1
|
Zenclussen ML, Ulrich S, Bauer M, Fink B, Zenclussen AC, Schumacher A, Meyer N. Absence of Heme Oxygenase-1 Affects Trophoblastic Spheroid Implantation and Provokes Dysregulation of Stress and Angiogenesis Gene Expression in the Uterus. Cells 2024; 13:376. [PMID: 38474340 PMCID: PMC10930528 DOI: 10.3390/cells13050376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/08/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
The enzyme heme oxygenase-1 (HO-1) is pivotal in reproductive processes, particularly in placental and vascular development. This study investigated the role of HO-1 and its byproduct, carbon monoxide (CO), in trophoblastic spheroid implantation. In order to deepen our understanding of the role of HO-1 during implantation, we conducted in vivo experiments on virgin and pregnant mice, aiming to unravel the cellular and molecular mechanisms. Using siRNA, HO-1 was knocked down in JEG-3 and BeWo cells and trophoblastic spheroids were generated with or without CO treatment. Adhesion assays were performed after transferring the spheroids to RL-95 endometrial epithelial cell layers. Additionally, angiogenesis, stress, and toxicity RT2-Profiler™ PCR SuperArray and PCR analyses were performed in uterine murine samples. HO-1 knockdown by siRNA impeded implantation in the 3D culture model, but this effect could be reversed by CO. Uteruses from virgin Hmox1-/- females exhibited altered expression of angiogenesis and stress markers. Furthermore, there was a distinct expression pattern of cytokines and chemokines in uteruses from gestation day 14 in Hmox1-/- females compared to Hmox1+/+ females. This study strongly supports the essential role of HO-1 during implantation. Moreover, CO appears to have the potential to compensate for the lack of HO-1 during the spheroid attachment process. The absence of HO-1 results in dysregulation of angiogenesis and stress-related genes in the uterus, possibly contributing to implantation failure.
Collapse
Affiliation(s)
- Maria Laura Zenclussen
- Instituto de Salud y Ambiente del Litoral (ISAL, UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (UNL), Santa Fe 3000, Argentina
| | - Sina Ulrich
- Experimental Obstetrics and Gynecology, Medical Faculty, Otto-von-Guericke University Magdeburg, 39108 Magdeburg, Germany (A.C.Z.); (A.S.)
| | - Mario Bauer
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research-UFZ, 04318 Leipzig, Germany; (M.B.); (B.F.)
| | - Beate Fink
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research-UFZ, 04318 Leipzig, Germany; (M.B.); (B.F.)
| | - Ana Claudia Zenclussen
- Experimental Obstetrics and Gynecology, Medical Faculty, Otto-von-Guericke University Magdeburg, 39108 Magdeburg, Germany (A.C.Z.); (A.S.)
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research-UFZ, 04318 Leipzig, Germany; (M.B.); (B.F.)
- Perinatal Immunology, Saxonian Incubator for Clinical Translation (SIKT), Medical Faculty, Leipzig University, 04103 Leipzig, Germany
| | - Anne Schumacher
- Experimental Obstetrics and Gynecology, Medical Faculty, Otto-von-Guericke University Magdeburg, 39108 Magdeburg, Germany (A.C.Z.); (A.S.)
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research-UFZ, 04318 Leipzig, Germany; (M.B.); (B.F.)
- Perinatal Immunology, Saxonian Incubator for Clinical Translation (SIKT), Medical Faculty, Leipzig University, 04103 Leipzig, Germany
| | - Nicole Meyer
- Experimental Obstetrics and Gynecology, Medical Faculty, Otto-von-Guericke University Magdeburg, 39108 Magdeburg, Germany (A.C.Z.); (A.S.)
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research-UFZ, 04318 Leipzig, Germany; (M.B.); (B.F.)
- Perinatal Immunology, Saxonian Incubator for Clinical Translation (SIKT), Medical Faculty, Leipzig University, 04103 Leipzig, Germany
| |
Collapse
|
2
|
Zeng H, Fu Y, Shen L, Quan S. Integrated Analysis of Multiple Microarrays Based on Raw Data Identified Novel Gene Signatures in Recurrent Implantation Failure. Front Endocrinol (Lausanne) 2022; 13:785462. [PMID: 35197930 PMCID: PMC8859149 DOI: 10.3389/fendo.2022.785462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 01/10/2022] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Recurrent implantation failure (RIF) is an intricate complication following IVF-ET, which refers to the situation that good-quality embryos repeatedly fail to implant following two or more IVF cycles. Intrinsic molecular mechanisms underlying RIF have not yet been fully elucidated. With enormous improvement in high-throughput technologies, researchers screened biomarkers for RIF using microarray. However, the findings of published studies are inconsistent. An integrated study on the endometrial molecular determinants of implantation will help to improve pregnancy outcomes. OBJECTIVE To identify robust differentially expressed genes (DEGs) and hub genes in endometrium associated with RIF, and to investigate the diagnostic role of hub genes in RIF. METHODS Raw data from five GEO microarrays regarding RIF were analyzed. Integrated genetic expression analyses were performed using the Robust Rank Aggregation method to identify robust DEGs. Enrichment analysis and protein-protein interaction (PPI) analysis were further performed with the robust DEGs. Cytohubba was used to screen hub genes based on the PPI network. GSE111974 was used to validate the expression and diagnostic role of hub genes in RIF. RESULTS 1532 Robust DEGs were identified by integrating four GEO datasets. Enrichment analysis showed that the robust DEGs were mainly enriched in processes associated with extracellular matrix remodeling, adhesion, coagulation, and immunity. A total of 18 hub genes (HMGCS1, SQLE, ESR1, LAMC1, HOXB4, PIP5K1B, GNG11, GPX3, PAX2, TF, ALDH6A1, IDH1, SALL1, EYA1, TAGLN, TPD52L1, ST6GALNAC1, NNMT) were identified. 10 of the 18 hub genes were significantly differentially expressed in RIF patients as validated by GSE111974. The 10 hub genes (SQLE, LAMC1, HOXB4, PIP5K1B, PAX2, ALDH6A1, SALL1, EYA1, TAGLN, ST6GALNAC1) were effective in predicting RIF with an accuracy rate of 85%, specificity rate of 100%, and sensitivity rate of 88.9%. CONCLUSIONS Our integrated analysis identified novel robust DEGs and hub genes in RIF. The hub genes were effective in predicting RIF and will contribute to the understanding of comprehensive molecular mechanisms in RIF pathogenesis.
Collapse
Affiliation(s)
- Hong Zeng
- Department of Reproductive Medicine Center, Foshan Maternal and Child Health Care Hospital, Southern Medical University, Foshan, China
- Department of Gynecology and Obstetrics, NanFang Hospital, Southern Medical University, Guangzhou, China
| | - Yu Fu
- Department of Gynecology and Obstetrics, NanFang Hospital, Southern Medical University, Guangzhou, China
| | - Lang Shen
- Department of Gynecology and Obstetrics, NanFang Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Lang Shen, ; Song Quan,
| | - Song Quan
- Department of Gynecology and Obstetrics, NanFang Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Lang Shen, ; Song Quan,
| |
Collapse
|
3
|
Alarcón R, Rivera OE, Ingaramo PI, Tschopp MV, Dioguardi GH, Milesi MM, Muñoz-de-Toro M, Luque EH. Neonatal exposure to a glyphosate-based herbicide alters the uterine differentiation of prepubertal ewe lambs. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:114874. [PMID: 32599332 DOI: 10.1016/j.envpol.2020.114874] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/30/2020] [Accepted: 05/23/2020] [Indexed: 06/11/2023]
Abstract
The exposure to endocrine-disrupting compounds (EDCs), such as glyphosate-based herbicides (GBHs), during early life might alter female fertility. The aim of the present study was to evaluate the effects of neonatal exposure to a GBH on sheep uterine development. To achieve this, Friesian ewe lambs were exposed to GBH (2 mg/kg of body weight/day; n = 12) or vehicle (controls; n = 10) through s.c. injections, from postnatal day (PND) 1 to PND14; on PND45, the uteri were obtained to evaluate histomorphological and molecular parameters. Morphological parameters were determined by picrosirius-hematoxylin staining. Protein expression of Ki67 (as a cell proliferation marker), p27, and molecules involved in uterine organogenetic differentiation was measured by immunohistochemistry. We also determined the mRNA expression of the IGF molecular pathway by RT-PCR. Although histomorphology was not modified, the uteri of GBH-exposed ewe lambs showed lower cell proliferation, together with higher p27 protein expression. In addition, the uteri of GBH-exposed ewe lambs showed increased gene expression of insulin-like growth factor binding protein 3 (IGFBP-3), decreased expression of ERα in the luminal (LE) and glandular (GE) epithelia and in the subepithelial stroma (SS), and lower PR expression in the LE but higher in the GE and SS. In addition, GBH treatment decreased the uterine expression of Wnt5a in the GE, of Wnt7a in the SS, of β-catenin in the LE and GE, of Hoxa10 in the SS, and of Foxa2 in the GE as compared with controls. In conclusion, neonatal exposure to GBH decreased cell proliferation and altered the expression of molecules that control proliferation and development in the uterus. All these changes might have adverse consequences on uterine differentiation and functionality, affecting the female reproductive health of sheep. GBH may be responsible for uterine subfertility, acting as an EDC.
Collapse
Affiliation(s)
- Ramiro Alarcón
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Oscar E Rivera
- Instituto de Investigación sobre Producción Agropecuaria, Ambiente y Salud (IIPAAS), Facultad de Ciencias Agrarias, Universidad Nacional de Lomas de Zamora, Buenos Aires, Argentina
| | - Paola I Ingaramo
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional del Litoral, Santa Fe, Argentina
| | - María V Tschopp
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Gisela H Dioguardi
- Instituto de Investigación sobre Producción Agropecuaria, Ambiente y Salud (IIPAAS), Facultad de Ciencias Agrarias, Universidad Nacional de Lomas de Zamora, Buenos Aires, Argentina
| | - Mercedes M Milesi
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Mónica Muñoz-de-Toro
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Enrique H Luque
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional del Litoral, Santa Fe, Argentina.
| |
Collapse
|
4
|
Alarcón R, Ingaramo PI, Rivera OE, Dioguardi GH, Repetti MR, Demonte LD, Milesi MM, Varayoud J, Muñoz-de-Toro M, Luque EH. Neonatal exposure to a glyphosate-based herbicide alters the histofunctional differentiation of the ovaries and uterus in lambs. Mol Cell Endocrinol 2019; 482:45-56. [PMID: 30550814 DOI: 10.1016/j.mce.2018.12.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 12/10/2018] [Accepted: 12/10/2018] [Indexed: 12/12/2022]
Abstract
The aim of the present study was to compare the effect of oral and subcutaneous exposure to a glyphosate-based herbicide (GBH) on the female reproductive system, specifically in the ovaries and uterus of prepubertal lambs. To this end, ewe lambs were exposed to a s.c. (n: 5) or an oral (n: 5) environmentally relevant dose of GBH (2 mg/kg/day) or to vehicle (controls, n: 12), from postnatal day (PND) 1 to PND14. Serum glyphosate and aminomethylphosphonic acid (AMPA) concentrations were measured on PND15 and PND45. The ovaries and uterus were obtained and weighed on PND45. Ovarian follicular dynamics and uterine morphological features were determined by picrosirius-hematoxylin staining. The proliferation marker Ki67 was evaluated by immunohistochemistry in ovarian and uterine samples. Glyphosate but not AMPA was detected in serum of exposed lambs on PND15, whereas neither glyphosate nor AMPA were detected on PND45. Controls were negative for glyphosate and AMPA on PND15 and PND45. GBH exposure did not affect ovarian or uterine weight. However, on PND45, the ovary of GBH-exposed lambs showed altered follicular dynamics, increased proliferation of granulosa and theca cells, and decreased mRNA expression of FSHR and GDF9, whereas their uterus showed decreased cell proliferation but no alterations in the histomorphology or gene expression. In conclusion, GBH exposure altered the ovarian follicular dynamics and gene expression, and the proliferative activity of the ovaries and uterus of lambs. It is noteworthy that all the adverse effects found in the ovaries and uterus of both GBH-exposed groups were similar, independently of the administration route.
Collapse
Affiliation(s)
- Ramiro Alarcón
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Paola I Ingaramo
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Oscar E Rivera
- Instituto de Investigación sobre Producción Agropecuaria, Ambiente y Salud (IIPAAs), Facultad de Ciencias Agrarias, Universidad Nacional de Lomas de Zamora, Buenos Aires, Argentina
| | - Gisela H Dioguardi
- Instituto de Investigación sobre Producción Agropecuaria, Ambiente y Salud (IIPAAs), Facultad de Ciencias Agrarias, Universidad Nacional de Lomas de Zamora, Buenos Aires, Argentina
| | - María R Repetti
- Programa de Investigación y Análisis de Residuos y Contaminantes Químicos (PRINARC), Facultad de Ingeniería Química, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Luisina D Demonte
- Programa de Investigación y Análisis de Residuos y Contaminantes Químicos (PRINARC), Facultad de Ingeniería Química, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Mercedes M Milesi
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Jorgelina Varayoud
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Mónica Muñoz-de-Toro
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Enrique H Luque
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional del Litoral, Santa Fe, Argentina.
| |
Collapse
|
5
|
Wilson ML, McCoski SR, Geiger AJ, Akers RM, Johnson SE, Ealy AD. The influence of postnatal nutrition on reproductive tract and endometrial gland development in dairy calves. J Dairy Sci 2017; 100:3243-3256. [DOI: 10.3168/jds.2016-11880] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 12/19/2016] [Indexed: 12/21/2022]
|
6
|
Samborski A, Graf A, Krebs S, Kessler B, Bauersachs S. Deep sequencing of the porcine endometrial transcriptome on day 14 of pregnancy. Biol Reprod 2013; 88:84. [PMID: 23426436 DOI: 10.1095/biolreprod.113.107870] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
In pigs, conceptus attachment to the uterine surface epithelium starts around Day 14 of pregnancy preceded by a pronounced vascularization at the implantation zones, initiating the epitheliochorial placentation. To characterize the complex transcriptome changes in the endometrium in the course of initial conceptus attachment, deep sequencing of endometrial RNA samples of pregnant animals (n = 4) and corresponding cyclic controls (n = 4) was performed using Illumina RNA-Seq. The obtained sequence reads were mapped to the porcine genome, and relative expression values were calculated for the analysis of differential gene expression. Statistical analysis revealed 1933 differentially expressed genes (false discovery rate 1%), 1229 with higher and 704 with lower mRNA concentration, in the samples from pregnant animals. Expression of selected genes was validated by the use of quantitative real-time RT-PCR. The RNA-Seq data were compared to results of a microarray study of bovine endometrium on Day 18 of pregnancy and additional related data sets. Bioinformatics analysis revealed for the genes with higher mRNA concentration in pregnant samples strong overrepresentation, particularly for immune-related functional terms but also for apoptosis and cell adhesion. Overrepresented terms for the genes with lower mRNA concentration in pregnant samples were related to extracellular region, ion transport, cell adhesion, and lipid and steroid metabolic process. In conclusion, RNA-Seq analysis revealed comprehensive transcriptome differences in porcine endometrium between Day 14 of pregnancy and corresponding cyclic endometrium and highlighted new processes and pathways probably involved in regulation of noninvasive implantation in the pig.
Collapse
Affiliation(s)
- Anastazia Samborski
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Munich, Germany
| | | | | | | | | |
Collapse
|
7
|
Wang Y, Fu D, Luo P, He X. Identification of the immune expressed sequence tags of pearl oyster (Pinctada martensii, Dunker 1850) responding to Vibrio alginolyticus challenge by suppression subtractive hybridization. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2012; 7:243-7. [DOI: 10.1016/j.cbd.2012.03.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Revised: 03/21/2012] [Accepted: 03/22/2012] [Indexed: 01/01/2023]
|
8
|
Hayashi K, Yoshioka S, Reardon SN, Rucker EB, Spencer TE, DeMayo FJ, Lydon JP, MacLean JA. WNTs in the neonatal mouse uterus: potential regulation of endometrial gland development. Biol Reprod 2010; 84:308-19. [PMID: 20962251 DOI: 10.1095/biolreprod.110.088161] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
The WNTs are secreted proteins that control essential developmental processes, such as embryonic patterning, cell growth, migration, and differentiation. In mice, three members of the Wnt gene family (Wnt4, Wnt5a, and Wnt7a) have been studied extensively in the female reproductive tract. The present study determined effects of postnatal day and exposure to diethylstilbestrol (DES) on Wnt and Fzd gene expression in the mouse uterus as well as the biological role of Wnt11 in postnatal mouse uterine development and function. Wnt4, Wnt5a, Wnt7a, Wnt7b, Wnt11, Wnt16, Fzd6, and Fzd10 were detected by in situ hybridization in the neonatal mouse uterus. In situ hybridization analyses revealed that Wnt4, Wnt5a, and Wnt16 were localized in the endometrial stroma, whereas Wnt7a, Wnt7b, Wnt11, Fzd6, and Fzd10 were in the uterine epithelia of neonatal mice. Exposure of mice to estrogen or estrogen receptor agonists during critical development periods inhibits endometrial adenogenesis. In the present study, DES-induced disruption of endometrial gland development was associated with reduction or suppression of Wnt4, Wnt5a, Wnt7a, Wnt11, Wnt16, and Fzd10. Ablation of Wnt11, an epithelial-expressed, DES-regulated gene, in the neonatal uterus did not affect endometrial adenogenesis or expression of other Wnt genes. Interestingly, Wnt11-deleted uteri had more endometrial glands on Postnatal Day 10. Although CTNNB1 expression was not affected by ablation of Wnt11, Vangl2 was inhibited in the uteri of Wnt11(d/d) mice. These results support the idea that a number of different Wnt genes are potential regulators for uterine morphogenesis; however, Wnt11 does not have a direct effect on uterine development.
Collapse
Affiliation(s)
- Kanako Hayashi
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, Illinois 62901, USA.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Xie Y, Li F, Wang B, Li S, Wang D, Jiang H, Zhang C, Yu K, Xiang J. Screening of genes related to ovary development in Chinese shrimp Fenneropenaeus chinensis by suppression subtractive hybridization. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2010; 5:98-104. [PMID: 20403774 DOI: 10.1016/j.cbd.2010.02.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2009] [Revised: 02/01/2010] [Accepted: 02/01/2010] [Indexed: 11/16/2022]
Abstract
The ovary of triploid shrimp Fenneropenaeus chinensis was apparently impaired compared to that of the diploid shrimp at the same age. Therefore triploid shrimp ovary is possible to be taken as a model to understand the mechanism of ovary development of shrimp compared to that of the ovary of diploid shrimp at the same age. In the present study, a suppression subtractive hybridization (SSH) technique was applied to identify differentially expressed genes in the ovary between diploid and triploid shrimp. For the forward library (RNA from the ovary of triploid shrimp as the tester), 54 genes were identified. For the reverse library (RNA from the ovary of diploid shrimp as the tester), 16 genes were identified. The identified genes encoded proteins with multiple functions, including extracellular matrix components, cytoskeleton, cell growth and death, metabolism, genetic information processing, signal transduction/transport or immunity related proteins. Eleven differentially expressed genes were selected to be confirmed in the ovaries of triploid and diploid shrimp by semi-quantitative RT-PCR. Genes encoding spermatogonial stem-cell renewal factor, cytochrome c oxidase subunits I and II, clottable protein, antimicrobial peptide and transposase showed up-regulated expressions in the ovary of triploid shrimp. Genes encoding tubulin, cellular apoptosis susceptibility protein, farnesoic acid O-methyltransferase, thrombospondin and heat shock protein 90 genes showed higher expressions in the ovary of diploid shrimp. The differential expressions of the above genes are suggested to be related to the ovary development of shrimp. It will provide a new clue to uncover the molecular mechanisms underlying the ovarian development in penaeid shrimp.
Collapse
Affiliation(s)
- Yusu Xie
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Hayashi K, Erikson DW, Tilford SA, Bany BM, Maclean JA, Rucker EB, Johnson GA, Spencer TE. Wnt genes in the mouse uterus: potential regulation of implantation. Biol Reprod 2009; 80:989-1000. [PMID: 19164167 DOI: 10.1095/biolreprod.108.075416] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Wnt genes are involved in critical developmental and growth processes. The present study comprehensively analyzed temporal and spatial alterations in Wnt and Fzd gene expression in the mouse uterus during peri-implantation of pregnancy. Expression of Wnt4, Wnt5a, Wnt7a, Wnt7b, Wnt11, Wnt16, Fzd2, Fzd4, and Fzd6 was detected in the uterus during implantation. Wnt4 mRNA was most abundant in the decidua, whereas Wnt5a mRNA was restricted to the mesometrial decidua during decidualization. Wnt7a, Wnt7b, and Wnt11 mRNAs were abundantly detected in the endometrial epithelia. The expression of Wnt7b was robust in the luminal epithelium (LE) at the implantation site on Gestational Day 5, whereas Wnt11 mRNA disappeared in the LE adjacent to the embryo in the antimesometrial implantation chamber but remained abundant in the LE. Wnt16 mRNA was localized to the stroma surrounding the LE on Day 4 and remained in the stroma adjacent to the LE but not in areas undergoing the decidual reaction. Fzd2 mRNA was detected in the decidua, Fzd4 mRNA was in the vessels and stroma surrounding the embryo, and Fzd6 mRNA was observed in the endometrial epithelia, stroma, and some blood vessels during implantation. Ovarian steroid hormone treatment was found to regulate Wnt genes and Fzd receptors in ovariectomized mice. Especially, single injections of progesterone stimulated Wnt11 mRNA, and estrogen stimulated Wnt4 and Wnt7b. The temporal and spatial alterations in Wnt genes likely play a critical role during implantation and decidualization in mice.
Collapse
Affiliation(s)
- Kanako Hayashi
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, Illinois, USA.
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Ni H, Yu XJ, Liu HJ, Lei W, Rengaraj D, Li XJ, Yang ZM. Progesterone regulation of glutathione S-transferase Mu2 expression in mouse uterine luminal epithelium during preimplantation period. Fertil Steril 2008; 91:2123-30. [PMID: 18692819 DOI: 10.1016/j.fertnstert.2008.04.053] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2008] [Revised: 04/22/2008] [Accepted: 04/22/2008] [Indexed: 10/21/2022]
Abstract
OBJECTIVE To investigate the differential expression and regulation of Gstm2 in mouse uterus during early pregnancy. DESIGN Experimental animal study. SETTING University research laboratory. ANIMAL(S) Sexually mature female Kunming white strain mice. INTERVENTION(S) Delayed and activated implantation, pseudopregnancy, hormonal treatment. MAIN OUTCOME MEASURE(S) The expression of Gstm2 mRNA was detected by in situ hybridization and reverse-transcription polymerase chain reaction (RT-PCR). RESULT(S) By in situ hybridization, there were a low level of Gstm2 expression in luminal epithelium on day 3 and a strong level in the luminal epithelium on day 4 during early pregnancy. The expression pattern of Gstm2 in the pseudopregnant uterus was similar to that during early pregnancy. By RT-PCR, Gstm2 was strongly detected in the uteri on days 3 and 4 of pregnancy and pseudopregnancy. Gstm2 expression was strongly detected in the luminal epithelium under delayed implantation, but not seen after delayed implantation was activated by estrogen. In the ovariectomized mouse uterus, Gstm2 expression was strongly up-regulated by progesterone via progesterone receptor. CONCLUSION(S) The results showed that Gstm2 was highly expressed in the uterine luminal epithelium during preimplantation period and up-regulated by progesterone.
Collapse
Affiliation(s)
- Hua Ni
- College of Life Science, Northeast Agricultural University, Harbin, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
12
|
Hayashi K, O'Connell AR, Juengel JL, McNatty KP, Davis GH, Bazer FW, Spencer TE. Postnatal uterine development in Inverdale ewe lambs. Reproduction 2008; 135:357-65. [PMID: 18299429 DOI: 10.1530/rep-07-0323] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Postnatal development of the uterus involves, particularly, development of uterine glands. Studies with ovariectomized ewe lambs demonstrated a role for ovaries in uterine growth and endometrial gland development between postnatal days (PNDs) 14 and 56. The uterotrophic ovarian factor(s) is presumably derived from the large numbers of growing follicles in the neonatal ovary present after PND 14. The Inverdale gene mutation (FecXI) results in an increased ovulation rate in heterozygous ewes; however, homozygous ewes (II) are infertile and have 'streak' ovaries that lack normal developing of preantral and antral follicles. Uteri were obtained on PND 56 to determine whether postnatal uterine development differs between wild-type (++) and II Inverdale ewes. When compared with wild-type ewes, uterine weight of II ewes was 52% lower, and uterine horn length tended to be shorter, resulting in a 68% reduction in uterine weight:length ratio in II ewes. Histomorphometrical analyses determined that endometria and myometria of II ewes were thinner and intercaruncular endometrium contained 38% fewer endometrial glands. Concentrations of estradiol in the neonatal ewes were low and not different between ++ and II ewes, but II ewes had lower concentrations of testosterone and inhibin-alpha between PNDs 14 and 56. Receptors for androgen and activin were detected in the neonatal uteri of both ++ and II ewes. These results support the concept that developing preantral and/or antral follicles of the ovary secrete uterotrophic factors, perhaps testosterone or inhibin-alpha, that acts in an endocrine manner to stimulate uterine growth and endometrial gland development in the neonatal ewes.
Collapse
Affiliation(s)
- Kanako Hayashi
- Department of Animal Science, Center for Animal Biotechnology and Genomics, Texas A and M University, 442 Kleberg Center, 2471 TAMU, College Station, Texas 77843-2471, USA.
| | | | | | | | | | | | | |
Collapse
|
13
|
Kipp JL, Kilen SM, Bristol-Gould S, Woodruff TK, Mayo KE. Neonatal exposure to estrogens suppresses activin expression and signaling in the mouse ovary. Endocrinology 2007; 148:1968-76. [PMID: 17255206 DOI: 10.1210/en.2006-1083] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In the ovary, the steroid hormone estrogen and the TGF-beta superfamily member activin are both produced by granulosa cells and they both have intraovarian functions. Emerging evidence has indicated an interaction of these two signaling pathways. Based on the fact that estrogen and activin can impact early follicle formation and development, we hypothesize that estrogen treatment may alter activin signaling in the neonatal ovary. Therefore, this study was designed to examine the effect of neonatal diethylstilbestrol (DES) and estradiol (E(2)) exposure on the mRNA and protein levels of the key factors involved in activin signaling in the mouse ovary. CD-1 mouse pups were given daily injections of DES, E(2), or oil on postnatal d 1-5, and ovaries and sera were collected on d 19. Neonatal DES or E(2) exposure decreased the number of small antral follicles, induced multioocytic follicle formation, and decreased activin beta-subunit mRNA and protein levels. Consistent with local loss of beta-subunit expression, the phosphorylation of Smad 2, a marker of activin-dependent signaling, was decreased in the estrogen-treated ovaries. The decreased beta-subunit expression resulted in a decrease in serum inhibin levels, with a corresponding increase in FSH. Estrogen also suppressed activin subunit gene promoter activities, suggesting a direct transcriptional effect. Overall, this study demonstrates that activin subunits are targets of estrogen action in the early mouse ovary.
Collapse
MESH Headings
- Activin Receptors/genetics
- Activin Receptors/metabolism
- Activin Receptors, Type I/genetics
- Activin Receptors, Type I/metabolism
- Activin Receptors, Type II/genetics
- Activin Receptors, Type II/metabolism
- Activins/genetics
- Activins/metabolism
- Animals
- Animals, Newborn
- Blotting, Western
- Diethylstilbestrol/pharmacology
- Estradiol/pharmacology
- Estrogens, Non-Steroidal/pharmacology
- Female
- Gene Expression/drug effects
- Gene Expression/physiology
- Immunohistochemistry
- Inhibins/genetics
- Mice
- Mice, Inbred Strains
- Organ Size
- Ovarian Follicle/cytology
- Ovarian Follicle/drug effects
- Ovarian Follicle/physiology
- Pregnancy
- Promoter Regions, Genetic/physiology
- RNA, Messenger/metabolism
- Signal Transduction/drug effects
- Signal Transduction/physiology
Collapse
Affiliation(s)
- Jingjing L Kipp
- Department of Biochemistry, Northwestern University, Evanston, Illinois 60208, USA
| | | | | | | | | |
Collapse
|
14
|
Martyniuk CJ, Xiong H, Crump K, Chiu S, Sardana R, Nadler A, Gerrie ER, Xia X, Trudeau VL. Gene expression profiling in the neuroendocrine brain of male goldfish (Carassius auratus) exposed to 17alpha-ethinylestradiol. Physiol Genomics 2006; 27:328-36. [PMID: 16954407 DOI: 10.1152/physiolgenomics.00090.2006] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
17-alpha ethinylestradiol (EE2), a pharmaceutical estrogen, is detectable in water systems worldwide. Although studies report on the effects of xenoestrogens in tissues such as liver and gonad, few studies to date have investigated the effects of EE2 in the vertebrate brain at a large scale. The purpose of this study was to develop a goldfish brain-enriched cDNA array and use this in conjunction with a mixed tissue carp microarray to study the genomic response to EE2 in the brain. Gonad-intact male goldfish were exposed to nominal concentrations of 0.1 nM (29.6 ng/l) and 1.0 nM (296 ng/l) EE2 for 15 days. Male goldfish treated with the higher dose of EE2 had significantly smaller gonads compared with controls. Males also had a significantly reduced level of circulating testosterone (T) and 17beta-estradiol (E2) in both treatment groups. Candidate genes identified by microarray analysis fall into functional categories that include neuropeptides, cell metabolism, and transcription/translation factors. Differentially expressed genes verified by real-time RT-PCR included brain aromatase, secretogranin-III, and interferon-related developmental regulator 1. Our results suggest that the expression of genes in the sexually mature adult brain appears to be resistant to low EE2 exposure but is affected significantly at higher doses of EE2. This study demonstrates that microarray technology is a useful tool to study the effects of endocrine disrupting chemicals on neuroendocrine function and suggest that exposure to EE2 may have significant effects on localized E2 synthesis in the brain by affecting transcription of brain aromatase.
Collapse
Affiliation(s)
- Christopher J Martyniuk
- Centre for Advanced Research in Environmental Genomics, Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Hayashi K, Spencer TE. WNT pathways in the neonatal ovine uterus: potential specification of endometrial gland morphogenesis by SFRP2. Biol Reprod 2006; 74:721-33. [PMID: 16407498 DOI: 10.1095/biolreprod.105.049718] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Endometrial glands are critical for uterine function and develop between birth (Postnatal Day [P] 0) and P56 in the neonatal ewe. Endometrial gland morphogenesis or adenogenesis involves the site-specific budding differentiation of the glandular epithelium from the luminal epithelium followed by their coiling/branching development within the stroma of the intercaruncular areas of the endometrium. To determine whether WNT signaling regulates endometrial adenogenesis, the WNT signaling system was studied in the neonatal ovine uterus. WNT5A, WNT7A, and WNT11 were expressed in the uterine epithelia, whereas WNT2B was in the stroma. The WNT receptors FZD2 and FZD6 and coreceptor LRP6 were detected in all uterine cells, and FZD6 was particularly abundant in the endometrial epithelia. Secreted FZD-related protein-2 (SFRP2), a WNT antagonist, was not detected in the P0 uterus, but was abundant in the aglandular caruncular areas of the endometrium between P7 and P56. Exposure of ewes to estrogens during critical developmental periods inhibits or retards endometrial adenogenesis. Estrogen-induced disruption of endometrial adenogenesis was associated with reduction or ablation of WNT2B, WNT7A, and WNT11, and with an increase in WNT2 and SFRP2 mRNA, depending on exposure period. Collectively, results implicate the canonical and noncanonical WNT pathways in regulation of postnatal ovine uterine development and endometrial adenogenesis. Expression of SFRP2 in aglandular caruncular areas may inhibit the WNT signaling pathway, thereby concentrating WNT signaling and restricting endometrial adenogenesis in the intercaruncular areas of the uterus. Further, estrogen-induced inhibition of adenogenesis may be mediated by a reduction in WNT signaling caused by aberrant induction of SFRP2 and loss of several critical WNTs.
Collapse
Affiliation(s)
- Kanako Hayashi
- Center for Animal Biotechnology and Genomics and Department of Animal Science, Texas A&M University, College Station, Texas 77843-2471, USA
| | | |
Collapse
|