1
|
Singh P, Tripathi V, Srivastava RK, Krishna A. Cellular localization and seasonal variation of GnRH and Bradykinin in the ovary of Heteropneustes fossilis (Bloch.) during its reproductive cycle. Theriogenology 2024; 223:89-97. [PMID: 38692038 DOI: 10.1016/j.theriogenology.2024.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/21/2024] [Accepted: 04/24/2024] [Indexed: 05/03/2024]
Abstract
The present study investigates the distribution and dynamics of gonadotropin-releasing hormone I (GnRH I) and bradykinin in the air-breathing catfish, Heteropneustes fossilis, in relation to the reproductive cycle. Changes in bradykinin, bradykinin B2-receptor, and ovarian GnRH I regulation were demonstrated during the reproductive cycle. The localization of GnRH I, bradykinin, and their respective receptors in the ovaries was investigated by immunohistochemistry, while their levels were quantified by slot/western blot followed by densitometry. GnRH I and its receptor were mainly localized in the cytoplasm of oocytes during the early previtellogenic phase. However, as the follicles grew larger, immunoreactivity was observed in the granulosa and theca cells of the late previtellogenic follicles. The ovaries showed significantly higher expression of GnRH I protein and its receptor during the early to mid-previtellogenic phase, suggesting their involvement in follicular development. Bradykinin and bradykinin B2-receptor showed a distribution pattern similar to that of GnRH I and its receptor. This study further suggested the possibility that bradykinin regulates GnRH I synthesis in the ovary. Thus, we show that the catfish ovary has a GnRH-bradykinin system and plays a role in follicular development and oocyte maturation in H. fossilis.
Collapse
Affiliation(s)
- Padmasana Singh
- Department of Zoology, University of Allahabad, Prayagraj, 211001, India.
| | - Vrajesh Tripathi
- Department of Animal Science, MJP Rohilkhand University, Bareilly, 243006, India
| | | | | |
Collapse
|
2
|
Taatjes DJ, Roth J. In focus in HCB. Histochem Cell Biol 2023; 160:491-493. [PMID: 38015267 DOI: 10.1007/s00418-023-02254-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Affiliation(s)
- Douglas J Taatjes
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, VT, 05405, USA.
| | - Jürgen Roth
- University of Zurich, 8091, Zurich, Switzerland
| |
Collapse
|
3
|
von Schalburg KR, Gowen BE, Christensen KA, Ignatz EH, Hall JR, Rise ML. The late-evolving salmon and trout join the GnRH1 club. Histochem Cell Biol 2023; 160:517-539. [PMID: 37566258 DOI: 10.1007/s00418-023-02227-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/18/2023] [Indexed: 08/12/2023]
Abstract
Although it is known that the whitefish, an ancient salmonid, expresses three distinct gonadotropin-releasing hormone (GnRH) forms in the brain, it has been thought that the later-evolving salmonids (salmon and trout) had only two types of GnRH: GnRH2 and GnRH3. We now provide evidence for the expression of GnRH1 in the gonads of Atlantic salmon by rapid amplification of cDNA ends, real-time quantitative PCR and immunohistochemistry. We examined six different salmonid genomes and found that each assembly has one gene that likely encodes a viable GnRH1 prepropeptide. In contrast to both functional GnRH2 and GnRH3 paralogs, the GnRH1 homeolog can no longer express the hormone. Furthermore, the viable salmonid GnRH1 mRNA is composed of only three exons, rather than the four exons that build the GnRH2 and GnRH3 mRNAs. Transcribed gnrh1 is broadly expressed (in 17/18 tissues examined), with relative abundance highest in the ovaries. Expression of the gnrh2 and gnrh3 mRNAs is more restricted, primarily to the brain, and not in the gonads. The GnRH1 proximal promoter presents composite binding elements that predict interactions with complexes that contain diverse cell fate and differentiation transcription factors. We provide immunological evidence for GnRH1 peptide in the nucleus of 1-year-old type A spermatogonia and cortical alveoli oocytes. GnRH1 peptide was not detected during other germ cell or reproductive stages. GnRH1 activity in the salmonid gonad may occur only during early stages of development and play a key role in a regulatory network that controls mitotic and/or meiotic processes within the germ cell.
Collapse
Affiliation(s)
- Kristian R von Schalburg
- Department of Biology, Electron Microscopy Laboratory, University of Victoria, Victoria, BC, V8W 3N5, Canada.
| | - Brent E Gowen
- Department of Biology, Electron Microscopy Laboratory, University of Victoria, Victoria, BC, V8W 3N5, Canada
| | - Kris A Christensen
- Department of Biology, University of Victoria, Victoria, BC, V8W 3N5, Canada
| | - Eric H Ignatz
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, A1C 5S7, Canada
| | - Jennifer R Hall
- Aquatic Research Cluster, CREAIT Network, Ocean Sciences Centre, Memorial University of Newfoundland, St. John's, NL, A1C 5S7, Canada
| | - Matthew L Rise
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, A1C 5S7, Canada
| |
Collapse
|
4
|
Honji RM, Caneppele D, Pandolfi M, Lo Nostro FL, Moreira RG. Characterization of the gonadotropin-releasing hormone system in the Neotropical teleost, Steindachneridion parahybae during the annual reproductive cycle in captivity. Gen Comp Endocrinol 2019; 273:73-85. [PMID: 29775567 DOI: 10.1016/j.ygcen.2018.05.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 04/21/2018] [Accepted: 05/06/2018] [Indexed: 02/05/2023]
Abstract
This study evaluated by immunohistochemical and Western blot methods, the distribution of two distinct gonadotropin-releasing hormones (GnRHs), corresponding to catfish GnRH (cfGnRH or GnRH1) and chicken-II GnRH (cGnRH-II or GnRH2), in Steindachneridion parahybae females in captivity, focusing these analyses on the reproductive cycle by semi-quantification of optical density (OD). Further, we found that the GnRH neuronal systems co-localized with their respective GnRH-associated peptides (GAPs). A group of neurons immunoreactive (ir) to GnRH1 were identified along the ventral region of the olfactory bulb (vOB) in the telencephalon (vTel) and in the main areas of the diencephalon (especially the medial basal hypothalamus, HBM), including fibers extending into the pituitary gland. In contrast, GnRH2 neurons were confined to the midbrain tegmentum, close to the ventricular surface, without projections to the pituitary gland. Moreover, a cfGAP (GnRH1)-specific band (9 kDa) was identified in the brain and pituitary gland, while a cGAP-II (GnRH2)-specific band (26 kDa) was observed only in the brain extract. During the reproductive cycle, GnRH1-ir presented greater OD values at the vitellogenic and regression stages than at the previtellogenic stage and after artificially induced to spawn. Larger GnRH2-ir neurons were observed during the reproductive cycle, but a higher OD was identified only in the regression stage compared with the other maturation stages. Finally, GnRH1 axons were found to be directed towards the pituitary, and this GnRH type, which is probably the hypophysiotropic form, can contribute to the reproductive dysfunction that occurs in S. parahybae females in captivity, whereas GnRH2 may act as a neuromodulator and/or neurotransmitter.
Collapse
Affiliation(s)
- Renato Massaaki Honji
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, Travessa 14, 321, 05508-090 São Paulo, SP, Brazil; Centro de Aquicultura, Universidade Estadual Paulista (UNESP), Campus de Jaboticabal, Via de Acesso Prof. Paulo Donato Castellane, S/N, 14884-900, Jaboticabal, São Paulo, Brazil.
| | - Danilo Caneppele
- Companhia Energética de São Paulo (CESP), Unidade de Hidrobiologia e Aquicultura, Rodovia dos Tamoios, km 38. 12260-000, Brazil
| | - Matias Pandolfi
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires & IBBEA, CONICET-UBA, Ciudad Universitaria (C1428EHA), Buenos Aires, Argentina
| | - Fabiana Laura Lo Nostro
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires & IBBEA, CONICET-UBA, Ciudad Universitaria (C1428EHA), Buenos Aires, Argentina
| | - Renata Guimarães Moreira
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, Travessa 14, 321, 05508-090 São Paulo, SP, Brazil
| |
Collapse
|
5
|
Miccoli A, Olivotto I, De Felice A, Leonori I, Carnevali O. Characterization and transcriptional profiles of Engraulis encrasicolus' GnRH forms. Reproduction 2016; 152:727-739. [PMID: 27651520 DOI: 10.1530/rep-16-0405] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 09/19/2016] [Indexed: 12/12/2022]
Abstract
The European anchovy Engraulis encrasicolus, a member of the Clupeiformes order, holds a great biological and economical importance. In the past, this species was mostly investigated with the aim of assessing its reproductive biology, trophic ecology, population dynamics and the relations existing with the physical environment. At present days, though, an almost complete lack of information afflicts its neuroendocrinology and reproductive physiology. The hypothalamic-pituitary-gonadal (HPG) axis at its highest levels was herein investigated. In this study, the gonadotropin-releasing hormone (GnRH), a neuropeptide underlying many reproduction-related processes, the most critical of which is the stimulation of gonadotropin synthesis and secretion from the pituitary gland, was cloned. Three forms (salmon GnRH, chicken-II GnRH and the species-specific type) were characterized in their full-length open-reading frames and, in accordance with other Clupeiformes species, the distinctive one was found to be the herring-type GnRH. We qualitatively and semiquantitatively evaluated the localizations of expressions and the temporal transcription patterns of the three GnRH forms in male and female specimens throughout their reproductive cycle as well as described their phylogeny with regard to teleost GnRH lineages, and, specifically, to other Clupeiformes species.
Collapse
Affiliation(s)
- Andrea Miccoli
- Department of Life and Environmental SciencesUniversità Politecnica delle Marche, Ancona, Italy.,CNR-National Research Council of ItalyISMAR-Marine Sciences Institute, Ancona, Italy
| | - Ike Olivotto
- Department of Life and Environmental SciencesUniversità Politecnica delle Marche, Ancona, Italy
| | - Andrea De Felice
- CNR-National Research Council of ItalyISMAR-Marine Sciences Institute, Ancona, Italy
| | - Iole Leonori
- CNR-National Research Council of ItalyISMAR-Marine Sciences Institute, Ancona, Italy
| | - Oliana Carnevali
- Department of Life and Environmental SciencesUniversità Politecnica delle Marche, Ancona, Italy
| |
Collapse
|
6
|
Migaud H, Ismail R, Cowan M, Davie A. Kisspeptin and seasonal control of reproduction in male European sea bass (Dicentrarchus labrax). Gen Comp Endocrinol 2012; 179:384-99. [PMID: 23036731 DOI: 10.1016/j.ygcen.2012.07.033] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Revised: 07/04/2012] [Accepted: 07/23/2012] [Indexed: 01/12/2023]
Abstract
In the present study, we developed and validated real-time quantitative RT-PCR assays for a suite of genes involved in the brain-pituitary gonadal axis in fish including kisspeptin genes and its receptor (Kiss1, kiss2, kissr4) and gonadotropin-releasing hormone genes (sbGnRH, sGnRH, cGnRHII) in the brain, and gonadotropin genes (fshβ and lhβ) in the pituitary. Sex steroid profiles (T and 11-KT) and gonadal development were also studied over a full annual reproductive cycle in adult male sea bass. The cDNA partial sequence of sea bass kissr4 encoding 185 amino acids showed a high degree of conservation with other fish kissr4 subtype. Results clearly showed a seasonal profile for Kiss1, kiss2 and kissr4 mRNAs. Kissr4, fshβ and lhβ levels increased gradually and peaked during spermatogenesis (January) while Kiss1, kiss2, cGnRH-II as well as steroids showed peaks during early spawning (March). No significant seasonal changes were observed for sbGnRH and sGnRH expression. These results support the possible involvement of the kiss genes and their receptor (kissr4) in the seasonal control sea bass reproduction. However, a lack of correlation between kiss genes and sbGnRH expression and the mismatch between kisspeptin and the onset of gonadotropin surge contrast with previous findings.
Collapse
Affiliation(s)
- H Migaud
- Reproduction and Genetics Group, School of Natural Sciences, Institute of Aquaculture, University of Stirling, Stirling, UK.
| | | | | | | |
Collapse
|
7
|
Trubiroha A, Kroupova H, Wuertz S, Frank SN, Sures B, Kloas W. Naturally-induced endocrine disruption by the parasite Ligula intestinalis (Cestoda) in roach (Rutilus rutilus). Gen Comp Endocrinol 2010; 166:234-40. [PMID: 19723526 DOI: 10.1016/j.ygcen.2009.08.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2009] [Revised: 08/18/2009] [Accepted: 08/22/2009] [Indexed: 11/29/2022]
Abstract
Fish represent the most frequently used vertebrate class for the investigation of endocrine disruption (ED) in wildlife. However, field studies are complicated by exposure scenarios involving a variety of anthropogenic and natural influences interfering with the endocrine system. One natural aspect rarely considered in ecotoxicological studies is how parasites modulate host physiology. Therefore, investigations were carried out to characterise the impacts of the parasitic tapeworm Ligula intestinalis on plasma sex steroid levels and expression of key genes associated with the reproduction in roach (Rutilus rutilus), a sentinel species for wildlife ED research. Parasitisation by L. intestinalis suppressed gonadal development in both genders of roach and analysis of plasma sex steroids revealed substantially lower levels of 17beta-oestradiol (E2) and 11-ketotestosterone (11-KT) in infected females as well as E2, 11-KT, and testosterone in infected males. Consistently, in both, infected females and males, expression of the oestrogen dependent genes such as vitellogenin and brain-type aromatase in liver and brain was reduced. Furthermore, parasitisation differentially modulated mRNA expression of the oestrogen and androgen receptors in brain and liver. Most prominently, liver expression of oestrogen receptor 1 was reduced in infected females but not in males, whereas expression of oestrogen receptor 2a was up-regulated in both genders. Further, insulin-like growth factor 1 mRNA in the liver was increased in infected females but not in males. Despite severe impacts on plasma sex steroids and pituitary gonadotropin expression, brain mRNA levels of gonadotropin-releasing hormone (GnRH) precursors encoding GnRH2 and GnRH3 were not affected by L. intestinalis-infection. In summary, the present results provide basic knowledge of the endocrine system in L. intestinalis-infected roach and clearly demonstrate that parasites can cause ED in fish.
Collapse
Affiliation(s)
- Achim Trubiroha
- Department of Aquaculture and Ecophysiology, Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 310, D-12587 Berlin, Germany.
| | | | | | | | | | | |
Collapse
|
8
|
Tsai PS, Sun B, Rochester JR, Wayne NL. Gonadotropin-releasing hormone-like molecule is not an acute reproductive activator in the gastropod, Aplysia californica. Gen Comp Endocrinol 2010; 166:280-8. [PMID: 19800884 DOI: 10.1016/j.ygcen.2009.09.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2009] [Revised: 09/15/2009] [Accepted: 09/25/2009] [Indexed: 10/20/2022]
Abstract
Gonadotropin-releasing hormone (GnRH) is indispensable for reproductive activation in all vertebrates. Although several GnRH-like molecules have been isolated from non-chordates, the function of GnRH in these taxa remains unclear. We previously isolated the full-length cDNA sequence of a prohormone containing a GnRH-like molecule, termed ap-GnRH, from the gastropod mollusk, Aplysia californica. In this study, we characterized the distribution and quantity of ap-GnRH peptide in several central and peripheral tissues of A. californica. Further, we performed in vivo and in vitro studies to explore the function of ap-GnRH in these animals. Immunohistochemistry and radioimmunoassay using specific antisera against ap-GnRH showed that pedal ganglia contained the highest level of ap-GnRH peptide, followed by cerebral ganglia, abdominal ganglia, and then buccal ganglia. Ovotestis did not contain detectable levels of ap-GnRH peptide. Injection of sexually mature and immature animals with synthetic ap-GnRH over a course of 10-14 days had no effects on ovotestis mass, reproductive tract mass, egg-laying, and penile eversion. ap-GnRH also failed to alter oocyte growth and egg-laying hormone accumulation and secretion. Interestingly, ap-GnRH injection triggered acute behavioral responses including the stimulation of parapodial opening, inhibition of feeding, and promotion of substrate attachment. Our results showed that in A. californica, ap-GnRH could modulate a wide range of behavioral attributes. Most strikingly, ap-GnRH is not involved in the acute activation of reproduction in a fashion similar to vertebrate GnRH.
Collapse
Affiliation(s)
- Pei-San Tsai
- Department of Integrative Physiology, University of Colorado, Boulder, CO 80309-0354, USA.
| | | | | | | |
Collapse
|
9
|
Trubiroha A, Wuertz S, Frank SN, Sures B, Kloas W. Expression of gonadotropin subunits in roach (Rutilus rutilus, Cyprinidae) infected with plerocercoids of the tapeworm Ligula intestinalis (Cestoda). Int J Parasitol 2009; 39:1465-73. [PMID: 19477180 DOI: 10.1016/j.ijpara.2009.05.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2009] [Revised: 04/27/2009] [Accepted: 05/07/2009] [Indexed: 11/29/2022]
Abstract
Plerocercoids of the tapeworm Ligula intestinalis (Cestoda: Bothriocephalidea) have been reported to inhibit gametogenesis of their intermediate fish hosts. However, mechanistic studies are rare and the proximate cues leading to impaired reproduction still remain unknown. In the present study we investigated the effects of infection by L. intestinalis on reproductive parameters of roach (Rutilus rutilus, Cyprinidae), a common fish host of this parasite. Field studies on roach demonstrated that in both genders infection prevented gonad development. As revealed by quantitative PCR, infection was accompanied by essentially lower pituitary expression of follicle-stimulating hormone beta-subunit (FSHbeta) and luteinizing hormone beta-subunit (LHbeta) mRNA compared with uninfected roach, providing clear evidence for gonadotropin-insufficiency as the cause of arrested gametogenesis. Under controlled laboratory conditions infected roach showed lower mRNA levels of FSHbeta but not of LHbeta, despite histology revealing similar gonad stages as in uninfected conspecifics. These findings indicate the involvement of FSH rather than LH in mediating effects of infection early during gonad development in roach. Moreover, the impact of L. intestinalis on reproductive parameters of roach appeared to be independent of the parasite burden. Together, these data provide valuable information on the role of FSH and LH as mediators of parasite-induced sterilization in a vertebrate and implicate the selective inhibition of host reproduction by L. intestinalis as a natural source of endocrine disruption in fish.
Collapse
Affiliation(s)
- Achim Trubiroha
- Department of Aquaculture and Ecophysiology, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, D-12587 Berlin, Germany.
| | | | | | | | | |
Collapse
|
10
|
Miranda LA, Strüssmann CA, Somoza GM. Effects of light and temperature conditions on the expression of GnRH and GtH genes and levels of plasma steroids in Odontesthes bonariensis females. FISH PHYSIOLOGY AND BIOCHEMISTRY 2009; 35:101-108. [PMID: 19189237 DOI: 10.1007/s10695-008-9232-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2008] [Accepted: 05/06/2008] [Indexed: 05/27/2023]
Abstract
In this study we examined the endocrine mediation between environmental factors (temperature and photoperiod) and the brain-pituitary-gonadal axis in females of pejerrey Odontesthes bonariensis. Changes in the expression of brain gonadotropin-releasing hormones (GnRHs) and gonadotropin (GtH) subunit [follicle stimulating-beta (FSH-beta), luteinizing hormone-beta (LH-beta), glycoprotein hormone-alpha (GPH-alpha)] genes, plasma gonadal steroids [estradiol (E(2)) and testosterone (T)], gonadal histology, and gonadosomatic index (GSI) in adult females exposed to combinations of short-day (8 h) or long-day (16 h) photoperiods and low (12 degrees C) or high (20 degrees C) temperatures after winter conditions (8 h light, 12 degrees C) were analyzed. Pejerrey females kept under the short photoperiod had low GSIs, and their ovaries contained only previtellogenic oocytes regardless of the experimental temperature. In contrast, females exposed to the long photoperiod had high GSIs and ovaries with vitellogenic oocytes at both temperatures. These fish also showed a significantly higher expression of sGnRH, pjGnRH, cGnRH-II (the three different GnRH variants found to date in the pejerrey brain), FSH-beta, LH-beta and GPH-alpha genes and plasma E(2 )levels than those at the shorter photoperiod. No significant changes were observed in plasma T levels. Based on these results, we concluded that the increase in day length but not that of temperature triggers the maturation of pejerrey females after the winter period of gonadal rest and that this occurs by an integrated stimulation of the various components of the brain-pituitary-gonad axis.
Collapse
Affiliation(s)
- L A Miranda
- Laboratorio de Ictiofisiología y Acuicultura, Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús, B7130IWA Chascomus, Buenos Aires, Argentina.
| | | | | |
Collapse
|
11
|
Guilgur LG, Ortí G, Strobl-Mazzulla PH, Fernandino JI, Miranda LA, Somoza GM. Characterization of the cDNAs encoding three GnRH forms in the pejerrey fish Odontesthes bonariensis (Atheriniformes) and the evolution of GnRH precursors. J Mol Evol 2007; 64:614-27. [PMID: 17557168 DOI: 10.1007/s00239-006-0125-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2006] [Accepted: 02/12/2007] [Indexed: 01/11/2023]
Abstract
Most vertebrates express two gonadotropin releasing hormone (GnRH) variants in brain tissue but there is an increasing number of fish species for which a third GnRH form has been detected. We characterized the precursors (cDNAs) of all three forms expressed in the brain of the pejerrey (silverside) fish, Odontesthes bonariensis (Atheriniformes): type I (GnRH-I; 440 bp), type II (GnRH-II; 529 bp), and type III (GnRH-III; 515 bp). The expression of these GnRHs precursors was also observed in peripheral tissues related to reproduction (gonads), visual and chemical senses (eye and olfactory epithelium), and osmoregulation (gill), suggesting that in teleost fish and possibly other vertebrates GnRH mediates directly or indirectly many other functions besides reproduction. We also present a comprehensive phylogenetic analysis including representatives of all chordate GnRH precursors characterized to date that supports the idea of two main paralogous GnRH lineages with different function. A "forebrain lineage" separates evolutionarily from the "midbrain lineage" as a result of an ancient duplication (ca. 600 million years ago). A third, fish-only clade of GnRH genes seems to have originated before the divergence of fish and tetrapods but retained only in fish. Phylogenetic analyses of GnRH precursors (DNA and protein sequences) under different optimality criteria converge on this result. Although alternative scenarios could not be statistically rejected in this study due to the relatively short size of the analyzed molecules, this hypothesis also receives support from chromosomal studies of synteny around the GnRH genes in vertebrates.
Collapse
Affiliation(s)
- Leonardo G Guilgur
- Laboratorio de Ictiofisiología y Acuicultura, Instituto de Investigaciones Biotecnológicas, Instituto Tecnológico de Chascomús CONICET-UNSAM, C.C. 164 B7130IWA, Chascomús, Provincia de Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|
12
|
Soverchia L, Carotti M, Andreu-Vieyra C, Mosconi G, Cannella N, Habibi H, Polzonetti-Magni AM. Role of gonadotropin-releasing hormone (GnRH) in the regulation of gonadal differentiation in the gilthead seabream (Sparus aurata). Mol Reprod Dev 2007; 74:57-67. [PMID: 16929534 DOI: 10.1002/mrd.20484] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
It has been proposed that gonadotropin-releasing hormone (GnRH) plays an autocrine/paracrine regulatory role in mammalian and fish ovaries. The marine teleost gilthead seabream is an interesting model since, during the life span of the fish, gonadal tissues develop first as testes, which then regress allowing the development of ovarian follicles. Recent studies carried out in ovaries of the gilthead seabream have demonstrated that various GnRH transcripts as well as GnRH splicing variants are expressed. The mRNA level of several GnRH forms in the female and male areas of the switching gonad, and their possible role in this process, were further investigated. The results here reported show that sGnRH, cGnRH-II, and sbGnRH transcripts are locally expressed during gilthead seabream gonadal differentiation; the expression of the three GnRH forms was found to differ among the morphologically defined areas of the switching gonad, as demonstrated by applying reverse transcription-polymerase chain reaction (RT-PCR), together with in situ hybridization, and semiquantitative PCR analyses. Moreover, the hypothesis that GnRH forms may regulate testicular regression via an apoptotic mechanism was investigated by analyzing the different areas of switching gonads for caspase-3 activity as a measure of apoptosis. Our results showed a marked increase of caspase-3 activity in the area corresponding to the regressing testes in which a significant decrease of testosterone production was also found. The present findings demonstrate that the changes in the endogenous GnRH transcripts could be related with the gonadal differentiation in gilthead seabream, and that exogenous GnRH plays a role by stimulating apoptosis in the degenerating testis.
Collapse
Affiliation(s)
- L Soverchia
- Dipartimento di Scienze Farmacologiche e Medicina Sperimentale, Università degli Studi di Camerino, via Scalzino 3, Camerino (MC), Italia
| | | | | | | | | | | | | |
Collapse
|
13
|
Kim J, Hayton WL, Schultz IR. Modeling the brain-pituitary-gonad axis in salmon. MARINE ENVIRONMENTAL RESEARCH 2006; 62 Suppl:S426-32. [PMID: 16716390 DOI: 10.1016/j.marenvres.2006.04.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
To better understand the complexity of the brain-pituitary-gonad axis (BPG) in fish, we developed a biologically based pharmacodynamic model capable of accurately predicting the normal functioning of the BPG axis in salmon. This first-generation model consisted of a set of 13 equations whose formulation was guided by published values for plasma concentrations of pituitary- (FSH, LH) and ovary- (estradiol, 17alpha,20beta-dihydroxy-4-pregnene-3-one) derived hormones measured in Coho salmon over an annual spawning period. In addition, the model incorporated pertinent features of previously published mammalian models and indirect response pharmacodynamic models. Model-based equations include a description of gonadotropin releasing hormone (GnRH) synthesis and release from the hypothalamus, which is controlled by environmental variables such as photoperiod and water temperature. GnRH stimulated the biosynthesis of mRNA for FSH and LH, which were also influenced by estradiol concentration in plasma. The level of estradiol in the plasma was regulated by the oocytes, which moved along a maturation progression. Estradiol was synthesized at a basal rate and as oocytes matured, stimulation of its biosynthesis occurred. The BPG model can be integrated with toxico-genomic, -proteomic data, allowing linkage between molecular based biomarkers and reproduction in fish.
Collapse
Affiliation(s)
- Jonghan Kim
- College of Pharmacy, Ohio State University, Columbus, OH, USA
| | | | | |
Collapse
|
14
|
Guilgur LG, Moncaut NP, Canário AVM, Somoza GM. Evolution of GnRH ligands and receptors in gnathostomata. Comp Biochem Physiol A Mol Integr Physiol 2006; 144:272-83. [PMID: 16716622 DOI: 10.1016/j.cbpa.2006.02.016] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2005] [Revised: 01/19/2006] [Accepted: 02/14/2006] [Indexed: 10/24/2022]
Abstract
Gonadotropin-releasing hormone (GnRH) is the final common signaling molecule used by the brain to regulate reproduction in all vertebrates. Until now, a total of 24 GnRH structural variants have been characterized from vertebrate, protochordate and invertebrate nervous tissue. Almost all vertebrates already investigated have at least two GnRH forms coexisting in the central nervous system. Furthermore, it is now well accepted that three GnRH forms are present both in early and late evolved teleostean fishes. The number and taxonomic distribution of the different GnRH variants also raise questions about the phylogenetic relationships between them. Most of the GnRH phylogenetic analyses are in agreement with the widely accepted idea that the GnRH family can be divided into three main groups. However, the examination of the gnathostome GnRH phylogenetic relationships clearly shows the existence of two main paralogous GnRH lineages: the ''midbrain GnRH" group and the "forebrain GnRH" group. The first one, represented by chicken GnRH-II forms, and the second one composed of two paralogous lineages, the salmon GnRH cluster (only represented in teleostean fish species) and the hypophysotropic GnRH cluster, also present in tetrapods. This analysis suggests that the two forebrain clades share a common precursor and reinforces the idea that the salmon GnRH branch has originated from a duplication of the hypophysotropic lineage. GnRH ligands exert their activity through G protein-coupled receptors of the rhodopsin-like family. As with the ligands, multiple GnRHRs are expressed in individual vertebrate species and phylogenetic analyses have revealed that all vertebrate GnRHRs cluster into three main receptor types. However, new data and a new phylogenetic analysis propose a two GnRHR type model, in which different rounds of gene duplications may have occurred in different groups within each lineage.
Collapse
Affiliation(s)
- Leonardo G Guilgur
- Laboratorio de Ictiofisiología y Acuicultura, IIB-INTECH, CONICET-Universidad Nacional de General San Martín, IIB-INTECH, Camino de Circunvalación Laguna Km. 6, CC 164, B7130IWA, Chascomús, Provincia de Buenos Aires, Argentina
| | | | | | | |
Collapse
|
15
|
Vickers ED, Laberge F, Adams BA, Hara TJ, Sherwood NM. Cloning and localization of three forms of gonadotropin-releasing hormone, including the novel whitefish form, in a salmonid, Coregonus clupeaformis. Biol Reprod 2003; 70:1136-46. [PMID: 14668205 DOI: 10.1095/biolreprod.103.023846] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Cells containing different GnRH peptides currently are thought to have distinct locations and functions in the brain. Lake whitefish is the first salmonid species to have three forms of GnRH peptide in contrast to later-evolving salmonids (salmon and trout) in which only two forms have been identified. Our objective was to isolate the cDNAs that code for these transcripts and to localize the transcripts for the three forms of GnRH in adult lake whitefish brain. Also, we provide phylogenetic analysis of these three whitefish genes based on their preprohormone sequence. From whitefish we isolated cDNAs encoding chicken (c)GnRH-II, salmon (s)GnRH, and the novel whitefish (wf)GnRH. The three cDNAs each encode only one GnRH and are placed in separate groups with phylogenetic analysis. A combination of in situ hybridization and immunocytochemistry with two antisera revealed neurons that expressed protein and/or mRNA for cGnRH-II in the midbrain and hindbrain; sGnRH in the olfactory nerve and bulb, ventral telencephalon, and preoptic area; and wfGnRH in the same latter two brain regions and the hypothalamus. Thus, in the anterior brain, cells containing sGnRH and wfGnRH were in the same brain areas but not at identical locations in the ventral telencephalon and preoptic area. Based on our results, we speculate that both sGnRH and wfGnRH have gonadotropin-releasing roles in the lake whitefish brain.
Collapse
Affiliation(s)
- Elaine D Vickers
- Department of Biology, University of Victoria, Victoria, British Columbia, Canada V8W 3N5
| | | | | | | | | |
Collapse
|