1
|
Kenzhebayeva S, Mazkirat S, Shoinbekova S, Atabayeva S, Abekova A, Omirbekova N, Doktyrbay G, Asrandina S, Zharassova D, Amirova A, Serfling A. Phenotyping and Exploitation of Kompetitive Allele-Specific PCR Assays for Genes Underpinning Leaf Rust Resistance in New Spring Wheat Mutant Lines. Curr Issues Mol Biol 2024; 46:689-709. [PMID: 38248347 PMCID: PMC10814123 DOI: 10.3390/cimb46010045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/03/2024] [Accepted: 01/05/2024] [Indexed: 01/23/2024] Open
Abstract
Leaf rust (Puccinia triticina Eriks) is a wheat disease causing substantial yield losses in wheat production globally. The identification of genetic resources with permanently effective resistance genes and the generation of mutant lines showing increased levels of resistance allow the efficient incorporation of these target genes into germplasm pools by marker-assisted breeding. In this study, new mutant (M3 generation) lines generated from the rust-resistant variety Kazakhstanskaya-19 were developed using gamma-induced mutagenesis through 300-, 350-, and 400-Gy doses. In field trials after leaf rust inoculation, 75 mutant lines showed adult plant resistance. These lines were evaluated for resistance at the seedling stage via microscopy in greenhouse experiments. Most of these lines (89.33%) were characterized as resistant at both developmental stages. Hyperspectral imaging analysis indicated that infected leaves of wheat genotypes showed increased relative reflectance in visible and near-infrared light compared to the non-infected genotypes, with peak means at 462 and 644 nm, and 1936 and 2392 nm, respectively. Five spectral indexes, including red edge normalized difference vegetation index (RNDVI), structure-insensitive pigment index (SIPI), ratio vegetation index (RVSI), water index (WI), and normalized difference water index (NDWI), demonstrated significant potential for determining disease severity at the seedling stage. The most significant differences in reflectance between susceptible and resistant mutant lines appeared at 694.57 and 987.51 nm. The mutant lines developed were also used for the development and validation of KASP markers for leaf rust resistance genes Lr1, Lr2a, Lr3, Lr9, Lr10, and Lr17. The mutant lines had high frequencies of "a" resistance alleles (0.88) in all six Lr genes, which were significantly associated with seedling resistance and suggest the potential of favorable haplotype introgression through functional markers. Nine mutant lines characterized by the presence of "b" alleles in Lr9 and Lr10-except for one line with allele "a" in Lr9 and three mutant lines with allele "a" in Lr10-showed the progressive development of fungal haustorial mother cells 72 h after inoculation. One line from 300-Gy-dosed mutant germplasm with "b" alleles in Lr1, Lr2a, Lr10, and Lr17 and "a" alleles in Lr3 and Lr9 was characterized as resistant based on the low number of haustorial mother cells, suggesting the contribution of the "a" alleles of Lr3 and Lr9.
Collapse
Affiliation(s)
- Saule Kenzhebayeva
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan; (S.S.); (S.A.); (N.O.); (G.D.); (S.A.); (A.A.)
| | - Shynarbek Mazkirat
- Kazakh Research Institute of Agriculture and Plant Growing, Almaty Region, Almalybak 040909, Kazakhstan; (S.M.); (A.A.)
| | - Sabina Shoinbekova
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan; (S.S.); (S.A.); (N.O.); (G.D.); (S.A.); (A.A.)
| | - Saule Atabayeva
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan; (S.S.); (S.A.); (N.O.); (G.D.); (S.A.); (A.A.)
| | - Alfia Abekova
- Kazakh Research Institute of Agriculture and Plant Growing, Almaty Region, Almalybak 040909, Kazakhstan; (S.M.); (A.A.)
| | - Nargul Omirbekova
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan; (S.S.); (S.A.); (N.O.); (G.D.); (S.A.); (A.A.)
| | - Gulina Doktyrbay
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan; (S.S.); (S.A.); (N.O.); (G.D.); (S.A.); (A.A.)
| | - Saltant Asrandina
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan; (S.S.); (S.A.); (N.O.); (G.D.); (S.A.); (A.A.)
| | - Dinara Zharassova
- Mangyshlak Experimental Botanical Garden, Ministry of Science and Higher Education of the Republic of Kazakhstan, Aktau R00A3E0, Kazakhstan;
| | - Aigul Amirova
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan; (S.S.); (S.A.); (N.O.); (G.D.); (S.A.); (A.A.)
| | - Albrecht Serfling
- Institute for Resistance Research and Stress Tolerance, Julius Kuehn-Institute (JKI) Federal Research Centre for Cultivated Plants, 06484 Quedlinburg, Germany;
| |
Collapse
|
2
|
Kaur S, Pennington T, Conley EJ, Green A, Kolmer J, Anderson J, Gupta R, Gill U. High-Resolution Melting-Based Marker Development for Wheat Leaf Rust Resistance Gene Lr34. PHYTOPATHOLOGY 2023; 113:508-515. [PMID: 36346374 DOI: 10.1094/phyto-08-22-0313-r] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Deploying adult plant resistance (APR) against rust diseases is an important breeding objective of most wheat-breeding programs. The gene Lr34 is an effective and widely deployed broad-spectrum APR gene in wheat against leaf rust fungus Puccinia triticina. Various molecular markers have been developed for Lr34, but they either require post-PCR handling processes or are not economical. Herein, we developed a high-resolution melting (HRM)-based diagnostic assay for Lr34 based on a 3-bp 'TTC' deletion in exon 11 of the resistant allele. The susceptible cultivar Thatcher (Tc) and the near-isogenic Thatcher line (RL6058) with Lr34 yielded distinct melting profiles and were differentiated with high reproducibility. For further validation, all three copies of Lr34 were cloned in plasmid vectors, and HRM analysis using individual and combination (equimolar mixture of three copies) homoeologs yielded distinct melting profiles. An additional layer of genotyping was provided by a LunaProbe assay. The allele-specific probes successfully distinguished the homoeologs but not Tc and RL6058. Furthermore, the practical deployment of the HRM assay was tested by running the marker on a set of breeding lines. When compared with a kompetitive allele-specific PCR (KASP) Lr34 assay, the HRM assay had similar genotyping results and was able to accurately differentiate the resistant and susceptible breeding lines. However, our HRM assay was unable to detect the heterozygote. To our knowledge, this is the first report of an HRM assay for genotyping a wheat rust resistance gene.
Collapse
Affiliation(s)
- Shivreet Kaur
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58108
| | - Taylor Pennington
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58108
| | - Emily J Conley
- Department of Agronomy & Plant Genetics, University of Minnesota, St. Paul, MN 55108
| | - Andrew Green
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58108
| | - James Kolmer
- U.S. Department of Agriculture-Agricultural Research Service, Cereal Disease Laboratory, St. Paul, MN 55108
| | - James Anderson
- Department of Agronomy & Plant Genetics, University of Minnesota, St. Paul, MN 55108
| | - Rajeev Gupta
- U.S. Department of Agriculture-Agricultural Research Service, Cereal Crops Research Unit, Edward T. Schafer Agricultural Research Center, Fargo, ND 58102
| | - Upinder Gill
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58108
| |
Collapse
|
3
|
Kaur S, Gill HS, Breiland M, Kolmer JA, Gupta R, Sehgal SK, Gill U. Identification of leaf rust resistance loci in a geographically diverse panel of wheat using genome-wide association analysis. FRONTIERS IN PLANT SCIENCE 2023; 14:1090163. [PMID: 36818858 PMCID: PMC9929074 DOI: 10.3389/fpls.2023.1090163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
Leaf rust, caused by Puccinia triticina (Pt) is among the most devastating diseases posing a significant threat to global wheat production. The continuously evolving virulent Pt races in North America calls for exploring new sources of leaf rust resistance. A diversity panel of 365 bread wheat accessions selected from a worldwide population of landraces and cultivars was evaluated at the seedling stage against four Pt races (TDBJQ, TBBGS, MNPSD and, TNBJS). A wide distribution of seedling responses against the four Pt races was observed. Majority of the genotypes displayed a susceptible response with only 28 (9.8%), 59 (13.5%), 45 (12.5%), and 29 (8.1%) wheat accessions exhibiting a highly resistant response to TDBJQ, TBBGS, MNPSD and, TNBJS, respectively. Further, we conducted a high-resolution multi-locus genome-wide association study (GWAS) using a set of 302,524 high-quality single nucleotide polymorphisms (SNPs). The GWAS analysis identified 27 marker-trait associations (MTAs) for leaf rust resistance on different wheat chromosomes of which 20 MTAs were found in the vicinity of known Lr genes, MTAs, or quantitative traits loci (QTLs) identified in previous studies. The remaining seven significant MTAs identified represent genomic regions that harbor potentially novel genes for leaf rust resistance. Furthermore, the candidate gene analysis for the significant MTAs identified various genes of interest that may be involved in disease resistance. The identified resistant lines and SNPs linked to the QTLs in this study will serve as valuable resources in wheat rust resistance breeding programs.
Collapse
Affiliation(s)
- Shivreet Kaur
- Department of Plant Pathology, North Dakota State University, Fargo, ND, United States
| | - Harsimardeep S. Gill
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD, United States
| | - Matthew Breiland
- Department of Plant Pathology, North Dakota State University, Fargo, ND, United States
| | - James A. Kolmer
- Cereal Disease Laboratory, United States Department of Agriculture-Agricultural Research Service (USDA-ARS), St. Paul, MN, United States
| | - Rajeev Gupta
- Cereal Crops Research Unit, Edward T. Schafer Agricultural Research Center, United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Fargo, ND, United States
| | - Sunish K. Sehgal
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD, United States
| | - Upinder Gill
- Department of Plant Pathology, North Dakota State University, Fargo, ND, United States
| |
Collapse
|
4
|
Zhang P, Lan C, Singh RP, Huerta-Espino J, Li Z, Lagudah E, Bhavani S. Identification and Characterization of Resistance Loci to Wheat Leaf Rust and Stripe Rust in Afghan Landrace "KU3067". FRONTIERS IN PLANT SCIENCE 2022; 13:894528. [PMID: 35837449 PMCID: PMC9274257 DOI: 10.3389/fpls.2022.894528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 04/25/2022] [Indexed: 06/15/2023]
Abstract
Leaf rust and stripe rust are important wheat diseases worldwide causing significant losses where susceptible varieties are grown. Resistant cultivars offer long-term control and reduce the use of hazardous chemicals, which can be detrimental to both human health and the environment. Land races have been a valuable resource for mining new genes for various abiotic and biotic stresses including wheat rusts. Afghan wheat landrace "KU3067" displayed high seedling infection type (IT) for leaf rust and low IT for stripe rust; however, it displayed high levels of field resistance for both rusts when tested for multiple seasons against the Mexican rust isolates. This study focused on identifying loci-conferring seedling resistance to stripe rust, and also loci-conferring adult plant resistance (APR) against the Mexican races of leaf rust and stripe rust. A backcrossed inbred line (BIL) population advanced to the BC1F5 generation derived from the cross of KU3067 and Apav (triple rust susceptible line) was used for both, inheritance and QTL mapping studies. The population and parents were genotyped with Diversity Arrays Technology-genotyping-by-sequencing (DArT-Seq) and phenotyped for leaf rust and stripe rust response at both seedling and adult plant stages during multiple seasons in Mexico with relevant pathotypes. Mapping results identified an all-stage resistance gene for stripe rust, temporarily designated as YrKU, on chromosome 7BL. In total, six QTL-conferring APR to leaf rust on 1AS, 2AL, 4DL, 6BL, 7AL, and 7BL, and four QTL for stripe rust resistance on 1BS, 2AL, 4DL, and 7BL were detected in the analyses. Among these, pleiotropic gene Lr67/Yr46 on 4DL with a significantly large effect is the first report in an Afghan landrace-conferring resistance to both leaf and stripe rusts. QLr.cim-7BL/YrKU showed pleiotropic resistance to both rusts and explained 7.5-17.2 and 12.6-19.3% of the phenotypic variance for leaf and stripe rusts, respectively. QYr.cim-1BS and QYr.cim-2AL detected in all stripe environments with phenotypic variance explained (PVE) 12.9-20.5 and 5.4-12.5%, and QLr.cim-6BL are likely to be new. These QTL and their closely linked markers will be useful for fine mapping and marker-assisted selection (MAS) in breeding for durable resistance to multiple rust diseases.
Collapse
Affiliation(s)
- Peipei Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Caixia Lan
- Hubei Hongshan Laboratory, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, China
| | - Ravi P. Singh
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| | - Julio Huerta-Espino
- Campo Experimental Valle de México the National Institute of Forestry, Agricultural and Livestock Research (INIFAP), Texcoco, Mexico
| | - Zaifeng Li
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Evans Lagudah
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Plant Industry, Canberra, ACT, Australia
| | - Sridhar Bhavani
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| |
Collapse
|
5
|
Kumar K, Jan I, Saripalli G, Sharma PK, Mir RR, Balyan HS, Gupta PK. An Update on Resistance Genes and Their Use in the Development of Leaf Rust Resistant Cultivars in Wheat. Front Genet 2022; 13:816057. [PMID: 35432483 PMCID: PMC9008719 DOI: 10.3389/fgene.2022.816057] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 02/28/2022] [Indexed: 11/19/2022] Open
Abstract
Wheat is one of the most important cereal crops in the world. The production and productivity of wheat is adversely affected by several diseases including leaf rust, which can cause yield losses, sometimes approaching >50%. In the present mini-review, we provide updated information on (i) all Lr genes including those derived from alien sources and 14 other novel resistance genes; (ii) a list of QTLs identified using interval mapping and MTAs identified using GWAS (particular those reported recently i.e., after 2018) and their association with known Lr genes; (iii) introgression/pyramiding of individual Lr genes in commercial/prominent cultivars from 18 different countries including India. Challenges and future perspectives of breeding for leaf rust resistance are also provided at the end of this mini-review. We believe that the information in this review will prove useful for wheat geneticists/breeders, not only in the development of leaf rust-resistant wheat cultivars, but also in the study of molecular mechanism of leaf rust resistance in wheat.
Collapse
Affiliation(s)
- Kuldeep Kumar
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, India
| | - Irfat Jan
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, India
- Division of Genetics and Plant Breeding, Faculty of Agriculture, Sher-e-Kashmir University of Agricultural Sciences and Technology, Wadura, India
| | - Gautam Saripalli
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, India
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, United States
| | - P. K. Sharma
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, India
| | - Reyazul Rouf Mir
- Division of Genetics and Plant Breeding, Faculty of Agriculture, Sher-e-Kashmir University of Agricultural Sciences and Technology, Wadura, India
| | - H. S. Balyan
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, India
| | - P. K. Gupta
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, India
- *Correspondence: P. K. Gupta, ,
| |
Collapse
|
6
|
Characterization and Use in Wheat Breeding of Leaf Rust Resistance Genes from Durable Varieties. BIOLOGY 2021; 10:biology10111168. [PMID: 34827161 PMCID: PMC8615195 DOI: 10.3390/biology10111168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/20/2021] [Accepted: 10/25/2021] [Indexed: 11/26/2022]
Abstract
Simple Summary Wheat leaf rust is one of the most significant diseases worldwide, incited by a parasitic fungus which infects leaves, affecting grain yield. This pathogen is spread by the wind over large areas through microscopic spores. This huge number of spores favors the selection of virulent forms; therefore, there is a continuous need for new resistance genes to control this disease without fungicides. These resistant genes are naturally found in resistant wheat varieties and can be introduced by standard crosses. In this work, seven resistant genes were introduced into several commercial susceptible varieties. The selection of resistance genes was assisted by DNA markers that are close to these genes on the chromosome. Additionally, the selection of desirable traits from the commercial variety was also assisted by DNA markers to accelerate the process. In field testing, the varieties developed here were resistant to leaf rust, and suitable for commercial use. Abstract Leaf rust is one of the most significant diseases of wheat worldwide. In Argentina, it is one of the main reasons for variety replacement that becomes susceptible after large-scale use. Some varieties showed durable resistance to this disease, including Buck Manantial and Sinvalocho MA. RILs (Recombinant Inbred Lines) were developed for each of these varieties and used in genetics studies to identify components of resistance, both in greenhouse inoculations using leaf rust races, and in field evaluations under natural population infections. In Buck Manantial, the APR gene LrBMP1 was associated with resistance in field tests. In crosses involving Sinvalocho MA, four genes were previously identified and associated with resistance in field testing: APR (Adult Plant Resistance) gene LrSV1, the APR genetic system LrSV2 + LrcSV2 and the ASR (All Stage Resistance) gene LrG6. Using backcrosses, LrBMP1 was introgressed in four commercial susceptible varieties and LrSV1, LrSV2 + LrcSV2 and LrG6 were simultaneously introgressed in three susceptible commercial varieties. The use of molecular markers for recurrent parent background selection allowed us to select resistant lines with more than 80% similarity to commercial varieties. Additionally, progress towards positional cloning of the genetic system LrSV2 + LrcSV2 for leaf rust APR is reported.
Collapse
|
7
|
Megerssa SH, Sorrells ME, Ammar K, Acevedo M, Bergstrom GC, Olivera P, Brown-Guedira G, Ward B, Degete AG, Abeyo B. Genome-wide association mapping of seedling and adult plant response to stem rust in a durum wheat panel. THE PLANT GENOME 2021; 14:e20105. [PMID: 34145776 DOI: 10.1002/tpg2.20105] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 04/19/2021] [Indexed: 05/26/2023]
Abstract
Many of the major stem rust resistance genes deployed in commercial wheat (Triticum spp.) cultivars and breeding lines become ineffective over time because of the continuous emergence of virulent races. A genome-wide association study (GWAS) was conducted using 26,439 single nucleotide polymorphism (SNP) markers and 280 durum wheat [Triticum turgidum L. subsp. Durum (Desf.) Husnot] lines from CIMMYT to identify genomic regions associated with seedling resistance to races TTKSK, TKTTF, JRCQC, and TTRTF and field resistance to TKTTF and JRCQC. The phenotypic data analysis across environments revealed 61-91 and 59-77% of phenotypic variation was explained by the genotypic component for seedling and adult plant response of lines, respectively. For seedling resistance, mixed linear model (MLM) identified eight novel and nine previously reported quantitative trait loci (QTL) while a fixed and random model circulating probability unification (FarmCPU) detected 12 novel and eight previously reported QTL. For field resistance, MLM identified 12 novel and seven previously reported loci while FarmCPU identified seven novel and nine previously reported loci. The regions of Sr7a, Sr8155B1, Sr11, alleles of Sr13, Sr17, Sr22/Sr25, and Sr49 were identified. Novel loci on chromosomes 3B, 4A, 6A, 6B, 7A, and 7B could be used as sources of resistance to the races virulent on durum wheat. Two large-effect markers on chromosome 6A could potentially be used to differentiate resistant haplotypes of Sr13 (R1 and R3). Allelism tests for Sr13, breaking the deleterious effect associated with Sr22/Sr25 and retaining the resistance allele at the Sr49 locus, are needed to protect future varieties from emerging races.
Collapse
Affiliation(s)
- Shitaye H Megerssa
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | - Mark E Sorrells
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | - Karim Ammar
- International Maize and Wheat Improvement Center (CIMMYT), Mexico, DF, Mexico
| | - Maricelis Acevedo
- Department of Global Development, Cornell University, Ithaca, NY, USA
| | - Gary C Bergstrom
- School of Integrative Plant Science, Plant Pathology and Plant-Microbe Biology Section, Cornell University, Ithaca, NY, USA
| | - Pablo Olivera
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, 55108, USA
| | | | - Brian Ward
- USDA-ARS Plant Science, Raleigh, NC, USA
| | - Ashenafi G Degete
- Debre Zeit Agricultural Research Center, Ethiopian Institute of Agricultural Research (EIAR), Debre Zeit, Ethiopia
| | - Bekele Abeyo
- International Maize and Wheat Improvement Center (CIMMYT), Addis Ababa, Ethiopia
| |
Collapse
|
8
|
Rollar S, Serfling A, Geyer M, Hartl L, Mohler V, Ordon F. QTL mapping of adult plant and seedling resistance to leaf rust (Puccinia triticina Eriks.) in a multiparent advanced generation intercross (MAGIC) wheat population. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:37-51. [PMID: 33201290 PMCID: PMC7813716 DOI: 10.1007/s00122-020-03657-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 07/28/2020] [Indexed: 05/22/2023]
Abstract
The Bavarian MAGIC Wheat population, comprising 394 F6:8 recombinant inbred lines was phenotyped for Puccinia triticina resistance in multi-years' field trials at three locations and in a controlled environment seedling test. Simple intervall mapping revealed 19 QTL, corresponding to 11 distinct chromosomal regions. The biotrophic rust fungus Puccinia triticina is one of the most important wheat pathogens with the potential to cause yield losses up to 70%. Growing resistant cultivars is the most cost-effective and environmentally friendly way to encounter this problem. The emergence of leaf rust races being virulent against common resistance genes increases the demand for wheat varieties with novel resistances. In the past decade, the use of complex experimental populations, like multiparent advanced generation intercross (MAGIC) populations, has risen and offers great advantages for mapping resistances. The genetic diversity of multiple parents, which has been recombined over several generations, leads to a broad phenotypic diversity, suitable for high-resolution mapping of quantitative traits. In this study, interval mapping was performed to map quantitative trait loci (QTL) for leaf rust resistance in the Bavarian MAGIC Wheat population, comprising 394 F6:8 recombinant inbred lines (RILs). Phenotypic evaluation of the RILs for adult plant resistance was carried out in field trials at three locations and two years, as well as in a controlled-environment seedling inoculation test. In total, interval mapping revealed 19 QTL, which corresponded to 11 distinct chromosomal regions controlling leaf rust resistance. Six of these regions may represent putative new QTL. Due to the elite parental material, RILs identified to be resistant to leaf rust can be easily introduced in breeding programs.
Collapse
Affiliation(s)
- Sandra Rollar
- Institute for Resistance Research and Stress Tolerance, Julius Kuehn-Institute, Erwin Baur‑Straße 27, 06484 Quedlinburg, Germany
| | - Albrecht Serfling
- Institute for Resistance Research and Stress Tolerance, Julius Kuehn-Institute, Erwin Baur‑Straße 27, 06484 Quedlinburg, Germany
| | - Manuel Geyer
- Bavarian State Research Center for Agriculture, Institute for Crop Science and Plant Breeding, Am Gereuth 8, Freising, Germany
| | - Lorenz Hartl
- Bavarian State Research Center for Agriculture, Institute for Crop Science and Plant Breeding, Am Gereuth 8, Freising, Germany
| | - Volker Mohler
- Bavarian State Research Center for Agriculture, Institute for Crop Science and Plant Breeding, Am Gereuth 8, Freising, Germany
| | - Frank Ordon
- Institute for Resistance Research and Stress Tolerance, Julius Kuehn-Institute, Erwin Baur‑Straße 27, 06484 Quedlinburg, Germany
| |
Collapse
|
9
|
Figlan S, Ntushelo K, Mwadzingeni L, Terefe T, Tsilo TJ, Shimelis H. Breeding Wheat for Durable Leaf Rust Resistance in Southern Africa: Variability, Distribution, Current Control Strategies, Challenges and Future Prospects. FRONTIERS IN PLANT SCIENCE 2020; 11:549. [PMID: 32499800 PMCID: PMC7242648 DOI: 10.3389/fpls.2020.00549] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 04/09/2020] [Indexed: 05/30/2023]
Abstract
Leaf or brown rust of wheat caused by Puccinia triticina (Pt) is one of the most damaging diseases globally. Considerable progress has been made to control leaf rust through crop protection chemicals and host plant resistance breeding in southern Africa. However, frequent changes in the pathogen population still present a major challenge to achieve durable resistance. Disease surveillance and monitoring of the pathogen have revealed the occurrence of similar races across the region, justifying the need for concerted efforts by countries in southern Africa to develop and deploy more efficient and sustainable strategies to manage the disease. Understanding the genetic variability and composition of Pt is a pre-requisite for cultivar release with appropriate resistance gene combinations for sustainable disease management. This review highlights the variability and distribution of the Pt population, and the current control strategies, challenges and future prospects of breeding wheat varieties with durable leaf rust resistance in southern Africa. The importance of regular, collaborative and efficient surveillance of the pathogen and germplasm development across southern Africa is discussed, coupled with the potential of using modern breeding technologies to produce wheat cultivars with durable resistance.
Collapse
Affiliation(s)
- Sandiswa Figlan
- School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, Pietermaritzburg, South Africa
- Agricultural Research Council-Small Grain, Bethlehem, South Africa
- Department of Agriculture and Animal Health, University of South Africa, Florida, South Africa
| | - Khayalethu Ntushelo
- Department of Agriculture and Animal Health, University of South Africa, Florida, South Africa
| | - Learnmore Mwadzingeni
- School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, Pietermaritzburg, South Africa
- Agricultural Research Council-Small Grain, Bethlehem, South Africa
| | - Tarekegn Terefe
- Agricultural Research Council-Small Grain, Bethlehem, South Africa
| | - Toi J. Tsilo
- Agricultural Research Council-Small Grain, Bethlehem, South Africa
| | - Hussein Shimelis
- School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| |
Collapse
|
10
|
Li W, Deng Y, Ning Y, He Z, Wang GL. Exploiting Broad-Spectrum Disease Resistance in Crops: From Molecular Dissection to Breeding. ANNUAL REVIEW OF PLANT BIOLOGY 2020; 71:575-603. [PMID: 32197052 DOI: 10.1146/annurev-arplant-010720-022215] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Plant diseases reduce crop yields and threaten global food security, making the selection of disease-resistant cultivars a major goal of crop breeding. Broad-spectrum resistance (BSR) is a desirable trait because it confers resistance against more than one pathogen species or against the majority of races or strains of the same pathogen. Many BSR genes have been cloned in plants and have been found to encode pattern recognition receptors, nucleotide-binding and leucine-rich repeat receptors, and defense-signaling and pathogenesis-related proteins. In addition, the BSR genes that underlie quantitative trait loci, loss of susceptibility and nonhost resistance have been characterized. Here, we comprehensively review the advances made in the identification and characterization of BSR genes in various species and examine their application in crop breeding. We also discuss the challenges and their solutions for the use of BSR genes in the breeding of disease-resistant crops.
Collapse
Affiliation(s)
- Wei Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha 410128, China
| | - Yiwen Deng
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China;
| | - Yuese Ning
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Zuhua He
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China;
| | - Guo-Liang Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Department of Plant Pathology, The Ohio State University, Columbus, Ohio 43210, USA;
| |
Collapse
|
11
|
Bokore FE, Knox RE, Cuthbert RD, Pozniak CJ, McCallum BD, N’Diaye A, DePauw RM, Campbell HL, Munro C, Singh A, Hiebert CW, McCartney CA, Sharpe AG, Singh AK, Spaner D, Fowler DB, Ruan Y, Berraies S, Meyer B. Mapping quantitative trait loci associated with leaf rust resistance in five spring wheat populations using single nucleotide polymorphism markers. PLoS One 2020; 15:e0230855. [PMID: 32267842 PMCID: PMC7141615 DOI: 10.1371/journal.pone.0230855] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 03/10/2020] [Indexed: 01/27/2023] Open
Abstract
Growing resistant wheat (Triticum aestivum L) varieties is an important strategy for the control of leaf rust, caused by Puccinia triticina Eriks. This study sought to identify the chromosomal location and effects of leaf rust resistance loci in five Canadian spring wheat cultivars. The parents and doubled haploid lines of crosses Carberry/AC Cadillac, Carberry/Vesper, Vesper/Lillian, Vesper/Stettler and Stettler/Red Fife were assessed for leaf rust severity and infection response in field nurseries in Canada near Swift Current, SK from 2013 to 2015, Morden, MB from 2015 to 2017 and Brandon, MB in 2016, and in New Zealand near Lincoln in 2014. The populations were genotyped with the 90K Infinium iSelect assay and quantitative trait loci (QTL) analysis was performed. A high density consensus map generated based on 14 doubled haploid populations and integrating SNP and SSR markers was used to compare QTL identified in different populations. AC Cadillac contributed QTL on chromosomes 2A, 3B and 7B (2 loci), Carberry on 1A, 2B (2 loci), 2D, 4B (2 loci), 5A, 6A, 7A and 7D, Lillian on 4A and 7D, Stettler on 2D and 6B, Vesper on 1B, 1D, 2A, 6B and 7B (2 loci), and Red Fife on 7A and 7B. Lillian contributed to a novel locus QLr.spa-4A, and similarly Carberry at QLr.spa-5A. The discovery of novel leaf rust resistance QTL QLr.spa-4A and QLr.spa-5A, and several others in contemporary Canada Western Red Spring wheat varieties is a tremendous addition to our present knowledge of resistance gene deployment in breeding. Carberry demonstrated substantial stacking of genes which could be supplemented with the genes identified in other cultivars with the expectation of increasing efficacy of resistance to leaf rust and longevity with little risk of linkage drag.
Collapse
Affiliation(s)
- Firdissa E Bokore
- Swift Current Research and Development Center, Agriculture and Agri-Food Canada, Swift Current, Canada
| | - Ron E. Knox
- Swift Current Research and Development Center, Agriculture and Agri-Food Canada, Swift Current, Canada
- * E-mail: (REK); (RDC); (CJP)
| | - Richard D. Cuthbert
- Swift Current Research and Development Center, Agriculture and Agri-Food Canada, Swift Current, Canada
- * E-mail: (REK); (RDC); (CJP)
| | - Curtis J. Pozniak
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, Canada
- * E-mail: (REK); (RDC); (CJP)
| | - Brent D. McCallum
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, Canada
| | - Amidou N’Diaye
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, Canada
| | | | - Heather L. Campbell
- Swift Current Research and Development Center, Agriculture and Agri-Food Canada, Swift Current, Canada
| | - Catherine Munro
- Plant and Food Research, Canterbury Agriculture and Science Centre, Lincoln, New Zealand
| | - Arti Singh
- Department of Agronomy, Iowa State University, Ames, IA, United States of America
| | - Colin W. Hiebert
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, Canada
| | - Curt A. McCartney
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, Canada
| | - Andrew G. Sharpe
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, Canada
| | - Asheesh K. Singh
- Department of Agronomy, Iowa State University, Ames, IA, United States of America
| | - Dean Spaner
- Department of Agricultural, Food and Nutritional Science, 4–10N Agriculture-Forestry Centre, University of Alberta, Edmonton, Canada
| | - D. B. Fowler
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, Canada
| | - Yuefeng Ruan
- Swift Current Research and Development Center, Agriculture and Agri-Food Canada, Swift Current, Canada
| | - Samia Berraies
- Swift Current Research and Development Center, Agriculture and Agri-Food Canada, Swift Current, Canada
| | - Brad Meyer
- Swift Current Research and Development Center, Agriculture and Agri-Food Canada, Swift Current, Canada
| |
Collapse
|
12
|
Prasad P, Savadi S, Bhardwaj SC, Gupta PK. The progress of leaf rust research in wheat. Fungal Biol 2020; 124:537-550. [PMID: 32448445 DOI: 10.1016/j.funbio.2020.02.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 02/09/2020] [Accepted: 02/19/2020] [Indexed: 01/25/2023]
Abstract
Leaf rust (also called brown rust) in wheat, caused by fungal pathogen Puccinia triticina Erikss. (Pt) is one of the major constraints in wheat production worldwide. Pt is widespread with diverse population structure and undergoes rapid evolution to produce new virulent races against resistant cultivars that are regularly developed to provide resistance against the prevailing races of the pathogen. Occasionally, the disease may also take the shape of an epidemic in some wheat-growing areas causing major economic losses. In the recent past, substantial progress has been made in characterizing the sources of leaf rust resistance including non-host resistance (NHR). Progress has also been made in elucidating the population biology of Pt and the mechanisms of wheat-Pt interaction. So far, ∼80 leaf rust resistance genes (Lr genes) have been identified and characterized; some of them have also been used for the development of resistant wheat cultivars. It has also been shown that a gene-for-gene relationship exists between individual wheat Lr genes and the corresponding Pt Avr genes so that no Lr gene can provide resistance unless the prevailing race of the pathogen carries the corresponding Avr gene. Several Lr genes have also been cloned and their products characterized, although no Avr gene corresponding a specific Lr gene has so far been identified. However, several candidate effectors for Pt have been identified and functionally characterized using genome-wide analyses, transcriptomics, RNA sequencing, bimolecular fluorescence complementation (BiFC), virus-induced gene silencing (VIGS), transient expression and other approaches. This review summarizes available information on different aspects of the pathogen Pt, genetics/genomics of leaf rust resistance in wheat including cloning and characterization of Lr genes and epigenetic regulation of disease resistance.
Collapse
Affiliation(s)
- Pramod Prasad
- Indian Institute of Wheat and Barley Research, Regional Station, Shimla, Himachal Pradesh, 171002, India
| | - Siddanna Savadi
- ICAR-Directorate of Cashew Research, Puttur, Karnataka, 574202, India
| | - S C Bhardwaj
- Indian Institute of Wheat and Barley Research, Regional Station, Shimla, Himachal Pradesh, 171002, India
| | - P K Gupta
- Department of Genetics and Plant Breeding, Ch.Charan Singh University, Meerut, 250004, India.
| |
Collapse
|
13
|
Elbasyoni IS, El-Orabey WM, Morsy S, Baenziger PS, Al Ajlouni Z, Dowikat I. Evaluation of a global spring wheat panel for stripe rust: Resistance loci validation and novel resources identification. PLoS One 2019; 14:e0222755. [PMID: 31721783 PMCID: PMC6853611 DOI: 10.1371/journal.pone.0222755] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 09/07/2019] [Indexed: 12/27/2022] Open
Abstract
Stripe rust (incited by Puccinia striiformis f. sp. tritici) is airborne wheat (Triticum aestivum L.) disease with dynamic virulence evolution. Thus, anticipatory and continued screening in hotspot regions is crucial to identify new pathotypes and integrate new resistance resources to prevent potential disease epidemics. A global wheat panel consisting of 882 landraces and 912 improved accessions was evaluated in two locations in Egypt during 2016 and 2017. Five prevalent and aggressive pathotypes of stripe rust were used to inoculate the accessions during the two growing seasons and two locations under field conditions. The objectives were to evaluate the panel for stripe rust resistance at the adult plant stage, identify potentially novel QTLs associated with stripe rust resistance, and validate previously reported stripe rust QTLs under the Egyptian conditions. The results indicated that 42 landraces and 140 improved accessions were resistant to stripe rust. Moreover, 24 SNPs were associated with stripe rust resistance and were within 18 wheat functional genes. Four of these genes were involved in several plant defense mechanisms. The number of favorable alleles, based upon the associated SNPs, was significant and negatively correlated with stripe rust resistance score, i.e., as the number of resistances alleles increased the observed resistance increased. In conclusion, generating new stripe rust phenotypic information on this panel while using the publicly available molecular marker data, contributed to identifying potentially novel QTLs associated with stripe rust and validated 17 of the previously reported QTLs in one of the global hotspots for stripe rust.
Collapse
Affiliation(s)
- Ibrahim S. Elbasyoni
- Crop Science Department, Damanhur University, Damanhur, Egypt
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE, United States of America
| | - Walid M. El-Orabey
- Wheat Diseases Res. Department, Plant Pathology Res. Institute, ARC, Giza, Egypt
| | - Sabah Morsy
- Crop Science Department, Damanhur University, Damanhur, Egypt
| | - P. S. Baenziger
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE, United States of America
| | - Zakaria Al Ajlouni
- Jordan University of Science and Technology, Department of Plant Pathology, Irbid, Jordan
| | - Ismail Dowikat
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE, United States of America
| |
Collapse
|
14
|
Zhang P, Lan C, Asad MA, Gebrewahid TW, Xia X, He Z, Li Z, Liu D. QTL mapping of adult-plant resistance to leaf rust in the Chinese landraces Pingyuan 50/Mingxian 169 using the wheat 55K SNP array. MOLECULAR BREEDING 2019. [PMID: 0 DOI: 10.1007/s11032-019-1004-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
|
15
|
Pinto da Silva GB, Zanella CM, Martinelli JA, Chaves MS, Hiebert CW, McCallum BD, Boyd LA. Quantitative Trait Loci Conferring Leaf Rust Resistance in Hexaploid Wheat. PHYTOPATHOLOGY 2018; 108:1344-1354. [PMID: 30211634 DOI: 10.1094/phyto-06-18-0208-rvw] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Leaf rust, caused by the fungal pathogen Puccinia triticina, is a major threat to wheat production in many wheat-growing regions of the world. The introduction of leaf rust resistance genes into elite wheat germplasm is the preferred method of disease control, being environmentally friendly and crucial to sustained wheat production. Consequently, there is considerable value in identifying and characterizing new sources of leaf rust resistance. While many major, qualitative leaf rust resistance genes have been identified in wheat, a growing number of valuable sources of quantitative resistance have been reported. Here we review the progress made in the genetic identification of quantitative trait loci (QTL) for leaf rust resistance detected primarily in field analyses, i.e., adult plant resistance. Over the past 50 years, leaf rust resistance loci have been assigned to genomic locations through chromosome analyses and genetic mapping in biparental mapping populations, studies that represent 79 different wheat leaf rust resistance donor lines. In addition, seven association mapping studies have identified adult plant and seedling leaf rust resistance marker trait associations in over 4,000 wheat genotypes. Adult plant leaf rust resistance QTL have been found on all 21 chromosomes of hexaploid wheat, with the B genome carrying the greatest number of QTL. The group 2 chromosomes are also particularly rich in leaf rust resistance QTL. The A genome has the lowest number of QTL for leaf rust resistance. Copyright © 2018 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license .
Collapse
Affiliation(s)
- Gerarda Beatriz Pinto da Silva
- First and third author: Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, 7712. Porto Alegre, RS, Brazil; second and seventh authors: NIAB, Huntingdon Road, Cambridge, CB3 0LE, UK; fourth author: Empresa Brasileira de Pesquisa Agropecuária-Embrapa Clima Temperado, Rodovia BR-392, Km 78, Pelotas, RS, Brazil; and fifth and sixth authors: Cereal Research Centre, Agriculture and Agri-Food Canada, 101 Route 100, Morden, MB R6M 1Y5, Canada
| | - Camila Martini Zanella
- First and third author: Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, 7712. Porto Alegre, RS, Brazil; second and seventh authors: NIAB, Huntingdon Road, Cambridge, CB3 0LE, UK; fourth author: Empresa Brasileira de Pesquisa Agropecuária-Embrapa Clima Temperado, Rodovia BR-392, Km 78, Pelotas, RS, Brazil; and fifth and sixth authors: Cereal Research Centre, Agriculture and Agri-Food Canada, 101 Route 100, Morden, MB R6M 1Y5, Canada
| | - José Antônio Martinelli
- First and third author: Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, 7712. Porto Alegre, RS, Brazil; second and seventh authors: NIAB, Huntingdon Road, Cambridge, CB3 0LE, UK; fourth author: Empresa Brasileira de Pesquisa Agropecuária-Embrapa Clima Temperado, Rodovia BR-392, Km 78, Pelotas, RS, Brazil; and fifth and sixth authors: Cereal Research Centre, Agriculture and Agri-Food Canada, 101 Route 100, Morden, MB R6M 1Y5, Canada
| | - Márcia Soares Chaves
- First and third author: Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, 7712. Porto Alegre, RS, Brazil; second and seventh authors: NIAB, Huntingdon Road, Cambridge, CB3 0LE, UK; fourth author: Empresa Brasileira de Pesquisa Agropecuária-Embrapa Clima Temperado, Rodovia BR-392, Km 78, Pelotas, RS, Brazil; and fifth and sixth authors: Cereal Research Centre, Agriculture and Agri-Food Canada, 101 Route 100, Morden, MB R6M 1Y5, Canada
| | - Colin W Hiebert
- First and third author: Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, 7712. Porto Alegre, RS, Brazil; second and seventh authors: NIAB, Huntingdon Road, Cambridge, CB3 0LE, UK; fourth author: Empresa Brasileira de Pesquisa Agropecuária-Embrapa Clima Temperado, Rodovia BR-392, Km 78, Pelotas, RS, Brazil; and fifth and sixth authors: Cereal Research Centre, Agriculture and Agri-Food Canada, 101 Route 100, Morden, MB R6M 1Y5, Canada
| | - Brent D McCallum
- First and third author: Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, 7712. Porto Alegre, RS, Brazil; second and seventh authors: NIAB, Huntingdon Road, Cambridge, CB3 0LE, UK; fourth author: Empresa Brasileira de Pesquisa Agropecuária-Embrapa Clima Temperado, Rodovia BR-392, Km 78, Pelotas, RS, Brazil; and fifth and sixth authors: Cereal Research Centre, Agriculture and Agri-Food Canada, 101 Route 100, Morden, MB R6M 1Y5, Canada
| | - Lesley Ann Boyd
- First and third author: Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, 7712. Porto Alegre, RS, Brazil; second and seventh authors: NIAB, Huntingdon Road, Cambridge, CB3 0LE, UK; fourth author: Empresa Brasileira de Pesquisa Agropecuária-Embrapa Clima Temperado, Rodovia BR-392, Km 78, Pelotas, RS, Brazil; and fifth and sixth authors: Cereal Research Centre, Agriculture and Agri-Food Canada, 101 Route 100, Morden, MB R6M 1Y5, Canada
| |
Collapse
|
16
|
Lu Y, Bowden RL, Zhang G, Xu X, Fritz AK, Bai G. Quantitative Trait Loci for Slow-Rusting Resistance to Leaf Rust in Doubled-Haploid Wheat Population CI13227 × Lakin. PHYTOPATHOLOGY 2017; 107:1372-1380. [PMID: 28589757 DOI: 10.1094/phyto-09-16-0347-r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
CI13227 is a U.S. winter wheat line with adult-plant slow-rusting resistance that has been the subject of several studies on the characteristics and components of slow rusting. Previous genetic studies used different populations and approaches and came to different conclusions about the genetic basis of resistance in CI13227. To clarify the situation, a new doubled-haploid (DH) population of CI13227 × Lakin was produced and a linkage map was constructed using 5,570 single-nucleotide polymorphism (SNP) markers derived from wheat 90K SNP assays and 84 simple sequence repeat markers. Three quantitative trait loci (QTL) were identified for three slow-rusting traits on chromosome arms 2DS, 7AL, and 7BL from CI13227. A fourth QTL mapped on chromosome 3BS was from Lakin. The QTL on 2DS, designated QLr.hwwg-2DS, explained 11.2 to 25.6% of the phenotypic variation. It was found in the same position as a slow-rusting QTL in the CI13227 × Suwon 92 population in a previous study and, thus, verified the 2DS QTL. The QTL on chromosome 7BL explained 8.1 and 19.3% of the phenotypic variation and is likely to be Lr68. The other two QTL showed a minor effect on some of the traits evaluated in a single experiment. Flanking SNP closely linked to all QTL were converted to Kompetitive allele-specific polymerase chain reaction markers that can be used in marker-assisted selection to transfer these QTL into adapted wheat cultivars.
Collapse
Affiliation(s)
- Yue Lu
- First and fifth authors: Department of Agronomy, Kansas State University, 2002 Throckmorton Hall, Manhattan 66506; second and sixth authors: Hard Winter Wheat Genetics Research Unit, United States Department of Agriculture-Agricultural Research Service (USDA-ARS), 4008 Throckmorton Hall, Manhattan, KS 66506; third author: Agricultural Research Center-Hays, Kansas State University, Hays 67601; and fourth author: Wheat, Peanut and Other Field Crop Research Unit, USDA-ARS, Stillwater, OK
| | - Robert L Bowden
- First and fifth authors: Department of Agronomy, Kansas State University, 2002 Throckmorton Hall, Manhattan 66506; second and sixth authors: Hard Winter Wheat Genetics Research Unit, United States Department of Agriculture-Agricultural Research Service (USDA-ARS), 4008 Throckmorton Hall, Manhattan, KS 66506; third author: Agricultural Research Center-Hays, Kansas State University, Hays 67601; and fourth author: Wheat, Peanut and Other Field Crop Research Unit, USDA-ARS, Stillwater, OK
| | - Guorong Zhang
- First and fifth authors: Department of Agronomy, Kansas State University, 2002 Throckmorton Hall, Manhattan 66506; second and sixth authors: Hard Winter Wheat Genetics Research Unit, United States Department of Agriculture-Agricultural Research Service (USDA-ARS), 4008 Throckmorton Hall, Manhattan, KS 66506; third author: Agricultural Research Center-Hays, Kansas State University, Hays 67601; and fourth author: Wheat, Peanut and Other Field Crop Research Unit, USDA-ARS, Stillwater, OK
| | - Xiangyang Xu
- First and fifth authors: Department of Agronomy, Kansas State University, 2002 Throckmorton Hall, Manhattan 66506; second and sixth authors: Hard Winter Wheat Genetics Research Unit, United States Department of Agriculture-Agricultural Research Service (USDA-ARS), 4008 Throckmorton Hall, Manhattan, KS 66506; third author: Agricultural Research Center-Hays, Kansas State University, Hays 67601; and fourth author: Wheat, Peanut and Other Field Crop Research Unit, USDA-ARS, Stillwater, OK
| | - Allan K Fritz
- First and fifth authors: Department of Agronomy, Kansas State University, 2002 Throckmorton Hall, Manhattan 66506; second and sixth authors: Hard Winter Wheat Genetics Research Unit, United States Department of Agriculture-Agricultural Research Service (USDA-ARS), 4008 Throckmorton Hall, Manhattan, KS 66506; third author: Agricultural Research Center-Hays, Kansas State University, Hays 67601; and fourth author: Wheat, Peanut and Other Field Crop Research Unit, USDA-ARS, Stillwater, OK
| | - Guihua Bai
- First and fifth authors: Department of Agronomy, Kansas State University, 2002 Throckmorton Hall, Manhattan 66506; second and sixth authors: Hard Winter Wheat Genetics Research Unit, United States Department of Agriculture-Agricultural Research Service (USDA-ARS), 4008 Throckmorton Hall, Manhattan, KS 66506; third author: Agricultural Research Center-Hays, Kansas State University, Hays 67601; and fourth author: Wheat, Peanut and Other Field Crop Research Unit, USDA-ARS, Stillwater, OK
| |
Collapse
|
17
|
Tan CT, Yu H, Yang Y, Xu X, Chen M, Rudd JC, Xue Q, Ibrahim AMH, Garza L, Wang S, Sorrells ME, Liu S. Development and validation of KASP markers for the greenbug resistance gene Gb7 and the Hessian fly resistance gene H32 in wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2017; 130:1867-1884. [PMID: 28624908 DOI: 10.1007/s00122-017-2930-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 05/30/2017] [Indexed: 05/19/2023]
Abstract
Greenbug and Hessian fly are important pests that decrease wheat production worldwide. We developed and validated breeder-friendly KASP markers for marker-assisted breeding to increase selection efficiency. Greenbug (Schizaphis graminum Rondani) and Hessian fly [Mayetiola destructor (Say)] are two major destructive insect pests of wheat (Triticum aestivum L.) throughout wheat production regions in the USA and worldwide. Greenbug and Hessian fly infestation can significantly reduce grain yield and quality. Breeding for resistance to these two pests using marker-assisted selection (MAS) is the most economical strategy to minimize losses. In this study, doubled haploid lines from the Synthetic W7984 × Opata M85 wheat reference population were used to construct linkage maps for the greenbug resistance gene Gb7 and the Hessian fly resistance gene H32 with genotyping-by-sequencing (GBS) and 90K array-based single nucleotide polymorphism (SNP) marker data. Flanking markers were closely linked to Gb7 and H32 and were located on chromosome 7DL and 3DL, respectively. Gb7-linked markers (synopGBS773 and synopGBS1141) and H32-linked markers (synopGBS901 and IWB65911) were converted into Kompetitive Allele Specific PCR (KASP) assays for MAS in wheat breeding. In addition, comparative mapping identified syntenic regions in Brachypodium distachyon, rice (Oryza sativa), and sorghum (Sorghum bicolor) for Gb7 and H32 that can be used for fine mapping and map-based cloning of the genes. The KASP markers developed in this study are the first set of SNPs tightly linked to Gb7 and H32 and will be very useful for MAS in wheat breeding programs and future genetic studies of greenbug and Hessian fly resistance.
Collapse
Affiliation(s)
- Chor-Tee Tan
- Texas A&M AgriLife Research, Amarillo, TX, 79106, USA
| | - Hangjin Yu
- Texas A&M AgriLife Research, Amarillo, TX, 79106, USA
| | - Yan Yang
- Texas A&M AgriLife Research, Amarillo, TX, 79106, USA
- Department of Soil and Crop Science, Texas A&M University, College Station, TX, 77843, USA
| | - Xiangyang Xu
- USDA-ARS Wheat, Peanut and Other Field Crop Research Unit, Stillwater, OK, 74075, USA
| | - Mingshun Chen
- USDA-ARS and Department of Entomology, Kansas State University, Manhattan, KS, 66506, USA
| | - Jackie C Rudd
- Texas A&M AgriLife Research, Amarillo, TX, 79106, USA
| | - Qingwu Xue
- Texas A&M AgriLife Research, Amarillo, TX, 79106, USA
| | - Amir M H Ibrahim
- Department of Soil and Crop Science, Texas A&M University, College Station, TX, 77843, USA
| | - Lisa Garza
- Texas A&M AgriLife Research, Amarillo, TX, 79106, USA
| | - Shichen Wang
- Genomic and Bioinformatics Services, Texas A&M AgriLife Research, College Station, TX, 77845, USA
| | - Mark E Sorrells
- Department of Plant Breeding and Genetics, Cornell University, Ithaca, NY, 14853, USA
| | - Shuyu Liu
- Texas A&M AgriLife Research, Amarillo, TX, 79106, USA.
| |
Collapse
|
18
|
Bender CM, Prins R, Pretorius ZA. Development of a Greenhouse Screening Method for Adult Plant Response in Wheat to Stem Rust. PLANT DISEASE 2016; 100:1627-1633. [PMID: 30686229 DOI: 10.1094/pdis-02-16-0163-re] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Screening for adult plant resistance in wheat to stem rust, caused by Puccinia graminis f. sp. tritici, is generally conducted in field plots. Although such evaluations are successful if managed properly, field ratings are time consuming, expensive, weather dependent, and open to inoculum of unwanted races or other confounding diseases. The objective of this study was to develop a dependable system of screening the response of adult plants to stem rust under greenhouse conditions. A comparison of inoculation methods and incubation environments showed that plants inoculated with urediniospores suspended in water, followed by a 24 h dew period in a plastic chamber constructed in a greenhouse, gave the most consistent results. Measurements of response type, stem rust severity, and frequency in follow-up experiments indicated that the most reliable infection was obtained when plants sprayed with 1.25 mg urediniospores per ml water were incubated in the plastic chamber. Using the optimized protocol, a Kariega × Avocet S doubled haploid population was inoculated with two P. graminis f. sp. tritici races. Depending on the race, composite interval mapping showed flag leaf infection type to be significantly influenced by regions on chromosomes 6A, 6D, and 7D. Stem rust severity and reaction type mapped to chromosomes 6D and/or 6A. The Lr34/Yr18/Sr57 gene derived from Kariega on chromosome 7D affected the rust response on flag leaves but not on stems of greenhouse-grown plants. This study showed that phenotyping and genetic analysis of especially major effect stem rust resistance in adult wheat plants is possible and reproducible under controlled conditions in a greenhouse.
Collapse
Affiliation(s)
- C M Bender
- Department of Plant Sciences, University of the Free State, Bloemfontein 9300, South Africa
| | - R Prins
- Department of Plant Sciences, University of the Free State, Bloemfontein 9300, South Africa, and CenGen (Pty) Ltd, Worcester 6850, South Africa
| | - Z A Pretorius
- Department of Plant Sciences, University of the Free State, Bloemfontein 9300, South Africa
| |
Collapse
|
19
|
Bajgain P, Rouse MN, Tsilo TJ, Macharia GK, Bhavani S, Jin Y, Anderson JA. Nested Association Mapping of Stem Rust Resistance in Wheat Using Genotyping by Sequencing. PLoS One 2016; 11:e0155760. [PMID: 27186883 PMCID: PMC4870046 DOI: 10.1371/journal.pone.0155760] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 05/04/2016] [Indexed: 11/19/2022] Open
Abstract
We combined the recently developed genotyping by sequencing (GBS) method with joint mapping (also known as nested association mapping) to dissect and understand the genetic architecture controlling stem rust resistance in wheat (Triticum aestivum). Ten stem rust resistant wheat varieties were crossed to the susceptible line LMPG-6 to generate F6 recombinant inbred lines. The recombinant inbred line populations were phenotyped in Kenya, South Africa, and St. Paul, Minnesota, USA. By joint mapping of the 10 populations, we identified 59 minor and medium-effect QTL (explained phenotypic variance range of 1% - 20%) on 20 chromosomes that contributed towards adult plant resistance to North American Pgt races as well as the highly virulent Ug99 race group. Fifteen of the 59 QTL were detected in multiple environments. No epistatic relationship was detected among the QTL. While these numerous small- to medium-effect QTL are shared among the families, the founder parents were found to have different allelic effects for the QTL. Fourteen QTL identified by joint mapping were also detected in single-population mapping. As these QTL were mapped using SNP markers with known locations on the physical chromosomes, the genomic regions identified with QTL could be explored more in depth to discover candidate genes for stem rust resistance. The use of GBS-derived de novo SNPs in mapping resistance to stem rust shown in this study could be used as a model to conduct similar marker-trait association studies in other plant species.
Collapse
Affiliation(s)
- Prabin Bajgain
- Department of Agronomy, Purdue University, 915 West State Street, West Lafayette, IN 47907, United States of America
- Department of Agronomy and Plant Genetics, University of Minnesota, St Paul, MN 55108, United States of America
| | - Matthew N. Rouse
- United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Cereal Disease Laboratory, St. Paul, MN 55108, United States of America
- Department of Plant Pathology, University of Minnesota, St. Paul, MN 55108, United States of America
| | - Toi J. Tsilo
- Agricultural Research Council – Small Grain Institute, Bethlehem, 9700, Free State, South Africa
| | - Godwin K. Macharia
- Kenya Agricultural and Livestock Research Organization (KALRO), Njoro, Kenya
| | - Sridhar Bhavani
- International Maize and Wheat Improvement Center (CIMMYT), ICRAF House, United Nations Avenue, Gigiri, Nairobi, Kenya
| | - Yue Jin
- United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Cereal Disease Laboratory, St. Paul, MN 55108, United States of America
| | - James A. Anderson
- Department of Agronomy and Plant Genetics, University of Minnesota, St Paul, MN 55108, United States of America
| |
Collapse
|
20
|
Soriano JM, Royo C. Dissecting the Genetic Architecture of Leaf Rust Resistance in Wheat by QTL Meta-Analysis. PHYTOPATHOLOGY 2015; 105:1585-93. [PMID: 26571424 DOI: 10.1094/phyto-05-15-0130-r] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Leaf rust is an important disease that causes significant yield losses in wheat. Many studies have reported the identification of quantitative trait loci (QTL) controlling leaf rust resistance; therefore, QTL meta-analysis has become a useful tool for identifying consensus QTL and refining QTL positions among them. In this study, QTL meta-analysis was conducted using reported results on the number, position, and effects of QTL for leaf rust resistance in bread and durum wheat. Investigation of 14 leaf rust resistance traits from 19 studies involving 20 mapping populations and 33 different parental lines provided information for 144 unique QTL that were projected onto the Wheat Composite 2004 reference map. In total, 35 meta-QTL for leaf rust resistance traits were identified in 17 wheat chromosomes and 13 QTL remained as unique QTL. The results will facilitate further work on the cloning of QTL for pyramiding minor- and partial-effect resistance genes to develop varieties with durable resistance to leaf rust.
Collapse
Affiliation(s)
- Jose Miguel Soriano
- Field Crops Programme, IRTA (Institute for Food and Agricultural Research and Technology), 25198 Lleida, Spain
| | - Conxita Royo
- Field Crops Programme, IRTA (Institute for Food and Agricultural Research and Technology), 25198 Lleida, Spain
| |
Collapse
|
21
|
Du Z, Che M, Li G, Chen J, Quan W, Guo Y, Wang Z, Ren J, Zhang H, Zhang Z. A QTL with major effect on reducing leaf rust severity on the short arm of chromosome 1A of wheat detected across different genetic backgrounds and diverse environments. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2015; 128:1579-94. [PMID: 25982130 DOI: 10.1007/s00122-015-2533-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 05/02/2015] [Indexed: 05/02/2023]
Abstract
Selection for QLr.cau - 1AS (a major QTL detected in wheat for reducing leaf rust severity) based on the DNA marker gpw2246 was as effective as selection for Lr34 based on cssfr5. Leaf rust is an important disease of wheat worldwide. Utilization of slow-rusting resistance constitutes a strategy to sustainably control this disease. The American wheat cultivar Luke exhibits slow leaf-rusting resistance at the adult plant stage. The objectives of this study were to detect and validate QTL for the resistance in Luke. Three winter wheat populations were used, namely, 149 recombinant inbred lines (RILs) derived from the cross Luke × Aquileja, 307 RILs from Luke × AQ24788-83, and 80 F2:3 families selected from Lingxing66 × KA298. Aquileja and Lingxing66 are highly susceptible to leaf rust. AQ24788-83 shows high (susceptible) infection type but contains the slow-rusting gene Lr34 as diagnosed by the gene-specific marker cssfr5. KA298, an F9 RIL selected from Luke × AQ24788-83, contains Lr34 and QLr.cau-1AS (a major QTL originated from Luke, this study). These wheats were evaluated for leaf rust in 12 field and greenhouse environments involving four locations and five seasons. Genotyping was done using simple sequence repeat (SSR) and diversity arrays technology markers. Of the detected QTLs, QLr.cau-1AS was significant consistently across all the genetic backgrounds, test environments, and likely a wide range of pathogen races. QLr.cau-1AS explained 22.3-55.2% of leaf rust phenotypic variation, being comparable to Lr34 in effect size. A co-dominant SSR marker (gpw2246, http://wheat.pw.usda.gov/GG2/index.shtml ) was identified to be tightly linked to QLr.cau-1AS. Selection based on gpw2246 for QLr.cau-1AS was as effective as the selection based on cssfr5 for Lr34. QLr.cau-1AS will be helpful for increasing the genetic diversity of slow leaf-rusting resistance in wheat breeding programs.
Collapse
Affiliation(s)
- Ziyi Du
- Department of Plant Pathology, China Agricultural University, Beijing, 100193, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|