1
|
Zhang ZP, Wang Z, Lu JX, Yan S, He LQ, Wang PP, Qin C, Ren WC, Xu J, Wu JL, Liu XB, Ma W. In silico genome-wide analysis of homeodomain-leucine zipper transcription factors in Cannabis sativa L. Heliyon 2024; 10:e28045. [PMID: 38590863 PMCID: PMC10999869 DOI: 10.1016/j.heliyon.2024.e28045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 03/04/2024] [Accepted: 03/11/2024] [Indexed: 04/10/2024] Open
Abstract
HD-Zip (Homeodomain-Leucine Zipper) is a family of transcription factors unique to higher plants and plays a vital role in plant growth and development. Increasing research results show that HD-Zip transcription factors are widely involved in many life processes in plants. However, the HD-Zip transcription factor for cannabis, a valuable crop, has not yet been identified. The sequence characteristics, chromosome localization, system evolution, conservative motif, gene structure, and gene expression of the HD-Zip transcription factor in the cannabis genome were systematically studied. Real-time quantitative polymerase chain reaction (qRT-PCR) was used to verify its function. The results showed that cannabis contained 33 HD-Zip gene members. The number of amino acids is 136-849aa, the isoelectric point is 4.54-9.04, and the molecular weight is 23264.32-93147.87Da. Many cis-acting elements are corresponding to hormone and abiotic stress in the HD-Zip family promoter area of cannabis. Sequencing of the transcriptome at 5 tissue sites of hemp, stems, leaves, bracts, and seeds showed similar levels of expression of 33 members of the HD-Zip gene family at 5 tissue sites. Bioinformatics results show that HD-Zip expression is tissue-specific and may be influenced by hormones and environmental factors. This lays a foundation for further research on the gene function of HD-Zip.
Collapse
Affiliation(s)
- Zhan-Ping Zhang
- Pharmacy of College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Zhen Wang
- Pharmacy of College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jia-Xin Lu
- Pharmacy of College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Song Yan
- Pharmacy of College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Lian-Qing He
- Pharmacy of College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Pan-Pan Wang
- Pharmacy of College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Chen Qin
- Pharmacy of College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Wei-Chao Ren
- Pharmacy of College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jiao Xu
- Department of Chinese Medicine, Jiamusi Campus, Heilongjiang University of Chinese Medicine, Jiamusi, China
- Institute of Economic Crops, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Jian-Li Wu
- Academy of traditional Chinese medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xiu-Bo Liu
- Department of Chinese Medicine, Jiamusi Campus, Heilongjiang University of Chinese Medicine, Jiamusi, China
| | - Wei Ma
- Pharmacy of College, Heilongjiang University of Chinese Medicine, Harbin, China
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, China
| |
Collapse
|
2
|
Liu Y, Huang Y, Li Z, Feng M, Ge W, Zhong C, Xue R. Genome-wide identification of the TGA genes in common bean ( Phaseolus vulgaris) and revealing their functions in response to Fusarium oxysporum f. sp. phaseoli infection. Front Genet 2023; 14:1137634. [PMID: 36755571 PMCID: PMC9901207 DOI: 10.3389/fgene.2023.1137634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 01/12/2023] [Indexed: 01/22/2023] Open
Abstract
Fusarium wilt, which affects common bean all across the world, is caused by Fusarium oxysporum f. sp. Phaseoli (Fop). It is necessary to have functional genes in response to Fop infection because they might be used to manage disease. As a crucial regulator, TGA-binding transcription factor (TGA) is engaged in the defense mechanism of plants against pathogens. The role of TGA regulators in common bean in response to Fop infection, however, has not been documented. Hence, we performed genome-wide identified and characterized eight TGA genes in common bean. In this study, eight PvTGA genes were distributed on six chromosomes and classified into four subgroups. The PvTGA genes have the same conserved bZIP and DOG1 domains, but there are specific sequence structures in different PvTGAs. Phylogenetic and synteny analysis explained that PvTGA gene has a close genetic relationship with legume TGAs and that PvTGA03 and PvTGA05 may play an important role in evolution. Transcriptome data explained that expression levels of PvTGA genes showed diversity in different tissues. After Fop inoculation, the expression levels of PvTGA03 and PvTGA07 were significantly different between resistant and susceptible genotypes. Under SA treatment, the expression levels of PvTGA03, PvTGA04, PvTGA06, PvTGA07 and PvTGA08 were significantly different. These results imply that PvTGA03 and PvTGA07 play key roles in SA-mediated resistance to Fusarium wilt. Together, these findings advance knowledge of the PvTGA gene family in common bean and will help future studies aimed at reducing Fusarium wilt.
Collapse
Affiliation(s)
- Yu Liu
- College of Agronomy, Shenyang Agricultural University, Shenyang, China,Crop Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang, Liaoning, China,Liaoning Provincial Key Laboratory of Miscellaneous Grain Germplasm Innovation and Genetic Breeding, Shenyang, China
| | - Yuning Huang
- Crop Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang, Liaoning, China,Liaoning Provincial Key Laboratory of Miscellaneous Grain Germplasm Innovation and Genetic Breeding, Shenyang, China
| | - Zhao Li
- College of Agronomy, Shenyang Agricultural University, Shenyang, China
| | - Ming Feng
- Crop Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang, Liaoning, China,Liaoning Provincial Key Laboratory of Miscellaneous Grain Germplasm Innovation and Genetic Breeding, Shenyang, China
| | - Weide Ge
- Crop Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang, Liaoning, China,Liaoning Provincial Key Laboratory of Miscellaneous Grain Germplasm Innovation and Genetic Breeding, Shenyang, China
| | - Chao Zhong
- College of Agronomy, Shenyang Agricultural University, Shenyang, China,*Correspondence: Chao Zhong, ; Renfeng Xue,
| | - Renfeng Xue
- Crop Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang, Liaoning, China,Liaoning Provincial Key Laboratory of Miscellaneous Grain Germplasm Innovation and Genetic Breeding, Shenyang, China,*Correspondence: Chao Zhong, ; Renfeng Xue,
| |
Collapse
|
3
|
Baruah I, Baldodiya GM, Sahu J, Baruah G. Dissecting the Role of Promoters of Pathogen-sensitive Genes in Plant Defense. Curr Genomics 2020; 21:491-503. [PMID: 33214765 PMCID: PMC7604749 DOI: 10.2174/1389202921999200727213500] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 06/15/2020] [Accepted: 06/30/2020] [Indexed: 11/22/2022] Open
Abstract
Plants inherently show resistance to pathogen attack but are susceptible to multiple bacteria, viruses, fungi, and phytoplasmas. Diseases as a result of such infection leads to the deterioration of crop yield. Several pathogen-sensitive gene activities, promoters of such genes, associated transcription factors, and promoter elements responsible for crosstalk between the defense signaling pathways are involved in plant resistance towards a pathogen. Still, only a handful of genes and their promoters related to plant resistance have been identified to date. Such pathogen-sensitive promoters are accountable for elevating the transcriptional activity of certain genes in response to infection. Also, a suitable promoter is a key to devising successful crop improvement strategies as it ensures the optimum expression of the required transgene. The study of the promoters also helps in mining more details about the transcription factors controlling their activities and helps to unveil the involvement of new genes in the pathogen response. Therefore, the only way out to formulate new solutions is by analyzing the molecular aspects of these promoters in detail. In this review, we provided an overview of the promoter motifs and cis-regulatory elements having specific roles in pathogen attack response. To elaborate on the importance and get a vivid picture of the pathogen-sensitive promoter sequences, the key motifs and promoter elements were analyzed with the help of PlantCare and interpreted with available literature. This review intends to provide useful information for reconstructing the gene networks underlying the resistance of plants against pathogens.
Collapse
Affiliation(s)
| | | | - Jagajjit Sahu
- Address correspondence to these authors at the Department of Mycology & Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University (BHU), Varanasi-221005, Uttar Pradesh, India;, E-mail: ; Environment Division, Assam Science Technology & Environment Council, Bigyan Bhawan, Guwahati-781005, Assam, India; E-mail:
| | - Geetanjali Baruah
- Address correspondence to these authors at the Department of Mycology & Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University (BHU), Varanasi-221005, Uttar Pradesh, India;, E-mail: ; Environment Division, Assam Science Technology & Environment Council, Bigyan Bhawan, Guwahati-781005, Assam, India; E-mail:
| |
Collapse
|
4
|
Li B, Zheng JC, Wang TT, Min DH, Wei WL, Chen J, Zhou YB, Chen M, Xu ZS, Ma YZ. Expression Analyses of Soybean VOZ Transcription Factors and the Role of GmVOZ1G in Drought and Salt Stress Tolerance. Int J Mol Sci 2020; 21:E2177. [PMID: 32245276 PMCID: PMC7139294 DOI: 10.3390/ijms21062177] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 03/11/2020] [Accepted: 03/16/2020] [Indexed: 01/31/2023] Open
Abstract
Vascular plant one-zinc-finger (VOZ) transcription factor, a plant specific one-zinc-finger-type transcriptional activator, is involved in regulating numerous biological processes such as floral induction and development, defense against pathogens, and response to multiple types of abiotic stress. Six VOZ transcription factor-encoding genes (GmVOZs) have been reported to exist in the soybean (Glycine max) genome. In spite of this, little information is currently available regarding GmVOZs. In this study, GmVOZs were cloned and characterized. GmVOZ genes encode proteins possessing transcriptional activation activity in yeast cells. GmVOZ1E, GmVOZ2B, and GmVOZ2D gene products were widely dispersed in the cytosol, while GmVOZ1G was primarily located in the nucleus. GmVOZs displayed a differential expression profile under dehydration, salt, and salicylic acid (SA) stress conditions. Among them, GmVOZ1G showed a significantly induced expression in response to all stress treatments. Overexpression of GmVOZ1G in soybean hairy roots resulted in a greater tolerance to drought and salt stress. In contrast, RNA interference (RNAi) soybean hairy roots suppressing GmVOZ1G were more sensitive to both of these stresses. Under drought treatment, soybean composite plants with an overexpression of hairy roots had higher relative water content (RWC). In response to drought and salt stress, lower malondialdehyde (MDA) accumulation and higher peroxidase (POD) and superoxide dismutase (SOD) activities were observed in soybean composite seedlings with an overexpression of hairy roots. The opposite results for each physiological parameter were obtained in RNAi lines. In conclusion, GmVOZ1G positively regulates drought and salt stress tolerance in soybean hairy roots. Our results will be valuable for the functional characterization of soybean VOZ transcription factors under abiotic stress.
Collapse
Affiliation(s)
- Bo Li
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China; (B.L.); (Y.-B.Z.); (M.C.); (Y.-Z.M.)
| | - Jia-Cheng Zheng
- Anhui Science and Technology University, Fengyang 233100, China;
| | - Ting-Ting Wang
- College of Agriculture, Yangtze University; Hubei Collaborative Innovation Center for Grain Industry; Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Jingzhou 434025, China; (T.-T.W.); (W.-L.W.)
| | - Dong-Hong Min
- College of Agronomy, Northwest A&F University/State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, Shaanxi 712100, China;
| | - Wen-Liang Wei
- College of Agriculture, Yangtze University; Hubei Collaborative Innovation Center for Grain Industry; Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Jingzhou 434025, China; (T.-T.W.); (W.-L.W.)
| | - Jun Chen
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China; (B.L.); (Y.-B.Z.); (M.C.); (Y.-Z.M.)
| | - Yong-Bin Zhou
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China; (B.L.); (Y.-B.Z.); (M.C.); (Y.-Z.M.)
| | - Ming Chen
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China; (B.L.); (Y.-B.Z.); (M.C.); (Y.-Z.M.)
| | - Zhao-Shi Xu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China; (B.L.); (Y.-B.Z.); (M.C.); (Y.-Z.M.)
| | - You-Zhi Ma
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China; (B.L.); (Y.-B.Z.); (M.C.); (Y.-Z.M.)
| |
Collapse
|
5
|
Li B, Liu Y, Cui XY, Fu JD, Zhou YB, Zheng WJ, Lan JH, Jin LG, Chen M, Ma YZ, Xu ZS, Min DH. Genome-Wide Characterization and Expression Analysis of Soybean TGA Transcription Factors Identified a Novel TGA Gene Involved in Drought and Salt Tolerance. FRONTIERS IN PLANT SCIENCE 2019; 10:549. [PMID: 31156656 PMCID: PMC6531876 DOI: 10.3389/fpls.2019.00549] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 04/10/2019] [Indexed: 05/19/2023]
Abstract
The TGA transcription factors, a subfamily of bZIP group D, play crucial roles in various biological processes, including the regulation of growth and development as well as responses to pathogens and abiotic stress. In this study, 27 TGA genes were identified in the soybean genome. The expression patterns of GmTGA genes showed that several GmTGA genes are differentially expressed under drought and salt stress conditions. Among them, GmTGA17 was strongly induced by both stress, which were verificated by the promoter-GUS fusion assay. GmTGA17 encodes a nuclear-localized protein with transcriptional activation activity. Heterologous and homologous overexpression of GmTGA17 enhanced tolerance to drought and salt stress in both transgeinc Arabidopsis plants and soybean hairy roots. However, RNAi hairy roots silenced for GmTGA17 exhibited an increased sensitivity to drought and salt stress. In response to drought or salt stress, transgenic Arabidopsis plants had an increased chlorophyll and proline contents, a higher ABA content, a decreased MDA content, a reduced water loss rate, and an altered expression of ABA- responsive marker genes compared with WT plants. In addition, transgenic Arabidopsis plants were more sensitive to ABA in stomatal closure. Similarly, measurement of physiological parameters showed an increase in chlorophyll and proline contents, with a decrease in MDA content in soybean seedlings with overexpression hairy roots after drought and salt stress treatments. The opposite results for each measurement were observed in RNAi lines. This study provides new insights for functional analysis of soybean TGA transcription factors in abiotic stress.
Collapse
Affiliation(s)
- Bo Li
- College of Agronomy, Northwest A&F University/State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, China
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Ying Liu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Xi-Yan Cui
- College of Life Sciences, Jilin Agricultural University, Changchun, China
| | - Jin-Dong Fu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Yong-Bin Zhou
- College of Agronomy, Northwest A&F University/State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, China
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Wei-Jun Zheng
- College of Agronomy, Northwest A&F University/State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, China
| | - Jin-Hao Lan
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Long-Guo Jin
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Ming Chen
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - You-Zhi Ma
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Zhao-Shi Xu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
- *Correspondence: Zhao-Shi Xu, Dong-Hong Min,
| | - Dong-Hong Min
- College of Agronomy, Northwest A&F University/State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, China
- *Correspondence: Zhao-Shi Xu, Dong-Hong Min,
| |
Collapse
|
6
|
Juliana P, Singh RP, Singh PK, Poland JA, Bergstrom GC, Huerta-Espino J, Bhavani S, Crossa J, Sorrells ME. Genome-wide association mapping for resistance to leaf rust, stripe rust and tan spot in wheat reveals potential candidate genes. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2018; 131:1405-1422. [PMID: 29589041 PMCID: PMC6004277 DOI: 10.1007/s00122-018-3086-6] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Accepted: 03/12/2018] [Indexed: 05/19/2023]
Abstract
KEY MESSAGE Genome-wide association mapping in conjunction with population sequencing map and Ensembl plants was used to identify markers/candidate genes linked to leaf rust, stripe rust and tan spot resistance in wheat. Leaf rust (LR), stripe rust (YR) and tan spot (TS) are some of the important foliar diseases in wheat (Triticum aestivum L.). To identify candidate resistance genes for these diseases in CIMMYT's (International Maize and Wheat Improvement Center) International bread wheat screening nurseries, we used genome-wide association studies (GWAS) in conjunction with information from the population sequencing map and Ensembl plants. Wheat entries were genotyped using genotyping-by-sequencing and phenotyped in replicated trials. Using a mixed linear model, we observed that seedling resistance to LR was associated with 12 markers on chromosomes 1DS, 2AS, 2BL, 3B, 4AL, 6AS and 6AL, and seedling resistance to TS was associated with 14 markers on chromosomes 1AS, 2AL, 2BL, 3AS, 3AL, 3B, 6AS and 6AL. Seedling and adult plant resistance (APR) to YR were associated with several markers at the distal end of chromosome 2AS. In addition, YR APR was also associated with markers on chromosomes 2DL, 3B and 7DS. The potential candidate genes for these diseases included several resistance genes, receptor-like serine/threonine-protein kinases and defense-related enzymes. However, extensive LD in wheat that decays at about 5 × 107 bps, poses a huge challenge for delineating candidate gene intervals and candidates should be further mapped, functionally characterized and validated. We also explored a segment on chromosome 2AS associated with multiple disease resistance and identified seventeen disease resistance linked genes. We conclude that identifying candidate genes linked to significant markers in GWAS is feasible in wheat, thus creating opportunities for accelerating molecular breeding.
Collapse
Affiliation(s)
- Philomin Juliana
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Ravi P Singh
- International Maize and Wheat Improvement Center (CIMMYT), Apdo, Postal 6-641, 06600, Mexico, DF, Mexico
| | - Pawan K Singh
- International Maize and Wheat Improvement Center (CIMMYT), Apdo, Postal 6-641, 06600, Mexico, DF, Mexico
| | - Jesse A Poland
- Wheat Genetics Resource Center, Department of Plant Pathology and Department of Agronomy, Kansas State University, Manhattan, KS, 66506, USA
| | - Gary C Bergstrom
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Julio Huerta-Espino
- Campo Experimental Valle de México INIFAP, 56230, Chapingo, Edo. de México, Mexico
| | - Sridhar Bhavani
- CIMMYT, ICRAF house, United Nations Avenue, Gigiri, Village Market, Nairobi, 00621, Kenya
| | - Jose Crossa
- International Maize and Wheat Improvement Center (CIMMYT), Apdo, Postal 6-641, 06600, Mexico, DF, Mexico
| | - Mark E Sorrells
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
7
|
Fan G, Wang L, Deng M, Zhao Z, Dong Y, Zhang X, Li Y. Changes in Transcript Related to Osmosis and Intracellular Ion Homeostasis in Paulownia tomentosa under Salt Stress. FRONTIERS IN PLANT SCIENCE 2016; 7:384. [PMID: 27066034 PMCID: PMC4813090 DOI: 10.3389/fpls.2016.00384] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 03/13/2016] [Indexed: 05/03/2023]
Abstract
Paulownia tomentosa is an important economic and greening tree species that is cultivated widely, including salt environment. Our previous studies indicated its autotetraploid induced by colchicine showed better stress tolerance, but the underlying molecular mechanism related to ploidy and salt stress is still unclear. To investigate this issue, physiological measurements and transcriptome profiling of diploid and autotetraploid plants untreated and treated with NaCl were performed. Through the comparisons among four accessions, for one thing, we found different physiological changes between diploid and autotetraploid P. tomentosa; for another, and we detected many differentially expressed unigenes involved in salt stress response. These differentially expressed unigenes were assigned to several metabolic pathways, including "plant hormone signal transduction," "RNA transporter," "protein processing in endoplasmic reticulum," and "plant-pathogen interaction," which constructed the complex regulatory network to maintain osmotic and intracellular ion homeostasis. Quantitative real-time polymerase chain reaction was used to confirm the expression patterns of 20 unigenes. The results establish the foundation for the genetic basis of salt tolerance in P. tomentosa, which in turn accelerates Paulownia breeding and expands available arable land.
Collapse
Affiliation(s)
- Guoqiang Fan
- Department of Molecular Biology, Institute of Paulownia, Henan Agricultural UniversityZhengzhou, China
| | - Limin Wang
- Department of Molecular Biology, Institute of Paulownia, Henan Agricultural UniversityZhengzhou, China
| | - Minjie Deng
- Department of Molecular Biology, Institute of Paulownia, Henan Agricultural UniversityZhengzhou, China
| | - Zhenli Zhao
- Department of Molecular Biology, Institute of Paulownia, Henan Agricultural UniversityZhengzhou, China
| | - Yanpeng Dong
- Department of Molecular Biology, Institute of Paulownia, Henan Agricultural UniversityZhengzhou, China
| | - Xiaoshen Zhang
- Division of Plant Biotechnology, Zhengzhou Agriculture and Forestry Scientific Research InstituteZhengzhou, Henan, China
| | - Yongsheng Li
- Department of Molecular Biology, Institute of Paulownia, Henan Agricultural UniversityZhengzhou, China
| |
Collapse
|
8
|
Hadwiger LA. Anatomy of a nonhost disease resistance response of pea to Fusarium solani: PR gene elicitation via DNase, chitosan and chromatin alterations. FRONTIERS IN PLANT SCIENCE 2015; 6:373. [PMID: 26124762 PMCID: PMC4464173 DOI: 10.3389/fpls.2015.00373] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 05/11/2015] [Indexed: 05/18/2023]
Abstract
Of the multiplicity of plant pathogens in nature, only a few are virulent on a given plant species. Conversely, plants develop a rapid "nonhost" resistance response to the majority of the pathogens. The anatomy of the nonhost resistance of pea endocarp tissue against a pathogen of bean, Fusarium solani f.sp. phaseoli (Fsph) and the susceptibility of pea to F. solani f sp. pisi (Fspi) has been described cytologically, biochemically and molecular-biologically. Cytological changes have been followed by electron microscope and stain differentiation under white and UV light. The induction of changes in transcription, protein synthesis, expression of pathogenesis-related (PR) genes, and increases in metabolic pathways culminating in low molecular weight, antifungal compounds are described biochemically. Molecular changes initiated by fungal signals to host organelles, primarily to chromatin within host nuclei, are identified according to source of the signal and the mechanisms utilized in activating defense genes. The functions of some PR genes are defined. A hypothesis based on this data is developed to explain both why fungal growth is suppressed in nonhost resistance and why growth can continue in a susceptible reaction.
Collapse
Affiliation(s)
- Lee A. Hadwiger
- *Correspondence: Lee A. Hadwiger, Department of Plant Pathology, Washington State University, 100 Dairy Road, Pullman, WA 99163-6430, USA
| |
Collapse
|
9
|
Okubara PA, Dickman MB, Blechl AE. Molecular and genetic aspects of controlling the soilborne necrotrophic pathogens Rhizoctonia and Pythium. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2014; 228:61-70. [PMID: 25438786 DOI: 10.1016/j.plantsci.2014.02.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 01/22/2014] [Accepted: 02/03/2014] [Indexed: 05/20/2023]
Abstract
The soilborne necrotrophic pathogens Rhizoctonia and Pythium infect a wide range of crops in the US and worldwide. These pathogens pose challenges to growers because the diseases they cause are not adequately controlled by fungicides, rotation or, for many hosts, natural genetic resistance. Although a combination of management practices are likely to be required for control of Rhizoctonia and Pythium, genetic resistance remains a key missing component. This review discusses the recent deployment of introduced genes and genome-based information for control of Rhizoctonia, with emphasis on three pathosystems: Rhizoctonia solani AG8 and wheat, R. solani AG1-IA and rice, and R. solani AG3 or AG4 and potato. Molecular mechanisms underlying disease suppression will be addressed, if appropriate. Although less is known about genes and factors suppressive to Pythium, pathogen genomics and biological control studies are providing useful leads to effectors and antifungal factors. Prospects for resistance to Rhizoctonia and Pythium spp. will continue to improve with growing knowledge of pathogenicity strategies, host defense gene action relative to the pathogen infection process, and the role of environmental factors on pathogen-host interactions.
Collapse
Affiliation(s)
- Patricia A Okubara
- USDA-ARS, Root Disease and Biological Control Research Unit, Pullman, WA, 99164-6430, USA.
| | - Martin B Dickman
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843-2123, USA
| | - Ann E Blechl
- USDA-ARS, Crop Improvement and Utilization Research Unit, 800 Buchanan Street, Albany, CA, 94710-1105, USA
| |
Collapse
|
10
|
Cloning and Functional Analysis of <I>Magnaporthe oryzae</I>-Induced Promoter OsQ16p in Rice. ACTA AGRONOMICA SINICA 2013. [DOI: 10.3724/sp.j.1006.2012.00980] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
Hadwiger LA, Druffel K, Humann JL, Schroeder BK. Nuclease released by Verticillium dahliae is a signal for non-host resistance. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2013; 201-202:98-107. [PMID: 23352407 DOI: 10.1016/j.plantsci.2012.11.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Revised: 11/12/2012] [Accepted: 11/15/2012] [Indexed: 06/01/2023]
Abstract
A DNase released from the fungal pathogen of bean, Fusarium solani f. sp. phaseoli (Fsph), was previously shown to signal the activation of total disease resistance and activate pathogenesis-related (PR) genes in pea. Data in the current study which used the pea-endocarp model to research non-host resistance, indicated that DNase released by Verticillium dahliae (Vd), pathogenic on potato also has non-host resistance-inducing capabilities in peas. Other strains of Vd that release DNase are pathogenic on other plant species. DNase catalytic activity was also released from representative genera of other pathogenic fungi. Purified VdDNase induced pisatin and pea gene DRR49 (PR-10 gene) in pea endocarp tissue. VdDNase reduced the in vitro growth of Vd but completely inhibited that of F. solani f. sp. pisi (Fspi) and a Colletotrichum pathogen of potato. VdDNase (2 units) applied to pea endocarp tissue both broke resistance to Fsph and increased resistance to Fspi. Pea DNA damage generated both by the VdDNase enzyme and the intact Vd spores indicated that the host DNA alteration is a component of the non-host resistance response (innate immunity). These data support the previously reported inductive potential of fungal DNase and further implicate fungal DNases as signals in activating non-host resistance responses.
Collapse
Affiliation(s)
- Lee A Hadwiger
- Department of Plant Pathology, Washington State University, Pullman, WA 99164 6430, USA.
| | | | | | | |
Collapse
|
12
|
Hadwiger LA, Polashock J. Fungal mitochondrial DNases: effectors with the potential to activate plant defenses in nonhost resistance. PHYTOPATHOLOGY 2013; 103:81-90. [PMID: 23228145 DOI: 10.1094/phyto-04-12-0085-r] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Previous reports on the model nonhost resistance interaction between Fusarium solani f. sp. phaseoli and pea endocarp tissue have described the disease resistance-signaling role of a fungal DNase1-like protein. The response resulted in no further growth beyond spore germination. This F. solani f. sp. phaseoli DNase gene, constructed with a pathogenesis-related (PR) gene promoter, when transferred to tobacco, generated resistance against Pseudomonas syringe pv. tabaci. The current analytical/theoretical article proposes similar roles for the additional nuclear and mitochondrial nucleases, the coding regions for which are identified in newly available fungal genome sequences. The amino acid sequence homologies within functional domains are conserved within a wide array of fungi. The potato pathogen Verticillium dahliae nuclease was divergent from that of the saprophyte, yeast; however, the purified DNase from yeast also elicited nonhost defense responses in pea, including pisatin accumulation, PR gene induction, and resistance against a true pea pathogen. The yeast mitochondrial DNase gene (open reading frame) predictably codes for a signal peptide providing the mechanism for secretion. Mitochondrial DNase genes appear to provide an unlimited source of components for developing transgenic resistance in all transformable plants.
Collapse
Affiliation(s)
- Lee A Hadwiger
- Department of Plant Pathology, 100 Dairy Road, Washington State University, Pullman 99164-6430, USA.
| | | |
Collapse
|
13
|
Hadwiger LA. Pea-Fusarium solani interactions contributions of a system toward understanding disease resistance. PHYTOPATHOLOGY 2008; 98:372-9. [PMID: 18944184 DOI: 10.1094/phyto-98-4-0372] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
This mini-review points to the usefulness of the pea-Fusarium solani interaction in researching the biochemical and molecular aspects of the nonhost resistance components of peas. This interaction has been researched to evaluate the resistance roles of the phytoalexin, pisatin, the cuticle barrier, and the activation of the nonhost resistance response. Concurrently, evaluations of associated signaling processes and the tools possessed by the pathogen to contend with host obstacles were included. The properties of some pathogenesis-related genes of pea and their regulation and contribution to resistance are discussed. A proposed action of two biotic elicitors on both chromatin conformation and the architectural transcription factor, HMG A, is presented and includes time lines of events within the host immune response.
Collapse
Affiliation(s)
- Lee A Hadwiger
- Department of Plant Pathology, Washington State University, Pullman 99164, USA.
| |
Collapse
|
14
|
Gurr SJ, Rushton PJ. Engineering plants with increased disease resistance: how are we going to express it? Trends Biotechnol 2005; 23:283-90. [PMID: 15922080 DOI: 10.1016/j.tibtech.2005.04.009] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2004] [Revised: 03/21/2005] [Accepted: 04/07/2005] [Indexed: 10/25/2022]
Abstract
Precise control of transgene expression is pivotal to the engineering of plants with increased disease resistance. Many early attempts to boost disease resistance used constitutive overexpression of defence components but frequently this resulted in poor quality plants. It is now clear that the extensive cellular reprogramming associated with defence will reduce yields if uncontrolled defence reactions are activated in uninfected cells. Therefore, for many strategies pathogen-inducible promoters might be the most useful as they limit the cost of resistance by restricting expression to infection sites. Although progress to date has been hindered by a lack of suitable promoters, new research should reveal more potentially useful native promoters. Additionally, the first steps towards 'designer' synthetic promoters have proved encouraging.
Collapse
Affiliation(s)
- Sarah J Gurr
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| | | |
Collapse
|