1
|
Huang C. From Player to Pawn: Viral Avirulence Factors Involved in Plant Immunity. Viruses 2021; 13:v13040688. [PMID: 33923435 PMCID: PMC8073968 DOI: 10.3390/v13040688] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/09/2021] [Accepted: 04/14/2021] [Indexed: 02/07/2023] Open
Abstract
In the plant immune system, according to the 'gene-for-gene' model, a resistance (R) gene product in the plant specifically surveils a corresponding effector protein functioning as an avirulence (Avr) gene product. This system differs from other plant-pathogen interaction systems, in which plant R genes recognize a single type of gene or gene family because almost all virus genes with distinct structures and functions can also interact with R genes as Avr determinants. Thus, research conducted on viral Avr-R systems can provide a novel understanding of Avr and R gene product interactions and identify mechanisms that enable rapid co-evolution of plants and phytopathogens. In this review, we intend to provide a brief overview of virus-encoded proteins and their roles in triggering plant resistance, and we also summarize current progress in understanding plant resistance against virus Avr genes. Moreover, we present applications of Avr gene-mediated phenotyping in R gene identification and screening of segregating populations during breeding processes.
Collapse
Affiliation(s)
- Changjun Huang
- Key Laboratory of Tobacco Biotechnological Breeding, National Tobacco Genetic Engineering Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming 650021, China
| |
Collapse
|
2
|
Lukhovitskaya N, Ryabova LA. Cauliflower mosaic virus transactivator protein (TAV) can suppress nonsense-mediated decay by targeting VARICOSE, a scaffold protein of the decapping complex. Sci Rep 2019; 9:7042. [PMID: 31065034 PMCID: PMC6504953 DOI: 10.1038/s41598-019-43414-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 02/12/2019] [Indexed: 01/09/2023] Open
Abstract
During pathogenesis, viruses hijack the host cellular machinery to access molecules and sub-cellular structures needed for infection. We have evidence that the multifunctional viral translation transactivator/viroplasmin (TAV) protein from Cauliflower mosaic virus (CaMV) can function as a suppressor of nonsense-mediated mRNA decay (NMD). TAV interacts specifically with a scaffold protein of the decapping complex VARICOSE (VCS) in the yeast two-hybrid system, and co-localizes with components of the decapping complex in planta. Notably, plants transgenic for TAV accumulate endogenous NMD-elicited mRNAs, while decay of AU-rich instability element (ARE)-signal containing mRNAs are not affected. Using an agroinfiltration-based transient assay we confirmed that TAV specifically stabilizes mRNA containing a premature termination codon (PTC) in a VCS-dependent manner. We have identified a TAV motif consisting of 12 of the 520 amino acids in the full-length sequence that is critical for both VCS binding and the NMD suppression effect. Our data suggest that TAV can intercept NMD by targeting the decapping machinery through the scaffold protein VARICOSE, indicating that 5'-3' mRNA decapping is a late step in NMD-related mRNA degradation in plants.
Collapse
Affiliation(s)
- Nina Lukhovitskaya
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, Strasbourg, France
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, CB2 1QP, UK
| | - Lyubov A Ryabova
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, Strasbourg, France.
| |
Collapse
|
3
|
Adhab M, Angel C, Leisner S, Schoelz JE. The P1 gene of Cauliflower mosaic virus is responsible for breaking resistance in Arabidopsis thaliana ecotype Enkheim (En-2). Virology 2018; 523:15-21. [PMID: 30059841 DOI: 10.1016/j.virol.2018.07.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 07/12/2018] [Accepted: 07/12/2018] [Indexed: 12/01/2022]
Abstract
Arabidopsis thaliana ecotype En-2 is resistant to several strains of Cauliflower mosaic virus (CaMV), including strain W260, but is susceptible to strain NY8153. Resistance in En-2 is conditioned by a single, semi-dominant gene called CAR1. We constructed several recombinant infectious clones between W260 and NY8153 and evaluated their capability to infect En-2. This analysis showed that the capacity of NY8153 to break resistance in En-2 was conditioned by mutations within the CaMV gene 1, a gene that encodes a protein dedicated to cell-to-cell movement (P1), and conversely, that P1 of W260 is responsible for eliciting the plant defense response. A previous study had shown that P6 of W260 was responsible for overcoming resistance in Arabidopsis ecotype Tsu-0 and that P6 of CaMV strain CM1841 was responsible for triggering resistance. The present study now shows that a second gene of CaMV is targeted by Arabidopsis for plant immunity.
Collapse
Affiliation(s)
- Mustafa Adhab
- Division of Plant Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Carlos Angel
- Division of Plant Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Scott Leisner
- Department of Biological Sciences, the University of Toledo, Toledo, OH 43606, USA
| | - James E Schoelz
- Division of Plant Sciences, University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
4
|
Leisner SM, Schoelz JE. Joining the Crowd: Integrating Plant Virus Proteins into the Larger World of Pathogen Effectors. ANNUAL REVIEW OF PHYTOPATHOLOGY 2018; 56:89-110. [PMID: 29852091 DOI: 10.1146/annurev-phyto-080417-050151] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The first bacterial and viral avirulence ( avr) genes were cloned in 1984. Although virus and bacterial avr genes were physically isolated in the same year, the questions associated with their characterization after discovery were very different, and these differences had a profound influence on the narrative of host-pathogen interactions for the past 30 years. Bacterial avr proteins were subsequently shown to suppress host defenses, leading to their reclassification as effectors, whereas research on viral avr proteins centered on their role in the viral infection cycle rather than their effect on host defenses. Recent studies that focus on the multifunctional nature of plant virus proteins have shown that some virus proteins are capable of suppression of the same host defenses as bacterial effectors. This is exemplified by the P6 protein of Cauliflower mosaic virus (CaMV), a multifunctional plant virus protein that facilitates several steps in the infection, including modulation of host defenses. This review highlights the modular structure and multifunctional nature of CaMV P6 and illustrates its similarities to other, well-established pathogen effectors.
Collapse
Affiliation(s)
- Scott M Leisner
- Department of Biological Sciences, University of Toledo, Toledo, Ohio 43606, USA
| | - James E Schoelz
- Division of Plant Sciences, University of Missouri, Columbia, Missouri 65211, USA;
| |
Collapse
|
5
|
Schoelz JE, Leisner S. Setting Up Shop: The Formation and Function of the Viral Factories of Cauliflower mosaic virus. FRONTIERS IN PLANT SCIENCE 2017; 8:1832. [PMID: 29163571 PMCID: PMC5670102 DOI: 10.3389/fpls.2017.01832] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 10/10/2017] [Indexed: 05/23/2023]
Abstract
Similar to cells, viruses often compartmentalize specific functions such as genome replication or particle assembly. Viral compartments may contain host organelle membranes or they may be mainly composed of viral proteins. These compartments are often termed: inclusion bodies (IBs), viroplasms or viral factories. The same virus may form more than one type of IB, each with different functions, as illustrated by the plant pararetrovirus, Cauliflower mosaic virus (CaMV). CaMV forms two distinct types of IBs in infected plant cells, those composed mainly of the viral proteins P2 (which are responsible for transmission of CaMV by insect vectors) and P6 (required for viral intra-and inter-cellular infection), respectively. P6 IBs are the major focus of this review. Much of our understanding of the formation and function of P6 IBs comes from the analyses of their major protein component, P6. Over time, the interactions and functions of P6 have been gradually elucidated. Coupled with new technologies, such as fluorescence microscopy with fluorophore-tagged viral proteins, these data complement earlier work and provide a clearer picture of P6 IB formation. As the activities and interactions of the viral proteins have gradually been determined, the functions of P6 IBs have become clearer. This review integrates the current state of knowledge on the formation and function of P6 IBs to produce a coherent model for the activities mediated by these sophisticated virus-manufacturing machines.
Collapse
Affiliation(s)
- James E. Schoelz
- Division of Plant Sciences, University of Missouri, Columbia, MO, United States
| | - Scott Leisner
- Department of Biological Sciences, University of Toledo, Toledo, OH, United States
| |
Collapse
|
6
|
Zvereva AS, Golyaev V, Turco S, Gubaeva EG, Rajeswaran R, Schepetilnikov MV, Srour O, Ryabova LA, Boller T, Pooggin MM. Viral protein suppresses oxidative burst and salicylic acid-dependent autophagy and facilitates bacterial growth on virus-infected plants. THE NEW PHYTOLOGIST 2016; 211:1020-34. [PMID: 27120694 DOI: 10.1111/nph.13967] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 03/11/2016] [Indexed: 05/20/2023]
Abstract
Virus interactions with plant silencing and innate immunity pathways can potentially alter the susceptibility of virus-infected plants to secondary infections with nonviral pathogens. We found that Arabidopsis plants infected with Cauliflower mosaic virus (CaMV) or transgenic for CaMV silencing suppressor P6 exhibit increased susceptibility to Pseudomonas syringae pv. tomato (Pst) and allow robust growth of the Pst mutant hrcC-, which cannot deploy effectors to suppress innate immunity. The impaired antibacterial defense correlated with the suppressed oxidative burst, reduced accumulation of the defense hormone salicylic acid (SA) and diminished SA-dependent autophagy. The viral protein domain required for suppression of these plant defense responses is dispensable for silencing suppression but essential for binding and activation of the plant target-of-rapamycin (TOR) kinase which, in its active state, blocks cellular autophagy and promotes CaMV translation. Our findings imply that CaMV P6 is a versatile viral effector suppressing both silencing and innate immunity. P6-mediated suppression of oxidative burst and SA-dependent autophagy may predispose CaMV-infected plants to bacterial infection.
Collapse
Affiliation(s)
- Anna S Zvereva
- Department of Environmental Sciences, Botany, University of Basel, Hebelstrasse 1, Basel, 4056, Switzerland
| | - Victor Golyaev
- Department of Environmental Sciences, Botany, University of Basel, Hebelstrasse 1, Basel, 4056, Switzerland
| | - Silvia Turco
- Department of Environmental Sciences, Botany, University of Basel, Hebelstrasse 1, Basel, 4056, Switzerland
| | - Ekaterina G Gubaeva
- Department of Environmental Sciences, Botany, University of Basel, Hebelstrasse 1, Basel, 4056, Switzerland
| | - Rajendran Rajeswaran
- Department of Environmental Sciences, Botany, University of Basel, Hebelstrasse 1, Basel, 4056, Switzerland
| | - Mikhail V Schepetilnikov
- Institut de Biologie Moléculaire des Plantes du CNRS, Université de Strasbourg, Strasbourg Cedex, 67084, France
| | - Ola Srour
- Institut de Biologie Moléculaire des Plantes du CNRS, Université de Strasbourg, Strasbourg Cedex, 67084, France
| | - Lyubov A Ryabova
- Institut de Biologie Moléculaire des Plantes du CNRS, Université de Strasbourg, Strasbourg Cedex, 67084, France
| | - Thomas Boller
- Department of Environmental Sciences, Botany, University of Basel, Hebelstrasse 1, Basel, 4056, Switzerland
| | - Mikhail M Pooggin
- Department of Environmental Sciences, Botany, University of Basel, Hebelstrasse 1, Basel, 4056, Switzerland
| |
Collapse
|
7
|
Lutz L, Okenka G, Schoelz J, Leisner S. Mutations within A 35 amino acid region of P6 influence self-association, inclusion body formation, and Caulimovirus infectivity. Virology 2015; 476:26-36. [PMID: 25506670 PMCID: PMC4323857 DOI: 10.1016/j.virol.2014.11.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 11/14/2014] [Accepted: 11/16/2014] [Indexed: 11/19/2022]
Abstract
Cauliflower mosaic virus gene VI product (P6) is an essential protein that forms cytoplasmic, inclusion bodies (IBs). P6 contains four regions involved in self-association, termed D1-D4. D3 binds to D1, along with D4 and contains a spacer region (termed D3b) between two RNA-binding domains. Here we show D3b binds full-length P6 along with D1 and D4. Full-length P6s harboring single amino acid substitutions within D3b showed reduced binding to both D1 and D4. Full-length P6s containing D3b mutations and fused with green fluorescent protein formed inclusion-like bodies (IL-Bs) when expressed in Nicotiana benthamiana leaves. However, mutant P6s with reduced binding to D1 and D4, showed smaller IL-Bs, than wild type. Likewise, viruses containing these mutations showed a decrease in inoculated leaf viral DNA levels and reduced efficiency of systemic infection. These data suggest that mutations influencing P6 self-association alter IB formation and reduce virus infection.
Collapse
Affiliation(s)
- Lindy Lutz
- Department of Biological Sciences, The University of Toledo, 2801 West Bancroft Street, Toledo, OH 43606, USA
| | - Genevieve Okenka
- Department of Biological Sciences, The University of Toledo, 2801 West Bancroft Street, Toledo, OH 43606, USA
| | - James Schoelz
- Division of Plant Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Scott Leisner
- Department of Biological Sciences, The University of Toledo, 2801 West Bancroft Street, Toledo, OH 43606, USA.
| |
Collapse
|
8
|
Laird J, McInally C, Carr C, Doddiah S, Yates G, Chrysanthou E, Khattab A, Love AJ, Geri C, Sadanandom A, Smith BO, Kobayashi K, Milner JJ. Identification of the domains of cauliflower mosaic virus protein P6 responsible for suppression of RNA silencing and salicylic acid signalling. J Gen Virol 2013; 94:2777-2789. [PMID: 24088344 PMCID: PMC3836500 DOI: 10.1099/vir.0.057729-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cauliflower mosaic virus (CaMV) encodes a 520 aa polypeptide, P6, which participates in several essential activities in the virus life cycle including suppressing RNA silencing and salicylic acid-responsive defence signalling. We infected Arabidopsis with CaMV mutants containing short in-frame deletions within the P6 ORF. A deletion in the distal end of domain D-I (the N-terminal 112 aa) of P6 did not affect virus replication but compromised symptom development and curtailed the ability to restore GFP fluorescence in a GFP-silenced transgenic Arabidopsis line. A deletion in the minimum transactivator domain was defective in virus replication but retained the capacity to suppress RNA silencing locally. Symptom expression in CaMV-infected plants is apparently linked to the ability to suppress RNA silencing. When transiently co-expressed with tomato bushy stunt virus P19, an elicitor of programmed cell death in Nicotiana tabacum, WT P6 suppressed the hypersensitive response, but three mutants, two with deletions within the distal end of domain D-I and one involving the N-terminal nuclear export signal (NES), were unable to do so. Deleting the N-terminal 20 aa also abolished the suppression of pathogen-associated molecular pattern-dependent PR1a expression following agroinfiltration. However, the two other deletions in domain D-I retained this activity, evidence that the mechanisms underlying these functions are not identical. The D-I domain of P6 when expressed alone failed to suppress either cell death or PR1a expression and is therefore necessary but not sufficient for all three defence suppression activities. Consequently, concerns about the biosafety of genetically modified crops carrying truncated ORFVI sequences appear unfounded.
Collapse
Affiliation(s)
- Janet Laird
- Plant Science Research Theme, School of Life Sciences and Institute of Molecular Cellular and Systems Biology, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Carol McInally
- Plant Science Research Theme, School of Life Sciences and Institute of Molecular Cellular and Systems Biology, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Craig Carr
- Plant Science Research Theme, School of Life Sciences and Institute of Molecular Cellular and Systems Biology, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Sowjanya Doddiah
- Plant Science Research Theme, School of Life Sciences and Institute of Molecular Cellular and Systems Biology, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Gary Yates
- Plant Science Research Theme, School of Life Sciences and Institute of Molecular Cellular and Systems Biology, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Elina Chrysanthou
- Plant Science Research Theme, School of Life Sciences and Institute of Molecular Cellular and Systems Biology, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Ahmed Khattab
- Plant Science Research Theme, School of Life Sciences and Institute of Molecular Cellular and Systems Biology, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Andrew J Love
- Plant Science Research Theme, School of Life Sciences and Institute of Molecular Cellular and Systems Biology, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Chiara Geri
- Istituto di Biologia e Biotechnologia Agraria, Consiglio Nazionale Delle Richerche, Pisa, Italy.,Plant Science Research Theme, School of Life Sciences and Institute of Molecular Cellular and Systems Biology, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Ari Sadanandom
- School of Biological and Biomedical Sciences, Durham University, Durham DH1 3LE, UK
| | - Brian O Smith
- Institute of Molecular Cellular and Systems Biology, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Kappei Kobayashi
- Plant Molecular Biology and Virology, Faculty of Agriculture, Ehime University, Ehime 790-8566, Japan
| | - Joel J Milner
- Plant Science Research Theme, School of Life Sciences and Institute of Molecular Cellular and Systems Biology, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| |
Collapse
|
9
|
Abstract
The frontline of plant defense against non-viral pathogens such as bacteria, fungi and oomycetes is provided by transmembrane pattern recognition receptors that detect conserved pathogen-associated molecular patterns (PAMPs), leading to pattern-triggered immunity (PTI). To counteract this innate defense, pathogens deploy effector proteins with a primary function to suppress PTI. In specific cases, plants have evolved intracellular resistance (R) proteins detecting isolate-specific pathogen effectors, leading to effector-triggered immunity (ETI), an amplified version of PTI, often associated with hypersensitive response (HR) and programmed cell death (PCD). In the case of plant viruses, no conserved PAMP was identified so far and the primary plant defense is thought to be based mainly on RNA silencing, an evolutionary conserved, sequence-specific mechanism that regulates gene expression and chromatin states and represses invasive nucleic acids such as transposons. Endogenous silencing pathways generate 21-24 nt small (s)RNAs, miRNAs and short interfering (si)RNAs, that repress genes post-transcriptionally and/or transcriptionally. Four distinct Dicer-like (DCL) proteins, which normally produce endogenous miRNAs and siRNAs, all contribute to the biogenesis of viral siRNAs in infected plants. Growing evidence indicates that RNA silencing also contributes to plant defense against non-viral pathogens. Conversely, PTI-based innate responses may contribute to antiviral defense. Intracellular R proteins of the same NB-LRR family are able to recognize both non-viral effectors and avirulence (Avr) proteins of RNA viruses, and, as a result, trigger HR and PCD in virus-resistant hosts. In some cases, viral Avr proteins also function as silencing suppressors. We hypothesize that RNA silencing and innate immunity (PTI and ETI) function in concert to fight plant viruses. Viruses counteract this dual defense by effectors that suppress both PTI-/ETI-based innate responses and RNA silencing to establish successful infection.
Collapse
Affiliation(s)
- Anna S Zvereva
- Institute of Botany, University of Basel, Schönbeinstrasse 6, 4056 Basel, Switzerland.
| | | |
Collapse
|
10
|
Whiteman NK, Groen SC, Chevasco D, Bear A, Beckwith N, Gregory TR, Denoux C, Mammarella N, Ausubel FM, Pierce NE. Mining the plant-herbivore interface with a leafmining Drosophila of Arabidopsis. Mol Ecol 2011; 20:995-1014. [PMID: 21073583 PMCID: PMC3062943 DOI: 10.1111/j.1365-294x.2010.04901.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Experimental infections of Arabidopsis thaliana (Arabidopsis) with genomically characterized plant pathogens such as Pseudomonas syringae have facilitated the dissection of canonical eukaryotic defence pathways and parasite virulence factors. Plants are also attacked by herbivorous insects, and the development of an ecologically relevant genetic model herbivore that feeds on Arabidopsis will enable the parallel dissection of host defence and reciprocal resistance pathways such as those involved in xenobiotic metabolism. An ideal candidate is Scaptomyza flava, a drosophilid fly whose leafmining larvae are true herbivores that can be found in nature feeding on Arabidopsis and other crucifers. Here, we describe the life cycle of S. flava on Arabidopsis and use multiple approaches to characterize the response of Arabidopsis to S. flava attack. Oviposition choice tests and growth performance assays on different Arabidopsis ecotypes, defence-related mutants, and hormone and chitin-treated plants revealed significant differences in host preference and variation in larval performance across Arabidopsis accessions. The jasmonate and glucosinolate pathways in Arabidopsis are important in mediating quantitative resistance against S. flava, and priming with jasmonate or chitin resulted in increased resistance. Expression of xenobiotic detoxification genes was reduced in S. flava larvae reared on Arabidopsis jasmonate signalling mutants and increased in plants pretreated with chitin. These results and future research directions are discussed in the context of developing a genetic model system to analyse insect-plant interactions.
Collapse
Affiliation(s)
- Noah K Whiteman
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02478, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Harries PA, Schoelz JE, Nelson RS. Covering common ground: F-actin-dependent transport of plant viral protein inclusions reveals a novel mechanism for movement utilized by unrelated viral proteins. PLANT SIGNALING & BEHAVIOR 2009. [PMID: 19816096 PMCID: PMC2676765 DOI: 10.4161/psb.4.5.8487] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Plant viruses are composed of diverse genomes (e.g., RNA or DNA) encoding proteins that vary widely in sequence. It is becoming clear, however, that some apparently unrelated viral proteins have similar functions. The P6 protein encoded by Cauliflower mosaic virus (CaMV) and the 126-kDa protein encoded by Tobacco mosaic virus (TMV) are examples of this convergence in protein function. Although having no apparent sequence similarity, both proteins are pathogenicity determinants during infection, are components of novel intracellular cytoplasmic inclusions and suppress RNA silencing. Here we review our recent results demonstrating an additional novel convergent activity between these proteins: both proteins traffic along the actin cytoskeleton (microfilaments). We also discuss results showing a unique property of the P6 protein: a non-mobile strong association with microtubules. Lastly, we discuss the potential mechanism by which the P6 and 126-kDa proteins traffic along microfilaments. We provide new results suggesting that actin filament polymerization-driven movement does not support 126-kDa protein transport, thus leading to a focus on myosins as the driving force for this movement.
Collapse
Affiliation(s)
- Phillip A Harries
- Plant Biology Division, Samuel Roberts Noble Foundation, Inc., Ardmore, OK 73401, USA
| | | | | |
Collapse
|
12
|
Hapiak M, Li Y, Agama K, Swade S, Okenka G, Falk J, Khandekar S, Raikhy G, Anderson A, Pollock J, Zellner W, Schoelz J, Leisner SM. Cauliflower mosaic virus gene VI product N-terminus contains regions involved in resistance-breakage, self-association and interactions with movement protein. Virus Res 2008; 138:119-29. [PMID: 18851998 DOI: 10.1016/j.virusres.2008.09.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2008] [Revised: 09/15/2008] [Accepted: 09/15/2008] [Indexed: 10/21/2022]
Abstract
Cauliflower mosaic virus (CaMV) gene VI encodes a multifunctional protein (P6) involved in the translation of viral RNA, the formation of inclusion bodies, and the determination of host range. Arabidopsis thaliana ecotype Tsu-0 prevents the systemic spread of most CaMV isolates, including CM1841. However, CaMV isolate W260 overcomes this resistance. In this paper, the N-terminal 110 amino acids of P6 (termed D1) were identified as the resistance-breaking region. D1 also bound full-length P6. Furthermore, binding of W260 D1 to P6 induced higher beta-galactosidase activity and better leucine-independent growth in the yeast two-hybrid system than its CM1841 counterpart. Thus, W260 may evade Tsu-0 resistance by mediating P6 self-association in a manner different from that of CM1841. Because Tsu-0 resistance prevents virus movement, interaction of P6 with P1 (CaMV movement protein) was investigated. Both yeast two-hybrid analyses and maltose-binding protein pull-down experiments show that P6 interacts with P1. Although neither half of P1 interacts with P6, the N-terminus of P6 binds P1. Interestingly, D1 by itself does not interact with P1, indicating that different portions of the P6 N-terminus are involved in different activities. The P1-P6 interactions suggest a role for P6 in virus transport, possibly by regulating P1 tubule formation or the assembly of movement complexes.
Collapse
Affiliation(s)
- Michael Hapiak
- Department of Biological Sciences, The University of Toledo, Toledo, OH 43606, United States
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Rajakaruna P, Khandekar S, Meulia T, Leisner SM. Identification and Host Relations of Turnip ringspot virus, A Novel Comovirus from Ohio. PLANT DISEASE 2007; 91:1212-1220. [PMID: 30780511 DOI: 10.1094/pdis-91-10-1212] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Viruslike chlorotic ring spot symptoms and line patterns of unknown origin were observed on a greenhouse-grown turnip plant. The suspected virus was mechanically transmissible to plants in the Brassicaceae. Electron microscopic analysis revealed icosahedral particles approximately 28 nm in diameter. Reverse transcriptase-polymerase chain reaction (RT-PCR) analyses suggested that the pathogen is a comovirus, an observation that was confirmed by analysis of portions of the genomic sequence. This virus was provisionally named Turnip ringspot virus (TuRSV). Based on the RNA 1 sequence, TuRSV is most similar to Radish mosaic virus, another pathogen that infects members of the Brassicaceae. Arabidopsis thaliana is susceptible to TuRSV, and 12 out of the 23 ecotypes studied showed symptoms when inoculated with the virus. TuRSV induced a variety of responses on ecotypes from death to no infection. Some ecotypes showed one or two rounds of symptom display followed by recovery when inoculated with TuRSV. About half of the ecotypes (11/23) analyzed showed no symptoms when inoculated with TuRSV. Col-0 plants showed no symptoms, and infectious virus was not recovered from systemic leaves, although it could be detected by RT-PCR. Col-0 plants harboring mutations impairing the ethylene, jasmonic acid, or salicylic acid signaling pathways did not show symptoms when inoculated with TuRSV.
Collapse
Affiliation(s)
- P Rajakaruna
- Department of Biological Sciences, University of Toledo, Toledo, OH 43606
| | - S Khandekar
- Department of Biological Sciences, University of Toledo, Toledo, OH 43606
| | - T Meulia
- Molecular and Cellular Imaging Center, The Ohio Agricultural Research and Development Center, Wooster, OH 44691
| | - S M Leisner
- Department of Biological Sciences, University of Toledo, Toledo, OH 43606
| |
Collapse
|
14
|
Cawly J, Cole AB, Király L, Qiu W, Schoelz JE. The plant gene CCD1 selectively blocks cell death during the hypersensitive response to Cauliflower mosaic virus infection. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2005; 18:212-9. [PMID: 15782635 DOI: 10.1094/mpmi-18-0212] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The P6 protein of Cauliflower mosaic virus (CaMV) W260 elicits a hypersensitive response (HR) on inoculated leaves of Nicotiana edwardsonii. This defense response, common to many plant pathogens, has two key characteristics, cell death within the initially infected tissues and restriction of the pathogen to this area. We present evidence that a plant gene designated CCD1, originally identified in N. bigelovii, can selectively block the cell death pathway during HR, whereas the resistance pathway against W260 remains intact. Suppression of cell death was evident not only macroscopically but also microscopically. The suppression of HR-mediated cell death was specific to CaMV, as Tobacco mosaic virus was able to elicit HR in the plants that contained CCD1. CCD1 also blocks the development of a systemic cell death symptom induced specifically by the P6 protein of W260 in N. clevelandii. Introgression of CCD1 from N. bigelovii into N. clevelandii blocked the development of systemic cell death in response to W260 infection but could not prevent systemic cell death induced by Tomato bushy stunt virus. Thus, CCD1 blocks both local and systemic cell death induced by P6 of W260 but does not act as a general suppressor of cell death induced by other plant viruses. Furthermore, experiments with CCD1 provide further evidence that cell death could be uncoupled from resistance in the HR of Nicotiana edwardsonii to CaMV W260.
Collapse
Affiliation(s)
- John Cawly
- Department of Plant Microbiology and Pathology, University of Missouri, Columbia, MO 65211, USA
| | | | | | | | | |
Collapse
|
15
|
Geri C, Love AJ, Cecchini E, Barrett SJ, Laird J, Covey SN, Milner JJ. Arabidopsis mutants that suppress the phenotype induced by transgene-mediated expression of cauliflower mosaic virus (CaMV) gene VI are less susceptible to CaMV-infection and show reduced ethylene sensitivity. PLANT MOLECULAR BIOLOGY 2004; 56:111-124. [PMID: 15604731 DOI: 10.1007/s11103-004-2649-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Protein P6 is the main symptom determinant of cauliflower mosaic virus (CaMV), and transgene-mediated expression in Arabidopsis induces a symptom-like phenotype in the absence of infection. Seeds of a P6-transgenic line, A7, were mutagenized by gamma-irradiation and M2 seedlings were screened for mutants that suppressed the phenotype of chlorosis and stunting. We identified four mutants that were larger and less chlorotic than the A7 parent but which contained an intact and transcriptionally active transgene. The two mutants with the strongest suppression phenotype, were recessive and allelic. The transgene was eliminated by back-crossing with wild-type Arabidopsis. In progeny lines that were homozygous for the putative suppressor mutation the proportion of plants becoming infected following inoculation with CaMV was 40% that of wild-type, although in plants that did become infected, levels of virus DNA in mutants and wild-type did not differ significantly. Symptoms in the mutants were milder and delayed although this was somewhat dependent on the virus isolate. This phenotype was inherited stably. Both mutant alleles showed a partially ethylene-insensitive phenotype in an ethylene triple response assay. P6-transgenic plants were also almost completely insensitive to ethylene in the triple response assay. We suggest that the chlorosis and stunting in P6-transgenic and CaMV-infected plants are dependent on interactions between P6 and components involved in ethylene signalling, and that the suppressor gene product may function to augment these interactions.
Collapse
Affiliation(s)
- Chiara Geri
- Plant Science Group, Division of Biochemistry and Molecular Biology, Glasgow University, Glasgow, G12 8QQ, Scotland, UK
| | | | | | | | | | | | | |
Collapse
|
16
|
Kobayashi K, Hohn T. The avirulence domain of Cauliflower mosaic virus transactivator/viroplasmin is a determinant of viral virulence in susceptible hosts. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2004; 17:475-83. [PMID: 15141951 DOI: 10.1094/mpmi.2004.17.5.475] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Cauliflower mosaic virus (CaMV) transactivator/viroplasmin (Tav) is a multifunctional protein essential for basic replication of CaMV. It also plays a role in viral pathogenesis in crucifer and solanaceous host plants. Deletion mutagenesis revealed that N- and C-terminal parts of Tav are not essential for CaMV replication in transfected protoplasts. Two deletion mutants having only minimal defects in basic replication were infectious in turnips but only with highly attenuated virulence. This was shown to be due to delayed virus spread within the inoculated leaves and to the upper leaves. Unlike the wild-type virus, the mutant viruses successfully spread locally without inducing a host defense response in inoculated Datura stramonium leaves, but did not spread systemically. These results provide the first evidence that a Tav domain required for avirulence function in solanaceous plants is not essential for CaMV infectivity but has a role in viral virulence in susceptible hosts.
Collapse
|
17
|
Yu W, Murfett J, Schoelz JE. Differential induction of symptoms in Arabidopsis by P6 of Cauliflower mosaic virus. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2003; 16:35-42. [PMID: 12580280 DOI: 10.1094/mpmi.2003.16.1.35] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The gene VI protein (P6) of Cauliflower mosaic virus (CaMV) functions as a virulence factor in crucifers by eliciting chlorotic symptoms in infected plants. The ability to induce chlorosis has been associated previously with P6 through gene-swapping experiments between strains and through the development of transgenic plants that express P6. The primary role that has been identified for P6 in the CaMV infection cycle is to modify the host translation machinery to facilitate the translation of the polycistronic CaMV 35S RNA. This function for P6 has been designated as the translational transactivator (TAV) function. In the present study, we have characterized an unusual variant of P6, derived from CaMV strain D4, that does not induce chlorosis upon transformation into Arabidopsis thaliana. The level of D4 P6 produced in transgenic Arabidopsis line D4-2 was comparable to the amount found in transgenic plants homozygous for W260 and CM1841 P6, two versions of P6 that induce strong chlorotic symptoms and stunting in Arabidopsis. A complementation assay proved that P6 expressed in the D4-2 line was functional, as it could support the systemic infection of a CM1841 mutant that contained a lethal frame-shift mutation within gene VI. This complementation assay allowed us to separately assess the contribution of CM1841 gene VI to symptom development versus the contribution of other CM1841 genes. Furthermore, a previous study had shown that the TAV activity of D4 P6 was comparable to that of W260 P6. That comparative analysis of TAV function, coupled with the characterization of the D4-2 transgenic line in the present paper, indicates that the TAV function of P6 may play only a minor role in the development of chlorotic symptoms.
Collapse
Affiliation(s)
- Weichang Yu
- Department of Plant Microbiology and Pathology, University of Missouri, Columbia, Missouri 65211, USA
| | | | | |
Collapse
|
18
|
Haas M, Bureau M, Geldreich A, Yot P, Keller M. Cauliflower mosaic virus: still in the news. MOLECULAR PLANT PATHOLOGY 2002; 3:419-29. [PMID: 20569349 DOI: 10.1046/j.1364-3703.2002.00136.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
SUMMARY Taxonomic relationship: Cauliflower mosaic virus (CaMV) is the type member of the Caulimovirus genus in the Caulimoviridae family, which comprises five other genera. CaMV replicates its DNA genome by reverse transcription of a pregenomic RNA and thus belongs to the pararetrovirus supergroup, which includes the Hepadnaviridae family infecting vertebrates. Physical properties: Virions are non-enveloped isometric particles, 53 nm in diameter (Fig. 1). They are constituted by 420 capsid protein subunits organized following T= 7 icosahedral symmetry (Cheng, R.H., Olson, N.H. and Baker, T.S. (1992) Cauliflower mosaic virus: a 420 subunit (T= 7), multilayer structure. Virology, 16, 655-668). The genome consists of a double-stranded circular DNA of approximately 8000 bp that is embedded in the inner surface of the capsid. Viral proteins: The CaMV genome encodes six proteins, a cell-to-cell movement protein (P1), two aphid transmission factors (P2 and P3), the precursor of the capsid proteins (P4), a polyprotein precursor of proteinase, reverse transcriptase and ribonuclease H (P5) and an inclusion body protein/translation transactivator (P6). Hosts: The host range of CaMV is limited to plants of the Cruciferae family, i.e. Brassicae species and Arabidopsis thaliana, but some viral strains can also infect solanaceous plants. In nature, CaMV is transmitted by aphids in a non-circulative manner.
Collapse
Affiliation(s)
- Muriel Haas
- Institut de Biologie Moléculaire des Plantes CNRS, Université Louis Pasteur, 12 rue du Général Zimmer, 67084 Strasbourg Cedex, France
| | | | | | | | | |
Collapse
|
19
|
Li Y, Leisner SM. Multiple domains within the Cauliflower mosaic virus gene VI product interact with the full-length protein. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2002; 15:1050-1057. [PMID: 12437303 DOI: 10.1094/mpmi.2002.15.10.1050] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The Cauliflower mosaic virus (CaMV) gene VI product (P6) is a multifunctional protein essential for viral propagation. It is likely that at least some of these functions require P6 self-association. The work described here was performed to confirm that P6 self-associates and to identify domains involved in this interaction. Yeast two-hybrid analyses indicated that full-length P6 self-associates and that this interaction is specific. Additional analyses indicated that at least four independent domains bind to full-length P6. When a central domain (termed domain D3) was removed, these interactions were abolished. However, this deleted P6 was able to bind to the full-length wild-type protein and to isolated domain D3. Viruses lacking domain D3 were incapable of producing a systemic infection. Isolated domain D3 was capable of binding to at least two of the other domains but was unable to self-associate. This suggests that domain D3 facilitates P6 self-association by binding to the other domains but not itself. The presence of multiple domains involved in P6 self-association may help explain the ability of this protein to form the intracellular inclusions characteristic of caulimoviruses.
Collapse
Affiliation(s)
- Yongzhong Li
- Department of Biological Sciences, The University of Toledo, OH 43606, USA
| | | |
Collapse
|