflorum, and Setaria faberi) from the family Poaceae. Whitefly Bemisia tabaci-mediated TYLCV transmission from TYLCV-infected E. indica plants to healthy tomatoes was confirmed, and inoculated tomatoes showed typical symptoms, such as leaf curling and yellowing. In addition, TYLCV was detected in leaf and root samples of E. indica plants inoculated by both whitefly-mediated transmission using TYLCV-viruliferous whitefly and agro-inoculation using a TYLCV infectious clone. The majority of mastreviruses infect monocotyledonous plants, but there have also been reports of mastreviruses that can infect dicotyledonous plants, such as the chickpea chlorotic dwarf virus. No exception was reported among begomoviruses known as infecting dicots only. This is the first report of TYLCV as a member of the genus Begomovirus infecting monocotyledonous plants.
Collapse
Affiliation(s)
- Eui-Joon Kil
- Department of Plant Medicals, Andong National University, Andong 36729,
Korea
- College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419,
Korea
| | - Hee-Seong Byun
- College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419,
Korea
- Crop Protection Division, National Academy of Agricultural Science, Rural Development Administration, Wanju 55365,
Korea
| | - Hyunsik Hwang
- College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419,
Korea
- Jungbu Regional Office, Animal and Plant Quarantine Agency, Incheon 22133,
Korea
| | - Kyeong-Yeoll Lee
- Division of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu 41566,
Korea
| | - Hong-Soo Choi
- Crop Protection Division, National Academy of Agricultural Science, Rural Development Administration, Wanju 55365,
Korea
| | - Chang-Seok Kim
- Highland Agriculture Research Institute, National Institute of Crop Science, Rural Development Administration, Pyeongchang 25342,
Korea
| | - Sukchan Lee
- College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419,
Korea
| |
Collapse
|
18
|
Tabein S, Miozzi L, Matić S, Accotto GP, Noris E. No Evidence for Seed Transmission of Tomato Yellow Leaf Curl Sardinia Virus in Tomato. Cells 2021; 10:cells10071673. [PMID: 34359841 PMCID: PMC8306144 DOI: 10.3390/cells10071673] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/26/2021] [Accepted: 06/28/2021] [Indexed: 11/24/2022] Open
Abstract
Seed transmission is an important factor in the epidemiology of plant pathogens. Geminiviruses are serious pests spread in tropical and subtropical regions. They are transmitted by hemipteran insects, but a few cases of transmission through seeds were recently reported. Here, we investigated the tomato seed transmissibility of the begomovirus tomato yellow leaf curl Sardinia virus (TYLCSV), one of the agents inducing the tomato yellow leaf curl disease, heavily affecting tomato crops in the Mediterranean area. None of the 180 seedlings originating from TYLCSV-infected plants showed any phenotypic alteration typical of virus infection. Moreover, whole viral genomic molecules could not be detected in their cotyledons and true leaves, neither by membrane hybridization nor by rolling-circle amplification followed by PCR, indicating that TYLCSV is not a seed-transmissible pathogen for tomato. Examining the localization of TYLCSV DNA in progenitor plants, we detected the virus genome by PCR in all vegetative and reproductive tissues, but viral genomic and replicative forms were found only in leaves, flowers and fruit flesh, not in seeds and embryos. Closer investigations allowed us to discover for the first time that these embryos were superficially contaminated by TYLCSV DNA but whole genomic molecules were not detectable. Therefore, the inability of TYLCSV genomic molecules to colonize tomato embryos during infection justifies the lack of seed transmissibility observed in this host.
Collapse
Affiliation(s)
- Saeid Tabein
- Institute for Sustainable Plant Protection, National Research Council of Italy, Strada delle Cacce, 73, 10135 Torino, Italy; (S.T.); (S.M.); (G.P.A.)
- Department of Plant Protection, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz 61349, Iran
| | - Laura Miozzi
- Institute for Sustainable Plant Protection, National Research Council of Italy, Strada delle Cacce, 73, 10135 Torino, Italy; (S.T.); (S.M.); (G.P.A.)
- Correspondence: (L.M.); (E.N.); Tel.: +39-011-3977-942 (L.M.); +39-011-3977-916 (E.N.)
| | - Slavica Matić
- Institute for Sustainable Plant Protection, National Research Council of Italy, Strada delle Cacce, 73, 10135 Torino, Italy; (S.T.); (S.M.); (G.P.A.)
| | - Gian Paolo Accotto
- Institute for Sustainable Plant Protection, National Research Council of Italy, Strada delle Cacce, 73, 10135 Torino, Italy; (S.T.); (S.M.); (G.P.A.)
| | - Emanuela Noris
- Institute for Sustainable Plant Protection, National Research Council of Italy, Strada delle Cacce, 73, 10135 Torino, Italy; (S.T.); (S.M.); (G.P.A.)
- Correspondence: (L.M.); (E.N.); Tel.: +39-011-3977-942 (L.M.); +39-011-3977-916 (E.N.)
| |
Collapse
|
19
|
Perry KL. An anomalous detection of Tomato yellow leaf curl virus in tomato in New York State. PLANT DISEASE 2021; 105:3312. [PMID: 33908793 DOI: 10.1094/pdis-02-21-0356-pdn] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In August 2020, a New York State vegetable grower sought assistance to identify a malady of tomato (Solanum lycopersicum). The plants were grown from saved seed that had been planted annually in NY and/or FL for over 15 years without significant disease problems, but the identity of the cultivar was not known. Submitted photos showed severely stunted plants with distorted leaves (crinkling, cupping, twisting); leaves were reduced in size and showed interveinal yellowing. Although the most likely explanation given the growing region was herbicide damage, the symptoms bore a striking resemblance to those presented by tomato yellow leaf curl (TYLCV)-infected tomato plants. TYLCV has not been reported from NY, as the whitefly vector (Bemisia tabaci) does not overwinter in the region. Stem tissue from a symptomatic plant was grafted onto a greenhouse grown rootstock of tomato breeding line 201231 (Cornell University); shoots emerging from grafted rootstocks showed symptoms consistent with those on the scion within 21 days of grafting. Total nucleic acid was extracted (Gambino et al. 2008), and a polymerase chain reaction (PCR) assay to detect TYLCV was performed using primers AV632 and AC1048 (Martínez-Culebras et al. 2001). Sanger sequencing of the expected size ~460 bp product from a representative sample showed 98% nucleotide identity with the sequence of over 52 isolates of TYLCV (blastn analysis using default parameters; Altschul et al. 1990). The total nucleic acid preparation was subjected to rolling circle ampification followed by restriction enzyme SphI digestion (Haible et al. 2006). An approximately 2.8 kb DNA fragment was resolved by agarose gel electrophoresis, gel purified, inserted into the cloning vector pUC19 and sequenced. Two clones yielded sequence of 2781 nt with only one nt mismatch (accession # MW373746, MW373747). BLAST analysis showed the sequence to be most closely related to TYLCV-IL from papaya in Texas (accession KX024647.1) with 99% identity (2752 of 2781 nt). Further inquiry revealed that the vegetable grower's plants had been seeded and grown in Florida prior to transplanting in NY; Florida is a production region where the virus and vectors are endemic. Although the virus has been shown to be associated with seed (Pérez-Padilla et al. 2020) and seed transmission has been reported (Kil et al. 2016), this subject is controversial and the epidemiology of the disease is not consistent with a seed-transmitted virus (Rojas, et al. 2018). In this reported occurrence, the most plausible explanation is that the virus was introduced into NY with transplants. All of the field grown transplants of this cultivar were infected, but no local disease spread in NY was reported, nor were there reports of the vector. The significance of this report is to highlight the importance of phytosanitation in the movement of plants and plant materials. The long-distance movement of TYLCV via infected transplants in the US and globally is well-established. The presence of a pathogen may be transient and their establishment will depend on the epidemiology of the pathogen, in this case, the presence of the vector.
Collapse
Affiliation(s)
- Keith L Perry
- Cornell University, PPPMB-SIPS, Ithaca, New York, United States;
| |
Collapse
|
20
|
Andreason SA, Olaniyi OG, Gilliard AC, Wadl PA, Williams LH, Jackson DM, Simmons AM, Ling KS. Large-Scale Seedling Grow-Out Experiments Do Not Support Seed Transmission of Sweet Potato Leaf Curl Virus in Sweet Potato. PLANTS 2021; 10:plants10010139. [PMID: 33445460 PMCID: PMC7827154 DOI: 10.3390/plants10010139] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 01/06/2021] [Accepted: 01/08/2021] [Indexed: 11/25/2022]
Abstract
Sweet potato leaf curl virus (SPLCV) threatens global sweet potato production. SPLCV is transmitted by Bemisia tabaci or via infected vegetative planting materials; however, SPLCV was suggested to be seed transmissible, which is a characteristic that is disputed for geminiviruses. The objective of this study was to revisit the validity of seed transmission of SPLCV in sweet potato. Using large-scale grow-out of sweet potato seedlings from SPLCV-contaminated seeds over 4 consecutive years, approximately 23,034 sweet potato seedlings of 118 genotype entries were evaluated. All seedlings germinating in a greenhouse under insect-proof conditions or in a growth chamber were free of SPLCV; however, a few seedlings grown in an open bench greenhouse lacking insect exclusion tested positive for SPLCV. Inspection of these seedlings revealed that B. tabaci had infiltrated the greenhouse. Therefore, transmission experiments were conducted using B. tabaci MEAM1, demonstrating successful vector transmission of SPLCV to sweet potato. Additionally, tests on contaminated seed coats and germinating cotyledons demonstrated that SPLCV contaminated a high percentage of seed coats collected from infected maternal plants, but SPLCV was never detected in emerging cotyledons. Based on the results of grow-out experiments, seed coat and cotyledon tests, and vector transmission experiments, we conclude that SPLCV is not seed transmitted in sweet potato.
Collapse
|
21
|
Identification of Viruses and Viroids Infecting Tomato and Pepper Plants in Vietnam by Metatranscriptomics. Int J Mol Sci 2020; 21:ijms21207565. [PMID: 33066322 PMCID: PMC7593927 DOI: 10.3390/ijms21207565] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/23/2020] [Accepted: 10/10/2020] [Indexed: 12/25/2022] Open
Abstract
Tomato (Lycopersicum esculentum L.) and pepper (Capsicum annuum L.) plants belonging to the family Solanaceae are cultivated worldwide. The rapid development of next-generation sequencing (NGS) technology facilitates the identification of viruses and viroids infecting plants. In this study, we carried out metatranscriptomics using RNA sequencing followed by bioinformatics analyses to identify viruses and viroids infecting tomato and pepper plants in Vietnam. We prepared a total of 16 libraries, including eight tomato and eight pepper libraries derived from different geographical regions in Vietnam. We identified a total of 602 virus-associated contigs, which were assigned to 18 different virus species belonging to nine different viral genera. We identified 13 different viruses and two viroids infecting tomato plants and 12 viruses and two viroids infecting pepper plants with viruses as dominantly observed pathogens. Our results showed that multiple infection of different viral pathogens was common in both plants. Moreover, geographical region and host plant were two major factors to determine viral populations. Taken together, our results provide the comprehensive overview of viral pathogens infecting two important plants in the family Solanaceae grown in Vietnam.
Collapse
|
22
|
Bragard C, Dehnen-Schmutz K, Di Serio F, Gonthier P, Jacques MA, Jaques Miret JA, Justesen AF, MacLeod A, Magnusson CS, Milonas P, Navas-Cortes JA, Parnell S, Potting R, Reignault PL, Thulke HH, Van der Werf W, Vicent Civera A, Yuen J, Zappalà L, Candresse T, Chatzivassiliou E, Winter S, Bottex B. Pest categorisation of tomato leaf curl New Delhi virus. EFSA J 2020; 18:e06179. [PMID: 32665794 PMCID: PMC7339215 DOI: 10.2903/j.efsa.2020.6179] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Following a request from the European Commission, the Panel on Plant Health performed a pest categorisation on tomato leaf curl New Delhi virus (ToLCNDV). ToLCNDV is a well-defined bipartite Begomovirus species, sometimes associated with satellite molecules. It is transmitted by Bemisia tabaci to a wide range of hosts. ToLCNDV is reported from Estonia, Greece, Italy, Portugal and Spain, with limited distribution. The prevalent strain (ToLCNDV-ES) in these countries is particularly adapted to cucurbits and is different from isolates reported outside the EU, which are better adapted to solanaceous crops and could therefore pose additional risk for EU agriculture. The virus is regulated under Commission Implementing Regulation (EU) 2019/2072. The main pathway of entry identified is plants for planting of susceptible hosts, even if entry could also occur via commodities carrying viruliferous B. tabaci and possibly by seeds. While establishment and local spread rely on B. tabaci, the virus can also be dispersed over long distances by movement of infected plants for planting. Establishment and spread are limited to regions with ecoclimatic conditions suitable for the establishment of vector populations (southern regions of Europe) or can occur as outbreaks wherever crops are grown under protected cultivation. The main uncertainties associated with this pest categorisation are the distribution and prevalence of ToLCNDV in the EU, the magnitude of the virus impact particularly on hosts different from Cucurbitaceae, and seed transmission. ToLCNDV meets all the criteria evaluated by EFSA to qualify as potential Union Quarantine Pest (QP); conversely, ToLCNDV does not meet the criterion of being widespread in the EU to qualify as a Regulated Non-Quarantine Pest (RNQP). Should new data show that ToLCNDV is widespread in the EU, the possibility would exist for non-EU isolates to qualify as QP, while ToLCNDV EU isolates (ToLCNDV-ES) could qualify as RNQP.
Collapse
|
23
|
Tatineni S, Stewart LR, Sanfaçon H, Wang X, Navas-Castillo J, Hajimorad MR. Fundamental Aspects of Plant Viruses-An Overview on Focus Issue Articles. PHYTOPATHOLOGY 2020; 110:6-9. [PMID: 31910089 DOI: 10.1094/phyto-10-19-0404-fi] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Given the importance of and rapid research progress in plant virology in recent years, this Focus Issue broadly emphasizes advances in fundamental aspects of virus infection cycles and epidemiology. This Focus Issue comprises three review articles and 18 research articles. The research articles cover broad research areas on the identification of novel viruses, the development of detection methods, reverse genetics systems and functional genomics for plant viruses, vector and seed transmission studies, viral population studies, virus-virus interactions and their effect on vector transmission, and management strategies of viral diseases. The three review articles discuss recent developments in application of prokaryotic clustered regularly interspaced short palindromic repeats/CRISPR-associated genes (CRISPR/Cas) technology for plant virus resistance, mixed viral infections and their role in disease synergism and cross-protection, and viral transmission by whiteflies. The following briefly summarizes the articles appearing in this Focus Issue.
Collapse
Affiliation(s)
- Satyanarayana Tatineni
- U.S. Department of Agriculture-Agricultural Research Service and Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE, U.S.A
| | - Lucy R Stewart
- U.S. Department of Agriculture-Agricultural Research Service, Corn, Soybean, and Wheat Quality Research Unit, Wooster, OH, U.S.A
| | - Hélène Sanfaçon
- Summerland Research and Development Centre, Agriculture and Agri-Food Canada, Summerland, BC V0H 1Z0, Canada
| | - Xiaofeng Wang
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, U.S.A
| | - Jesús Navas-Castillo
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Consejo Superior de Investigaciones Científicas-Universidad de Málaga, 29750 Algarrobo-Costa, Málaga, Spain
| | - M Reza Hajimorad
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN, U.S.A
| |
Collapse
|