1
|
Jiang L, Wu P, Yang L, Liu C, Guo P, Wang H, Wang S, Xu F, Zhuang Q, Tong X, Liu P, Luo L. Transcriptomics and metabolomics reveal the induction of flavonoid biosynthesis pathway in the interaction of Stylosanthes-Colletotrichum gloeosporioides. Genomics 2021; 113:2702-2716. [PMID: 34111523 DOI: 10.1016/j.ygeno.2021.06.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 06/01/2021] [Accepted: 06/04/2021] [Indexed: 10/21/2022]
Abstract
Colletotrichum, a hemibiotrophic fungal pathogen with a broad host range, causes a yield-limiting disease called anthracnose. Stylo (Stylosanthes) is a dominant pasture legume in tropics and subtropics, and anthracnose is one of its most destructive disease. Resistance mechanisms against anthracnose in stylo are poorly understood, thus hindering the development of resistant varieties. We performed time-resolved leaf transcriptomics, metabolomics and in vitro inhibition assay to investigate the defense responses against Colletotrichum gloeosporioides in stylo. Transcriptomics demonstrated that flavonoid biosynthetic genes were significantly induced during the infection. Consistently, metabolomics also showed the increased accumulation of flavonoid compounds. In vitro assays showed that phloretin and naringenin inhibited the mycelial growth, and apigenin, daidzein, quercetin and kaempferol suppressed conidial germination of Colletotrichum strains. Together, our results suggest that stylo plants cope with C. gloeosporioides by up-regulation of genes and compounds in flavonoid biosynthesis pathway, providing potential targets for resistance breeding.
Collapse
Affiliation(s)
- Lingyan Jiang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Hainan 570228, PR China
| | - Pengpeng Wu
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Hainan 570228, PR China
| | - Liyun Yang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Hainan 570228, PR China
| | - Chun Liu
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Hainan 570228, PR China
| | - Pengfei Guo
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Hainan 570228, PR China
| | - Hui Wang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Hainan 570228, PR China
| | - Shaocai Wang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Hainan 570228, PR China
| | - Fupeng Xu
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Hainan 570228, PR China
| | - Qiwang Zhuang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Hainan 570228, PR China
| | - Xinzhuo Tong
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Hainan 570228, PR China
| | - Pandao Liu
- Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agricultural Sciences, Hainan 570228, PR China
| | - Lijuan Luo
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Hainan 570228, PR China.
| |
Collapse
|
2
|
Fujita K, Inui H. Review: Biological functions of major latex-like proteins in plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 306:110856. [PMID: 33775363 DOI: 10.1016/j.plantsci.2021.110856] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 01/20/2021] [Accepted: 02/14/2021] [Indexed: 05/23/2023]
Abstract
Major latex-like proteins (MLPs) have been identified in dicots and monocots. They are members of the birch pollen allergen Bet v 1 family as well as pathogenesis-related proteins class 10. MLPs have two main features. One is binding affinity toward various hydrophobic compounds, such as long-chain fatty acids, steroids, and systemic acquired resistance signals, via its internal hydrophobic cavity or hydrophobic residues on its surface. MLPs transport such compounds to other organs via phloem and xylem vessels and contribute to the expression of physiologically important ligands' activity in the particular organs. The second feature is responses to abiotic and biotic stresses. MLPs are involved in drought and salt tolerance through the mediation of plant hormone signaling pathways. MLPs generate resistance against pathogens by the induction of pathogenesis-related protein genes. Therefore, MLPs play crucial roles in drought and salt tolerance and resistance against pathogens. However, knowledge of MLPs is fragmented, and an overview of them is needed. Herein, we summarize the current knowledge of the biological functions of MLPs, which to our knowledge, is the first review about MLPs that has been reported.
Collapse
Affiliation(s)
- Kentaro Fujita
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, Hyogo 657-8501, Japan.
| | - Hideyuki Inui
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, Hyogo 657-8501, Japan; Biosignal Research Center, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, Hyogo 657-8501, Japan.
| |
Collapse
|
3
|
Liu N, Luo X, Tian Y, Lai D, Zhang L, Lin F, Xu H. The stereoisomeric Bacillus subtilis HN09 metabolite 3,4-dihydroxy-3-methyl-2-pentanone induces disease resistance in Arabidopsis via different signalling pathways. BMC PLANT BIOLOGY 2019; 19:384. [PMID: 31488058 PMCID: PMC6727425 DOI: 10.1186/s12870-019-1985-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 08/23/2019] [Indexed: 05/23/2023]
Abstract
BACKGROUND Plant immune responses can be induced by plant growth-promoting rhizobacteria (PGPRs), but the exact compounds that induce resistance are poorly understood. Here, we identified the novel natural elicitor 3,4-dihydroxy-3-methyl-2-pentanone from the PGPR Bacillus subtilis HN09, which dominates HN09-induced systemic resistance (ISR). RESULTS The HN09 strain, as a rhizobacterium that promotes plant growth, can induce systemic resistance of Arabidopsis thaliana plants against Pseudomonas syringae pv. tomato DC3000, and the underlying role of its metabolite 3,4-dihydroxy-3-methyl-2-pentanone in this induced resistance mechanism was explored in this study. The stereoisomers of 3,4-dihydroxy-3-methyl-2-pentanone exhibited differential bioactivity of resistance induction in A. thaliana. B16, a 1:1 mixture of the threo-isomers (3R,4S) and (3S,4R), was significantly superior to B17, a similar mixture of the erythro-isomers (3R,4R) and (3S,4S). Moreover, B16 induced more expeditious and stronger callose deposition than B17 when challenged with the pathogen DC3000. RT-qPCR and RNA-seq results showed that B16 and B17 induced systemic resistance via JA/ET and SA signalling pathways. B16 and B17 activated different but overlapping signalling pathways, and these compounds have the same chemical structure but subtle differences in stereo configuration. CONCLUSIONS Our results indicate that 3,4-dihydroxy-3-methyl-2-pentanone is an excellent immune elicitor in plants. This compound is of great importance to the systemic resistance induced by HN09. Its threo-isomers (3R,4S) and (3S,4R) are much better than erythro-isomers (3R,4R) and (3S,4S). This process involves SA and JA/ET signalling pathways.
Collapse
Affiliation(s)
- Niu Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, 510642 China
| | - Xiao Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, 510642 China
| | - Yongqing Tian
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, 510642 China
| | - Duo Lai
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
| | - Longlai Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, 510642 China
| | - Fei Lin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, 510642 China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, 510642 China
| | - Hanhong Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, 510642 China
| |
Collapse
|
4
|
Wang H, Chen Z, Liu G, Bai C, Qiu H, Jia Y, Luo L. Alterations of growth, antioxidant system and gene expression in Stylosanthes guianensis during Colletotrichum gloeosporioides infection. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 118:256-266. [PMID: 28662462 DOI: 10.1016/j.plaphy.2017.06.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 06/19/2017] [Accepted: 06/19/2017] [Indexed: 06/07/2023]
Abstract
Anthracnose caused by Colletotrichum gloeosporioides is one of the most destructive fungal diseases of many plants, including stylo (Stylosanthes spp.), which is an important tropical forage legume. Although C. gloeosporioides-caused anthracnose is the major constraint limiting the growth and yield of stylo, little information is available regarding the responses of stylo during the infection process of this pathogen. This study investigated the changes in growth, the antioxidant system and gene expression in stylo in response to C. gloeosporioides treatment. Negative effects of C. gloeosporioides were observed in inoculated stylo plants, as reflected by the formation of necrotic disease lesions and the decrease in shoot fresh weight. Reactive oxygen species (ROS) accumulation increased in stylo leaves during the C. gloeosporioides infection process. The activities of antioxidant enzymes, including superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), glutathione peroxidase (GPX) and glutathione reductase (GR), as well as the concentrations of the antioxidant compounds ascorbate (AsA) and glutathione (GSH), increased in leaves under C. gloeosporioides treatment. Furthermore, transcriptional analysis showed that the expression of stress response genes, including NADPH oxidase (Nox), thioredoxin (Thi), pathogenesis related genes (PR1 and PR5), phenylalanine ammonia lyase (PAL), polyphenol oxidase (PPO), chalcone synthase (CHS) and chitinase (Cht), was differentially enhanced in stylo leaves by C. gloeosporioides. Taken together, this study provides novel information regarding the alterations during the infection process of C. gloeosporioides in stylo at the levels of antioxidant system and gene expression.
Collapse
Affiliation(s)
- Hui Wang
- College of Agriculture, Hainan University, Haikou, 570110, PR China
| | - Zhijian Chen
- Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agriculture Sciences, Danzhou, 571737, PR China
| | - Guodao Liu
- Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agriculture Sciences, Danzhou, 571737, PR China
| | - Changjun Bai
- Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agriculture Sciences, Danzhou, 571737, PR China
| | - Hong Qiu
- Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agriculture Sciences, Danzhou, 571737, PR China
| | - Yanxing Jia
- College of Agriculture, Hainan University, Haikou, 570110, PR China
| | - Lijuan Luo
- College of Agriculture, Hainan University, Haikou, 570110, PR China.
| |
Collapse
|
5
|
Siddaiah CN, Satyanarayana NR, Mudili V, Kumar Gupta V, Gurunathan S, Rangappa S, Huntrike SS, Srivastava RK. Elicitation of resistance and associated defense responses in Trichoderma hamatum induced protection against pearl millet downy mildew pathogen. Sci Rep 2017; 7:43991. [PMID: 28322224 PMCID: PMC5359564 DOI: 10.1038/srep43991] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 01/23/2017] [Indexed: 01/01/2023] Open
Abstract
Endophytic Trichoderma hamatum UoM 13 isolated from pearl millet roots was evaluated for its efficiency to suppress downy mildew disease. Under laboratory conditions, T. hamatum seed treatment significantly enhanced pearl millet seed germination and seedling vigor. T. hamatum seed treatment resulted in systemic and durable immunity against pearl millet downy mildew disease under greenhouse and field conditions. T. hamatum treated seedlings responded to downy mildew infection with high lignification and callose deposition. Analysis of defense enzymes showed that T. hamatum treatment significantly enhanced the activities of glucanase, peroxidase, phenylalanine ammonia-lyase, and polyphenol oxidase in comparison to untreated control. RT-PCR analysis revealed differentially expressed transcripts of the defense enzymes and PR-proteins in treated, untreated, and checks, wherein PR-1, PR-5, and cell wall defense HRGPs were significantly over expressed in treated seedlings as against their lower expression in controls. T. hamatum treatment significantly stimulated endogenous salicylic acid (SA) levels and significantly upregulated important SA biosynthesis gene isochorismate synthase. The results indicated that T. hamatum UoM13 treatment induces resistance corresponding to significant over expression of endogenous SA, important defense enzymes, PR-proteins, and HRGPs, suggesting that SA biosynthetic pathway is involved in pearl millet for mounting systemic immunity against downy mildew pathogen.
Collapse
Affiliation(s)
- Chandra Nayaka Siddaiah
- Department of Studies in Biotechnology, University of Mysore, Manasagangotri, Mysore, 570006, Karnataka, India
| | - Niranjan Raj Satyanarayana
- Department of Studies in Microbiology, Karnataka State Open University, Mukthagangotri, Mysore, 570006, Karnataka, India
| | - Venkataramana Mudili
- Microbiology Division, DRDO-BU-Centre for Life sciences, Bharathiar University Campus, Coimbatore, 641046, Tamil Nadu, India
| | - Vijai Kumar Gupta
- Discipline of Biochemistry, National University of Ireland Galway, Galway, Ireland
| | - Selvakumar Gurunathan
- Microbiology Division, DRDO-BU-Centre for Life sciences, Bharathiar University Campus, Coimbatore, 641046, Tamil Nadu, India
| | - Shobith Rangappa
- Frontier Research Center for Post-Genome Science and Technology, Hokkaido University, Sapporo 060-0808, Japan
| | - Shekar Shetty Huntrike
- Department of Studies in Biotechnology, University of Mysore, Manasagangotri, Mysore, 570006, Karnataka, India
| | - Rakesh Kumar Srivastava
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, 502324, Telangana, India
| |
Collapse
|
6
|
Rahman A, Uddin W, Wenner NG. Induced systemic resistance responses in perennial ryegrass against Magnaporthe oryzae elicited by semi-purified surfactin lipopeptides and live cells of Bacillus amyloliquefaciens. MOLECULAR PLANT PATHOLOGY 2015; 16:546-58. [PMID: 25285593 PMCID: PMC6638512 DOI: 10.1111/mpp.12209] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The suppressive ability of several strains of cyclic lipopeptide-producing Bacillus rhizobacteria to grey leaf spot disease caused by Magnaporthe oryzae has been documented previously; however, the underlying mechanism(s) involved in the induced systemic resistance (ISR) activity in perennial ryegrass (Lolium perenne L.) remains unknown. Root-drench application of solid-phase extraction (SPE)-enriched surfactin and live cells of mutant Bacillus amyloliquefaciens strain FZB42-AK3 (produces surfactin, but not bacillomycin D and fengycin) significantly reduced disease incidence and severity on perennial ryegrass. The application of the treatments revealed a pronounced multilayered ISR defence response activation via timely and enhanced accumulation of hydrogen peroxide (H2O2), elevated cell wall/apoplastic peroxidase activity, and deposition of callose and phenolic/polyphenolic compounds underneath the fungal appressoria in naïve leaves, which was significantly more intense in treated plants than in mock-treated controls. Moreover, a hypersensitive response (HR)-type reaction and enhanced expression of LpPrx (Prx, peroxidase), LpOXO4 (OXO, oxalate oxidase), LpPAL (PAL, phenylalanine ammonia lyase), LpLOXa (LOX, lipoxygenase), LpTHb (putative defensin) and LpDEFa (DEFa, putative defensin) in perennial ryegrass were associated with SPE-enriched surfactin and live AK3 cell treatments, acting as a second layer of defence when pre-invasive defence responses failed. The results indicate that ISR activity following surfactin perception may sensitize H2O2 -mediated defence responses, thereby providing perennial ryegrass with enhanced protection against M. oryzae.
Collapse
Affiliation(s)
- Alamgir Rahman
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Wakar Uddin
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Nancy G Wenner
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
7
|
Rahman A, Wallis CM, Uddin W. Silicon-Induced Systemic Defense Responses in Perennial Ryegrass Against Infection by Magnaporthe oryzae. PHYTOPATHOLOGY 2015; 105:748-57. [PMID: 25738553 DOI: 10.1094/phyto-12-14-0378-r] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Sustainable integrated disease management for gray leaf spot of perennial ryegrass may involve use of plant defense elicitors with compatible traditional fungicides to reduce disease incidence and severity. Silicon (Si) has previously been identified as a potential inducer or modulator of plant defenses against different fungal pathogens. To this end, perennial ryegrass was inoculated with the causal agent of gray leaf spot, Magnaporthe oryzae, when grown in soil that was nonamended or amended with three different levels of calcium silicate (1, 5, or 10 metric tons [t]/ha). When applied at a rate of 5 t/ha, calcium silicate was found to significantly suppress gray leaf spot in perennial ryegrass, including a significant reduction of disease incidence (39.5%) and disease severity (47.3%). Additional studies observed nonpenetrated papillae or cell-wall appositions harboring callose, phenolic autofluorogens, and lignin-associated polyphenolic compounds in grass grown in the Si-amended soil. Regarding defense-associated enzyme levels, only following infection did grass grown in Si-amended soil exhibit greater activities of peroxidase and polyphenol oxidase than equivalent inoculated control plants. Also following infection with M. oryzae, grass levels of several phenolic acids, including chlorogenic acid and flavonoids, and relative expression levels of genes encoding phenylalanine ammonia lyase (PALa and PALb) and lipoxygenase (LOXa) significantly increased in Si-amended plants compared with that of nonamended control plants. These results suggest that Si-mediated increase of host defense responses to fungal pathogens in perennial ryegrass has a great potential to be part of an effective integrated disease management strategy against gray leaf spot development.
Collapse
Affiliation(s)
- Alamgir Rahman
- First and third authors: Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park 16802; and second author: United States Department of Agriculture-Agricultural Research Service, San Joaquin Valley Agricultural Sciences Center, Parlier, CA 93648
| | - Christopher M Wallis
- First and third authors: Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park 16802; and second author: United States Department of Agriculture-Agricultural Research Service, San Joaquin Valley Agricultural Sciences Center, Parlier, CA 93648
| | - Wakar Uddin
- First and third authors: Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park 16802; and second author: United States Department of Agriculture-Agricultural Research Service, San Joaquin Valley Agricultural Sciences Center, Parlier, CA 93648
| |
Collapse
|