1
|
Akbar A, Al Hashash H, Al-Ali E. Tomato yellow leaf curl virus (TYLCV) in Kuwait and global analysis of the population structure and evolutionary pattern of TYLCV. Virol J 2024; 21:308. [PMID: 39605076 PMCID: PMC11603944 DOI: 10.1186/s12985-024-02540-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 10/15/2024] [Indexed: 11/29/2024] Open
Abstract
Tomato yellow leaf curl virus (Family Geminiviridae, Genus Begomovirus) is a serious menace in the cultivation of tomato causing Tomato leaf curl disease (ToLCD). Recently, we presented the TYLCV isolates having additional genomic features (nucleotides insertions) characterized from the tomato fields of Kuwait adding up to the genetic diversity repertoire of these viruses. The widespread prevalence of disease in tropics across the continents, emergence of genetic variants and ever increasing complete genome sequences of virus isolates in public database warrant a global analysis to infer the genetic diversity, evolutionary pattern so as to devise suitable disease control stratagems. Molecular phylogeny suggested the monophyletic origin of the TYLCV Kuwait isolates and TYLCV reported from Asian countries revealing their genetic relatedness. Though genetic diversity of TYLCV reported from elsewhere (TYLCV others) is two folds higher (0.11765) than TYLCV Kuwait, a relatively high number of polymorphic sites in the latter imply their inherent genetic diversity. Neutrality tests of TYLCV as a whole suggest the operation of phenomenon of purifying selection indicating deleterious mutations are being weeded out from the population. Recombination analysis discloses that TYLCV Kuwait isolates are potential genetic recombinants or involved in the generation of potential recombinants as parents. The results of the neutrality tests were further strengthened by the outcome of codon substitution analysis indicating the operation of purifying selection in the codons of C1 ORF of TYLCV population as a whole and in the sub-group TYLCV Kuwait. The implications of these results are discussed.
Collapse
Affiliation(s)
- Abrar Akbar
- Kuwait Institute for Scientific Research, Shuwaikh, Kuwait.
| | | | - Ebtisam Al-Ali
- Kuwait Institute for Scientific Research, Shuwaikh, Kuwait
| |
Collapse
|
2
|
Alcaide C, Méndez-López E, Úbeda JR, Gómez P, Aranda MA. Characterization of Two Aggressive PepMV Isolates Useful in Breeding Programs. Viruses 2023; 15:2230. [PMID: 38005907 PMCID: PMC10674935 DOI: 10.3390/v15112230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Pepino mosaic virus (PepMV) causes significant economic losses in tomato crops worldwide. Since its first detection infecting tomato in 1999, aggressive PepMV variants have emerged. This study aimed to characterize two aggressive PepMV isolates, PepMV-H30 and PepMV-KLP2. Both isolates were identified in South-Eastern Spain infecting tomato plants, which showed severe symptoms, including bright yellow mosaics. Full-length infectious clones were generated, and phylogenetic relationships were inferred using their nucleotide sequences and another 35 full-length sequences from isolates representing the five known PepMV strains. Our analysis revealed that PepMV-H30 and PepMV-KLP2 belong to the EU and CH2 strains, respectively. Amino acid sequence comparisons between these and mild isolates identified 8 and 15 amino acid substitutions for PepMV-H30 and PepMV-KLP2, respectively, potentially involved in severe symptom induction. None of the substitutions identified in PepMV-H30 have previously been described as symptom determinants. The E236K substitution, originally present in the PepMV-H30 CP, was introduced into a mild PepMV-EU isolate, resulting in a virus that causes symptoms similar to those induced by the parental PepMV-H30 in Nicotiana benthamiana plants. In silico analyses revealed that this residue is located at the C-terminus of the CP and is solvent-accessible, suggesting its potential involvement in CP-host protein interactions. We also examined the subcellular localization of PepGFPm2E236K in comparison to that of PepGFPm2, focusing on chloroplast affection, but no differences were observed in the GFP subcellular distribution between the two viruses in epidermal cells of N. benthamiana plants. Due to the easily visible symptoms that PepMV-H30 and PepMV-KLP2 induce, these isolates represent valuable tools in programs designed to breed resistance to PepMV in tomato.
Collapse
Affiliation(s)
| | | | | | | | - Miguel A. Aranda
- ”Del Segura” Centre for Applied Biology (CEBAS), Consejo Superior de Investigaciones Científicas (CSIC), 30100 Murcia, Spain; (C.A.); (E.M.-L.); (J.R.Ú.); (P.G.)
| |
Collapse
|
3
|
Fortes IM, Fernández-Muñoz R, Moriones E. Crinivirus Tomato Chlorosis Virus Compromises the Control of Tomato Yellow Leaf Curl Virus in Tomato Plants by the Ty-1 Gene. PHYTOPATHOLOGY 2023; 113:1347-1359. [PMID: 36690608 DOI: 10.1094/phyto-09-22-0334-r] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Tomato yellow leaf curl disease (TYLCD) causes severe damage to tomato crops in warm regions of the world, and is associated with infections of several whitefly (Bemisia tabaci)-transmitted single-stranded (ss)DNA begomoviruses (genus Begomovirus, family Geminiviridae). The most widespread begomovirus isolates associated with TYLCD are those of the type strain of the Tomato yellow leaf curl virus species, known as Israel (TYLCV-IL). The Ty-1 gene is widely used in commercial tomato cultivars to control TYLCV-IL damage, providing resistance to the virus by restricting viral accumulation and tolerance to TYLCD by inhibiting disease symptoms. However, several reports suggest that TYLCV-IL-like isolates are adapting to the Ty-1 gene and are causes of concern for possibly overcoming the provided control. This is the case with TYLCV-IL IS76-like recombinants that have a small genome fragment acquired by genetic exchange from an isolate of Tomato yellow leaf curl Sardinia virus, another begomovirus species associated with TYLCD. Here we show that TYLCV-IL IS76-like isolates partially break down the TYLCD-tolerance provided by the Ty-1 gene and that virulence differences might exist between isolates. Interestingly, we demonstrate that mixed infections with an isolate of the crinivirus (genus Crinivirus, family Closteroviridae) species Tomato chlorosis virus (ToCV), an ssRNA virus also transmitted by B. tabaci and emerging worldwide in tomato crops, boosts the breakdown of the TYLCD-tolerance provided by the Ty-1 gene either with TYLCV-IL IS76-like or canonical TYLCV-IL isolates. Moreover, we demonstrate the incorporation of the Ty-2 gene in Ty-1-commercial tomatoes to restrict (no virus or virus traces, no symptoms) systemic infections of recombinant TYLCV-IL IS76-like and canonical TYLCV-IL isolates, even in the presence of ToCV infections, which provides more robust and durable control of TYLCD.
Collapse
Affiliation(s)
- Isabel M Fortes
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" (IHSM), Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Estación Experimental "La Mayora", E-29750 Algarrobo-Costa, Málaga, Spain
| | - Rafael Fernández-Muñoz
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" (IHSM), Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Estación Experimental "La Mayora", E-29750 Algarrobo-Costa, Málaga, Spain
| | - Enrique Moriones
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" (IHSM), Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Estación Experimental "La Mayora", E-29750 Algarrobo-Costa, Málaga, Spain
| |
Collapse
|
4
|
Marchant WG, Gautam S, Dutta B, Srinivasan R. Whitefly-Mediated Transmission and Subsequent Acquisition of Highly Similar and Naturally Occurring Tomato Yellow Leaf Curl Virus Variants. PHYTOPATHOLOGY 2022; 112:720-728. [PMID: 34370554 DOI: 10.1094/phyto-06-21-0248-r] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Begomoviruses are whitefly-transmitted viruses that infect many agricultural crops. Numerous reports exist on individual host plants harboring two or more begomoviruses. Mixed infection allows recombination events to occur among begomoviruses. However, very few studies have examined mixed infection of different isolates/variants/strains of a Begomovirus species in hosts. In this study, the frequency of mixed infection of tomato yellow leaf curl virus (TYLCV) variants in field-grown tomato was evaluated. At least 60% of symptomatic field samples were infected with more than one TYLCV variant. These variants differed by a few nucleotides and amino acids, resembling a quasispecies. Subsequently, in the greenhouse, single and mixed infection of two TYLCV variants (variant #2 and variant #4) that shared 99.5% nucleotide identity and differed by a few amino acids was examined. Plant-virus variant-whitefly interactions including transmission of one and/or two variants, variants' concentrations, competition between variants in inoculated tomato plants, and whitefly acquisition of one and/or two variants were assessed. Whiteflies transmitted both variants to tomato plants at similar frequencies; however, the accumulation of variant #4 was greater than that of variant #2 in tomato plants. Despite differences in variants' accumulation in inoculated tomato plants, whiteflies acquired variant #2 and variant #4 at similar frequencies. Also, whiteflies acquired greater amounts of TYLCV from singly infected plants than from mixed-infected plants. These results demonstrated that even highly similar TYLCV variants could differentially influence component (whitefly-variant-plant) interactions.
Collapse
Affiliation(s)
- Wendy G Marchant
- Department of Entomology, University of Georgia, Griffin, GA 30223
| | - Saurabh Gautam
- Department of Entomology, University of Georgia, Griffin, GA 30223
| | - Bhabesh Dutta
- Department of Plant Pathology, University of Georgia, Tifton, GA 31793
| | | |
Collapse
|
5
|
Souza TA, Silva JMF, Nagata T, Martins TP, Nakasu EYT, Inoue-Nagata AK. A Temporal Diversity Analysis of Brazilian Begomoviruses in Tomato Reveals a Decrease in Species Richness between 2003 and 2016. FRONTIERS IN PLANT SCIENCE 2020; 11:1201. [PMID: 32849745 PMCID: PMC7424291 DOI: 10.3389/fpls.2020.01201] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 07/23/2020] [Indexed: 06/11/2023]
Abstract
Understanding the molecular evolution and diversity changes of begomoviruses is crucial for predicting future outbreaks of the begomovirus disease in tomato crops. Thus, a molecular diversity study using high-throughput sequencing (HTS) was carried out on samples of infected tomato leaves collected between 2003 and 2016 from Central Brazil. DNA samples were subjected to rolling circle amplification and pooled in three batches, G1 (2003-2005, N = 107), G2 (2009-2011, N = 118), and G3 (2014-2016, N = 129) prior to HTS. Nineteen genome-sized geminivirus sequences were assembled, but only 17 were confirmed by PCR. In the G1 library, five begomoviruses and one capula-like virus were detected, but the number of identified viruses decreased to three begomoviruses in the G2 and G3 libraries. The bipartite begomovirus tomato severe rugose virus (ToSRV) and the monopartite tomato mottle leaf curl virus (ToMoLCV) were found to be the most prevalent begomoviruses in this survey. Our analyses revealed a significant increase in both relative abundance and genetic diversity of ToMoLCV from G1 to G3, and ToSRV from G1 to G2; however, both abundance and diversity decreased from G2 to G3. This suggests that ToMoLCV and ToSRV outcompeted other begomoviruses from G1 to G2 and that ToSRV was being outcompeted by ToMoLCV from G2 to G3. The possible evolutionary history of begomoviruses that were likely transferred from wild native plants and weeds to tomato crops after the introduction of the polyphagous vector Bemisia tabaci MEAM1 and the wide use of cultivars carrying the Ty-1 resistance gene are discussed, as well as the strengths and limitations of the use of HTS in identification and diversity analysis of begomoviruses.
Collapse
Affiliation(s)
- Tadeu Araujo Souza
- Department of Plant Pathology, University of Brasilia, Brasilia, Brazil
- Laboratory of Virology, Embrapa Vegetables, Brasilia, Brazil
| | | | - Tatsuya Nagata
- Department of Cell Biology, University of Brasilia, Brasilia, Brazil
| | - Thaís Pereira Martins
- Laboratory of Virology, Embrapa Vegetables, Brasilia, Brazil
- Department of Cell Biology, University of Brasilia, Brasilia, Brazil
| | | | - Alice Kazuko Inoue-Nagata
- Department of Plant Pathology, University of Brasilia, Brasilia, Brazil
- Laboratory of Virology, Embrapa Vegetables, Brasilia, Brazil
| |
Collapse
|
6
|
Pérez-Padilla V, Fortes IM, Romero-Rodríguez B, Arroyo-Mateos M, Castillo AG, Moyano C, De León L, Moriones E. Revisiting Seed Transmission of the Type Strain of Tomato yellow leaf curl virus in Tomato Plants. PHYTOPATHOLOGY 2020; 110:121-129. [PMID: 31584339 DOI: 10.1094/phyto-07-19-0232-fi] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Isolates of the Tomato yellow leaf curl virus (TYLCV) species (genus Begomovirus, family Geminiviridae) infect tomato crops worldwide, causing severe economic damage. Members of the whitefly Bemisia tabaci sibling species group are the vector of begomoviruses, including TYLCV. However, transmission of isolates of the type strain (Israel [IL]) of TYLCV (TYLCV-IL) by tomato seed has recently been reported based on infections occurring in Korea. Because of the consequences of this finding on the epidemiology and control of the disease caused by TYLCV and on the seed market, it was considered essential to revisit and expand those results to other tomato-growing areas. TYLCV DNA content was detected in tomato and Nicotiana benthamiana seed collected from plants naturally or experimentally infected with TYLCV-IL, supporting its seedborne nature. The TYLCV-IL replication detected in tomato and N. benthamiana flower reproductive organs demonstrated close association of this virus with the seed during maturation. However, the significant reduction of TYLCV DNA load after surface disinfections of tomato seed suggests that most of the virus is located externally, as contaminant of the seed coat. Transmission assays, carried out with seven tomato genotypes and more than 3,000 tomato plants, revealed no evidence of seed transmission from "surface-disinfected" or untreated seed for two Mediterranean isolates of TYLCV-IL. Similar results were also obtained for seed collected from TYLCV-IL-infected N. benthamiana plants. The results support the conclusion that TYLCV-IL is seedborne but is not seed transmitted in tomato or N. benthamiana, suggesting that transmission through seed is not a general property of TYLCV.
Collapse
Affiliation(s)
- Verónica Pérez-Padilla
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Ctra. de La Coruña, km 7.5, E-28040 Madrid, Spain
| | - Isabel M Fortes
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Estación Experimental "La Mayora", E-29750 Algarrobo-Costa, Málaga, Spain
| | - Beatriz Romero-Rodríguez
- IHSM-UMA-CSIC, Área de Genética, Facultad de Ciencias, Universidad de Málaga, E-29071, Málaga, Spain
| | - Manuel Arroyo-Mateos
- IHSM-UMA-CSIC, Área de Genética, Facultad de Ciencias, Universidad de Málaga, E-29071, Málaga, Spain
| | - Araceli G Castillo
- IHSM-UMA-CSIC, Área de Genética, Facultad de Ciencias, Universidad de Málaga, E-29071, Málaga, Spain
| | - Cristina Moyano
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Ctra. de La Coruña, km 7.5, E-28040 Madrid, Spain
| | - Leandro De León
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Ctra. de La Coruña, km 7.5, E-28040 Madrid, Spain
| | - Enrique Moriones
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Estación Experimental "La Mayora", E-29750 Algarrobo-Costa, Málaga, Spain
| |
Collapse
|
7
|
García-Arenal F, Zerbini FM. Life on the Edge: Geminiviruses at the Interface Between Crops and Wild Plant Hosts. Annu Rev Virol 2019; 6:411-433. [PMID: 31180812 DOI: 10.1146/annurev-virology-092818-015536] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Viruses constitute the largest group of emerging pathogens, and geminiviruses (plant viruses with circular, single-stranded DNA genomes) are the major group of emerging plant viruses. With their high potential for genetic variation due to mutation and recombination, their efficient spread by vectors, and their wide host range as a group, including both wild and cultivated hosts, geminiviruses are attractive models for the study of the evolutionary and ecological factors driving virus emergence. Studies on the epidemiological features of geminivirus diseases have traditionally focused primarily on crop plants. Nevertheless, knowledge of geminivirus infection in wild plants, and especially at the interface between wild and cultivated plants, is necessary to provide a complete view of their ecology, evolution, and emergence. In this review, we address the most relevant aspects of geminivirus variability and evolution in wild and crop plants and geminiviruses' potential to emerge in crops.
Collapse
Affiliation(s)
- Fernando García-Arenal
- Centro de Biotecnología y Genómica de Plantas UPM-INIA and Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Madrid, Spain;
| | - Francisco Murilo Zerbini
- Departamento de Fitopatologia, Instituto de Biotecnologia Aplicada à Agropecuária (BIOAGRO), and National Research Institute for Plant-Pest Interactions, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil;
| |
Collapse
|
8
|
Medina-Hernández D, Caamal-Chan MG, Vargas-Salinas M, Loera-Muro A, Barraza A, Holguín-Peña RJ. Molecular characterization and phylogenetic analysis of a Squash leaf curl virus isolate from Baja California Sur, Mexico. PeerJ 2019; 7:e6774. [PMID: 31024774 PMCID: PMC6475161 DOI: 10.7717/peerj.6774] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 03/12/2019] [Indexed: 01/22/2023] Open
Abstract
Background The begomovirus, squash leaf curl virus (SLCuV) is one of the causal agents of squash leaf curl (SLC) disease, which is among the most destructive diseases of cucurbit crops in tropical, subtropical, and semiarid regions worldwide. This disease was originally reported in the American continent with subsequent spread to the Mediterranean basin. Up to now, SLCuV has only been detected by PCR in Mexico. This study provides the first complete sequence of a Mexican SLCuV isolate from Baja California Sur (BCS). In addition, the genome of the virus was characterized, establishing its phylogenetic relationship with other SLCuV isolates. Methods The full genome (DNA-A and DNA-B) was amplified by rolling circle amplification, cloned and sequenced and the open reading frames (ORF) were annotated. Virus identification was performed according to the International Committee on Taxonomy of Viruses (ICTV) criteria for begomovirus species demarcation. To infer evolutionary relationship with other SLCuV isolates, phylogenetic and recombination analyses were performed. Results The SLCuV-[MX-BCS-La Paz-16] genome (DNA-A and DNA-B) had 99% identity with SLCuV reference genomes. The phylogenetic analysis showed that SLCuV-[MX-BCS-La Paz-16] is closely related to SLCuV isolates from the Middle East (Egypt, Israel, Palestine and Lebanon). No evidence of interspecific recombination was determined and iterons were 100% identical in all isolates in the SLCuV clade. Conclusions SLCuV-[MX-BCS-La Paz-16] showed low genetic variability in its genome, which could be due to a local adaptation process (isolate environment), suggesting that SLCuV isolates from the Middle East could have derived from the southwestern United States of America (USA) and northwestern Mexico.
Collapse
Affiliation(s)
- Diana Medina-Hernández
- Programa de Agricultura en Zonas Áridas, Centro de Investigaciones Biológicas del Noroeste, La Paz, Baja California Sur, México
| | - M Goretty Caamal-Chan
- Programa de Agricultura en Zonas Áridas, CONACYT-CIBNOR, Centro de Investigaciones Biológicas del Noroeste, La Paz, Baja California Sur, México
| | - Mayela Vargas-Salinas
- Programa de Agricultura en Zonas Áridas, Centro de Investigaciones Biológicas del Noroeste, La Paz, Baja California Sur, México
| | - Abraham Loera-Muro
- Programa de Agricultura en Zonas Áridas, CONACYT-CIBNOR, Centro de Investigaciones Biológicas del Noroeste, La Paz, Baja California Sur, México
| | - Aarón Barraza
- Programa de Agricultura en Zonas Áridas, CONACYT-CIBNOR, Centro de Investigaciones Biológicas del Noroeste, La Paz, Baja California Sur, México
| | - Ramón Jaime Holguín-Peña
- Programa de Agricultura en Zonas Áridas, Centro de Investigaciones Biológicas del Noroeste, La Paz, Baja California Sur, México
| |
Collapse
|
9
|
Díaz-Pendón JA, Sánchez-Campos S, Fortes IM, Moriones E. Tomato Yellow Leaf Curl Sardinia Virus, a Begomovirus Species Evolving by Mutation and Recombination: A Challenge for Virus Control. Viruses 2019; 11:E45. [PMID: 30634476 PMCID: PMC6356960 DOI: 10.3390/v11010045] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 12/28/2018] [Accepted: 01/08/2019] [Indexed: 12/12/2022] Open
Abstract
The tomato leaf curl disease (TYLCD) is associated with infections of several species of begomoviruses (genus Begomovirus, family Geminiviridae) and causes severe damage to tomatoes throughout tropical and sub-tropical regions of the world. Among others, the Tomato yellow leaf curl Sardinia virus (TYLCSV) species causes damage in the Mediterranean Basin since early outbreaks occurred. Nevertheless, scarce information is available about the diversity of TYLCSV. Here, we study this aspect based on the sequence information accessible in databases. Isolates of two taxonomically differentiated TYLCSV strains can be found in natural epidemics. Their evolution is mostly associated with mutation combined with selection and random genetic drift and also with inter-species recombination which is frequent in begomoviruses. Moreover, a novel putative inter-strain recombinant is reported. Although no significantly new biological behaviour was observed for this latter recombinant, its occurrence supports that as shown for other related begomoviruses, recombination continues to play a central role in the evolution of TYLCD-associated viruses and the dynamism of their populations. The confrontation of resistant tomatoes with isolates of different TYLCD-associated viruses including the novel recombinant demonstrates the existence of a variable virus x plant genotype interaction. This has already been observed for other TYLCD-associated viruses and is a challenge for the control of their impact on tomato production.
Collapse
Affiliation(s)
- Juan A Díaz-Pendón
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" (IHSM-UMA-CSIC), Consejo Superior de Investigaciones Científicas, Estación Experimental "La Mayora". Av. Dr. Wienberg s/n, Algarrobo-Costa, 29750 Málaga, Spain.
| | - Sonia Sánchez-Campos
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" (IHSM-UMA-CSIC), Consejo Superior de Investigaciones Científicas, Estación Experimental "La Mayora". Av. Dr. Wienberg s/n, Algarrobo-Costa, 29750 Málaga, Spain.
| | - Isabel María Fortes
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" (IHSM-UMA-CSIC), Consejo Superior de Investigaciones Científicas, Estación Experimental "La Mayora". Av. Dr. Wienberg s/n, Algarrobo-Costa, 29750 Málaga, Spain.
| | - Enrique Moriones
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" (IHSM-UMA-CSIC), Consejo Superior de Investigaciones Científicas, Estación Experimental "La Mayora". Av. Dr. Wienberg s/n, Algarrobo-Costa, 29750 Málaga, Spain.
| |
Collapse
|
10
|
Sánchez-Campos S, Domínguez-Huerta G, Díaz-Martínez L, Tomás DM, Navas-Castillo J, Moriones E, Grande-Pérez A. Differential Shape of Geminivirus Mutant Spectra Across Cultivated and Wild Hosts With Invariant Viral Consensus Sequences. FRONTIERS IN PLANT SCIENCE 2018; 9:932. [PMID: 30013589 PMCID: PMC6036239 DOI: 10.3389/fpls.2018.00932] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 06/11/2018] [Indexed: 05/12/2023]
Abstract
Geminiviruses (family Geminiviridae) possess single-stranded circular DNA genomes that are replicated by cellular polymerases in plant host cell nuclei. In their hosts, geminivirus populations behave as ensembles of mutant and recombinant genomes, known as viral quasispecies. This favors the emergence of new geminiviruses with altered host range, facilitating new or more severe diseases or overcoming resistance traits. In warm and temperate areas several whitefly-transmitted geminiviruses of the genus Begomovirus cause the tomato yellow leaf curl disease (TYLCD) with significant economic consequences. TYLCD is frequently controlled in commercial tomatoes by using the dominant Ty-1 resistance gene. Over a 45 day period we have studied the diversification of three begomoviruses causing TYLCD: tomato yellow leaf curl virus (TYLCV), tomato yellow leaf curl Sardinia virus (TYLCSV) and tomato yellow leaf curl Malaga virus (TYLCMaV, a natural recombinant between TYLCV and TYLCSV). Viral quasispecies resulting from inoculation of geminivirus infectious clones were examined in plants of susceptible tomato (ty-1/ty-1), heterozygous resistant tomato (Ty-1/ty-1), common bean, and the wild reservoir Solanum nigrum. Differences in virus fitness across hosts were observed while viral consensus sequences remained invariant. However, the complexity and heterogeneity of the quasispecies were high, especially in common bean and the wild host. Interestingly, the presence or absence of the Ty-1 allele in tomato did not lead to differences in begomovirus mutant spectra. However, the fitness decrease of TYLCSV and TYLCV in tomato at 45 dpi might be related to an increase in CP (Coat protein) mutation frequency. In Solanum nigrum the recombinant TYLCMaV, which showed lower fitness than TYLCSV, at 45 dpi actively explored Rep (Replication associated protein) ORF but not the overlapping C4. Our results underline the importance of begomovirus mutant spectra during infections. This is especially relevant in the wild reservoir of the viruses, which has the potential to maintain highly diverse mutant spectra without modifying their consensus sequences.
Collapse
Affiliation(s)
- Sonia Sánchez-Campos
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora,” Consejo Superior de Investigaciones Científicas-Universidad de Málaga, Estación Experimental “La Mayora,” Algarrobo-Costa, Málaga, Spain
| | - Guillermo Domínguez-Huerta
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora,” Consejo Superior de Investigaciones Científicas-Universidad de Málaga, Estación Experimental “La Mayora,” Algarrobo-Costa, Málaga, Spain
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora,” Consejo Superior de Investigaciones Científicas-Universidad de Málaga, Área de Genética, Facultad de Ciencias, Campus de Teatinos, Málaga, Spain
| | - Luis Díaz-Martínez
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora,” Consejo Superior de Investigaciones Científicas-Universidad de Málaga, Área de Genética, Facultad de Ciencias, Campus de Teatinos, Málaga, Spain
| | - Diego M. Tomás
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora,” Consejo Superior de Investigaciones Científicas-Universidad de Málaga, Estación Experimental “La Mayora,” Algarrobo-Costa, Málaga, Spain
| | - Jesús Navas-Castillo
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora,” Consejo Superior de Investigaciones Científicas-Universidad de Málaga, Estación Experimental “La Mayora,” Algarrobo-Costa, Málaga, Spain
| | - Enrique Moriones
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora,” Consejo Superior de Investigaciones Científicas-Universidad de Málaga, Estación Experimental “La Mayora,” Algarrobo-Costa, Málaga, Spain
| | - Ana Grande-Pérez
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora,” Consejo Superior de Investigaciones Científicas-Universidad de Málaga, Área de Genética, Facultad de Ciencias, Campus de Teatinos, Málaga, Spain
| |
Collapse
|
11
|
Moriones E, Praveen S, Chakraborty S. Tomato Leaf Curl New Delhi Virus: An Emerging Virus Complex Threatening Vegetable and Fiber Crops. Viruses 2017; 9:E264. [PMID: 28934148 PMCID: PMC5691616 DOI: 10.3390/v9100264] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 09/13/2017] [Accepted: 09/20/2017] [Indexed: 12/19/2022] Open
Abstract
The tomato leaf curl New Delhi virus (ToLCNDV) (genus Begomovirus, family Geminiviridae) represents an important constraint to tomato production, as it causes the most predominant and economically important disease affecting tomato in the Indian sub-continent. However, in recent years, ToLCNDV has been fast extending its host range and spreading to new geographical regions, including the Middle East and the western Mediterranean Basin. Extensive research on the genome structure, protein functions, molecular biology, and plant-virus interactions of ToLCNDV has been conducted in the last decade. Special emphasis has been given to gene silencing suppression ability in order to counteract host plant defense responses. The importance of the interaction with DNA alphasatellites and betasatellites in the biology of the virus has been demonstrated. ToLCNDV genetic variability has been analyzed, providing new insights into the taxonomy, host adaptation, and evolution of this virus. Recombination and pseudorecombination have been shown as motors of diversification and adaptive evolution. Important progress has also been made in control strategies to reduce disease damage. This review highlights these various achievements in the context of the previous knowledge of begomoviruses and their interactions with plants.
Collapse
Affiliation(s)
- Enrique Moriones
- Subtropical and Mediterranean Horticulture Institute "La Mayora" (IHSM-UMA-CSIC), Consejo Superior de Investigaciones Científicas, La Mayora Experimental Station, 29750 Algarrobo-Costa, Málaga, Spain.
| | - Shelly Praveen
- Advanced Center for Plant Virology, Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi 110 012, India.
| | - Supriya Chakraborty
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110 067, India.
| |
Collapse
|
12
|
Fortes IM, Sánchez-Campos S, Fiallo-Olivé E, Díaz-Pendón JA, Navas-Castillo J, Moriones E. A Novel Strain of Tomato Leaf Curl New Delhi Virus Has Spread to the Mediterranean Basin. Viruses 2016; 8:E307. [PMID: 27834936 PMCID: PMC5127021 DOI: 10.3390/v8110307] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Revised: 10/31/2016] [Accepted: 11/07/2016] [Indexed: 11/16/2022] Open
Abstract
Tomato leaf curl New Delhi virus (ToLCNDV) is a whitefly-transmitted bipartite begomovirus (genus Begomovirus, family Geminiviridae) that causes damage to multiple cultivated plant species mainly belonging to the Solanaceae and Cucurbitaceae families. ToLCNDV was limited to Asian countries until 2012, when it was first reported in Spain, causing severe epidemics in cucurbit crops. Here, we show that a genetically-uniform ToLCNDV population is present in Spain, compatible with a recent introduction. Analyses of ToLCNDV isolates reported from other parts of the world indicated that this virus has a highly heterogeneous population genetically with no evident geographical, plant host or year-based phylogenetic groups observed. Isolates emerging in Spain belong to a strain that seems to have evolved by recombination. Isolates of this strain seem adapted to infecting cucurbits, but poorly infect tomatoes.
Collapse
Affiliation(s)
- Isabel M Fortes
- Institute for Mediterranean and Subtropical Horticulture "La Mayora" (IHSM-UMA-CSIC), Consejo Superior de Investigaciones Científicas, La mayora Experimental Station, 29750 Algarrobo-Costa, Málaga, Spain.
| | - Sonia Sánchez-Campos
- Institute for Mediterranean and Subtropical Horticulture "La Mayora" (IHSM-UMA-CSIC), Consejo Superior de Investigaciones Científicas, La mayora Experimental Station, 29750 Algarrobo-Costa, Málaga, Spain.
| | - Elvira Fiallo-Olivé
- Institute for Mediterranean and Subtropical Horticulture "La Mayora" (IHSM-UMA-CSIC), Consejo Superior de Investigaciones Científicas, La mayora Experimental Station, 29750 Algarrobo-Costa, Málaga, Spain.
| | - Juan A Díaz-Pendón
- Institute for Mediterranean and Subtropical Horticulture "La Mayora" (IHSM-UMA-CSIC), Consejo Superior de Investigaciones Científicas, La mayora Experimental Station, 29750 Algarrobo-Costa, Málaga, Spain.
| | - Jesús Navas-Castillo
- Institute for Mediterranean and Subtropical Horticulture "La Mayora" (IHSM-UMA-CSIC), Consejo Superior de Investigaciones Científicas, La mayora Experimental Station, 29750 Algarrobo-Costa, Málaga, Spain.
| | - Enrique Moriones
- Institute for Mediterranean and Subtropical Horticulture "La Mayora" (IHSM-UMA-CSIC), Consejo Superior de Investigaciones Científicas, La mayora Experimental Station, 29750 Algarrobo-Costa, Málaga, Spain.
| |
Collapse
|
13
|
Du Z, Tang Y, He Z, She X. High genetic homogeneity points to a single introduction event responsible for invasion of Cotton leaf curl Multan virus and its associated betasatellite into China. Virol J 2015; 12:163. [PMID: 26445958 PMCID: PMC4596356 DOI: 10.1186/s12985-015-0397-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 10/01/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cotton leaf curl Multan virus (CLCuMuV) is a Whitefly Transmitted Geminivirus (WTG) endemic to the India subcontinent and is notorious as a causal agent of cotton leaf curl disease (CLCuD), a major constraint to cotton production in south Asia. We found CLCuMuV infecting Hibiscus rosa-sinensis in Guangzhou, China in 2006. The spread and evolution of the invading CLCuMuV were monitored in the following nine years. FINDINGS CLCuMuV spread rapidly in the last nine years and became established in Southern China. It infects at least five malvaceous plant species, H. rosa-sinensis, H. esculentus, Malvaiscus arboreus, Gossypium hirsutum and H. cannabinus. Complete nucleotide sequences of 34 geographically and/or temporally distinct CLCuMuV isolates were determined and analyzed together with six other publicly available genomes of CLCuMuV occurring in China. The 40 CLCuMuV isolates were found to share > 99 % nucleotide sequence identity with each other. In all cases tested, the CLCuMuVs were associated with a CLCuMuB. The 36 CLCuMuBs (30 sequenced by us) shared > 98 % nucleotide sequence identity. CONCLUSION The high genetic homogeneity of CLCuMuV and CLCuMuB in China suggests the establishment of them from a single founder event.
Collapse
Affiliation(s)
- Zhenguo Du
- Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China.,Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou, 510640, China
| | - Yafei Tang
- Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China.,Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou, 510640, China
| | - Zifu He
- Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China. .,Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou, 510640, China.
| | - Xiaoman She
- Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China.,Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou, 510640, China
| |
Collapse
|
14
|
Yang XL, Zhou MN, Qian YJ, Xie Y, Zhou XP. Molecular variability and evolution of a natural population of tomato yellow leaf curl virus in Shanghai, China. J Zhejiang Univ Sci B 2014; 15:133-42. [PMID: 24510706 PMCID: PMC3924389 DOI: 10.1631/jzus.b1300110] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 08/21/2013] [Indexed: 11/11/2022]
Abstract
Tomato yellow leaf curl virus (TYLCV), belonging to the genus Begomovirus of the family Geminiviridae, is emerging as the most destructive pathogen of tomato plants. Since the first report of TYLCV in Shanghai, China in 2006, TYLCV has spread rapidly to 13 provinces or autonomous regions of China. In this study, the molecular variability and evolution of TYLCV were monitored in Shanghai from its first upsurge in 2006 until 2010. Full-length genomic sequences of 26 isolates were obtained by rolling circle amplification. Sequence analysis showed that the intergenic region was the most variable, with a mean mutation rate of 4.81×10(-3) nucleotide substitutions per site per year. Genetic differentiation was found within isolates obtained from 2006, 2009, and 2010, though a linear increase in genetic diversity over time was not evident. Whilst significant parts of TYLCV genes were under negative selection, the C4 gene embedded entirely within the C1 gene had a tendency to undergo positive selection. Our results indicate that a mechanism of independent evolution of overlapping regions could apply to the natural population of TYLCV in Shanghai, China.
Collapse
|
15
|
Hosseinzadeh MR, Shams-Bakhsh M, Osaloo SK, Brown JK. Phylogenetic relationships, recombination analysis, and genetic variability among diverse variants of tomato yellow leaf curl virus in Iran and the Arabian Peninsula: further support for a TYLCV center of diversity. Arch Virol 2013; 159:485-97. [PMID: 24068582 DOI: 10.1007/s00705-013-1851-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Accepted: 08/07/2013] [Indexed: 11/28/2022]
Abstract
The discovery of five strains of TYLCV in Iran, including the most well-known and widespread, TYLCV-IL, spurred a detailed study of the full-length genomes of additional TYLCV field isolates and an in-depth analysis of phylogenetic relationships, extent of recombination, and genetic variability of TYLCV isolates within Iran and throughout the Arabian Peninsula. Phylogenetic analysis of complete genome sequences of TYLCV isolates from Iran and other countries revealed four monophyletic clusters could be differentiated based on geographical origin, indicating that recent dispersal of these populations (by the vector or by humans) from these four regions has occurred minimally, or not at all. Genetic analysis revealed that TYLCV-IL isolates from southern Iran possessed greater genetic variability than the northeastern isolates, a pattern that may be reflective of evolution driven by geographically dependent isolation. Similarly, isolates of TYLCV-OM originating from Oman showed greater genetic variability than TYLCV-OM variants from Iran. Major recombination events, which were detected in all strains of TYLCV had breakpoints initiating in the C1, C1/C4, C2/C3 and V1 open reading frames (ORFs) and ending at the non-coding region and the C1, C1/C2 and C3 ORFs. Hence, these regions have consistently served as hot spots for recombination worldwide during the evolution of all currently recognized isolates and strains of TYLCV.
Collapse
|
16
|
Sánchez-Campos S, Martínez-Ayala A, Márquez-Martín B, Aragón-Caballero L, Navas-Castillo J, Moriones E. Fulfilling Koch's postulates confirms the monopartite nature of tomato leaf deformation virus: a begomovirus native to the New World. Virus Res 2013; 173:286-93. [PMID: 23415858 DOI: 10.1016/j.virusres.2013.02.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2012] [Revised: 01/25/2013] [Accepted: 02/05/2013] [Indexed: 10/27/2022]
Abstract
The monopartite nature of the begomovirus tomato leaf deformation virus (ToLDeV) reported in Peru is demonstrated here. The DNA molecule cloned from an infected plant was shown to be fully infectious in tomatoes inducing leaf curling and stunted growth similar to that observed in field-infected plants. The viral DNA was reisolated from systemically infected tissues of inoculated plants, thus fulfilling Koch's postulates. ToLDeV was demonstrated, therefore, as the causal agent of the disease syndrome widespread in tomato crops in Peru. This virus was shown to be present throughout the major tomato-growing regions of this country, both in tomatoes and wild plants. Analyses of the sequences of 51 ToLDeV isolates revealed a significant genetic diversity with three major genetic types co-circulating in the population. A geographical segregation was observed which should be taken into account for virus control. Constraints to genetic divergence found for the C4 gene of ToLDeV isolates suggest a relevant function for this protein. The results obtained confirm ToLDeV as a monopartite begomovirus native to the New World, which is a significant finding for this region.
Collapse
Affiliation(s)
- S Sánchez-Campos
- Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora (IHSM-UMA-CSIC), Consejo Superior de Investigaciones Científicas, Estación Experimental La Mayora, 29750 Algarrobo-Costa, Málaga, Spain
| | | | | | | | | | | |
Collapse
|
17
|
Davino S, Miozzi L, Panno S, Rubio L, Davino M, Accotto GP. Recombination profiles between Tomato yellow leaf curl virus and Tomato yellow leaf curl Sardinia virus in laboratory and field conditions: evolutionary and taxonomic implications. J Gen Virol 2012; 93:2712-2717. [DOI: 10.1099/vir.0.045773-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Tomato yellow leaf curl Sardinia virus and Tomato yellow leaf curl virus have co-existed in Italian tomato crops since 2002 and have reached equilibrium, with plants hosting molecules of both species plus their recombinants being the most frequent case. Recombination events are studied in field samples, as well as in experimental co-infections, when recombinants were detected as early as 45 days following inoculation. In both conditions, recombination breakpoints were essentially absent in regions corresponding to ORFs V2, CP and C4, whereas density was highest in the 3′-terminal portion of ORF C3, next to the region where the two transcription units co-terminate. The vast majority of breakpoints were mapped at antisense ORFs, supporting speculation that the rolling-circle replication mechanism, and the existence of sense and antisense ORFs on the circular genome, may result in clashes between replication and transcription complexes.
Collapse
Affiliation(s)
- Salvatore Davino
- DEMETRA Department, University of Palermo, Viale delle Scienze Ed. 5, 90100 Palermo, Italy
| | - Laura Miozzi
- Istituto di Virologia Vegetale, CNR, Strada delle Cacce 73, 10135, Torino, Italy
| | - Stefano Panno
- DEMETRA Department, University of Palermo, Viale delle Scienze Ed. 5, 90100 Palermo, Italy
| | - Luis Rubio
- Instituto Valenciano de Investigaciones Agrarias (IVIA), crt Moncada-Náquera Km 4,5, 46113 Moncada (Valencia), Spain
| | - Mario Davino
- DISPA Department, University of Catania, Via S. Sofia 100, 95100 Catania, Italy
| | - Gian Paolo Accotto
- Istituto di Virologia Vegetale, CNR, Strada delle Cacce 73, 10135, Torino, Italy
| |
Collapse
|
18
|
Rajagopalan PA, Naik A, Katturi P, Kurulekar M, Kankanallu RS, Anandalakshmi R. Dominance of resistance-breaking cotton leaf curl Burewala virus (CLCuBuV) in northwestern India. Arch Virol 2012; 157:855-68. [PMID: 22307170 DOI: 10.1007/s00705-012-1225-y] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Accepted: 12/06/2011] [Indexed: 11/30/2022]
Abstract
Cotton leaf curl disease (CLCuD) is a major limitation to cotton production on the Indian subcontinent. A survey for viruses causing CLCuD was conducted during the 2009 and 2010 cropping seasons in the northwestern Indian cotton-growing belt in the states of Punjab, Haryana and Rajasthan. Partial sequences of 258 and full-length sequences of 22 virus genomes were determined. This study shows that the resistance-breaking cotton leaf curl Burewala virus (CLCuBuV) is now the dominant virus in many fields. The spread and establishment of the mutant CLCuBuV in northwestern India, the variation in its genomic sequence, its virulence and infectivity, and the implications for cotton breeding are discussed.
Collapse
Affiliation(s)
- Prem A Rajagopalan
- Plant-Virus Interactions Lab, Mahyco Research Center, Maharashtra Hybrid Seeds Company Limited, Dawalwadi, Post Box no-76, Jalna, Maharashtra 431 203, India
| | | | | | | | | | | |
Collapse
|
19
|
Lefeuvre P, Martin DP, Harkins G, Lemey P, Gray AJA, Meredith S, Lakay F, Monjane A, Lett JM, Varsani A, Heydarnejad J. The spread of tomato yellow leaf curl virus from the Middle East to the world. PLoS Pathog 2010; 6:e1001164. [PMID: 21060815 PMCID: PMC2965765 DOI: 10.1371/journal.ppat.1001164] [Citation(s) in RCA: 161] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2010] [Accepted: 09/27/2010] [Indexed: 11/18/2022] Open
Abstract
The ongoing global spread of Tomato yellow leaf curl virus (TYLCV; Genus Begomovirus, Family Geminiviridae) represents a serious looming threat to tomato production in all temperate parts of the world. Whereas determining where and when TYLCV movements have occurred could help curtail its spread and prevent future movements of related viruses, determining the consequences of past TYLCV movements could reveal the ecological and economic risks associated with similar viral invasions. Towards this end we applied Bayesian phylogeographic inference and recombination analyses to available TYLCV sequences (including those of 15 new Iranian full TYLCV genomes) and reconstructed a plausible history of TYLCV's diversification and movements throughout the world. In agreement with historical accounts, our results suggest that the first TYLCVs most probably arose somewhere in the Middle East between the 1930s and 1950s (with 95% highest probability density intervals 1905-1972) and that the global spread of TYLCV only began in the 1980s after the evolution of the TYLCV-Mld and -IL strains. Despite the global distribution of TYLCV we found no convincing evidence anywhere other than the Middle East and the Western Mediterranean of epidemiologically relevant TYLCV variants arising through recombination. Although the region around Iran is both the center of present day TYLCV diversity and the site of the most intensive ongoing TYLCV evolution, the evidence indicates that the region is epidemiologically isolated, which suggests that novel TYLCV variants found there are probably not direct global threats. We instead identify the Mediterranean basin as the main launch-pad of global TYLCV movements.
Collapse
Affiliation(s)
- Pierre Lefeuvre
- Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Observatory, Cape Town, South Africa
- CIRAD, UMR 53 PVBMT CIRAD-Université de la Réunion, Pôle de Protection des Plantes, Ligne Paradis, Saint Pierre, La Réunion, France
| | - Darren P. Martin
- Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Observatory, Cape Town, South Africa
- Centre for High-Performance Computing, Rosebank, Cape Town, South Africa
| | - Gordon Harkins
- South African National Bioinformatics Institute, University of the Western Cape, Cape Town, South Africa
| | - Philippe Lemey
- Department of Microbiology and Immunology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Alistair J. A. Gray
- Electron Microscope Unit, University of Cape Town, Rondebosch, Cape Town, South Africa
| | - Sandra Meredith
- Electron Microscope Unit, University of Cape Town, Rondebosch, Cape Town, South Africa
| | - Francisco Lakay
- Department of Molecular and Cell Biology, University of Cape Town, Rondebosch, Cape Town, South Africa
| | - Adérito Monjane
- Department of Molecular and Cell Biology, University of Cape Town, Rondebosch, Cape Town, South Africa
| | - Jean-Michel Lett
- CIRAD, UMR 53 PVBMT CIRAD-Université de la Réunion, Pôle de Protection des Plantes, Ligne Paradis, Saint Pierre, La Réunion, France
| | - Arvind Varsani
- Electron Microscope Unit, University of Cape Town, Rondebosch, Cape Town, South Africa
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Jahangir Heydarnejad
- Department of Plant Protection, College of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran
| |
Collapse
|
20
|
Díaz-Pendón JA, Cañizares MC, Moriones E, Bejarano ER, Czosnek H, Navas-Castillo J. Tomato yellow leaf curl viruses: ménage à trois between the virus complex, the plant and the whitefly vector. MOLECULAR PLANT PATHOLOGY 2010; 11:441-50. [PMID: 20618703 PMCID: PMC6640490 DOI: 10.1111/j.1364-3703.2010.00618.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
UNLABELLED Tomato yellow leaf curl disease (TYLCD) is one of the most devastating viral diseases affecting tomato crops in tropical, subtropical and temperate regions of the world. Here, we focus on the interactions through recombination between the different begomovirus species causing TYLCD, provide an overview of the interactions with the cellular genes involved in viral replication, and highlight recent progress on the relationships between these viruses and their vector, the whitefly Bemisia tabaci. TAXONOMY The tomato yellow leaf curl virus-like viruses (TYLCVs) are a complex of begomoviruses (family Geminiviridae, genus Begomovirus) including 10 accepted species: Tomato yellow leaf curl Axarquia virus (TYLCAxV), Tomato yellow leaf curl China virus (TYLCCNV), Tomato yellow leaf curl Guangdong virus (TYLCGuV), Tomato yellow leaf curl Indonesia virus (TYLCIDV), Tomato yellow leaf curl Kanchanaburi virus (TYLVKaV), Tomato yellow leaf curl Malaga virus (TYLCMalV), Tomato yellow leaf curl Mali virus (TYLCMLV), Tomato yellow leaf curl Sardinia virus (TYLCSV), Tomato yellow leaf curl Thailand virus (TYLCTHV), Tomato yellow leaf curl Vietnam virus (TYLCVNV) and Tomato yellow leaf curl virus(TYLCV). We follow the species demarcation criteria of the International Committee on Taxonomy of Viruses (ICTV), the most important of which is an 89% nucleotide identity threshold between full-length DNA-A component nucleotide sequences for begomovirus species. Strains of a species are defined by a 93% nucleotide identity threshold. HOST RANGE The primary host of TYLCVs is tomato (Solanum lycopersicum), but they can also naturally infect other crops [common bean (Phaseolus vulgaris), sweet pepper (Capsicum annuum), chilli pepper (C. chinense) and tobacco (Nicotiana tabacum)], a number of ornamentals [petunia (Petuniaxhybrida) and lisianthus (Eustoma grandiflora)], as well as common weeds (Solanum nigrum and Datura stramonium). TYLCVs also infect the experimental host Nicotiana benthamiana. DISEASE SYMPTOMS Infected tomato plants are stunted or dwarfed, with leaflets rolled upwards and inwards; young leaves are slightly chlorotic; in recently infected plants, fruits might not be produced or, if produced, are small and unmarketable. In common bean, some TYLCVs produce the bean leaf crumple disease, with thickening, epinasty, crumpling, blade reduction and upward curling of leaves, as well as abnormal shoot proliferation and internode reduction; the very small leaves result in a bushy appearance.
Collapse
Affiliation(s)
- Juan Antonio Díaz-Pendón
- Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora', Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Estación Experimental 'La Mayora', 29750 Algarrobo-Costa, Málaga, Spain
| | | | | | | | | | | |
Collapse
|
21
|
Gómez P, Sempere RN, Elena SF, Aranda MA. Mixed infections of Pepino mosaic virus strains modulate the evolutionary dynamics of this emergent virus. J Virol 2009; 83:12378-87. [PMID: 19759144 PMCID: PMC2786733 DOI: 10.1128/jvi.01486-09] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2009] [Accepted: 09/10/2009] [Indexed: 11/20/2022] Open
Abstract
Pepino mosaic virus (PepMV) is an emerging pathogen that causes severe economic losses in tomato crops (Solanum lycopersicum L.) in the Northern hemisphere, despite persistent attempts of control. In fact, it is considered one of the most significant viral diseases for tomato production worldwide, and it may constitute a good model for the analysis of virus emergence in crops. We have combined a population genetics approach with an analysis of in planta properties of virus strains to explain an observed epidemiological pattern. Hybridization analysis showed that PepMV populations are composed of isolates of two types (PepMV-CH2 and PepMV-EU) that cocirculate. The CH2 type isolates are predominant; however, EU isolates have not been displaced but persist mainly in mixed infections. Two molecularly cloned isolates belonging to each type have been used to examine the dynamics of in planta single infections and coinfection, revealing that the CH2 type has a higher fitness than the EU type. Coinfections expand the range of susceptible hosts, and coinfected plants remain symptomless several weeks after infection, so a potentially important problem for disease prevention and management. These results provide an explanation of the observed epidemiological pattern in terms of genetic and ecological interactions among the different viral strains. Thus, mixed infections appear to be contributing to shaping the genetic structure and dynamics of PepMV populations.
Collapse
Affiliation(s)
- P. Gómez
- Centro de Edafología y Biología Aplicada del Segura, Consejo Superior de Investigaciones Científicas, Apdo. Correos 164, 30100 Espinardo (Murcia), Spain, Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-UPV, 46022 Valencia, Spain, The Santa Fe Institute, Santa Fe, New Mexico 87501
| | - R. N. Sempere
- Centro de Edafología y Biología Aplicada del Segura, Consejo Superior de Investigaciones Científicas, Apdo. Correos 164, 30100 Espinardo (Murcia), Spain, Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-UPV, 46022 Valencia, Spain, The Santa Fe Institute, Santa Fe, New Mexico 87501
| | - S. F. Elena
- Centro de Edafología y Biología Aplicada del Segura, Consejo Superior de Investigaciones Científicas, Apdo. Correos 164, 30100 Espinardo (Murcia), Spain, Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-UPV, 46022 Valencia, Spain, The Santa Fe Institute, Santa Fe, New Mexico 87501
| | - M. A. Aranda
- Centro de Edafología y Biología Aplicada del Segura, Consejo Superior de Investigaciones Científicas, Apdo. Correos 164, 30100 Espinardo (Murcia), Spain, Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-UPV, 46022 Valencia, Spain, The Santa Fe Institute, Santa Fe, New Mexico 87501
| |
Collapse
|
22
|
Delatte H, Holota H, Moury B, Reynaud B, Lett JM, Peterschmitt M. Evidence for a founder effect after introduction of Tomato yellow leaf curl virus-mild in an insular environment. J Mol Evol 2007; 65:112-8. [PMID: 17609843 DOI: 10.1007/s00239-007-0005-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2007] [Accepted: 04/17/2007] [Indexed: 11/24/2022]
Abstract
Evolution of Tomato yellow leaf curl virus-Mild (TYLCV-Mld[RE]) (family Geminiviridae, genus Begomovirus) was monitored in La Réunion island from its first upsurge in 1997 until 2004. Two genome fragments, one comprising partial C4 and C1 open reading frames (ORFs), and the other comprising part of the V1 and V2 ORFs and part of the intergenic region were sequenced in 111 isolates. The very low initial diversity of TYLCV-Mld[RE] in La Réunion was followed by a quasi-linear increase in genetic diversity across years. In addition, the population effective size of TYLCV-Mld[RE] has undergone a sudden increase from 2001 to 2004, which is consistent with a founder effect due to the introduction of a small number of virus individuals in an insular environment. Surprisingly, one nucleotide substitution introducing a premature stop codon in the C4 ORF was observed in an increasing number of isolates in the population of TYLCV-Mld[RE] over time, contrasting with the other substitutions which were observed at low frequencies. This substitution which shortens the C4 protein by four amino acids may therefore have been selected during TYLCV-Mld[RE] evolution.
Collapse
Affiliation(s)
- Hélène Delatte
- CIRAD, UMR C53 PVBMT, CIRAD-Université de la Réunion, Pôle de Protection des Plantes, 7 ch. de l'IRAT, Ligne Paradis, 97410, Saint Pierre, Réunion, France.
| | | | | | | | | | | |
Collapse
|
23
|
Janssen D, Velasco L, Martín G, Segundo E, Cuadrado IM. Low genetic diversity among Cucumber vein yellowing virus isolates from Spain. Virus Genes 2007; 34:367-71. [PMID: 16927122 DOI: 10.1007/s11262-006-0026-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2005] [Accepted: 01/20/2006] [Indexed: 11/25/2022]
Abstract
The population structure and genetic diversity of Cucumber vein yellowing virus (CVYV) from Spain were estimated by analyses of partial nucleotide sequences of the P1-proteinase (P1-Pro), P3 protein (P3), and the coat protein (CP) coding regions. Analysis of 56 CVYV Spanish field isolates collected from 2001 to 2005 showed low genetic diversity (0.0026, 0.0013, and 0.0012 for the P1-Pro, P3, and CP regions, respectively). The ratio between nonsynonymous and synonymous substitutions was among the lowest found in a plant virus, indicating a strong negative selective pressure in the regions analyzed. Nonsynonymous nucleotide substitutions were only found within the P1-Pro regions, although these do not appear to have been selected with time. The results support the hypothesis that the Spanish CVYV population could derive from a single origin of recent introduction.
Collapse
Affiliation(s)
- Dirk Janssen
- Centro de Investigación y Formación Agraria, I.F.A.P.A., C.I.C.E. (Junta de Andalucía), Autovía del Mediterraneo Km 420, 04745 La Mojonera, Almeria, Spain.
| | | | | | | | | |
Collapse
|
24
|
Font MI, Rubio L, Martínez-Culebras PV, Jordá C. Genetic structure and evolution of natural populations of viruses causing the tomato yellow leaf curl disease in Spain. Virus Res 2007; 128:43-51. [PMID: 17524509 DOI: 10.1016/j.virusres.2007.04.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2006] [Revised: 03/30/2007] [Accepted: 04/02/2007] [Indexed: 10/23/2022]
Abstract
The population structure and genetic variation of two begomoviruses: tomato yellow leaf curl Sardinia virus (TYLCSV) and tomato yellow leaf curl virus (TYLCV) in tomato crops of Spain were studied from 1997 until 2001. Restriction digestion of a genomic region comprised of the CP coat protein gene (CPR) of 358 TYLC virus isolates enabled us to classify them into 14 haplotypes. Nucleotide sequences of two genomic regions: CPR, and the surrounding intergenic region (SIR) were determined for at least two isolates per haplotype. SIR was more variable than CPR and showed multiple recombination events whereas no recombination was detected within CPR. In all geographic regions except Murcia, the population was, or evolved to be composed of one predominant haplotype with a low genetic diversity (<0.0180). In Murcia, two successive changes of the predominant haplotype were observed in the best studied population. Phylogenetic analysis showed that the TYLCSV sequences determined clustered with sequences obtained from the GenBank of other TYLCSV Spanish isolates which were clearly separated from TYLCSV Italian isolates. Most of our TYLCV sequences were similar to those of isolates from Japan and Portugal, and the sequences obtained from TYLCV isolates from the Canary island of Lanzarote were similar to those of Caribbean TYLCV isolates.
Collapse
Affiliation(s)
- María Isabel Font
- Instituto Agroforestal Mediterraneo, Universidad Politécnica de Valencia, Camino de Vera, s/n, 46022 Valencia, Spain.
| | | | | | | |
Collapse
|
25
|
García-Andrés S, Accotto GP, Navas-Castillo J, Moriones E. Founder effect, plant host, and recombination shape the emergent population of begomoviruses that cause the tomato yellow leaf curl disease in the Mediterranean basin. Virology 2007; 359:302-12. [PMID: 17070885 DOI: 10.1016/j.virol.2006.09.030] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2006] [Revised: 08/10/2006] [Accepted: 09/19/2006] [Indexed: 11/28/2022]
Abstract
Tomato yellow leaf curl disease (TYLCD)-associated viruses present a highly structured population in the western Mediterranean basin, depending on host, geographical region and time. About 1,900 tomato and common bean samples were analyzed from which 111 isolates were characterized genetically based on a genome sequence that comprises coding and non-coding regions. Isolates of three distinct begomoviruses previously described were found (Tomato yellow leaf curl virus, TYLCV, Tomato yellow leaf curl Sardinia virus, TYLCSV, and Tomato yellow leaf curl Málaga virus, TYLCMalV), together with a novel recombinant virus. Mixed infections were detected in single plants, rationalizing the occurrence of recombinants. Except for TYLCV-type strain, single, undifferentiated subpopulations were present for each virus type, probably the result of founder effects. Limited genetic variation was observed in genomic regions, with selection against amino acid change in coding regions.
Collapse
Affiliation(s)
- Susana García-Andrés
- Estación Experimental "La Mayora", Consejo Superior de Investigaciones Científicas, 29750 Algarrobo-Costa, Málaga, Spain
| | | | | | | |
Collapse
|
26
|
Recombination in the TYLCV Complex: a Mechanism to Increase Genetic Diversity. Implications for Plant Resistance Development. TOMATO YELLOW LEAF CURL VIRUS DISEASE 2007. [PMCID: PMC7121651 DOI: 10.1007/978-1-4020-4769-5_7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
Mutation, reassortment, and recombination are the major sources of genetic variation of plant viruses (García-Arenal et al., 2001; Worobey & Holmes, 1999). During mixed infections, viruses can exchange genetic material through recombination or reassortment of segments (when the parental genomes are fragmented) if present in the same cell context of the host plant. Hybrid progeny viruses might then arise, some of them with novel pathogenic characteristics and well adapted in the population that can cause new emerging diseases. Genetic exchange provides organisms with a tool to combine sequences from different origins which might help them to quickly evolve (Crameri et al., 1998). In many DNA and RNA viruses, genetic exchange is achieved through recombination (Froissart et al., 2005; Martin et al., 2005). As increasing numbers of viral sequences become available, recombinant viruses are recognized to be frequent in nature and clear evidence is found for recombination to play a key role in virus evolution (Awadalla, 2003; Chenault & Melcher, 1994; Moonan et al., 2000; Padidam et al., 1999; Revers et al., 1996; García-Arenal et al., 2001; Moreno et al., 2004). Understanding the role of recombination in generating and eliminating variation in viral sequences is thus essential to understand virus evolution and adaptation to changing environments Knowledge about the existence and frequency of recombination in a virus population might help understanding the extent at which genes are exchanged and new virus variants arise. This information is essential, for example, to predict durability of genetic resistance because new recombinant variants might be formed with increased fitness in host-resistant genotypes. Determination of the extent and rate at which genetic rearrangement through recombination does occur in natural populations is also crucial if we use genome and genetic-mapping information to locate genes responsible of important phenotypes such as genes associated with virulence, transmission, or breakdown of resistance. Therefore, better estimates of the rate of recombination will facilitate the development of more robust strategies for virus control (Awadalla, 2003).
Collapse
|
27
|
Moury B, Desbiez C, Jacquemond M, Lecoq H. Genetic diversity of plant virus populations: towards hypothesis testing in molecular epidemiology. Adv Virus Res 2006; 67:49-87. [PMID: 17027677 DOI: 10.1016/s0065-3527(06)67002-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- B Moury
- INRA Avignon, Station de Pathologie Végétale, Domaine St Maurice BP94 84143 Montfavet cedex, France
| | | | | | | |
Collapse
|
28
|
Affiliation(s)
- S E Seal
- University of Greenwich at Medway, Chatham Maritime Kent ME4 4TB, United Kingdom
| | | | | |
Collapse
|
29
|
Abhary MK, Anfoka GH, Nakhla MK, Maxwell DP. Post-transcriptional gene silencing in controlling viruses of the Tomato yellow leaf curl virus complex. Arch Virol 2006; 151:2349-63. [PMID: 16862387 DOI: 10.1007/s00705-006-0819-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2005] [Accepted: 06/09/2006] [Indexed: 10/24/2022]
Abstract
Tomato yellow leaf curl disease (TYLCD) is caused by a group of geminiviruses that belong to the Tomato yellow leaf curl virus (TYLCV) complex and are transmitted by the whitefly (Bemisia tabaci Genn.). The disease causes great yield losses in many countries throughout the Mediterranean region and the Middle East. In this study, the efficacy of post-transcriptional gene silencing (PTGS) to control the disease caused by TYLCV complex was investigated. Non-coding conserved regions from the genome of TYLCV, Tomato yellow leaf curl virus-mild, tomato yellow leaf curl Sardinia virus, tomato yellow leaf curl Malaga virus, and tomato yellow leaf curl Sardinia virus-Spain [2] were selected and used to design a construct that can trigger broad resistance against different viruses that cause tomato yellow leaf curl disease. The silencing construct was cloned into an Agrobacterium-binary vector in sense and antisense orientation and used in transient assay to infiltrate tomato and Nicotiana benthamiana plants. A high level of resistance was obtained when plants were agro-infiltrated with an infectious clone of the Egyptian isolate of TYLCV (TYLCV-[EG]) or challenge inoculated with TYLCV, TYLCV-Mld, and TYLCSV-ES[2] using whitefly-mediated transmission 16-20 days post infiltration with the silencing construct. Results of the polymerase chain reaction showed that the resistance was effective against all three viruses. Furthermore, dot blot hybridization and PCR failed to detect viral DNA in symptomless, silenced plants. A positive correlation between resistance and the accumulation of TYLCV-specific siRNAs was observed in silenced plants. Together, these data provide compelling evidence that PTGS can be used to engineer geminivirus-resistant plants.
Collapse
Affiliation(s)
- M K Abhary
- Department of Biotechnology, Faculty of Agricultural Technology, Al-Balqa' Applied University, Al-Salt, Jordan
| | | | | | | |
Collapse
|
30
|
García-Andrés S, Monci F, Navas-Castillo J, Moriones E. Begomovirus genetic diversity in the native plant reservoir Solanum nigrum: Evidence for the presence of a new virus species of recombinant nature. Virology 2006; 350:433-42. [PMID: 16580040 DOI: 10.1016/j.virol.2006.02.028] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2005] [Revised: 02/06/2006] [Accepted: 02/20/2006] [Indexed: 10/24/2022]
Abstract
We examined the native plant host Solanum nigrum as reservoir of genetic diversity of begomoviruses that cause the tomato yellow leaf curl disease (TYLCD) emerging in southern Spain. Presence of isolates of all the species and strains found associated with TYLCD in this area was demonstrated. Mixed infections were common, which is a prerequisite for recombination to occur. In fact, presence of a novel recombinant begomovirus was demonstrated. Analysis of an infectious clone showed that it resulted from a genetic exchange between isolates of the ES strain of Tomato yellow leaf curl Sardinia virus and of the type strain of Tomato yellow leaf curl virus. The novel biological properties suggested that it is a step forward in the ecological adaptation to the invaded area. This recombinant represents an isolate of a new begomovirus species for which the name Tomato yellow leaf curl Axarquia virus is proposed. Spread into commercial tomatoes is shown.
Collapse
Affiliation(s)
- Susana García-Andrés
- Estación Experimental La Mayora, Consejo Superior de Investigaciones Científicas, 29750 Algarrobo-Costa, Málaga, Spain
| | | | | | | |
Collapse
|
31
|
Morilla G, Janssen D, García-Andrés S, Moriones E, Cuadrado IM, Bejarano ER. Pepper (Capsicum annuum) Is a Dead-End Host for Tomato yellow leaf curl virus. PHYTOPATHOLOGY 2005; 95:1089-97. [PMID: 18943307 DOI: 10.1094/phyto-95-1089] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
ABSTRACT Tomato yellow leaf curl (TYLC) is one of the most devastating pathogens affecting tomato (Lycopersicon esculentum) worldwide. The disease is caused by a complex of begomovirus species, two of which, Tomato yellow leaf curl Sardinia virus (TYLCSV) and Tomato yellow leaf curl virus (TYLCV), are responsible for epidemics in Southern Spain. TYLCV also has been reported to cause severe damage to common bean (Phaseolus vulgaris) crops. Pepper (Capsicum annuum) plants collected from commercial crops were found to be infected by isolates of two TYLCV strains: TYLCV-Mld[ES01/99], an isolate of the mild strain similar to other TYLCVs isolated from tomato crops in Spain, and TYLCV-[Alm], an isolate of the more virulent TYLCV type strain, not previously reported in the Iberian Peninsula. In this work, pepper, Nicotiana benthamiana, common bean, and tomato were tested for susceptibility to TYLCV-Mld[ES01/99]and TYLCV-[Alm] by Agrobacterium tumefaciens infiltration, biolistic bombardment, or Bemisia tabaci inoculation. Results indicate that both strains are able to infect plants of these species, including pepper. This is the first time that infection of pepper plants with TYLCV clones has been shown. Implications of pepper infection for the epidemiology of TYLCV are discussed.
Collapse
|
32
|
Marco CF, Aranda MA. Genetic diversity of a natural population of Cucurbit yellow stunting disorder virus. J Gen Virol 2005; 86:815-822. [PMID: 15722544 DOI: 10.1099/vir.0.80584-0] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
An analysis of nucleotide sequences in five coding and one non-coding genomic regions of 35Cucurbit yellow stunting disorder virus(CYSDV) isolates collected on a local scale over an 8 year period is reported here. In total, 2277 nt were sequenced for each isolate, representing about 13 % of the complete virus genome. Mean nucleotide diversity for the whole population in synonymous positions in the coding regions was 0·00068, whilst in the 5′ untranslated region (5′ UTR) of genomic RNA2, it was 0·00074; both of these values are very small, compared with estimates of nucleotide diversity for populations of other plant viruses. Nucleotide diversity was also determined independently for each of the ORFs and for the 5′ UTR of RNA2; the data showed that variability is not distributed evenly among the different regions of the viral genome, with the coat protein gene showing more diversity than the other four coding regions that were analysed. However, the low variability found precluded any inference of selection differences among gene regions. On the other hand, no evidence of selection associated with host adaptation was found. In contrast, at least a single amino acid change in the coat protein appears to have been selected with time.
Collapse
Affiliation(s)
- C F Marco
- Estación Experimental 'La Mayora', Consejo Superior de Investigaciones Científicas, 29750 Algarrobo-Costa, Málaga, Spain
| | - M A Aranda
- Centro de Edafología y Biología Aplicada del Segura (CEBAS), Consejo Superior de Investigaciones Científicas, Campus Universitario de Espinardo, Apdo Correos 164, 30100 Espinardo, Murcia, Spain
| |
Collapse
|
33
|
Morilla G, Krenz B, Jeske H, Bejarano ER, Wege C. Tête à tête of tomato yellow leaf curl virus and tomato yellow leaf curl sardinia virus in single nuclei. J Virol 2004; 78:10715-23. [PMID: 15367638 PMCID: PMC516410 DOI: 10.1128/jvi.78.19.10715-10723.2004] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2004] [Accepted: 05/12/2004] [Indexed: 11/20/2022] Open
Abstract
Since 1997 two distinct geminivirus species, Tomato yellow leaf curl Sardinia virus (TYLCSV) and Tomato yellow leaf curl virus (TYLCV), have caused a similar yellow leaf curl disease in tomato, coexisted in the fields of southern Spain, and very frequently doubly infected single plants. Tomatoes as well as experimental test plants (e.g., Nicotiana benthamiana) showed enhanced symptoms upon mixed infections under greenhouse conditions. Viral DNA accumulated to a similar extent in singly and doubly infected plants. In situ tissue hybridization showed TYLCSV and TYLCV DNAs to be confined to the phloem in both hosts, irrespective of whether they were inoculated individually or in combination. The number of infected nuclei in singly or doubly infected plants was determined by in situ hybridization of purified nuclei. The percentage of nuclei containing viral DNA (i.e., 1.4% in tomato or 6% in N. benthamiana) was the same in plants infected with either TYLCSV, TYLCV, or both. In situ hybridization of doubly infected plants, with probes that discriminate between both DNAs, revealed that at least one-fifth of infected nuclei harbored DNAs from both virus species. Such a high number of coinfected nuclei may explain why recombination between different geminivirus DNAs occurs frequently. The impact of these findings for epidemiology and for resistance breeding concerning tomato yellow leaf curl diseases is discussed.
Collapse
Affiliation(s)
- Gabriel Morilla
- Departmento de Biología Celular, Genética y Fisiología, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos, Málaga, Spain
| | | | | | | | | |
Collapse
|
34
|
Monci F, Sánchez-Campos S, Navas-Castillo J, Moriones E. A natural recombinant between the geminiviruses Tomato yellow leaf curl Sardinia virus and Tomato yellow leaf curl virus exhibits a novel pathogenic phenotype and is becoming prevalent in Spanish populations. Virology 2002; 303:317-26. [PMID: 12490393 DOI: 10.1006/viro.2002.1633] [Citation(s) in RCA: 150] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This work provides evidence of the significant contribution of recombination to the genetic diversification of emerging begomovirus populations. In southern Spain, Tomato yellow leaf curl Sardinia virus (TYLCSV) and Tomato yellow leaf curl virus (TYLCV) are distinct geminivirus species that coexist in the field and contribute to the tomato yellow leaf curl disease epidemic. A natural recombinant between TYLCSV and TYLCV has been detected and an infectious clone of a recombinant isolate (ES421/99) was obtained and characterized. Analysis of its genome showed that the recombination sites are located in the intergenic region in which a conserved stem-loop structure occurs and at the 3'-end of the replication enhancer protein open reading frame. ES421/99 exhibited a novel pathogenic phenotype that might provide it with a selective advantage over the parental genotypes. This agrees with results from field studies which revealed that the recombinant strain is becoming prevalent in the region in which it was detected.
Collapse
Affiliation(s)
- Francisco Monci
- Estación Experimental La Mayora Consejo Superior de Investigaciones Científicas, Algarrobo-Costa, Málaga, Spain
| | | | | | | |
Collapse
|