1
|
Zaffaroni M, Papaïx J, Geffersa AG, Rey JF, Rimbaud L, Fabre F. Combining Single-Gene-Resistant and Pyramided Cultivars of Perennial Crops in Agricultural Landscapes Compromises Pyramiding Benefits in Most Production Situations. PHYTOPATHOLOGY 2024; 114:2310-2321. [PMID: 39007734 DOI: 10.1094/phyto-02-24-0075-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Although resistant cultivars are valuable in safeguarding crops against diseases, they can be rapidly overcome by pathogens. Numerous strategies have been proposed to delay pathogen adaptation (evolutionary control) while still ensuring effective protection (epidemiological control). For perennial crops, multiple resistance genes can be deployed (i) in the same cultivar (pyramiding strategy); in single-gene-resistant cultivars grown (ii) in the same field (mixture strategy) or (iii) in different fields (mosaic strategy); or (iv) in hybrid strategies that combine the three previous options. In addition, the spatial scale at which resistant cultivars are deployed can affect the plant-pathogen interaction: Small fields are thought to reduce pest density and disease transmission. Here, we used the spatially explicit stochastic model landsepi to compare the evolutionary and epidemiological control across spatial scales and deployment strategies relying on two major resistance genes. Our results, broadly focused on resistance to downy mildew of grapevine, show that the evolutionary control provided by the pyramiding strategy is at risk when single-gene-resistant cultivars are concurrently planted in the landscape (hybrid strategies), especially at low mutation probability. Moreover, the effectiveness of pyramiding compared with hybrid strategies is influenced by whether the adapted pathogen pays a fitness cost across all hosts or only for unnecessary virulence, particularly when the fitness cost is high rather than intermediate. Finally, field size did not affect model outputs for a wide range of mutation probabilities and associated fitness costs. The socioeconomic policies favoring the adoption of optimal resistant management strategies are discussed.
Collapse
Affiliation(s)
- Marta Zaffaroni
- INRAE, Bordeaux Sciences Agro, SAVE, 33882 Villenave d'Ornon, France
- INRAE, BioSP, 84914 Avignon, France
| | | | | | | | - Loup Rimbaud
- INRAE, Pathologie Végétale, 84140 Montfavet, France
| | - Frédéric Fabre
- INRAE, Bordeaux Sciences Agro, SAVE, 33882 Villenave d'Ornon, France
| |
Collapse
|
2
|
Cuevas-Zuviria B, Fraile A, García-Arenal F. An Agent-Based Model Shows How Mixed Infections Drive Multiyear Pathotype Dynamics in a Plant-Virus System. PHYTOPATHOLOGY 2024; 114:1276-1288. [PMID: 38330173 DOI: 10.1094/phyto-06-23-0214-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Mathematical models are widely used to understand the evolution and epidemiology of plant pathogens under a variety of scenarios. Here, we used this approach to analyze the effects of different traits intrinsic and extrinsic to plant-virus interactions on the dynamics of virus pathotypes in genetically heterogeneous plant-virus systems. For this, we propose an agent-based epidemiological model that includes epidemiologically significant pathogen life-history traits related to virulence, transmission, and survival in the environment and allows for integrating long- and short-distance transmission, primary and secondary infections, and within-host pathogen competition in mixed infections. The study focuses on the tobamovirus-pepper pathosystem. Model simulations allowed us to integrate pleiotropic effects of resistance-breaking mutations on different virus life-history traits into the net costs of resistance breaking, allowing for predictions on multiyear pathotype dynamics. We also explored the effects of two control measures, the use of host resistance and roguing of symptomatic plants, that modify epidemiological attributes of the pathogens to understand how their populations will respond to evolutionary pressures. One major conclusion points to the importance of pathogen competition within mixed-infected hosts as a component of the overall fitness of each pathogen that, thus, drives their multiyear dynamics.
Collapse
Affiliation(s)
- Bruno Cuevas-Zuviria
- Centro de Biotecnología y Genómica de Plantas (CBGP UPM-INIA/CSIC), Universidad Politécnica de Madrid (UPM) and E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, UPM, 28223 Pozuelo de Alarcón, Madrid, Spain
| | - Aurora Fraile
- Centro de Biotecnología y Genómica de Plantas (CBGP UPM-INIA/CSIC), Universidad Politécnica de Madrid (UPM) and E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, UPM, 28223 Pozuelo de Alarcón, Madrid, Spain
| | - Fernando García-Arenal
- Centro de Biotecnología y Genómica de Plantas (CBGP UPM-INIA/CSIC), Universidad Politécnica de Madrid (UPM) and E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, UPM, 28223 Pozuelo de Alarcón, Madrid, Spain
| |
Collapse
|
3
|
Helps J, Lopez-Ruiz F, Zerihun A, van den Bosch F. Do Growers Using Solo Fungicides Affect the Durability of Disease Control of Growers Using Mixtures and Alternations? The Case of Spot-Form Net Blotch in Western Australia. PHYTOPATHOLOGY 2024; 114:590-602. [PMID: 38079394 DOI: 10.1094/phyto-02-23-0050-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Growers often use alternations or mixtures of fungicides to slow down the development of resistance to fungicides. However, within a landscape, some growers will implement such resistance management methods, whereas others do not, and may even apply solo components of the resistance management program. We investigated whether growers using solo components of resistant management programs affect the durability of disease control in fields of those who implement fungicide resistance management. We developed a spatially implicit semidiscrete epidemiological model for the development of fungicide resistance. The model simulates the development of epidemics of spot-form net blotch disease, caused by the pathogen Pyrenophora teres f. maculata. The landscape comprises three types of fields, grouped according to their treatment program, with spore dispersal between fields early in the cropping season. In one field type, a fungicide resistance management method is implemented, whereas in the two others, it is not, with one of these field types using a component of the fungicide resistance management program. The output of the model suggests that the use of component fungicides does affect the durability of disease control for growers using resistance management programs. The magnitude of the effect depends on the characteristics of the pathosystem, the degree of inoculum mixing between fields, and the resistance management program being used. Additionally, although increasing the amount of the solo component in the landscape generally decreases the lifespan within which the resistance management program provides effective control, situations exist where the lifespan may be minimized at intermediate levels of the solo component fungicide. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.
Collapse
Affiliation(s)
- Joe Helps
- Rothamsted Research, Harpenden, AL5 2JQ, U.K
| | - Francisco Lopez-Ruiz
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Perth, WA 6845, Australia
| | - Ayalsew Zerihun
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Perth, WA 6845, Australia
| | - Frank van den Bosch
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Perth, WA 6845, Australia
| |
Collapse
|
4
|
Zaffaroni M, Rimbaud L, Rey J, Papaïx J, Fabre F. Effects of pathogen reproduction system on the evolutionary and epidemiological control provided by deployment strategies for two major resistance genes in agricultural landscapes. Evol Appl 2024; 17:e13627. [PMID: 38283600 PMCID: PMC10810173 DOI: 10.1111/eva.13627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 10/27/2023] [Accepted: 11/20/2023] [Indexed: 01/30/2024] Open
Abstract
Resistant cultivars are of value for protecting crops from disease, but can be rapidly overcome by pathogens. Several strategies have been proposed to delay pathogen adaptation (evolutionary control), while maintaining effective protection (epidemiological control). Resistance genes can be (i) combined in the same cultivar (pyramiding), (ii) deployed in different cultivars sown in the same field (mixtures) or in different fields (mosaics), or (iii) alternated over time (rotations). The outcomes of these strategies have been investigated principally in pathogens displaying pure clonal reproduction, but many pathogens have at least one sexual event in their annual life cycles. Sexual reproduction may promote the emergence of superpathogens adapted to all the resistance genes deployed. Here, we improved the spatially explicit stochastic model landsepi to include pathogen sexual reproduction, and we used the improved model to investigate the effect of sexual reproduction on evolutionary and epidemiological outcomes across deployment strategies for two major resistance genes. Sexual reproduction favours the establishment of a superpathogen when single mutant pathogens are present together at a sufficiently high frequency, as in mosaic and mixture strategies. However, sexual reproduction did not affect the strategy recommendations for a wide range of mutation probabilities, associated fitness costs, and landscape organisations.
Collapse
Affiliation(s)
- Marta Zaffaroni
- INRAE, Bordeaux Sciences Agro, SAVEVillenave d'OrnonFrance
- INRAE, BioSPAvignonFrance
| | | | | | | | - Frédéric Fabre
- INRAE, Bordeaux Sciences Agro, SAVEVillenave d'OrnonFrance
| |
Collapse
|
5
|
Newton AC, Skelsey P. Understanding the effect of component proportions on disease control in two-component cultivar cereal mixtures using a pathogen dispersal scaling hypothesis. Sci Rep 2023; 13:4091. [PMID: 36906626 PMCID: PMC10008548 DOI: 10.1038/s41598-023-31032-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 03/06/2023] [Indexed: 03/13/2023] Open
Abstract
A field experiment was carried out to determine the importance of component cultivar proportions to spring barley mixture efficacy against rhynchosporium or scald symptoms caused by the splash-dispersed pathogen Rhynchosporium commune. A larger effect than expected was observed of small amounts of one component on another for reducing disease overall, but relative insensitivity to proportion as amounts of each component become more similar. An established theoretical framework, the 'Dispersal scaling hypothesis', was used to model the expected effect of mixing proportions on the spatiotemporal spread of disease. The model captured the unequal effect of mixing different proportions on disease spread and there was good agreement between predictions and observations. The dispersal scaling hypothesis therefore provides a conceptual framework to explain the observed phenomenon, and a tool to predict the proportion of mixing at which mixture performance is maximized.
Collapse
Affiliation(s)
- Adrian C Newton
- Ecological Sciences, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, Scotland, UK.
| | - Peter Skelsey
- Information and Computational Sciences, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, Scotland, UK
| |
Collapse
|
6
|
Murray-Watson RE, Cunniffe NJ. How the epidemiology of disease-resistant and disease-tolerant varieties affects grower behaviour. J R Soc Interface 2022; 19:20220517. [PMID: 36259173 PMCID: PMC9579772 DOI: 10.1098/rsif.2022.0517] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/29/2022] [Indexed: 11/12/2022] Open
Abstract
Population-scale effects of resistant or tolerant crop varieties have received little consideration from epidemiologists. When growers deploy tolerant crop, population-scale disease pressures are often unaffected. This only benefits growers using tolerant varieties, selfishly decreasing yields for others. However, resistant crop can reduce disease pressure for all. We coupled an epidemiological model with game theory to understand how this affects uptake of control. Each time a grower plants a new crop, they must decide whether to use an improved (i.e. tolerant/resistant) or unimproved variety. This decision is based on strategic-adaptive expectations in our model, with growers comparing last season's profit with an estimate of what is expected from the alternative crop. Despite the positive feedback loop promoting use of a tolerant variety whenever it is available, a mixed unimproved- and tolerant-crop equilibrium can persist. Tolerant crop can also induce bistability between a scenario in which all growers use tolerant crop and the disease-free equilibrium, where no growers do. However, due to 'free-riding' by growers of unimproved crop, resistant crop nearly always exists in a mixed equilibrium. This work highlights how growers respond to contrasting incentives caused by tolerant and resistant varieties, and the distinct effects on yields and population-scale deployment.
Collapse
Affiliation(s)
| | - Nik J. Cunniffe
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 1TN, UK
| |
Collapse
|
7
|
Host Diversification May Split Epidemic Spread into Two Successive Fronts Advancing at Different Speeds. Bull Math Biol 2022; 84:68. [DOI: 10.1007/s11538-022-01023-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 04/13/2022] [Indexed: 11/02/2022]
|
8
|
Rimbaud L, Fabre F, Papaïx J, Moury B, Lannou C, Barrett LG, Thrall PH. Models of Plant Resistance Deployment. ANNUAL REVIEW OF PHYTOPATHOLOGY 2021; 59:125-152. [PMID: 33929880 DOI: 10.1146/annurev-phyto-020620-122134] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Owing to their evolutionary potential, plant pathogens are able to rapidly adapt to genetically controlled plant resistance, often resulting in resistance breakdown and major epidemics in agricultural crops. Various deployment strategies have been proposed to improve resistance management. Globally, these rely on careful selection of resistance sources and their combination at various spatiotemporal scales (e.g., via gene pyramiding, crop rotations and mixtures, landscape mosaics). However, testing and optimizing these strategies using controlled experiments at large spatiotemporal scales are logistically challenging. Mathematical models provide an alternative investigative tool, and many have been developed to explore resistance deployment strategies under various contexts. This review analyzes 69 modeling studies in light of specific model structures (e.g., demographic or demogenetic, spatial or not), underlying assumptions (e.g., whether preadapted pathogens are present before resistance deployment), and evaluation criteria (e.g., resistance durability, disease control, cost-effectiveness). It highlights major research findings and discusses challenges for future modeling efforts.
Collapse
Affiliation(s)
- Loup Rimbaud
- INRAE, Pathologie Végétale, 84140 Montfavet, France; ,
- CSIRO Agriculture and Food, Canberra, ACT 2601, Australia; ,
| | - Frédéric Fabre
- INRAE, Bordeaux Sciences Agro, SAVE, 33882 Villenave d'Ornon, France;
| | | | - Benoît Moury
- INRAE, Pathologie Végétale, 84140 Montfavet, France; ,
| | | | - Luke G Barrett
- CSIRO Agriculture and Food, Canberra, ACT 2601, Australia; ,
| | - Peter H Thrall
- CSIRO Agriculture and Food, Canberra, ACT 2601, Australia; ,
| |
Collapse
|