1
|
Oladele JO, Wang M, Rivenbark KJ, Phillips TD. Application and efficacy of beidellite clay for the adsorption and detoxification of deoxynivalenol (vomitoxin). EMERGING CONTAMINANTS 2024; 10:100390. [PMID: 40276486 PMCID: PMC12021442 DOI: 10.1016/j.emcon.2024.100390] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/26/2025]
Abstract
The incidence of mycotoxin occurrence throughout the entire lifespan of some agricultural products could be due to climatic conditions and environmental factors (including high temperature, drought, and heavy rainfall) that enhance growth of fungi. Deoxynivalenol (DON) which is also referred to as vomitoxin is a mycotoxin produced from many Fusarium species. DON ranks high among the prominent mycotoxins in cereal products and is a ubiquitous toxin in livestock feeds. DON's adverse effects present major health challenges in both livestock and humans. The use of natural sorbents including smectite clays, is an economically feasible strategy to mitigate mycotoxin toxicities. Previous studies have demonstrated the potential of edible clays as protective components of human food and animal feed to alleviate toxicity associated with short-term exposure to mycotoxins including DON. Hence, this study was designed to investigate the sorption mechanisms of DON onto the binding surfaces of beidellite clay, assessing essential binding parameters such as enthalpy, free energy, binding capacity, affinity, and plateau surface density. These markers were used to predict availability of DON under the experimental conditions. Furthermore, the protection of beidellite clay against DON-induced toxicity was carried out using living organisms susceptible to DON toxicity, including Hydra vulgaris and Lemna minor. These studies investigated the dose-dependent detoxification of DON by 0.05-2 % inclusion of beidellite. Beidellite exhibited more than 75 % protection in Lemna minor and 53 % in Hydra vulgaris validating that this clay is effective in detoxifying DON. During emergencies, or after disasters, inclusion of edible clay like beidellite in food, water or capsules could reduce bioavailability of DON and halt potential exposures to humans and animals.
Collapse
Affiliation(s)
- Johnson O. Oladele
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Meichen Wang
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Kelly J. Rivenbark
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Timothy D. Phillips
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, USA
| |
Collapse
|
2
|
Deng Y, You L, Wang X, Wu W, Kuca K, Wu Q, Wei W. Deoxynivalenol: Emerging Toxic Mechanisms and Control Strategies, Current and Future Perspectives. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37437258 DOI: 10.1021/acs.jafc.3c02020] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Deoxynivalenol (DON) is the most frequently present mycotoxin contaminant in food and feed, causing a variety of toxic effects in humans and animals. Currently, a series of mechanisms involved in DON toxicity have been identified. In addition to the activation of oxidative stress and the MAPK signaling pathway, DON can activate hypoxia-inducible factor-1α, which further regulates reactive oxygen species production and cancer cell apoptosis. Noncoding RNA and signaling pathways including Wnt/β-catenin, FOXO, and TLR4/NF-κB also participate in DON toxicity. The intestinal microbiota and the brain-gut axis play a crucial role in DON-induced growth inhibition. In view of the synergistic toxic effect of DON and other mycotoxins, strategies to detect DON and control it biologically and the development of enzymes for the biodegradation of various mycotoxins and their introduction in the market are the current and future research hotspots.
Collapse
Affiliation(s)
- Ying Deng
- College of Life Science, Yangtze University, Jingzhou 434025, China
| | - Li You
- College of Physical Education and Health, Chongqing College of International Business and Economics, Chongqing 401520, China
| | - Xu Wang
- National Reference Laboratory of Veterinary Drug Residues and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University (HZAU), Wuhan, Hubei 430070, China
| | - Wenda Wu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
- Department of Chemistry, Faculty of Science, University of Hradec Králové, 500 03 Hradec Králové, Czech Republic
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Králové, 500 03 Hradec Králové, Czech Republic
- Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI), University of Granada, Granada 18071, Spain
| | - Qinghua Wu
- College of Life Science, Yangtze University, Jingzhou 434025, China
- Department of Chemistry, Faculty of Science, University of Hradec Králové, 500 03 Hradec Králové, Czech Republic
| | - Wei Wei
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| |
Collapse
|
3
|
Wan S, Sun N, Li H, Khan A, Zheng X, Sun Y, Fan R. Deoxynivalenol damages the intestinal barrier and biota of the broiler chickens. BMC Vet Res 2022; 18:311. [PMID: 35965338 PMCID: PMC9377127 DOI: 10.1186/s12917-022-03392-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 07/18/2022] [Indexed: 11/16/2022] Open
Abstract
Background In the livestock feed industry, feed and feed raw materials are extremely susceptible to mycotoxin contamination. Deoxynivalenol (DON) is one of the main risk factors for mycotoxin contamination in broiler feed and feedstuff, however, there is still little knowledge about this. Hence, the purpose of this study was to explore the toxicity effect of DON on the intestinal barrier and the microecological balance of the biota in broiler chickens. Results In our present study, we compared the pathological scores of the small intestines of broilers on the 5th, 7th, and 10th day, and chose the 7th day to analyze the small intestine histomorphology, tight junctions, and cecal biota of the broilers. The results showed the damage to the small intestine worsened over time, the small intestinal villi of broilers were breakage, the tight junctions of the small intestine were destroyed, the cecal biota was unbalanced, and the growth performance of broilers was reduced on the 7th day. Conclusions DON could damage the functional and structural completeness of the intestinal tract, disorder the Intestinal biota, and finally lead to declined broiler performance. Our study provided a basis for the prevention and treatment of DON in broiler production. Supplementary Information The online version contains supplementary material available at 10.1186/s12917-022-03392-4.
Collapse
Affiliation(s)
- Shuangxiu Wan
- Shanxi Key Lab. for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, China.,College of Pharmacy, Heze University, Heze, Shangdong, 274000, People's Republic of China
| | - Na Sun
- Shanxi Key Lab. for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Hongquan Li
- Shanxi Key Lab. for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Ajab Khan
- Shanxi Key Lab. for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Xiaozhong Zheng
- Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - Yaogui Sun
- Shanxi Key Lab. for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Ruiwen Fan
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, People's Republic of China.
| |
Collapse
|
4
|
Detecting Crown Rot Disease in Wheat in Controlled Environment Conditions Using Digital Color Imaging and Machine Learning. AGRIENGINEERING 2022. [DOI: 10.3390/agriengineering4010010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Crown rot is one of the major stubble soil fungal diseases that bring significant yield loss to the cereal industry. The most effective crown rot management approach is removal of infected crop residue from fields and rotation of nonhost crops. However, disease screening is challenging as there are no clear visible symptoms on upper stems and leaves at early growth stages. The current manual screening method requires experts to observe the crown and roots of plants to detect disease, which is time-consuming, subjective, labor-intensive, and costly. As digital color imaging has the advantages of low cost and easy use, it has a high potential to be an economical solution for crown rot detection. In this research, a crown rot disease detection method was developed using a smartphone camera and machine learning technologies. Four common wheat varieties were grown in greenhouse conditions with a controlled environment, and all infected group plants were infected with crown rot without the presence of other plant diseases. We used a smartphone to take digital color images of the lower stems of plants. Using imaging processing techniques and a support vector machine algorithm, we successfully distinguished infected and healthy plants as early as 14 days after disease infection. The results provide a vital first step toward developing a digital color imaging phenotyping platform for crown rot detection to enable the management of crown rot disease effectively. As an easy-access phenotyping method, this method could provide support for researchers to develop an efficiency and economic disease screening method in field conditions.
Collapse
|
5
|
Hafez M, Abdelmagid A, Aboukhaddour R, Adam LR, Daayf F. Fusarium Root Rot Complex in Soybean: Molecular Characterization, Trichothecene Formation, and Cross-Pathogenicity. PHYTOPATHOLOGY 2021; 111:2287-2302. [PMID: 33938238 DOI: 10.1094/phyto-03-21-0083-r] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Soybean is threatened by many pathogens that negatively affect this crop's yield and quality, such as various Fusarium species that cause wilting and root rot diseases. Fusarium root rot (FRR) in soybean can be caused by F. graminearum and other Fusarium spp. that are associated with Fusarium head blight (FHB) in cereals. Therefore, it was important to inquire whether Fusarium pathogens from soybean can cause disease in wheat and vice versa. Here, we investigated the FRR complex in Manitoba (Canada) from symptomatic plants, using both culture- and molecular-based methods. We developed a molecular diagnostic toolkit to detect and differentiate between several Fusarium spp. involved in FHB and FRR, then we evaluated cross-pathogenicity of selected Fusarium isolates collected from soybean and wheat, and the results indicate that isolates recovered from one host can infect the other host. Trichothecene production by selected Fusarium spp. was also analyzed chemically via liquid chromatography mass spectrometry in both soybean (root) and wheat (spike) tissues. Trichothecenes were also analyzed in soybean seeds from plants with FRR to check the potentiality of trichothecene translocation from infected roots to the seeds. All of the tested Fusarium isolates were capable of producing trichothecenes in wheat spikes and soybean roots, but no trichothecenes were detected in soybean seeds. This study provided evidence, for the first time, that trichothecenes were produced by several Fusarium spp. (F. cerealis, F. culmorum, and F. sporotrichioides) during FRR development in soybean.
Collapse
Affiliation(s)
- Mohamed Hafez
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba, R3T2N2, Canada
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Center, Lethbridge, Alberta, Canada
- Department of Botany and Microbiology, Faculty of Science, Suez University, Suez, Egypt
| | - Ahmed Abdelmagid
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba, R3T2N2, Canada
- Department of Plant Pathology, Assiut University, Assiut, 71515, Egypt
| | - Reem Aboukhaddour
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Center, Lethbridge, Alberta, Canada
| | - Lorne R Adam
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba, R3T2N2, Canada
| | - Fouad Daayf
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba, R3T2N2, Canada
| |
Collapse
|
6
|
The Promise of Hyperspectral Imaging for the Early Detection of Crown Rot in Wheat. AGRIENGINEERING 2021. [DOI: 10.3390/agriengineering3040058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Crown rot disease is caused by Fusarium pseudograminearum and is one of the major stubble-soil fungal diseases threatening the cereal industry globally. It causes failure of grain establishment, which brings significant yield loss. Screening crops affected by crown rot is one of the key tools to manage crown rot, because it is necessary to understand disease infection conditions, identify the severity of infection, and discover potential resistant varieties. However, screening crown rot is challenging as there are no clear visible symptoms on leaves at early growth stages. Hyperspectral imaging (HSI) technologies have been successfully used to better understand plant health and disease incidence, including light absorption rate, water and nutrient distribution, and disease classification. This suggests HSI imaging technologies may be used to detect crown rot at early growing stages, however, related studies are limited. This paper briefly describes the symptoms of crown rot disease and traditional screening methods with their limitations. It, then, reviews state-of-art imaging technologies for disease detection, from color imaging to hyperspectral imaging. In particular, this paper highlights the suitability of hyperspectral-based screening methods for crown rot disease. A hypothesis is presented that HSI can detect crown-rot-infected plants before clearly visible symptoms on leaves by sensing the changes of photosynthesis, water, and nutrients contents of plants. In addition, it describes our initial experiment to support the hypothesis and further research directions are described.
Collapse
|
7
|
Ederli L, Beccari G, Tini F, Bergamini I, Bellezza I, Romani R, Covarelli L. Enniatin B and Deoxynivalenol Activity on Bread Wheat and on Fusarium Species Development. Toxins (Basel) 2021; 13:728. [PMID: 34679021 PMCID: PMC8538094 DOI: 10.3390/toxins13100728] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 11/16/2022] Open
Abstract
Fusarium head blight (FHB) is a devastating wheat disease, mainly caused by Fusarium graminearum (FG)-a deoxynivalenol (DON)-producing species. However, Fusarium avenaceum (FA), able to biosynthesize enniatins (ENNs), has recently increased its relevance worldwide, often in co-occurrence with FG. While DON is a well-known mycotoxin, ENN activity, also in association with DON, is poorly understood. This study aims to explore enniatin B (ENB) activity, alone or combined with DON, on bread wheat and on Fusarium development. Pure ENB, DON, and ENB+DON (10 mg kg-1) were used to assess the impacts on seed germination, seedling growth, cell death induction (trypan blue staining), chlorophyll content, and oxidative stress induction (malondialdehyde quantification). The effect on FG and FA growth was tested using ENB, DON, and ENB+DON (10, 50, and 100 mg kg-1). Synergistic activity in the reduction of seed germination, growth, and chlorophyll degradation was observed. Conversely, antagonistic interaction in cell death and oxidative stress induction was found, with DON counteracting cellular stress produced by ENB. Fusarium species responded to mycotoxins in opposite directions. ENB inhibited FG development, while DON promoted FA growth. These results highlight the potential role of ENB in cell death control, as well as in fungal competition.
Collapse
Affiliation(s)
- Luisa Ederli
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06121 Perugia, Italy; (L.E.); (F.T.); (I.B.); (R.R.); (L.C.)
| | - Giovanni Beccari
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06121 Perugia, Italy; (L.E.); (F.T.); (I.B.); (R.R.); (L.C.)
| | - Francesco Tini
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06121 Perugia, Italy; (L.E.); (F.T.); (I.B.); (R.R.); (L.C.)
| | - Irene Bergamini
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06121 Perugia, Italy; (L.E.); (F.T.); (I.B.); (R.R.); (L.C.)
| | - Ilaria Bellezza
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy;
| | - Roberto Romani
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06121 Perugia, Italy; (L.E.); (F.T.); (I.B.); (R.R.); (L.C.)
| | - Lorenzo Covarelli
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06121 Perugia, Italy; (L.E.); (F.T.); (I.B.); (R.R.); (L.C.)
| |
Collapse
|
8
|
Hafez M, Gourlie R, Despins T, Turkington TK, Friesen TL, Aboukhaddour R. Parastagonospora nodorum and Related Species in Western Canada: Genetic Variability and Effector Genes. PHYTOPATHOLOGY 2020; 110:1946-1958. [PMID: 32689900 DOI: 10.1094/phyto-05-20-0207-r] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Parastagonospora nodorum is an important fungal pathogen that causes Septoria nodorum blotch (SNB) in wheat. This pathogen produces several necrotrophic effectors that act as virulence factors; three have been cloned, SnToxA, SnTox1, and SnTox3. In this study, P. nodorum and its sister species P. avenaria f. tritici (Pat1) were isolated from wheat node and grain samples collected from distanced sites in western Canada during 2018. The presence of effector genes and associated haplotypes were determined by PCR and sequence analysis. An internal transcribed spacer-restriction fragment length polymorphism test was developed to distinguish between leaf spotting pathogens (P. nodorum, Pat1, Pyrenophora tritici-repentis, and Bipolaris sorokiniana). P. nodorum was mainly recovered from wheat nodes and to a lesser extent from the grains, while Pat1 was exclusively isolated from grain samples. The effector genes were present in almost all P. nodorum isolates, with the ToxA haplotype 5 (H5) being most prevalent, while a novel ToxA haplotype (denoted here H21) is reported for the first time. In Pat1, only combinations of SnTox1 and SnTox3 genes were present. A ToxA haplotype network was also constructed to assess the evolutionary relationship among globally found haplotypes to date. Finally, cultivars representing wheat development in Canada for the last century were tested for sensitivity to Sn-effectors and to the presence of Tsn1, the ToxA sensitivity gene. Of tested cultivars, 32.9 and 56.9% were sensitive to SnTox1 and SnTox3, respectively, and Tsn1 was present in 59% of the cultivars. In conclusion, P. nodorum and Pat1 were prevalent wheat pathogens in Canada with a potential tissue-specific colonization capacity, while producing necrotrophic effectors to which wheat is sensitive.
Collapse
Affiliation(s)
- Mohamed Hafez
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Center, Lethbridge, Alberta, Canada (working address)
- Department of Botany and Microbiology, Faculty of Science, Suez University, Suez, Egypt (permanent address)
| | - Ryan Gourlie
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Center, Lethbridge, Alberta, Canada (working address)
| | - Therese Despins
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Center, Lethbridge, Alberta, Canada (working address)
| | - Thomas K Turkington
- Agriculture and Agri-Food Canada, Lacombe Research and Development Center, Lacombe, Alberta, Canada
| | - Timothy L Friesen
- U.S. Department of Agriculture, Agricultural Research Service, Edward T. Schafer Agricultural Research Center, Fargo, ND, U.S.A
| | - Reem Aboukhaddour
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Center, Lethbridge, Alberta, Canada (working address)
| |
Collapse
|
9
|
Perincherry L, Lalak-Kańczugowska J, Stępień Ł. Fusarium-Produced Mycotoxins in Plant-Pathogen Interactions. Toxins (Basel) 2019; 11:toxins11110664. [PMID: 31739566 PMCID: PMC6891594 DOI: 10.3390/toxins11110664] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 11/08/2019] [Accepted: 11/12/2019] [Indexed: 12/19/2022] Open
Abstract
Pathogens belonging to the Fusarium genus are causal agents of the most significant crop diseases worldwide. Virtually all Fusarium species synthesize toxic secondary metabolites, known as mycotoxins; however, the roles of mycotoxins are not yet fully understood. To understand how a fungal partner alters its lifestyle to assimilate with the plant host remains a challenge. The review presented the mechanisms of mycotoxin biosynthesis in the Fusarium genus under various environmental conditions, such as pH, temperature, moisture content, and nitrogen source. It also concentrated on plant metabolic pathways and cytogenetic changes that are influenced as a consequence of mycotoxin confrontations. Moreover, we looked through special secondary metabolite production and mycotoxins specific for some significant fungal pathogens-plant host models. Plant strategies of avoiding the Fusarium mycotoxins were also discussed. Finally, we outlined the studies on the potential of plant secondary metabolites in defense reaction to Fusarium infection.
Collapse
|
10
|
Alternative Splicing of Barley Clock Genes in Response to Low Temperature. PLoS One 2016; 11:e0168028. [PMID: 27959947 PMCID: PMC5154542 DOI: 10.1371/journal.pone.0168028] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 11/23/2016] [Indexed: 12/12/2022] Open
Abstract
Alternative splicing (AS) is a regulated mechanism that generates multiple transcripts from individual genes. It is widespread in eukaryotic genomes and provides an effective way to control gene expression. At low temperatures, AS regulates Arabidopsis clock genes through dynamic changes in the levels of productive mRNAs. We examined AS in barley clock genes to assess whether temperature-dependent AS responses also occur in a monocotyledonous crop species. We identify changes in AS of various barley core clock genes including the barley orthologues of Arabidopsis AtLHY and AtPRR7 which showed the most pronounced AS changes in response to low temperature. The AS events modulate the levels of functional and translatable mRNAs, and potentially protein levels, upon transition to cold. There is some conservation of AS events and/or splicing behaviour of clock genes between Arabidopsis and barley. In addition, novel temperature-dependent AS of the core clock gene HvPPD-H1 (a major determinant of photoperiod response and AtPRR7 orthologue) is conserved in monocots. HvPPD-H1 showed a rapid, temperature-sensitive isoform switch which resulted in changes in abundance of AS variants encoding different protein isoforms. This novel layer of low temperature control of clock gene expression, observed in two very different species, will help our understanding of plant adaptation to different environments and ultimately offer a new range of targets for plant improvement.
Collapse
|
11
|
Zhang Y, He J, Jia LJ, Yuan TL, Zhang D, Guo Y, Wang Y, Tang WH. Cellular Tracking and Gene Profiling of Fusarium graminearum during Maize Stalk Rot Disease Development Elucidates Its Strategies in Confronting Phosphorus Limitation in the Host Apoplast. PLoS Pathog 2016; 12:e1005485. [PMID: 26974960 PMCID: PMC4790934 DOI: 10.1371/journal.ppat.1005485] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 02/10/2016] [Indexed: 01/07/2023] Open
Abstract
The ascomycete fungus Fusarium graminearum causes stalk rot in maize. We tracked this pathogen's growth in wound-inoculated maize stalks using a fluorescence-labeled fungal isolate and observed that invasive hyphae grew intercellularly up to 24 h post inoculation, grew intra- and inter-cellularly between 36-48 h, and fully occupied invaded cells after 72 h. Using laser microdissection and microarray analysis, we profiled changes in global gene expression during pathogen growth inside pith tissues of maize stalk from 12 h to six days after inoculation and documented transcriptomic patterns that provide further insights into the infection process. Expression changes in transcripts encoding various plant cell wall degrading enzymes appeared to correlate with inter- and intracellular hyphal growth. Genes associated with 36 secondary metabolite biosynthesis clusters were expressed. Expression of several F. graminearum genes potentially involved in mobilization of the storage lipid triacylglycerol and phosphorus-free lipid biosynthesis were induced during early infection time points, and deletion of these genes caused reduction of virulence in maize stalk. Furthermore, we demonstrated that the F. graminearum betaine lipid synthase 1 (BTA1) gene was necessary and sufficient for production of phosphorus-free membrane lipids, and that deletion of BTA1 interfered with F. graminearum's ability to advance intercellularly. We conclude that F. graminearum produces phosphorus-free membrane lipids to adapt to a phosphate-limited extracellular microenvironment during early stages of its invasion of maize stalk.
Collapse
Affiliation(s)
- Yan Zhang
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Juan He
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Lei-Jie Jia
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ting-Lu Yuan
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Dong Zhang
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yan Guo
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yufeng Wang
- Department of Biology, South Texas Center for Emerging Infectious Diseases, University of Texas at San Antonio, San Antonio, Texas, United States of America
| | - Wei-Hua Tang
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- * E-mail:
| |
Collapse
|
12
|
McLaughlin JE, Bin-Umer MA, Widiez T, Finn D, McCormick S, Tumer NE. A Lipid Transfer Protein Increases the Glutathione Content and Enhances Arabidopsis Resistance to a Trichothecene Mycotoxin. PLoS One 2015; 10:e0130204. [PMID: 26057253 PMCID: PMC4461264 DOI: 10.1371/journal.pone.0130204] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 05/17/2015] [Indexed: 12/02/2022] Open
Abstract
Fusarium head blight (FHB) or scab is one of the most important plant diseases worldwide, affecting wheat, barley and other small grains. Trichothecene mycotoxins such as deoxynivalenol (DON) accumulate in the grain, presenting a food safety risk and health hazard to humans and animals. Despite considerable breeding efforts, highly resistant wheat or barley cultivars are not available. We screened an activation tagged Arabidopsis thaliana population for resistance to trichothecin (Tcin), a type B trichothecene in the same class as DON. Here we show that one of the resistant lines identified, trichothecene resistant 1 (trr1) contains a T-DNA insertion upstream of two nonspecific lipid transfer protein (nsLTP) genes, AtLTP4.4 and AtLTP4.5. Expression of both nsLTP genes was induced in trr1 over 10-fold relative to wild type. Overexpression of AtLTP4.4 provided greater resistance to Tcin than AtLTP4.5 in Arabidopsis thaliana and in Saccharomyces cerevisiae relative to wild type or vector transformed lines, suggesting a conserved protection mechanism. Tcin treatment increased reactive oxygen species (ROS) production in Arabidopsis and ROS stain was associated with the chloroplast, the cell wall and the apoplast. ROS levels were attenuated in Arabidopsis and in yeast overexpressing AtLTP4.4 relative to the controls. Exogenous addition of glutathione and other antioxidants enhanced resistance of Arabidopsis to Tcin while the addition of buthionine sulfoximine, an inhibitor of glutathione synthesis, increased sensitivity, suggesting that resistance was mediated by glutathione. Total glutathione content was significantly higher in Arabidopsis and in yeast overexpressing AtLTP4.4 relative to the controls, highlighting the importance of AtLTP4.4 in maintaining the redox state. These results demonstrate that trichothecenes cause ROS accumulation and overexpression of AtLTP4.4 protects against trichothecene-induced oxidative stress by increasing the glutathione-based antioxidant defense.
Collapse
Affiliation(s)
- John E. McLaughlin
- Department of Plant Biology and Pathology, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, New Jersey, United States of America
| | - Mohamed Anwar Bin-Umer
- Department of Plant Biology and Pathology, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, New Jersey, United States of America
| | - Thomas Widiez
- Department of Plant Biology and Pathology, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, New Jersey, United States of America
| | - Daniel Finn
- Department of Plant Biology and Pathology, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, New Jersey, United States of America
| | - Susan McCormick
- Bacterial Foodborne Pathogens and Mycology Unit, National Center for Agricultural Utilization Research, United States Department of Agriculture, Agricultural Research Service, Peoria, Illinois, United States of America
| | - Nilgun E. Tumer
- Department of Plant Biology and Pathology, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, New Jersey, United States of America
| |
Collapse
|
13
|
Warth B, Parich A, Bueschl C, Schoefbeck D, Neumann NKN, Kluger B, Schuster K, Krska R, Adam G, Lemmens M, Schuhmacher R. GC-MS based targeted metabolic profiling identifies changes in the wheat metabolome following deoxynivalenol treatment. Metabolomics 2015; 11:722-738. [PMID: 25972772 PMCID: PMC4419159 DOI: 10.1007/s11306-014-0731-1] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 09/08/2014] [Indexed: 01/13/2023]
Abstract
Fusariumgraminearum and related species commonly infest grains causing the devastating plant disease Fusarium head blight (FHB) and the formation of trichothecene mycotoxins. The most relevant toxin is deoxynivalenol (DON), which acts as a virulence factor of the pathogen. FHB is difficult to control and resistance to this disease is a polygenic trait, mainly mediated by the quantitative trait loci (QTL) Fhb1 and Qfhs.ifa-5A. In this study we established a targeted GC-MS based metabolomics workflow comprising a standardized experimental setup for growth, treatment and sampling of wheat ears and subsequent GC-MS analysis followed by data processing and evaluation of QC measures using tailored statistical and bioinformatics tools. This workflow was applied to wheat samples of six genotypes with varying levels of Fusarium resistance, treated with either DON or water, and harvested 0, 12, 24, 48 and 96 h after treatment. The results suggest that the primary carbohydrate metabolism and transport, the citric acid cycle and the primary nitrogen metabolism of wheat are clearly affected by DON treatment. Most importantly significantly elevated levels of amino acids and derived amines were observed. In particular, the concentrations of the three aromatic amino acids phenylalanine, tyrosine, and tryptophan increased. No clear QTL specific difference in the response could be observed except a generally faster increase in shikimate pathway intermediates in genotypes containing Fhb1. The overall workflow proved to be feasible and facilitated to obtain a more comprehensive picture on the effect of DON on the central metabolism of wheat.
Collapse
Affiliation(s)
- Benedikt Warth
- Department for Agrobiotechnology (IFA-Tulln), Center for Analytical Chemistry and Institute for Biotechnology in Plant Production, University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad-Lorenz-Str. 20, 3430 Tulln, Austria
| | - Alexandra Parich
- Department for Agrobiotechnology (IFA-Tulln), Center for Analytical Chemistry and Institute for Biotechnology in Plant Production, University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad-Lorenz-Str. 20, 3430 Tulln, Austria
| | - Christoph Bueschl
- Department for Agrobiotechnology (IFA-Tulln), Center for Analytical Chemistry and Institute for Biotechnology in Plant Production, University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad-Lorenz-Str. 20, 3430 Tulln, Austria
| | - Denise Schoefbeck
- Department for Agrobiotechnology (IFA-Tulln), Center for Analytical Chemistry and Institute for Biotechnology in Plant Production, University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad-Lorenz-Str. 20, 3430 Tulln, Austria
| | - Nora Katharina Nicole Neumann
- Department for Agrobiotechnology (IFA-Tulln), Center for Analytical Chemistry and Institute for Biotechnology in Plant Production, University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad-Lorenz-Str. 20, 3430 Tulln, Austria
| | - Bernhard Kluger
- Department for Agrobiotechnology (IFA-Tulln), Center for Analytical Chemistry and Institute for Biotechnology in Plant Production, University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad-Lorenz-Str. 20, 3430 Tulln, Austria
| | - Katharina Schuster
- Department for Agrobiotechnology (IFA-Tulln), Center for Analytical Chemistry and Institute for Biotechnology in Plant Production, University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad-Lorenz-Str. 20, 3430 Tulln, Austria
| | - Rudolf Krska
- Department for Agrobiotechnology (IFA-Tulln), Center for Analytical Chemistry and Institute for Biotechnology in Plant Production, University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad-Lorenz-Str. 20, 3430 Tulln, Austria
| | - Gerhard Adam
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad-Lorenz-Str. 24, 3430 Tulln, Austria
| | - Marc Lemmens
- Department for Agrobiotechnology (IFA-Tulln), Center for Analytical Chemistry and Institute for Biotechnology in Plant Production, University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad-Lorenz-Str. 20, 3430 Tulln, Austria
| | - Rainer Schuhmacher
- Department for Agrobiotechnology (IFA-Tulln), Center for Analytical Chemistry and Institute for Biotechnology in Plant Production, University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad-Lorenz-Str. 20, 3430 Tulln, Austria
| |
Collapse
|
14
|
Gunnaiah R, Kushalappa AC. Metabolomics deciphers the host resistance mechanisms in wheat cultivar Sumai-3, against trichothecene producing and non-producing isolates of Fusarium graminearum. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2014; 83:40-50. [PMID: 25084325 DOI: 10.1016/j.plaphy.2014.07.002] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 07/02/2014] [Indexed: 05/20/2023]
Abstract
Fusarium head blight (FHB) of wheat, caused by Fusarium graminearum, reduces grain yield and contaminates grains with trichothecene mycotoxins. Host resistance to FHB is quantitatively inherited and more than 100 QTLs have been mapped, but the host resistance mechanisms are poorly understood. Non-targeted metabolic profiling was applied to elucidate the host resistance mechanisms to FHB spread through rachis of wheat cultivar Sumai-3 against both trichothecene producing and non-producing isolates of Fusarium graminearum. The accumulation of deoxynivalenol (DON) in Sumai-3 was low, however the resistance to spread was not due to its detoxification into DON-3-O-glucoside (D3G), as the proportion of total DON converted to D3G in the resistant was not significantly different from that in the susceptible cultivar Roblin. Instead, the resistance was considered to be due to the accumulation of resistance related (RR) metabolites belonging to the phenylpropanoid pathway that reduced pathogen advancement through increased host cell wall thickening and also reduced pathogen growth due to antifungal and/or antioxidant properties which, in turn, reduced subsequent trichothecene biosynthesis. The RR phenylpropanoids accumulated in Sumai-3 were mainly the preformed syringyl rich monolignols and their glucosides, which are precursors of lignin biosynthesis, as well as antimicrobial flavonoids. The resistant cultivar Sumai-3 inoculated with trichothecene producing F. graminearum not only accumulated less RR metabolites but also the abundance of many RR metabolites was lesser than in the trichothecene non-producing F. graminearum. This implies repression of host resistance mechanisms by trichothecenes/DON, which is a protein biosynthesis inhibitor. Enhancement of resistance in wheat against FHB can be exploited through stacking of candidate phenylpropanoid pathway genes.
Collapse
Affiliation(s)
- Raghavendra Gunnaiah
- Plant Science Department, McGill University, 21111 Lakeshore Road, Sainte Anne de Bellevue, QC H9X3V9, Canada
| | - Ajjamada C Kushalappa
- Plant Science Department, McGill University, 21111 Lakeshore Road, Sainte Anne de Bellevue, QC H9X3V9, Canada.
| |
Collapse
|
15
|
Phytotoxicity evaluation of type B trichothecenes using a Chlamydomonas reinhardtii model system. Toxins (Basel) 2014; 6:453-63. [PMID: 24476708 PMCID: PMC3942745 DOI: 10.3390/toxins6020453] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 01/14/2014] [Accepted: 01/15/2014] [Indexed: 11/17/2022] Open
Abstract
Type B trichothecenes, which consist of deoxynivalenol (DON) and nivalenol (NIV) as the major end products, are produced by phytotoxic fungi, such as the Fusarium species, and pollute arable fields across the world. The DON toxicity has been investigated using various types of cell systems or animal bioassays. The evaluation of NIV toxicity, however, has been relatively restricted because of its lower level compared with DON. In this study, the Chlamydomonas reinhardtii testing system, which has been reported to have adequate NIV sensitivity, was reinvestigated under different mycotoxin concentrations and light conditions. The best concentration of DON and NIV, and their derivatives, for test conditions was found to be 25 ppm (2.5 × 10(-2) mg/mL). In all light test conditions, DON, NIV, and fusarenon-X (FusX) indicated significant growth inhibition regardless of whether a light source existed, or under differential wavelength conditions. FusX growth was also influenced by changes in photon flux density. These results suggest that C. reinhardtii is an appropriate evaluation system for type B trichothecenes.
Collapse
|
16
|
Afsah-Hejri L, Jinap S, Hajeb P, Radu S, Shakibazadeh S. A Review on Mycotoxins in Food and Feed: Malaysia Case Study. Compr Rev Food Sci Food Saf 2013; 12:629-651. [DOI: 10.1111/1541-4337.12029] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2013] [Accepted: 06/17/2013] [Indexed: 01/15/2023]
Affiliation(s)
- L. Afsah-Hejri
- Food Safety Research Centre (FOSREC); Faculty of Food Science and Technology, Univ. Putra Malaysia; 43400 UPM; Serdang; Selangor; Malaysia
| | - S. Jinap
- Food Safety Research Centre (FOSREC); Faculty of Food Science and Technology, Univ. Putra Malaysia; 43400 UPM; Serdang; Selangor; Malaysia
| | - P. Hajeb
- Food Safety Research Centre (FOSREC); Faculty of Food Science and Technology, Univ. Putra Malaysia; 43400 UPM; Serdang; Selangor; Malaysia
| | - S. Radu
- Food Safety Research Centre (FOSREC); Faculty of Food Science and Technology, Univ. Putra Malaysia; 43400 UPM; Serdang; Selangor; Malaysia
| | - Sh. Shakibazadeh
- Dept. of Aquaculture, Faculty of Agriculture; Univ. Putra Malaysia; 43400, UPM Serdang; Selangor; Malaysia
| |
Collapse
|
17
|
Diamond M, Reape TJ, Rocha O, Doyle SM, Kacprzyk J, Doohan FM, McCabe PF. The fusarium mycotoxin deoxynivalenol can inhibit plant apoptosis-like programmed cell death. PLoS One 2013; 8:e69542. [PMID: 23922734 PMCID: PMC3724914 DOI: 10.1371/journal.pone.0069542] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 06/13/2013] [Indexed: 01/05/2023] Open
Abstract
The Fusarium genus of fungi is responsible for commercially devastating crop diseases and the contamination of cereals with harmful mycotoxins. Fusarium mycotoxins aid infection, establishment, and spread of the fungus within the host plant. We investigated the effects of the Fusarium mycotoxin deoxynivalenol (DON) on the viability of Arabidopsis cells. Although it is known to trigger apoptosis in animal cells, DON treatment at low concentrations surprisingly did not kill these cells. On the contrary, we found that DON inhibited apoptosis-like programmed cell death (PCD) in Arabidopsis cells subjected to abiotic stress treatment in a manner independent of mitochondrial cytochrome c release. This suggested that Fusarium may utilise mycotoxins to suppress plant apoptosis-like PCD. To test this, we infected Arabidopsis cells with a wild type and a DON-minus mutant strain of F. graminearum and found that only the DON producing strain could inhibit death induced by heat treatment. These results indicate that mycotoxins may be capable of disarming plant apoptosis-like PCD and thereby suggest a novel way that some fungi can influence plant cell fate.
Collapse
Affiliation(s)
- Mark Diamond
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Theresa J. Reape
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Olga Rocha
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Siamsa M. Doyle
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Joanna Kacprzyk
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Fiona M. Doohan
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Paul F. McCabe
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
- * E-mail:
| |
Collapse
|
18
|
Trichothecene toxicity in eukaryotes: cellular and molecular mechanisms in plants and animals. Toxicol Lett 2012; 217:149-58. [PMID: 23274714 DOI: 10.1016/j.toxlet.2012.12.003] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Revised: 12/03/2012] [Accepted: 12/04/2012] [Indexed: 01/24/2023]
Abstract
Trichothecenes are sesquiterpenoid mycotoxins commonly found as contaminants in cereal grains and are a major health and food safety concern due to their toxicity to humans and farm animals. Trichothecenes are predominantly produced by the phytopathogenic Fusarium fungus, and in plants they act as a virulence factor aiding the spread of the fungus during disease development. Known for their inhibitory effect on eukaryotic protein synthesis, trichothecenes also induce oxidative stress, DNA damage and cell cycle arrest and affect cell membrane integrity and function in eukaryotic cells. In animals, trichothecenes can be either immunostimulatory or immunosuppressive and induce apoptosis via mitochondria-mediated or -independent pathway. In plants, trichothecenes induce programmed cell death via production of reactive oxygen species. Recent advances in molecular techniques have led to the elucidation of signal transduction pathways that manifest trichothecene toxicity in eukaryotes. In animals, trichothecenes induce mitogen-activated protein kinase (MAPK) signalling cascades via ribotoxic stress response and/or endoplasmic reticulum stress response. The upstream signalling events that lead to the activation trichothecene-induced ribotoxic stress response are discussed. In plants, trichothecenes exhibit elicitor-like activity leading to the inductions MAPKs and genes involved in oxidative stress, cell death and plant defence response. Trichothecenes might also modulate hormone-mediated defence signalling and abiotic stress signalling in plants.
Collapse
|
19
|
Bin-Umer MA, McLaughlin JE, Basu D, McCormick S, Tumer NE. Trichothecene mycotoxins inhibit mitochondrial translation--implication for the mechanism of toxicity. Toxins (Basel) 2011; 3:1484-501. [PMID: 22295173 PMCID: PMC3268453 DOI: 10.3390/toxins3121484] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Revised: 11/18/2011] [Accepted: 11/18/2011] [Indexed: 11/16/2022] Open
Abstract
Fusarium head blight (FHB) reduces crop yield and results in contamination of grains with trichothecene mycotoxins. We previously showed that mitochondria play a critical role in the toxicity of a type B trichothecene. Here, we investigated the direct effects of type A and type B trichothecenes on mitochondrial translation and membrane integrity in Saccharomyces cerevisiae. Sensitivity to trichothecenes increased when functional mitochondria were required for growth, and trichothecenes inhibited mitochondrial translation at concentrations, which did not inhibit total translation. In organello translation in isolated mitochondria was inhibited by type A and B trichothecenes, demonstrating that these toxins have a direct effect on mitochondrial translation. In intact yeast cells trichothecenes showed dose-dependent inhibition of mitochondrial membrane potential and reactive oxygen species, but only at doses higher than those affecting mitochondrial translation. These results demonstrate that inhibition of mitochondrial translation is a primary target of trichothecenes and is not secondary to the disruption of mitochondrial membranes.
Collapse
Affiliation(s)
- Mohamed Anwar Bin-Umer
- Department of Plant Biology and Pathology, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, NJ 08901, USA; (M.A.B.-U.); (J.E.M.); (D.B.)
| | - John E. McLaughlin
- Department of Plant Biology and Pathology, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, NJ 08901, USA; (M.A.B.-U.); (J.E.M.); (D.B.)
| | - Debaleena Basu
- Department of Plant Biology and Pathology, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, NJ 08901, USA; (M.A.B.-U.); (J.E.M.); (D.B.)
| | - Susan McCormick
- Bacterial Foodborne Pathogens and Mycology Unit, National Center for Agricultural Utilization Research, United States Department of Agriculture, Agricultural Research Service, Peoria, IL 61604, USA;
| | - Nilgun E. Tumer
- Department of Plant Biology and Pathology, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, NJ 08901, USA; (M.A.B.-U.); (J.E.M.); (D.B.)
| |
Collapse
|
20
|
Fernandez J, Wilson RA. The sugar sensor, trehalose-6-phosphate synthase (Tps1), regulates primary and secondary metabolism during infection by the rice blast fungus: WillMagnaporthe oryzae's“sweet tooth” become its “Achilles’ heel”? Mycology 2011. [DOI: 10.1080/21501203.2011.563431] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- Jessie Fernandez
- a Department of Plant Pathology , University of Nebraska-Lincoln , 406I Plant Sciences Hall, Lincoln, NE 68583-0722, USA
| | - Richard A. Wilson
- a Department of Plant Pathology , University of Nebraska-Lincoln , 406I Plant Sciences Hall, Lincoln, NE 68583-0722, USA
| |
Collapse
|