1
|
Gimeno I, Berdasco M, Pato ML, Salvetti P, Carrocera S, García A, Gómez E. Calf Fitness Associates with Early Embryo and Recipient Metabolomes and with Calf Epigenetic Marks. J Proteome Res 2025; 24:2386-2402. [PMID: 40205722 DOI: 10.1021/acs.jproteome.4c00987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
We used metadata to explore the metabolic interplay between culture medium from in vitro-produced bovine embryos transferred fresh or frozen, recipient blood plasma, and calf fitness, alongside gene expression and methylation in calf lymphocytes. Principal component (PC) analysis (PCA) identified covariates that were depicted in Debiased Sparse Partial Correlation networks and analyzed as enriched pathways. Four PCs explained 13.77, 9.58, 7.73 and 5.84% variability. PC1 clustered only mother weight and two embryonic metabolites. PC2, PC3 and PC4 associated 10, 17, and 5 calf features with 10, 6, and 16 embryonic and 2, 20, and 5 recipient metabolites, respectively. Subsequently, gene methylation and expression, and calf fitness were analyzed by PCA. Three PCs covered 100% variability. PC1 associated acid-base balance, protein metabolism, Cl-, and Ca2+ with IGF2 and IL1R1 expression, and IL4 and IL12B methylation. PC2 linked H19 expression and methylation with growth and biochemical traits. PC3 clustered growth, hydration, and redox balance, with IGF2, IGF2R, IL1R1 and IL3 methylation, and H19, IGF2, IGF2R and IL12B expression. Gene methylation connected with embryo metabolites through networks via K+, Cl-, HCO3- and TCO2. Calf fitness parallels the early metabolic fingerprints of the embryo and recipient, allowing embryo transfer decision-making based on calf health.
Collapse
Affiliation(s)
- Isabel Gimeno
- Centro de Biotecnología Animal, Animal Genetics and Reproduction, Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA), Camino de Rioseco 1225, Gijón 33394, Spain
| | - María Berdasco
- Epigenetic Therapies Group, Genesis of Cancer Program, Josep Carreras Leukaemia Research Institute (IJC), Badalona 08916, Spain
| | - Miguel L Pato
- Epigenetic Therapies Group, Genesis of Cancer Program, Josep Carreras Leukaemia Research Institute (IJC), Badalona 08916, Spain
| | - Pascal Salvetti
- ELIANCE, Experimental Facilities, Le Perroi, Nouzilly 37380, France
| | - Susana Carrocera
- Centro de Biotecnología Animal, Animal Genetics and Reproduction, Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA), Camino de Rioseco 1225, Gijón 33394, Spain
| | - Aurora García
- Centro de Biotecnología Animal, Animal Genetics and Reproduction, Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA), Camino de Rioseco 1225, Gijón 33394, Spain
| | - Enrique Gómez
- Centro de Biotecnología Animal, Animal Genetics and Reproduction, Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA), Camino de Rioseco 1225, Gijón 33394, Spain
| |
Collapse
|
2
|
Samiec M, Trzcińska M. From genome to epigenome: Who is a predominant player in the molecular hallmarks determining epigenetic mechanisms underlying ontogenesis? Reprod Biol 2024; 24:100965. [PMID: 39467448 DOI: 10.1016/j.repbio.2024.100965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/12/2024] [Accepted: 10/17/2024] [Indexed: 10/30/2024]
Abstract
Genetic factors are one of the basic determinants affecting ontogenesis in mammals. Nevertheless, on the one hand, epigenetic factors have been found to exert the preponderant and insightful impact on the intracellular mechanistic networks related to not only initiation and suppression, but also up- and downregulation of gene expression in all the phases of ontogenetic development in a variety of mammalian species. On the other hand, impairments in the epigenetic mechanisms underlying reprogramming of transcriptional activity of genes (termed epimutations) not only give rise to a broad spectrum of acute and chronic developmental abnormalities in mammalian embryos, foetuses and neonates, but also contribute to premature/expedited senescence or neoplastic transformation of cells and even neurodegenerative and mental disorders. The current article is focused on the unveiling the present knowledge aimed at the identification, classification and characterization of epigenetic agents as well as multifaceted interpretation of current and coming trends targeted at recognizing the epigenetic background of proper ontogenesis in mammals. Moreover, the next objective of this paper is to unravel the mechanistic insights into a wide array of disturbances leading to molecular imbalance taking place during epigenetic reprogramming of genomic DNA. The above-indicated imbalance seems to play a predominant role in the initiation and progression of anatomo-, histo-, and physiopathological processes throughout ontogenetic development. Conclusively, different modalities of epigenetically assisted therapeutic procedures that have been exemplified in the current article, might be the powerful and promiseful tools reliable and feasible in the medical treatments of several diseases triggered by dysfunctions in the epigenetic landscapes, e.g., myelodysplastic syndromes or epilepsy.
Collapse
Affiliation(s)
- Marcin Samiec
- Department of Reproductive Biotechnology and Cryoconservation, National Research Institute of Animal Production, Krakowska 1 Street, 32-083 Balice near Kraków, Poland.
| | - Monika Trzcińska
- Department of Reproductive Biotechnology and Cryoconservation, National Research Institute of Animal Production, Krakowska 1 Street, 32-083 Balice near Kraków, Poland.
| |
Collapse
|
3
|
Nava-Trujillo H, Rivera RM. Review: Large offspring syndrome in ruminants: current status and prediction during pregnancy. Animal 2023; 17 Suppl 1:100740. [PMID: 37567678 DOI: 10.1016/j.animal.2023.100740] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 01/03/2023] [Accepted: 01/06/2023] [Indexed: 08/13/2023] Open
Abstract
Large/abnormal Offspring Syndrome (LOS/AOS) is a congenital overgrowth condition of cattle and sheep, characterized by macrosomia, abdominal wall defects, organomegaly, difficulty to stand and suckle at parturition. The condition was first described as an exclusive consequence of assisted reproductive technologies, such as in vitro production and somatic cell nuclear transfer (cloning). However, we recently reported the spontaneous occurrence of this syndrome in cattle. The etiology of LOS is unclear, although the syndrome is an epigenetic condition characterized by multi-locus loss-of-imprinting, global dysregulation of small and long RNAs, changes in DNA methylation, and altered chromosomal architecture. These molecular and epigenetic changes affect biological pathways implicated in organ size, cell proliferation, cell survival, resulting in the phenotypes which characterize LOS. The lack of accurate tools for the prediction and diagnosis of LOS and the prevention of dystocia resulting from fetal overgrowth is a major concern for the dairy and beef industries. Furthermore, death of the calf and/or dam during calving adds animal welfare issues and affects the net income of the industry. An early diagnosis of LOS/AOS during gestation is critical to facilitate the decision-making process on whether to allow the pregnancy to continue or not in order to prevent harm to the dam as well as to provide producers with the timely necessary information to prepare for a difficult birth. The present review summarizes the definition, traits, incidence, and molecular characteristics of LOS to provide information and serve as a guide for future investigations regarding the early identification of LOS during pregnancy in cattle.
Collapse
|
4
|
Navarro M, Halstead MM, Rincon G, Mutto AA, Ross PJ. bESC from cloned embryos do not retain transcriptomic or epigenetic memory from somatic donor cells. Reproduction 2022; 164:243-257. [PMID: 35951478 DOI: 10.1530/rep-22-0063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 08/11/2022] [Indexed: 11/08/2022]
Abstract
In brief Epigenetic reprogramming after mammalian somatic cell nuclear transfer is often incomplete, resulting in low efficiency of cloning. However, gene expression and histone modification analysis indicated high similarities in transcriptome and epigenomes of bovine embryonic stem cells from in vitro fertilized and somatic cell nuclear transfer embryos. Abstract Embryonic stem cells (ESC) indefinitely maintain the pluripotent state of the blastocyst epiblast. Stem cells are invaluable for studying development and lineage commitment, and in livestock, they constitute a useful tool for genomic improvement and in vitro breeding programs. Although these cells have been recently derived from bovine blastocysts, a detailed characterization of their molecular state is lacking. Here, we apply cutting-edge technologies to analyze the transcriptomic and epigenomic landscape of bovine ESC (bESC) obtained from in vitro fertilized (IVF) and somatic cell nuclear transfer (SCNT) embryos. bESC were efficiently derived from SCNT and IVF embryos and expressed pluripotency markers while retaining genome stability. Transcriptome analysis revealed that only 46 genes were differentially expressed between IVF- and SCNT-derived bESC, which did not reflect significant deviation in cellular function. Interrogating histone 3 lysine 4 trimethylation, histone 3 lysine 9 trimethylation, and histone 3 lysine 27 trimethylation with cleavage under targets and tagmentation, we found that the epigenomes of both bESC groups were virtually indistinguishable. Minor epigenetic differences were randomly distributed throughout the genome and were not associated with differentially expressed or developmentally important genes. Finally, the categorization of genomic regions according to their combined histone mark signal demonstrated that all bESC shared the same epigenomic signatures, especially at gene promoters. Overall, we conclude that bESC derived from SCNT and IVF embryos are transcriptomically and epigenetically analogous, allowing for the production of an unlimited source of pluripotent cells from high genetic merit organisms without resorting to transgene-based techniques.
Collapse
Affiliation(s)
- M Navarro
- Instituto de Investigaciones Biotecnológicas 'Dr Rodolfo Ugalde', UNSAM-CONICET, Buenos Aires, Argentina
- Department of Animal Science, University of California, Davis, California, USA
| | - M M Halstead
- Department of Animal Science, University of California, Davis, California, USA
| | | | - A A Mutto
- Instituto de Investigaciones Biotecnológicas 'Dr Rodolfo Ugalde', UNSAM-CONICET, Buenos Aires, Argentina
| | - P J Ross
- Department of Animal Science, University of California, Davis, California, USA
| |
Collapse
|
5
|
Cheng R, Zheng X, Wang Y, Ma X, Liu X, Xu W, Wang M, Gao Y, Xing X, Zhou C, Sun H, Guo Z, Quan F, Liu J, Hua S, Wang Y, Zhang Y, Liu X. Modification of alternative splicing in bovine somatic cell nuclear transfer embryos using engineered CRISPR-Cas13d. SCIENCE CHINA. LIFE SCIENCES 2022; 65:2257-2268. [PMID: 35524909 DOI: 10.1007/s11427-021-2060-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
Animal cloning can be achieved by somatic cell nuclear transfer (SCNT), but the resulting live birth rate is relatively low. We previously improved the efficiency of bovine SCNT by exogenous melatonin treatment or by overexpression of lysine-specific demethylase 4D (KDM4D) and 4E (KDM4E). In this study, we revealed abundant alternative splicing (AS) transitions during fertilization and embryonic genome activation, and demonstrated abnormal AS in bovine SCNT embryos compared with in vitro fertilized embryos. We used the CRISPR-Cas13d RNA-targeting system to target cis-elements of ABI2 and ZNF106 pre-mRNA to modify AS, thus reducing the ratio of abnormal-isoform SCNT embryos by nearly 50% and achieving a high survival rate (11%-19%). These results indicate that this system may provide an efficient method for bovine cloning, while also paving the way for further improvements in the efficiency of SCNT.
Collapse
Affiliation(s)
- Rui Cheng
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, 712100, China
| | - Xiaoman Zheng
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, 712100, China
| | - Yingmei Wang
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, 712100, China
| | - Xing Ma
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, 712100, China
| | - Xin Liu
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, 712100, China
| | - Wenjun Xu
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, 712100, China
| | - Mengyun Wang
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, 712100, China
| | - Yuanpeng Gao
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, 712100, China
| | - Xupeng Xing
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, 712100, China
| | - Chuan Zhou
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, 712100, China
| | - Hongzheng Sun
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, 712100, China
| | - Zekun Guo
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, 712100, China
| | - Fusheng Quan
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, 712100, China
| | - Jun Liu
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, 712100, China.
| | - Song Hua
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, 712100, China.
| | - Yongsheng Wang
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, 712100, China.
| | - Yong Zhang
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, 712100, China.
| | - Xu Liu
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, 712100, China.
| |
Collapse
|
6
|
Low Expression of Mitofusin 1 Gene Leads to Mitochondrial Dysfunction and Embryonic Genome Activation Failure in Ovine-Bovine Inter-Species Cloned Embryos. Int J Mol Sci 2022; 23:ijms231710145. [PMID: 36077543 PMCID: PMC9456037 DOI: 10.3390/ijms231710145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/27/2022] [Accepted: 08/30/2022] [Indexed: 11/17/2022] Open
Abstract
Inter-species somatic cell nuclear transfer (iSCNT) is significant in the study of biological problems such as embryonic genome activation and the mitochondrial function of embryos. Here, we used iSCNT as a model to determine whether abnormal embryo genome activation was caused by mitochondrial dysfunction. First, we found the ovine-bovine iSCNT embryos were developmentally blocked at the 8-cell stage. The reactive oxygen species level, mitochondrial membrane potential, and ATP level in ovine-bovine cloned embryos were significantly different from both bovine-bovine and IVF 8-cell stage embryos. RNA sequencing and q-PCR analysis revealed that mitochondrial transport, mitochondrial translational initiation, mitochondrial large ribosomal subunit, and mitochondrial outer membrane genes were abnormally expressed in the ovine-bovine embryos, and the mitochondrial outer membrane and mitochondrial ribosome large subunit genes, mitochondrial fusion gene 1, and ATPase Na+/K+ transporting subunit beta 3 gene were expressed at lower levels in the ovine-bovine cloned embryos. Furthermore, we found that overexpression and knockdown of Mfn1 significantly affected mitochondrial fusion and subsequent biological functions such as production of ATP, mitochondrial membrane potential, reactive oxygen species and gene expressions in cloned embryos. These findings enhance our understanding of the mechanism by which the Mfn1 gene regulates embryonic development and embryonic genome activation events.
Collapse
|
7
|
Identification of large offspring syndrome during pregnancy through ultrasonography and maternal blood transcriptome analyses. Sci Rep 2022; 12:10540. [PMID: 35732675 PMCID: PMC9217928 DOI: 10.1038/s41598-022-14597-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/09/2022] [Indexed: 11/08/2022] Open
Abstract
In vitro production (IVP) of embryos in cattle can result in large/abnormal offspring syndrome (LOS/AOS) which is characterized by macrosomia. LOS can cause dystocia and lead to the death of dam and calf. Currently, no test exists to identify LOS pregnancies. We hypothesized that fetal ultrasonography and/or maternal blood markers are useful to identify LOS. Bovine fetuses were generated by artificial insemination (control) or IVP. Fetal ultrasonographies were taken on gestation D55 (D55) and fetal collections performed on D56 or D105 (gestation in cattle ≈ D280). IVP fetuses weighing ≥ 97 percentile of the control weight were considered LOS. Ultrasonography results show that the product of six D55 measurements can be used to identify extreme cases of LOS. To determine whether maternal blood can be used to identify LOS, leukocyte mRNA from 23 females was sequenced. Unsupervised hierarchical clustering grouped the transcriptomes of the two females carrying the two largest LOS fetuses. Comparison of the leukocyte transcriptomes of these two females to the transcriptome of all other females identified several misregulated transcripts on gestation D55 and D105 with LOC783838 and PCDH1 being misregulated at both time-points. Together our data suggest that LOS is identifiable during pregnancy in cattle.
Collapse
|
8
|
Strategies to Improve the Efficiency of Somatic Cell Nuclear Transfer. Int J Mol Sci 2022; 23:ijms23041969. [PMID: 35216087 PMCID: PMC8879641 DOI: 10.3390/ijms23041969] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 01/04/2023] Open
Abstract
Mammalian oocytes can reprogram differentiated somatic cells into a totipotent state through somatic cell nuclear transfer (SCNT), which is known as cloning. Although many mammalian species have been successfully cloned, the majority of cloned embryos failed to develop to term, resulting in the overall cloning efficiency being still low. There are many factors contributing to the cloning success. Aberrant epigenetic reprogramming is a major cause for the developmental failure of cloned embryos and abnormalities in the cloned offspring. Numerous research groups attempted multiple strategies to technically improve each step of the SCNT procedure and rescue abnormal epigenetic reprogramming by modulating DNA methylation and histone modifications, overexpression or repression of embryonic-related genes, etc. Here, we review the recent approaches for technical SCNT improvement and ameliorating epigenetic modifications in donor cells, oocytes, and cloned embryos in order to enhance cloning efficiency.
Collapse
|
9
|
Campbell MLH. Ethics: use and misuse of assisted reproductive techniques across species. REPRODUCTION AND FERTILITY 2022; 2:C23-C28. [PMID: 35118394 PMCID: PMC8801020 DOI: 10.1530/raf-21-0004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 06/18/2021] [Indexed: 11/08/2022] Open
Abstract
The boundaries of what we are able to do using ARTs are fast-moving. In both human and veterinary medicine, this presents a fundamental question: 'Just because we can, should we?' or, to rephrase the same question: 'How can we distinguish between what is a use and a misuse of an ART, across species?' This paper assesses the scientific evidence base for and against the use of ARTs and offers a personal opinion on how we can use such evidence to inform an ethical distinction between justifiable and unjustifiable uses of the techniques. It is argued that the law provides a necessary but insufficient basis for such distinctions. Based on the evidence about harms and benefits, ARTs may be classified into three groups: those which should be rarely used; those for which current evidence supports arguments both for and against their use and those which there is an ethical imperative to use. To which category a particular ART falls into varies depending upon the species to which it is being applied and the reason we are using it. In order to ensure that our ethical oversight keeps up with our technical prowess, the medical and veterinary professions should keep discussing and debating the moral basis of the use of ARTs, not only with each other but also with the lay public. Lay summary The use of assisted reproductive techniques (ARTs) has become commonplace in both human and veterinary medicine. Technical limitations are rapidly advancing. This raises a fundamental issue: 'How can we distinguish between what is a use and a misuse of an ART, across species?'. 'Misuse' may be defined both in terms of physical and psychological harms and of moral disquiet about 'interfering with nature'. This paper assesses the scientific evidence base for and against the use of ARTs and provides a personal opinion on how we can use such evidence to inform an ethical distinction between justifiable and unjustifiable uses of the techniques. We need to consider not only legal but also non-legal ethical justifications for their use. Based on the evidence about harms and benefits, ARTs may be classified into three groups: those which should be rarely used; those for which current evidence supports arguments both for and against their use and those for which there is an ethical imperative to use. To which category a particular ART falls into varies depending upon the species to which it is being applied and the reason we are using it. Open discussion between the medical and veterinary professions and the public is necessary to ensure that ethical oversight of the use of ARTs across species keeps up with technical developments.
Collapse
Affiliation(s)
- Madeleine L H Campbell
- Department of Pathobiology and Population Sciences, The Royal Veterinary College, Hawkshead Lane, South Mymms, UK
| |
Collapse
|
10
|
Hisey EA, Ross PJ, Meyers S. Genetic Manipulation of the Equine Oocyte and Embryo. J Equine Vet Sci 2021; 99:103394. [PMID: 33781418 PMCID: PMC8605602 DOI: 10.1016/j.jevs.2021.103394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/22/2021] [Accepted: 01/23/2021] [Indexed: 01/19/2023]
Abstract
As standard in vitro fertilization is not a viable technique in horses yet, many different techniques have been used to create equine embryos for research purposes. One such method is parthenogenesis in which an oocyte is induced to mature into an embryo-like state without the introduction of a spermatozoon, and thus they are not considered true embryos. Another method is somatic cell nuclear transfer (SCNT), in which a somatic cell nucleus from an extant horse is inserted into an enucleated oocyte, creating a genetic clone of the donor horse. Due to limited availability of equine oocytes in the United States, researchers have investigated the potential for combining equine somatic cell nuclei with oocytes from other species to make embryos for research purposes, which has not been successful to date. There has also been a rising interest in producing transgenic animals using sperm exposed to exogenous DNA. The successful creation of transgenic equine blastocysts shows the promise of sperm mediated gene transfer (SMGT), but this method is not ideal for other applications, like gene therapy, because it cannot be used to induce targeted mutations. That is why technologies like CRISPR/Cas9 are vital. In this review, we argue that parthenogenesis, SCNT, and interspecies SCNT can be considered genetic manipulation strategies as they create embryos that are genetically identical to their parent cell. Here, we describe how these methods are performed and their applications and we also describe the few methods that have been used to directly modify equine embryos: SMGT and CRISPR/Cas9.
Collapse
Affiliation(s)
- Erin A. Hisey
- Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, University of California, Davis, CA
| | - Pablo J. Ross
- Department of Animal Science, University of California, Davis, CA
| | - Stuart Meyers
- Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, University of California, Davis, CA,Corresponding author at: S. Meyers, 1089 Veterinary Medicine Dr. Davis CA 95616. (S. Meyers)
| |
Collapse
|
11
|
Pedersen HS, Mazzoni G, Pihl M, Kadarmideen HN, Hyttel P, Callesen H. Bovine in-vitro produced embryos: Development of embryo proper and associated membranes from day 26 to 47 of gestation. Reprod Biol 2020; 20:595-599. [PMID: 33041222 DOI: 10.1016/j.repbio.2020.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/29/2020] [Accepted: 10/02/2020] [Indexed: 11/28/2022]
Abstract
Based on in-vitro produced (IVP) bovine embryos, embryo proper and embryonic/fetal membranes were studied in 12 pregnancies from day 26 to 47. The embryos/fetuses displayed external as well as internal development of organs and structures according to the expectations from comparable in-vivo studies. However, the embryonic/fetal membranes were shorter than those reported for in-vivo-derived embryos/fetuses on days 26-35 of calculated age, whereas on days 41-47 they were of comparable lengths.
Collapse
Affiliation(s)
| | - Gianluca Mazzoni
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Grønnegårdsvej 7, DK-1870, Frederiksberg C, Denmark; Department of Health Technology, Technical University of Denmark, Ørsteds Plads, Building 345C, DK-2800, Kgs. Lyngby, Denmark
| | - Maria Pihl
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Grønnegårdsvej 7, DK-1870, Frederiksberg C, Denmark
| | - Haja N Kadarmideen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Grønnegårdsvej 7, DK-1870, Frederiksberg C, Denmark; Quantitative Genetics, Bioinformatics and Computational Biology Group, Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kemitorvet, DK-2800, Kgs. Lyngby, Denmark
| | - Poul Hyttel
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Grønnegårdsvej 7, DK-1870, Frederiksberg C, Denmark
| | - Henrik Callesen
- Department of Animal Science, Aarhus University, Blichers Alle 20, DK-8830, Tjele, Denmark.
| |
Collapse
|
12
|
Wang LY, Li ZK, Wang LB, Liu C, Sun XH, Feng GH, Wang JQ, Li YF, Qiao LY, Nie H, Jiang LY, Sun H, Xie YL, Ma SN, Wan HF, Lu FL, Li W, Zhou Q. Overcoming Intrinsic H3K27me3 Imprinting Barriers Improves Post-implantation Development after Somatic Cell Nuclear Transfer. Cell Stem Cell 2020; 27:315-325.e5. [PMID: 32559418 DOI: 10.1016/j.stem.2020.05.014] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 01/13/2020] [Accepted: 05/27/2020] [Indexed: 12/27/2022]
Abstract
Successful cloning by somatic cell nuclear transfer (SCNT) requires overcoming significant epigenetic barriers. Genomic imprinting is not generally regarded as such a barrier, although H3K27me3-dependent imprinting is differentially distributed in E6.5 epiblast and extraembryonic tissues. Here we report significant enhancement of SCNT efficiency by deriving somatic donor cells carrying simultaneous monoallelic deletion of four H3K27me3-imprinted genes from haploid mouse embryonic stem cells. Quadruple monoallelic deletion of Sfmbt2, Jade1, Gab1, and Smoc1 normalized H3K27me3-imprinted expression patterns and increased fibroblast cloning efficiency to 14% compared with a 0% birth rate from wild-type fibroblasts while preventing the placental and body overgrowth defects frequently observed in cloned animals. Sfmbt2 deletion was the most effective of the four individual gene deletions in improving SCNT. These results show that lack of H3K27me3 imprinting in somatic cells is an epigenetic barrier that impedes post-implantation development of SCNT embryos and can be overcome by monoallelic imprinting gene deletions in donor cells.
Collapse
Affiliation(s)
- Le-Yun Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhi-Kun Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Li-Bin Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Chao Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of the Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Xue-Han Sun
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of the Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Gui-Hai Feng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Jia-Qiang Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Yu-Fei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Lian-Yong Qiao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Hu Nie
- University of the Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Li-Yuan Jiang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Hao Sun
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of the Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Ya-Li Xie
- University of the Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Si-Nan Ma
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Hai-Feng Wan
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Fa-Long Lu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Wei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China.
| | - Qi Zhou
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
13
|
Ticiani E, Rodrigues VHV, Willhelm BR, Ribeiro E, Gerger RPDC, Ambrosio C, Ferrell C, Sainz RD, Miglino MA, Rodrigues JL, Bertolini M. Evidence of metabolic compartmentation in the bovine placenta and significance for the regulation of placental function and fetal growth in pregnancies bearing in vivo- or in vitro-produced embryos. Livest Sci 2020. [DOI: 10.1016/j.livsci.2020.104024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
14
|
Gouveia C, Huyser C, Egli D, Pepper MS. Lessons Learned from Somatic Cell Nuclear Transfer. Int J Mol Sci 2020; 21:E2314. [PMID: 32230814 PMCID: PMC7177533 DOI: 10.3390/ijms21072314] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/16/2020] [Accepted: 03/19/2020] [Indexed: 02/06/2023] Open
Abstract
Somatic cell nuclear transfer (SCNT) has been an area of interest in the field of stem cell research and regenerative medicine for the past 20 years. The main biological goal of SCNT is to reverse the differentiated state of a somatic cell, for the purpose of creating blastocysts from which embryonic stem cells (ESCs) can be derived for therapeutic cloning, or for the purpose of reproductive cloning. However, the consensus is that the low efficiency in creating normal viable offspring in animals by SCNT (1-5%) and the high number of abnormalities seen in these cloned animals is due to epigenetic reprogramming failure. In this review we provide an overview of the current literature on SCNT, focusing on protocol development, which includes early SCNT protocol deficiencies and optimizations along with donor cell type and cell cycle synchrony; epigenetic reprogramming in SCNT; current protocol optimizations such as nuclear reprogramming strategies that can be applied to improve epigenetic reprogramming by SCNT; applications of SCNT; the ethical and legal implications of SCNT in humans; and specific lessons learned for establishing an optimized SCNT protocol using a mouse model.
Collapse
Affiliation(s)
- Chantel Gouveia
- Institute for Cellular and Molecular Medicine, Department of Immunology and South African Medical Research Council (SAMRC) Extramural Unit for Stem Cell Research and Therapy, Faculty of Health Sciences, University of Pretoria, Pretoria 0002, South Africa;
- Department of Obstetrics and Gynaecology, Reproductive Biology Laboratory, University of Pretoria, Steve Biko Academic Hospital, Pretoria 0002, South Africa;
| | - Carin Huyser
- Department of Obstetrics and Gynaecology, Reproductive Biology Laboratory, University of Pretoria, Steve Biko Academic Hospital, Pretoria 0002, South Africa;
| | - Dieter Egli
- Department of Obstetrics and Gynecology, Columbia University Medical Center, New York, NY 10027, USA;
| | - Michael S. Pepper
- Institute for Cellular and Molecular Medicine, Department of Immunology and South African Medical Research Council (SAMRC) Extramural Unit for Stem Cell Research and Therapy, Faculty of Health Sciences, University of Pretoria, Pretoria 0002, South Africa;
| |
Collapse
|
15
|
Gao G, Wang S, Zhang J, Su G, Zheng Z, Bai C, Yang L, Wei Z, Wang X, Liu X, Guo Z, Li G, Su X, Zhang L. Transcriptome-wide analysis of the SCNT bovine abnormal placenta during mid- to late gestation. Sci Rep 2019; 9:20035. [PMID: 31882783 PMCID: PMC6934727 DOI: 10.1038/s41598-019-56566-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 12/13/2019] [Indexed: 01/21/2023] Open
Abstract
The dysfunction of placenta is common in somatic cell nuclear transfer (SCNT) cloned cattle and would cause aberrant fetal development and even abortion, which occurred with highest rate at the mid- to late gestation. However, the mechanism of abnormal placentas was unclear. To analyze the transcriptome-wide characteristics of abnormal placentas in SCNT cloned cattle, the mRNA, lncRNA and miRNA of placental cotyledon tissue at day 180 after gestation were sequenced. A total of 19,055 mRNAs, 30,141 lncRNAs and 684 miRNAs were identified. Compared with control group, 362 mRNAs, 1,272 lncRNAs and nine miRNAs (six known and three novel miRNAs) were differentially expressed (fold change ≥ 2 and P-value < 0.05). The differentially expressed genes were functionally enriched in urea and ions transmembrane transport, which indicated that the maternal-fetal interactions were disturbed in impaired placentas. Furthermore, the competing endogenous RNAs (ceRNAs) networks were identified to illustrate their roles in abnormal placental morphology. The present research would be helpful to discover the mechanism of late gestational abnormality of SCNT cattle by provides important genomic information and insights.
Collapse
Affiliation(s)
- Guangqi Gao
- The State key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, 010070, China
- College of Life Science, Inner Mongolia University, Hohhot, 010070, China
- College of Life Science, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Shenyuan Wang
- College of Life Science, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Jiaqi Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Guanghua Su
- The State key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, 010070, China
- College of Life Science, Inner Mongolia University, Hohhot, 010070, China
| | - Zhong Zheng
- The State key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, 010070, China
- College of Life Science, Inner Mongolia University, Hohhot, 010070, China
| | - Chunling Bai
- The State key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, 010070, China
- College of Life Science, Inner Mongolia University, Hohhot, 010070, China
| | - Lei Yang
- The State key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, 010070, China
- College of Life Science, Inner Mongolia University, Hohhot, 010070, China
| | - Zhuying Wei
- The State key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, 010070, China
- College of Life Science, Inner Mongolia University, Hohhot, 010070, China
| | - Xiuying Wang
- Inner Mongolia Radio and TV University, Hohhot, 010010, China
| | - Xiao Liu
- College of Life Science, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Ziru Guo
- College of Life Science, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Guangpeng Li
- The State key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, 010070, China.
- College of Life Science, Inner Mongolia University, Hohhot, 010070, China.
| | - Xiaohu Su
- The State key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, 010070, China.
- Key Laboratory of Gene Engineering of the Ministry of Education, Guangzhou Key Laboratory of Healthy Aging Research and State Key Laboratory of Biocontrol, SYSU-BCM JointResearch Center, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.
| | - Li Zhang
- The State key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, 010070, China.
- College of Life Science, Inner Mongolia University, Hohhot, 010070, China.
- College of Life Science, Inner Mongolia Agricultural University, Hohhot, 010018, China.
| |
Collapse
|
16
|
Gash KK, Yang M, Fan Z, Regouski M, Rutigliano HM, Polejaeva IA. Assessment of microchimerism following somatic cell nuclear transfer and natural pregnancies in goats. J Anim Sci 2019; 97:3786-3794. [PMID: 31353395 DOI: 10.1093/jas/skz248] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 07/26/2019] [Indexed: 12/23/2022] Open
Abstract
Microchimerism is defined as the presence of a small population of cells or DNA in 1 organism originated from a genetically different organism. It is well established that this phenomenon occurs in humans and mice as cells are exchanged between mother and fetus during gestation. Currently, no information is available about the presence of maternal microchimerism in goats, and the only published study is limited to an evaluation of fetal and fetal-fetal microchimerism in blood samples following natural breeding. In order to determine whether bidirectional fetal-maternal cell or DNA trafficking occurs in goats, we assessed: 1) fetal microchimerism in surrogates that gave birth to somatic cell nuclear transfer (SCNT)-derived transgenic offspring (n = 4), 2) maternal microchimerism following natural breeding of SCNT-derived transgenic does with a nontransgenic buck (n = 4), and 3) fetal-fetal microchimerism in nontransgenic twins of transgenic offspring (n = 3). Neomycin-resistance gene (NEO) gene was selected as the marker to detect the presence of the αMHC-TGF-β1-Neo transgene in kidney, liver, lung, lymph node, and spleen. We found no detectable maternal or fetal-fetal microchimerism in the investigated tissues of nontransgenic offspring. However, fetal microchimerism was detected in lymph node tissue of one of the surrogate dams carrying a SCNT pregnancy. These results indicate occurrence of cell trafficking from fetus to mother during SCNT pregnancies. The findings of this study have direct implications on the use and disposal of nontransgenic surrogates and nontransgenic offspring.
Collapse
Affiliation(s)
- Kirsten K Gash
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT
| | - Min Yang
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT
| | - Zhiqiang Fan
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT
| | - Misha Regouski
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT
| | - Heloisa M Rutigliano
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT.,School of Veterinary Medicine, Utah State University, Logan, UT
| | - Irina A Polejaeva
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT
| |
Collapse
|
17
|
Su X, Wang S, Gao G, Zhou X, Han L, Su G, Zhang J, Bai W, Wang X, Li G, Zhang L. Comparative analysis of bovine maternal corpus luteum microRNAs with aberrant and normal developed cloned fetus at late gestation. Genes Genomics 2019; 42:283-290. [PMID: 31833047 DOI: 10.1007/s13258-019-00874-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 09/26/2019] [Indexed: 11/24/2022]
Abstract
BACKGROUND The development efficiency of cloned cattle is extremely low (< 5%), most of them were aborted at late gestation. Based on our previous studies, some recipient cows with a cloned fetus would present as engorged uterine vessels and enlarged umbilical vessels randomly. Abortion involves both maternal and fetal factors. OBJECTIVE Our aim was to explore this phenomenon by microRNAs expression profile analysis of maternal corpus luteum (CL), which was related to pregnancy maintenance. METHODS The present study provided the comparison of maternal CL miRNAs expression of abnormally and normally developed cloned bovine fetus at late gestation (~ 210 days) using RNA-Seq technology. RESULTS We selected two abnormally pregnant cows (abnormal group, AG) and three normally pregnant cows (normal group, NG) and acquired valid reads of 9317,261-12,327,185 (~ 84.53-91.28%) from five libraries. In total, we identified 981 conserved miRNAs and 223 novel miRNAs. 1052 miRNAs were co-expressed, 124 miRNAs were uniquely expressed in AG, and 93 miRNAs were uniquely expressed in the NG. Compared with NG, 11 were significantly overexpressed, and 22 were downregulated (p < 0.05) at AG among 1052 co-expressed miRNAs. The differentially expressed miRNAs-targeted genes were further analyzed by Gene Ontology and KEGG pathway analysis. Notably, the steroid biosynthesis pathway was a significantly enriched term (p < 0.01), which may affect the secretion of progesterone. CONCLUSION Our research suggested that abnormal miRNAs expression of bovine maternal CL may affect the pregnant status at late gestation.
Collapse
Affiliation(s)
- Xiaohu Su
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010070, People's Republic of China.,Key Laboratory of Gene Engineering of the Ministry of Education, Guangzhou Key Laboratory of Healthy Aging Research and State Key Laboratory of Biocontrol, SYSU-BCM Joint Research Center, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
| | - Shenyuan Wang
- Key Laboratory of Biological Manufacturing of Inner Mongolia Autonomous Region, College of Life Sciences, Inner Mongolia Agricultural University, Hohhot, 010018, People's Republic of China
| | - Guangqi Gao
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010070, People's Republic of China.,College of Food Science and Engineering, Inner Mongolia Agricultural University, Inner Mongolia Autonomous Region, Hohhot, 010018, People's Republic of China
| | - Xinyu Zhou
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010070, People's Republic of China
| | - Lidong Han
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010070, People's Republic of China
| | - Guanghua Su
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010070, People's Republic of China
| | - Jiaqi Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China
| | - Wanfu Bai
- Key Laboratory of Biological Manufacturing of Inner Mongolia Autonomous Region, College of Life Sciences, Inner Mongolia Agricultural University, Hohhot, 010018, People's Republic of China.,Baotou Medical College, Baotou, 014040, People's Republic of China
| | - Xiuying Wang
- Inner Mongolia Radio and TV University, Hohhot, 010010, People's Republic of China
| | - Guangpeng Li
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010070, People's Republic of China
| | - Li Zhang
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010070, People's Republic of China.
| |
Collapse
|
18
|
Yang M, Perisse I, Fan Z, Regouski M, Meyer-Ficca M, Polejaeva IA. Increased pregnancy losses following serial somatic cell nuclear transfer in goats. Reprod Fertil Dev 2019; 30:1443-1453. [PMID: 29769162 DOI: 10.1071/rd17323] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 04/09/2018] [Indexed: 12/26/2022] Open
Abstract
Serial cloning by somatic cell nuclear transfer (SCNT) is a critical tool for the expansion of precious transgenic lines or resetting the lifespan of primary transgenic cells for multiple genetic modifications. We successfully produced second-generation cloned goats using donor neonatal fibroblasts from first-generation clones. However, our attempts to produce any third-generation clones failed. SCNT efficiency decreased progressively with the clonal generations. The rate of pregnancy loss was significantly greater in recloning groups (P<0.05). While no pregnancy loss was observed during the first round of SCNT, 14 out of 21 pregnancies aborted in the second round of SCNT and all pregnancies aborted in the third round of SCNT. In this retrospective study, we also investigated the expression of 21 developmentally important genes in muscle tissue of cloned (G1) and recloned (G2) offspring. The expression of most of these genes in live clones was found to be largely comparable to naturally reproduced control goats, but fibroblast growth factor 10 (FGF10), methyl CpG binding protein 2 (MECP2) and growth factor receptor bound protein 10 (GRB10) were differentially expressed (P<0.05) in G2 goats compared with G1 and controls. To study the effects of serial cloning on DNA methylation, the methylation pattern of differentially methylated regions in imprinted genes H19 and insulin like growth factor 2 receptor (IGF2R) were also analysed. Aberrant H19 DNA methylation patterns were detected in G1 and G2 clones.
Collapse
Affiliation(s)
- Min Yang
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT 84322-4815, USA
| | - Iuri Perisse
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT 84322-4815, USA
| | - Zhiqiang Fan
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT 84322-4815, USA
| | - Misha Regouski
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT 84322-4815, USA
| | - Mirella Meyer-Ficca
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT 84322-4815, USA
| | - Irina A Polejaeva
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT 84322-4815, USA
| |
Collapse
|
19
|
Zhao X, Ruan Z, Qin X, Feng Y, Yu Q, Xu J, Deng Y, Shen P, Shi D, Lu F. The Role of 5-aza-2'-Deoxycytidine on Methylation Status of Xist Gene in Different Genders of Buffalo (Bubalus bubalis) Bone Marrow Mesenchymal Stem Cells. Cell Reprogram 2019; 21:89-98. [PMID: 30785778 DOI: 10.1089/cell.2018.0040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Previous studies have demonstrated that proper concentration of 5-aza-2'-deoxycytidine (5-aza-CdR) treatment was advantageous to decrease DNA methylation level, but the relationships between 5-aza-CdR treatment and methylation status of imprinted genes are seldom detected. The aim of this study was to investigate the effect of low concentration 5-aza-CdR treatment on the methylation status of imprinted gene Xist in different genders of buffalo bone marrow mesenchymal stem cells (BMSCs). BMSCs were isolated and the cell gender was identified through polymerase chain reaction (PCR). Then different concentrations of 5-aza-CdR (0, 0.02, 0.1 μM) were applied for the treatment. The results showed cellular morphology, growth, Xist gene expression pattern, and adherent ability were not significantly affected with the treatment of 5-aza-CdR for 24 hours. Meanwhile, immunofluorescence analysis indicated that the expression of 5-methylcytosine (5-mC) was also not influenced after the treatment. However, bisulfite sequence PCR (BS-PCR) analysis revealed that the methylation level of Xist differentially methylated region (DMR) decreased significantly when the concentration of 5-aza-CdR increased to 0.1 μM in the ♀BMSCs group (p < 0.05), while there was no significant difference among the ♂BMSCs-treated groups. Our results implied that low concentrations of 5-aza-CdR treatment had little impacts on cellular morphology, growth Xist gene expression pattern, adherent ability, and global DNA methylation level of BMSCs in both genders, but the treatment could significantly decrease the methylation level of Xist DMR in ♀BMSCs. Thus, we conclude 5-aza-CdR treatment can affect the methylation status of Xist DMR, furthermore, the influence is also related to sex differences.
Collapse
Affiliation(s)
- Xin Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning, China
| | - Ziyun Ruan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning, China
| | - Xiling Qin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning, China
| | - Yun Feng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning, China
| | - Qing Yu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning, China
| | - Jie Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning, China
| | - Yanfei Deng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning, China
| | - Penglei Shen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning, China
| | - Deshun Shi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning, China
| | - Fenghua Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning, China
| |
Collapse
|
20
|
Burns BM, Hiendleder S, Laing AR, Fordyce G, Herring AD. Ultrasonographic measurements in first trimester concepti identify predictors of birth weight and postnatal development in cattle. J Anim Sci 2018; 96:4186-4194. [PMID: 30184108 DOI: 10.1093/jas/sky290] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 07/17/2018] [Indexed: 12/17/2022] Open
Abstract
The placenta is a major driver of prenatal growth and involved in programming of postnatal performance. We therefore determined placental and embryo-fetal ultrasonographic parameters in early pregnancy and their relationships with birth weight and postnatal weights in a Bos indicus-Bos taurus composite beef cattle population. Pregnancies were generated in 2-yr-old Droughtmaster heifers by artificial insemination after estrus synchronization in 2 consecutive years (2009, n = 36 and 2010, n = 57), with a subset of 2010 heifers used again as lactating 3-yr-old cows in 2011 (n = 24). Each cohort was managed as 1 contemporary group for measurements of Corpus luteum diameter, amnion length and width, placentome width and thickness, and embryo-fetal crown-rump length, at 7 and 8 wk of gestation. This was followed by recordings of birth weight, branding weight at 5 to 6 mo of age and weaning weight 2 mo later. At a significance threshold of P < 0.05, placentome thickness at week 7 was negatively correlated with weights at birth (r = -0.23), branding (r = -0.25), and weaning (r = -0.35), whereas placentome width at week 7 (r = 0.24) and thickness at week 8 (r = 0.29) were positively correlated with birth weight. Thicker placentomes in males at week 7 (7%) difference mirrored sex differences in weights at birth (7%), branding (10%), and weaning (6%). The sex difference trend for birth weight was not consistent across sire-year combinations, ranging from -3.2 to +4.7 kg (birth weight of males - females per sire). These results support the hypothesis that placental parameters at the transition from embryo to fetal stage are major predictors of fetal and postnatal growth, albeit with significant environmentally induced plasticity, in stabilized B. indicus-B. taurus composite populations, and suggest that elements of B. indicus-B. taurus reciprocal differences in birth weight persist in composite populations.
Collapse
Affiliation(s)
- Brian M Burns
- Centre for Animal Science, Queensland Alliance for Agriculture and Food Innovation, University of Queensland, St Lucia, Qld, Australia
| | - Stefan Hiendleder
- Robinson Research Institute, North Adelaide, SA, Australia.,JS Davies Epigenetics and Genetics Group, School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA, Australia
| | - Alan R Laing
- Queensland Department of Agriculture and Fisheries, Ayr, Qld, Australia
| | - Geoffry Fordyce
- Centre for Animal Science, Queensland Alliance for Agriculture and Food Innovation, University of Queensland, St Lucia, Qld, Australia
| | - Andy D Herring
- Department of Animal Science, Texas A&M University, College Station, TX
| |
Collapse
|
21
|
Murillo-Ríos A, Maillo V, Muñoz M, Gutiérrez-Adán A, Carrocera S, Martín-González D, Fernandez-Buznego A, Gómez E. Short- and long-term outcomes of the absence of protein during bovine blastocyst formation in vitro. Reprod Fertil Dev 2018; 29:1064-1073. [PMID: 27048912 DOI: 10.1071/rd15485] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Accepted: 02/16/2016] [Indexed: 01/24/2023] Open
Abstract
In cattle, individual in vitro embryo culture after Day 6 benefits development, allowing non-invasive analysis of culture medium. However, undefined supplements in culture reduce analytical reliability. In this study we assayed the short- and long-term performance of embryos after bovine serum albumin removal over a 24-h period in individual culture. The absence of protein decreased embryo development and cell counts in the inner cell mass without affecting blastocyst sex ratio. However, the absence of protein produced embryos with an improved tendency to survive vitrification after 24h in culture (P=0.07). After transfer to recipients, birth rates of embryos that had been cultured with protein tended to decrease (P<0.06) mostly as a result of a higher number of miscarriages (P<0.013), reflecting lower viability. Birthweight, gestation length, height and thorax circumference did not differ between embryos cultured with or without protein. In fresh blastocysts cultured without protein, gene expression analysis showed higher abundance (P<0.05) of insulin-like growth factor 2 receptor (IGF2R; imprinting) and activating transcription factor 4 (ATF4) and DNA-damage-inducible transcript 3 (DDIT3; endoplasmic reticulum stress) transcripts, with DNA methyltransferase 3A (DNMT3A; imprinting) tending to increase (P=0.062). However, in hatched blastocysts that survived cryopreservation, glucose-6-phosphate dehydrogenase (G6PD) was overexpressed in embryos cultured without protein (P<0.01). The absence of protein results in fewer blastocysts but improved long-term viability after cryopreservation.
Collapse
Affiliation(s)
- A Murillo-Ríos
- Genética y Reproducción Animal, Centro de Biotecnología Animal, SERIDA, Camino de Rioseco 1225, 33394 Gijón, Spain
| | - V Maillo
- Departamento de Reproducción Animal, INIA, Ctra de la Coruña, km 5.9, 2804 Madrid, Spain
| | - M Muñoz
- Genética y Reproducción Animal, Centro de Biotecnología Animal, SERIDA, Camino de Rioseco 1225, 33394 Gijón, Spain
| | - A Gutiérrez-Adán
- Departamento de Reproducción Animal, INIA, Ctra de la Coruña, km 5.9, 2804 Madrid, Spain
| | - S Carrocera
- Genética y Reproducción Animal, Centro de Biotecnología Animal, SERIDA, Camino de Rioseco 1225, 33394 Gijón, Spain
| | - D Martín-González
- Genética y Reproducción Animal, Centro de Biotecnología Animal, SERIDA, Camino de Rioseco 1225, 33394 Gijón, Spain
| | - A Fernandez-Buznego
- Genética y Reproducción Animal, Centro de Biotecnología Animal, SERIDA, Camino de Rioseco 1225, 33394 Gijón, Spain
| | - E Gómez
- Genética y Reproducción Animal, Centro de Biotecnología Animal, SERIDA, Camino de Rioseco 1225, 33394 Gijón, Spain
| |
Collapse
|
22
|
Koroghli JA, Floyd E, Regouski M, Rood K, Gash K, Panter K, Stott R, Davies CJ, Polejaeva IA, Rutigliano HM. Gene expression and lymphocyte population at the fetal-maternal interface in sheep pregnancies established by somatic cell nuclear transfer. Reprod Fertil Dev 2018; 30:1011-1020. [DOI: 10.1071/rd17224] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 11/19/2017] [Indexed: 11/23/2022] Open
Abstract
The hypothesis of this study was that the leukocyte populations and expression levels of genes related to immune response, growth factors and apoptosis would be altered at the fetal-maternal interface in somatic cell nuclear transfer (SCNT)-generated sheep pregnancies. Placental and endometrial samples from sheep pregnancies established by SCNT and natural breeding (control) were collected at 45 days and at term. Expression of genes related to growth factors, apoptosis and immune response was examined using quantitative reverse transcription polymerase chain reaction. Endometrial leukocyte populations and major histocompatibility class I (MHC-I) protein expression were examined by immunohistochemistry. At term we observed altered expression of genes related to apoptosis, growth factors and immune response in placental and endometrial tissue of SCNT pregnancies. In Day-45 pregnancies there was less-pronounced abnormal expression and only genes related to apoptosis and growth factors were abnormal in the placenta. Endometrial gene expression profiles were similar to age-matched controls. Placental MHC-I protein expression was similar in SCNT and controls at 45 days but increased in the SCNT at term. The altered gene expression at the fetal-maternal interface likely contributes to the placental dysfunction and overgrowth observed in sheep SCNT pregnancies.
Collapse
|
23
|
Cordova A, King WA, Mastromonaco GF. Choosing a culture medium for SCNT and iSCNT reconstructed embryos: from domestic to wildlife species. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2017; 59:24. [PMID: 29152322 PMCID: PMC5680814 DOI: 10.1186/s40781-017-0149-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 10/23/2017] [Indexed: 12/16/2022]
Abstract
Over the past decades, in vitro culture media have been developed to successfully support IVF embryo growth in a variety of species. Advanced reproductive technologies, such as somatic cell nuclear transfer (SCNT), challenge us with a new type of embryo, with special nutritional requirements and altered physiology under in vitro conditions. Numerous studies have successfully reconstructed cloned embryos of domestic animals for biomedical research and livestock production. However, studies evaluating suitable culture conditions for SCNT embryos in wildlife species are scarce (for both intra- and interspecies SCNT). Most of the existing studies derive from previous IVF work done in conventional domestic species. Extrapolation to non-domestic species presents significant challenges since we lack information on reproductive processes and embryo development in most wildlife species. Given the challenges in adapting culture media and conditions from IVF to SCNT embryos, developmental competence of SCNT embryos remains low. This review summarizes research efforts to tailor culture media to SCNT embryos and explore the different outcomes in diverse species. It will also consider how these culture media protocols have been extrapolated to wildlife species, most particularly using SCNT as a cutting-edge technical resource to assist in the preservation of endangered species.
Collapse
Affiliation(s)
- A Cordova
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario Canada.,Reproductive Physiology, Toronto Zoo, Scarborough, Ontario Canada
| | - W A King
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario Canada
| | - G F Mastromonaco
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario Canada.,Reproductive Physiology, Toronto Zoo, Scarborough, Ontario Canada
| |
Collapse
|
24
|
Cardiac adaptations in SCNT newborn cloned calves during the first month of life assessed by echocardiography. Theriogenology 2017; 103:153-161. [DOI: 10.1016/j.theriogenology.2017.07.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 07/17/2017] [Accepted: 07/20/2017] [Indexed: 11/17/2022]
|
25
|
Ao Z, Liu D, Zhao C, Yue Z, Shi J, Zhou R, Cai G, Zheng E, Li Z, Wu Z. Birth weight, umbilical and placental traits in relation to neonatal loss in cloned pigs. Placenta 2017; 57:94-101. [DOI: 10.1016/j.placenta.2017.06.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 05/23/2017] [Accepted: 06/14/2017] [Indexed: 12/16/2022]
|
26
|
Estrella CAS, Kind KL, Derks A, Xiang R, Faulkner N, Mohrdick M, Fitzsimmons C, Kruk Z, Grutzner F, Roberts CT, Hiendleder S. Remodelling of the bovine placenta: Comprehensive morphological and histomorphological characterization at the late embryonic and early accelerated fetal growth stages. Placenta 2017. [DOI: 10.1016/j.placenta.2017.04.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
27
|
Abnormal gene expression in regular and aggregated somatic cell nuclear transfer placentas. BMC Biotechnol 2017; 17:34. [PMID: 28347305 PMCID: PMC5368936 DOI: 10.1186/s12896-017-0355-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 03/18/2017] [Indexed: 12/30/2022] Open
Abstract
Background Placental defects in somatic cell nuclear transfer (SCNT) are a major cause of complications during pregnancy. One of the most critical factors for the success of SCNT is the successful epigenetic reprogramming of donor cells. Recently, it was reported that the placental weight in mice cloned with the aggregated SCNT method was significantly reduced. Here, we examine the profile of abnormal gene expression using microarray technology in both regular SCNT and aggregated SCNT placentas as well as in vivo fertilization placentas. One SCNT embryo was aggregated with two 2 to 4 -cell stage tetraploid embryos from B6D2F1 mice (C57BL/6 × DBA/2). Results In SCNT placentas, 206 (1.6%) of the 12,816 genes probed were either up-regulated or down-regulated by more than two-fold. However, 52 genes (0.4%) showed differential expression in aggregated SCNT placentas compared to that in controls. In comparison of both types of SCNT placentas with the controls, 33 (92%) out of 36 genes were found to be up-regulated (>2-fold) in SCNT placentas. Among 36 genes, 13 (36%) genes were up-regulated in the aggregated SCNT placentas. Eighty-five genes were down-regulated in SCNT placentas compared with the controls. However, only 9 (about 10.5%) genes were down-regulated in the aggregated SCNT placentas. Of the 34 genes known as imprinted genes, expression was lower in SCNT placentas than that in the controls. Thus, these genes may be the cause of placentomegaly in mice produced post SCNT. Conclusions These results suggest that placentomegaly in the SCNT placentas was probably caused by abnormal expression of multiple genes. Taken together, these results suggest that abnormal gene expression in cloned placentas was reduced in a genome-wide manner using the aggregation method with tetraploid embryos. Electronic supplementary material The online version of this article (doi:10.1186/s12896-017-0355-4) contains supplementary material, which is available to authorized users.
Collapse
|
28
|
Polejaeva IA, Rutigliano HM, Wells KD. Livestock in biomedical research: history, current status and future prospective. Reprod Fertil Dev 2017; 28:112-24. [PMID: 27062879 DOI: 10.1071/rd15343] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Livestock models have contributed significantly to biomedical and surgical advances. Their contribution is particularly prominent in the areas of physiology and assisted reproductive technologies, including understanding developmental processes and disorders, from ancient to modern times. Over the past 25 years, biomedical research that traditionally embraced a diverse species approach shifted to a small number of model species (e.g. mice and rats). The initial reasons for focusing the main efforts on the mouse were the availability of murine embryonic stem cells (ESCs) and genome sequence data. This powerful combination allowed for precise manipulation of the mouse genome (knockouts, knockins, transcriptional switches etc.) leading to ground-breaking discoveries on gene functions and regulation, and their role in health and disease. Despite the enormous contribution to biomedical research, mouse models have some major limitations. Their substantial differences compared with humans in body and organ size, lifespan and inbreeding result in pronounced metabolic, physiological and behavioural differences. Comparative studies of strategically chosen domestic species can complement mouse research and yield more rigorous findings. Because genome sequence and gene manipulation tools are now available for farm animals (cattle, pigs, sheep and goats), a larger number of livestock genetically engineered (GE) models will be accessible for biomedical research. This paper discusses the use of cattle, goats, sheep and pigs in biomedical research, provides an overview of transgenic technology in farm animals and highlights some of the beneficial characteristics of large animal models of human disease compared with the mouse. In addition, status and origin of current regulation of GE biomedical models is also reviewed.
Collapse
Affiliation(s)
- Irina A Polejaeva
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT 84322, USA
| | - Heloisa M Rutigliano
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT 84322, USA
| | - Kevin D Wells
- Division of Animal Sciences, Animal Sciences Research Center, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
29
|
Gerger RPC, Zago FC, Ribeiro ES, Gaudencio Neto S, Martins LT, Aguiar LH, Rodrigues VHV, Furlan FH, Ortigari I, Sainz RD, Ferrell CL, Miglino MA, Ambrósio CE, Rodrigues JL, Rossetto R, Forell F, Bertolini LR, Bertolini M. Morphometric developmental pattern of bovine handmade cloned concepti in late pregnancy. Reprod Fertil Dev 2017; 29:950-967. [DOI: 10.1071/rd15215] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Accepted: 01/15/2016] [Indexed: 11/23/2022] Open
Abstract
Cloning procedures often interfere with conceptus growth and life ex utero, in a set of symptoms known as abnormal offspring syndrome (AOS). The aim of the present study was to compare the developmental pattern of in vivo-derived (IVD), IVF-derived and handmade cloning-derived (NT-HMC) Day 225 bovine concepti using established procedures. Pregnancy diagnosis was performed on Day 30 following blastocyst transfer on Day 7. Conceptus morphometry was assessed by ultrasonography on Day 51, and on Day 225 pregnant cows were killed for morphological examination of concepti. Pregnancy outcome was similar between groups, with greater pregnancy losses in the first trimester (70.6%) and smaller fetuses on Day 51 in the NT-HMC group than in the IVD (14.3%) and IVF (20.0%) groups. However, NT-HMC-derived concepti were twofold larger on Day 225 of gestation than controls. A higher frequency (63.5%) of placentomes larger than the largest in the IVD group was observed in the NT-HMC group, which may be relevant to placental function. Conceptus traits in the IVF group were similar to the IVD controls, with only slight changes in placentome types. Morphological changes in cloned concepti likely affected placental function and metabolism, disrupting the placental constraining mechanism on fetal growth in mid- to late pregnancy.
Collapse
|
30
|
Rutigliano HM, Wilhelm A, Hall J, Shi B, Meng Q, Stott R, Bunch TD, White KL, Davies CJ, Polejaeva IA. Cytokine gene expression at the maternal–fetal interface after somatic cell nuclear transfer pregnancies in small ruminants. Reprod Fertil Dev 2017; 29:646-657. [DOI: 10.1071/rd15103] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 09/16/2015] [Indexed: 12/27/2022] Open
Abstract
The present retrospective study investigated pregnancy rates, the incidence of pregnancy loss and large offspring syndrome (LOS) and immune-related gene expression of sheep and goat somatic cell nuclear transfer (SCNT) pregnancies. We hypothesised that significantly higher pregnancy losses observed in sheep compared with goat SCNT pregnancies are due to the increased amounts of T-helper 1 cytokines and proinflammatory mediators at the maternal–fetal interface. Sheep and goat SCNT pregnancies were generated using the same procedure. Control pregnancies were established by natural breeding. Although SCNT pregnancy rates at 45 days were similar in both species, pregnancy losses between 45 and 60 days of gestation and the incidence of LOS were significantly greater in sheep than in goats. At term, the expression of proinflammatory genes in sheep SCNT placentas was increased, whereas that in goats was similar to that in control animals. Genes with altered expression in sheep SCNT placentas included cytotoxic T-lymphocyte-associated protein 4 (CTLA4), interleukin 2 receptor alpha (IL2RA), cluster of differentiation 28 (CD28), interferon gamma (IFNG), interleukin 6 (IL6), interleukin 10 (IL10), transforming growth factor beta 1 (TGFB1), tumor necrosis factor alpha (TNF-α), interleukin 1 alpha (IL1A) and chemokine (C-X-C motif) ligand 8 (CXCL8). Major histocompatibility complex-I protein expression was greater in sheep and goat SCNT placentas at term than in control pregnancies. An unfavourable immune environment is present at the maternal–fetal interface in sheep SCNT pregnancies.
Collapse
|
31
|
Biase FH, Rabel C, Guillomot M, Hue I, Andropolis K, Olmstead CA, Oliveira R, Wallace R, Le Bourhis D, Richard C, Campion E, Chaulot-Talmon A, Giraud-Delville C, Taghouti G, Jammes H, Renard JP, Sandra O, Lewin HA. Massive dysregulation of genes involved in cell signaling and placental development in cloned cattle conceptus and maternal endometrium. Proc Natl Acad Sci U S A 2016; 113:14492-14501. [PMID: 27940919 PMCID: PMC5187692 DOI: 10.1073/pnas.1520945114] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
A major unresolved issue in the cloning of mammals by somatic cell nuclear transfer (SCNT) is the mechanism by which the process fails after embryos are transferred to the uterus of recipients before or during the implantation window. We investigated this problem by using RNA sequencing (RNA-seq) to compare the transcriptomes in cattle conceptuses produced by SCNT and artificial insemination (AI) at day (d) 18 (preimplantation) and d 34 (postimplantation) of gestation. In addition, endometrium was profiled to identify the communication pathways that might be affected by the presence of a cloned conceptus, ultimately leading to mortality before or during the implantation window. At d 18, the effects on the transcriptome associated with SCNT were massive, involving more than 5,000 differentially expressed genes (DEGs). Among them are 121 genes that have embryonic lethal phenotypes in mice, cause defects in trophoblast and placental development, and/or affect conceptus survival in mice. In endometria at d 18, <0.4% of expressed genes were affected by the presence of a cloned conceptus, whereas at d 34, ∼36% and <0.7% of genes were differentially expressed in intercaruncular and caruncular tissues, respectively. Functional analysis of DEGs in placental and endometrial tissues suggests a major disruption of signaling between the cloned conceptus and the endometrium, particularly the intercaruncular tissue. Our results support a "bottleneck" model for cloned conceptus survival during the periimplantation period determined by gene expression levels in extraembryonic tissues and the endometrial response to altered signaling from clones.
Collapse
Affiliation(s)
- Fernando H Biase
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61820
| | - Chanaka Rabel
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61820
| | - Michel Guillomot
- UMR Biologie du Développement et Reproduction (BDR), Institut National de la Recherche Agronomique (INRA), École Nationale Vétérinaire d'Alford (ENVA), Université Paris Saclay, 78350 Jouy en Josas, France
| | - Isabelle Hue
- UMR Biologie du Développement et Reproduction (BDR), Institut National de la Recherche Agronomique (INRA), École Nationale Vétérinaire d'Alford (ENVA), Université Paris Saclay, 78350 Jouy en Josas, France
| | - Kalista Andropolis
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61820
| | - Colleen A Olmstead
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61820
| | - Rosane Oliveira
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61820
| | - Richard Wallace
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61820
| | - Daniel Le Bourhis
- UMR Biologie du Développement et Reproduction (BDR), Institut National de la Recherche Agronomique (INRA), École Nationale Vétérinaire d'Alford (ENVA), Université Paris Saclay, 78350 Jouy en Josas, France
| | - Christophe Richard
- UMR Biologie du Développement et Reproduction (BDR), Institut National de la Recherche Agronomique (INRA), École Nationale Vétérinaire d'Alford (ENVA), Université Paris Saclay, 78350 Jouy en Josas, France
- Unité Commune d'Expérimentation Animale de Bressonvilliers (UCEA), INRA, 91030 Leudeville, France
| | - Evelyne Campion
- UMR Biologie du Développement et Reproduction (BDR), Institut National de la Recherche Agronomique (INRA), École Nationale Vétérinaire d'Alford (ENVA), Université Paris Saclay, 78350 Jouy en Josas, France
| | - Aurélie Chaulot-Talmon
- UMR Biologie du Développement et Reproduction (BDR), Institut National de la Recherche Agronomique (INRA), École Nationale Vétérinaire d'Alford (ENVA), Université Paris Saclay, 78350 Jouy en Josas, France
| | - Corinne Giraud-Delville
- UMR Biologie du Développement et Reproduction (BDR), Institut National de la Recherche Agronomique (INRA), École Nationale Vétérinaire d'Alford (ENVA), Université Paris Saclay, 78350 Jouy en Josas, France
| | - Géraldine Taghouti
- UMR Biologie du Développement et Reproduction (BDR), Institut National de la Recherche Agronomique (INRA), École Nationale Vétérinaire d'Alford (ENVA), Université Paris Saclay, 78350 Jouy en Josas, France
| | - Hélène Jammes
- UMR Biologie du Développement et Reproduction (BDR), Institut National de la Recherche Agronomique (INRA), École Nationale Vétérinaire d'Alford (ENVA), Université Paris Saclay, 78350 Jouy en Josas, France
| | - Jean-Paul Renard
- UMR Biologie du Développement et Reproduction (BDR), Institut National de la Recherche Agronomique (INRA), École Nationale Vétérinaire d'Alford (ENVA), Université Paris Saclay, 78350 Jouy en Josas, France
| | - Olivier Sandra
- UMR Biologie du Développement et Reproduction (BDR), Institut National de la Recherche Agronomique (INRA), École Nationale Vétérinaire d'Alford (ENVA), Université Paris Saclay, 78350 Jouy en Josas, France
| | - Harris A Lewin
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61820;
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61820
- Department of Evolution and Ecology and The Genome Center, University of California, Davis, CA 95616
| |
Collapse
|
32
|
Altered DNA methylation associated with an abnormal liver phenotype in a cattle model with a high incidence of perinatal pathologies. Sci Rep 2016; 6:38869. [PMID: 27958319 PMCID: PMC5153653 DOI: 10.1038/srep38869] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 11/14/2016] [Indexed: 02/06/2023] Open
Abstract
Cloning enables the generation of both clinically normal and pathological individuals from the same donor cells, and may therefore be a DNA sequence-independent driver of phenotypic variability. We took advantage of cattle clones with identical genotypes but different developmental abilities to investigate the role of epigenetic factors in perinatal mortality, a complex trait with increasing prevalence in dairy cattle. We studied livers from pathological clones dying during the perinatal period, clinically normal adult clones with the same genotypes as perinatal clones and conventional age-matched controls. The livers from deceased perinatal clones displayed histological lesions, modifications to quantitative histomorphometric and metabolic parameters such as glycogen storage and fatty acid composition, and an absence of birth-induced maturation. In a genome-wide epigenetic analysis, we identified DNA methylation patterns underlying these phenotypic alterations and targeting genes relevant to liver metabolism, including the type 2 diabetes gene TCF7L2. The adult clones were devoid of major phenotypic and epigenetic abnormalities in the liver, ruling out the effects of genotype on the phenotype observed. These results thus provide the first demonstration of a genome-wide association between DNA methylation and perinatal mortality in cattle, and highlight epigenetics as a driving force for phenotypic variability in farmed animals.
Collapse
|
33
|
Sandra O, Charpigny G, Galio L, Hue I. Preattachment Embryos of Domestic Animals: Insights into Development and Paracrine Secretions. Annu Rev Anim Biosci 2016; 5:205-228. [PMID: 27959670 DOI: 10.1146/annurev-animal-022516-022900] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In mammalian species, endometrial receptivity is driven by maternal factors independently of embryo signals. When pregnancy initiates, paracrine secretions of the preattachment embryo are essential both for maternal recognition and endometrium preparation for implantation and for coordinating development of embryonic and extraembryonic tissues of the conceptus. This review mainly focuses on domestic large animal species. We first illustrate the major steps of preattachment embryo development, including elongation in bovine, ovine, porcine, and equine species. We next highlight conceptus secretions that are involved in the communication between extraembryonic and embryonic tissues, as well as between the conceptus and the endometrium. Finally, we introduce experimental data demonstrating the intimate connection between conceptus secretions and endometrial activity and how adverse events perturbing this interplay may affect the progression of implantation that will subsequently impact pregnancy outcome, postnatal health, and expression of production traits in livestock offspring.
Collapse
Affiliation(s)
- Olivier Sandra
- UMR BDR, INRA, ENVA, Université Paris Saclay, 78350, Jouy en Josas, France; , , ,
| | - Gilles Charpigny
- UMR BDR, INRA, ENVA, Université Paris Saclay, 78350, Jouy en Josas, France; , , ,
| | - Laurent Galio
- UMR BDR, INRA, ENVA, Université Paris Saclay, 78350, Jouy en Josas, France; , , ,
| | - Isabelle Hue
- UMR BDR, INRA, ENVA, Université Paris Saclay, 78350, Jouy en Josas, France; , , ,
| |
Collapse
|
34
|
Vascularization and VEGF expression altered in bovine yolk sacs from IVF and NT technologies. Theriogenology 2016; 87:290-297. [PMID: 27729111 DOI: 10.1016/j.theriogenology.2016.09.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 08/23/2016] [Accepted: 09/06/2016] [Indexed: 12/14/2022]
Abstract
Reproductive technologies are widely used in cattle, although many are associated with high-embryonic mortality, especially during early gestation, when the yolk sac undergoes macroscopic changes in structure. We hypothesized that vasculogenesis and angiogenesis are affected, thereby affecting embryonic and placental differentiation. To test this, we studied yolk sac development and gene expression of the vascular endothelial growth factor system (VEGF-A, VEGFR-1/Flt-1, VEGFR-2/KDR). Samples from Days 25 to 40/41 of pregnancy from control cattle (n = 8) and from pregnancies established with IVF, (n = 7) or somatic cell nuclear transfer/clones (n = 5) were examined by histology, immunohistochemistry, and quantitative reverse transcriptase PCR. Yolk sacs in IVF- and nuclear transfer-derived pregnancies were immature. Development of villi was sparse in IVF yolk sacs, whereas vascularization was barely formed in clones and was associated, in part, with thin or interrupted endothelium. Transcript levels of the genes characterized exceed minimum detection limits for all groups, except in the mentioned clone with interrupted endothelium. Levels of mRNA for VEGF-A and VEGFR-2 were significantly higher in IVF yolk sacs. Clones had substantial individual variation in gene expression (both upregulation and downregulation). Our data confirmed the broad range in expression of VEGF genes. Furthermore, overexpression in IVF yolk sacs may compensate for an immature yolk sac structure, whereas in clones, patchy expression may cause structural alterations of blood vessels. In conclusion, we inferred that disturbances of yolk sac vasculature contributed to increased early embryonic mortality of bovine pregnancies established with reproductive technologies.
Collapse
|
35
|
Sasaki S, Hasegawa K, Higashi T, Suzuki Y, Sugano S, Yasuda Y, Sugimoto Y. A missense mutation in solute carrier family 12, member 1 (SLC12A1) causes hydrallantois in Japanese Black cattle. BMC Genomics 2016; 17:724. [PMID: 27613513 PMCID: PMC5016959 DOI: 10.1186/s12864-016-3035-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Accepted: 08/24/2016] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Hydrallantois is the excessive accumulation of fluid within the allantoic cavity in pregnant animals and is associated with fetal mortality. Although the incidence of hydrallantois is very low in artificial insemination breeding programs in cattle, recently 38 cows with the phenotypic appearance of hydrallantois were reported in a local subpopulation of Japanese Black cattle. Of these, 33 were traced back to the same sire; however, both their parents were reported healthy, suggesting that hydrallantois is a recessive inherited disorder. To identify autozygous chromosome segments shared by individuals with hydrallantois and the causative mutation in Japanese Black cattle, we performed autozygosity mapping using single-nucleotide polymorphism (SNP) array and exome sequencing. RESULTS Shared haplotypes of the affected fetuses spanned 3.52 Mb on bovine chromosome 10. Exome sequencing identified a SNP (g.62382825G > A, p.Pro372Leu) in exon 10 of solute carrier family 12, member 1 (SLC12A1), the genotype of which was compatible with recessive inheritance. SLC12A1 serves as a reabsorption molecule of Na(+)-K(+)-2Cl(-) in the apical membrane of the thick ascending limb of the loop of Henle in the kidney. We observed that the concentration of Na(+)-Cl(-) increased in allantoic fluid of homozygous SLC12A1 (g.62382825G > A) in a hydrallantois individual. In addition, SLC12A1-positive signals were localized at the apical membrane in the kidneys of unaffected fetuses, whereas they were absent from the apical membrane in the kidneys of affected fetuses. These results suggested that p.Pro372Leu affects the membrane localization of SLC12A1, and in turn, may impair its transporter activity. Surveillance of the risk-allele frequency revealed that the carriers were restricted to the local subpopulation of Japanese Black cattle. Moreover, we identified a founder individual that carried the mutation (g.62382825G > A). CONCLUSIONS In this study, we mapped the shared haplotypes of affected fetuses using autozygosity mapping and identified a de novo mutation in the SLC12A1 gene that was associated with hydrallantois in Japanese Black cattle. In kidneys of hydrallantois-affected fetuses, the mutation in SLC12A1 impaired the apical membrane localization of SLC12A1 and reabsorption of Na(+)-K(+)-2Cl(-) in the thick ascending limb of the loop of Henle, leading to a defect in the concentration of urine via the countercurrent mechanism. Consequently, the affected fetuses exhibited polyuria that accumulated in the allantoic cavity. Surveillance of the risk-allele frequency indicated that carriers were not widespread throughout the Japanese Black cattle population. Moreover, we identified the founder individual, and thus could effectively manage the disorder in the population.
Collapse
Affiliation(s)
- Shinji Sasaki
- Shirakawa Institute of Animal Genetics, Japan Livestock Technology Association, Odakura, Nishigo, Fukushima 961-8061 Japan
| | - Kiyotoshi Hasegawa
- Shimane Prefecture Livestock Technology Center, Koshi, Izumo, Shimane 693-0031 Japan
| | - Tomoko Higashi
- Shimane Prefecture Livestock Division Livestock Hygiene Research Office, Jinzaioki, Izumo, Shimane 699-0822 Japan
| | - Yutaka Suzuki
- Department of Medical Genome Sciences, and Department of Computational Biology, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, 277-8562 Japan
| | - Sumio Sugano
- Department of Medical Genome Sciences, and Department of Computational Biology, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, 277-8562 Japan
| | - Yasuaki Yasuda
- Shimane Prefecture Livestock Technology Center, Koshi, Izumo, Shimane 693-0031 Japan
| | - Yoshikazu Sugimoto
- Shirakawa Institute of Animal Genetics, Japan Livestock Technology Association, Odakura, Nishigo, Fukushima 961-8061 Japan
| |
Collapse
|
36
|
Funnell BJ, Hilton WM. Management and Prevention of Dystocia. Vet Clin North Am Food Anim Pract 2016; 32:511-22. [DOI: 10.1016/j.cvfa.2016.01.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
37
|
Martins LT, Neto SG, Tavares KCS, Calderón CEM, Aguiar LH, Lazzarotto CR, Ongaratto FL, Rodrigues VHV, Carneiro IDS, Rossetto R, Almeida AP, Fernandes CCL, Rondina D, Dias ACO, Chies JM, Polejaeva IA, Rodrigues JL, Forell F, Bertolini LR, Bertolini M. Developmental Outcome and Related Abnormalities in Goats: Comparison Between Somatic Cell Nuclear Transfer- and In Vivo-Derived Concepti During Pregnancy Through Term. Cell Reprogram 2016; 18:264-79. [PMID: 27362734 DOI: 10.1089/cell.2015.0082] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Cloning by somatic cell nuclear transfer (SCNT) is characterized by low efficiency and the occurrence of developmental abnormalities, which are rather poorly studied phenomena in goats. This study aimed at comparing overall SCNT efficiency in goats by using in vitro-matured (IVM) or in vivo-matured oocytes and fibroblast donor cells (mock transfected, transgenic, or wild type), also characterizing symptoms of the Abnormal Offspring Syndrome (AOS) in development, comparing results with pregnancies produced by artificial insemination (AI) and in vivo-derived (IVD) embryos. The SCNT group had lower pregnancy rate (18.3%, 11/60), total number of concepti (20.0%, 12/60), term births (3.3%, 2/60), and live births (1.7%, 1/60) than both the IVD (77.8%, 7/9; 155.5%, 14/9; 122.2%, 11/9; 88.8%, 8/9) and the AI (71.4%, 10/14; 121.4%, 17/14; 100%, 14/14; 78.5%, 11/14) groups, respectively (p < 0.05). No SCNT pregnancies reached term using IVM oocytes, but in vivo-matured oocytes resulted in two term transgenic cloned kids. The proportion fetal membrane (FM) weight/birth weight reflected an increase in FM size and cotyledonary enlargement in clones, for disproportionally bigger newborns in relation to cotyledonary numbers. Overall, goat cloning showed losses and abnormality patterns similar to the AOS in cloned cattle and sheep, which have not been previously well recognized in goats.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Felipe Ledur Ongaratto
- 1 University of Fortaleza (UNIFOR) , Fortaleza, Brazil .,2 Federal University of Rio Grande do Sul (UFRGS) , Porto Alegre, Brazil
| | | | | | - Rafael Rossetto
- 1 University of Fortaleza (UNIFOR) , Fortaleza, Brazil .,3 Ceará State University (UECE) , Fortaleza, Brazil
| | - Anderson Pinto Almeida
- 1 University of Fortaleza (UNIFOR) , Fortaleza, Brazil .,3 Ceará State University (UECE) , Fortaleza, Brazil
| | | | | | | | | | - Irina A Polejaeva
- 5 Department of Animal, Dairy and Veterinary Sciences, Utah State University , Logan, Utah, USA
| | | | - Fabiana Forell
- 6 Santa Catarina State University (UDESC) , Lages, Brazil
| | - Luciana Relly Bertolini
- 1 University of Fortaleza (UNIFOR) , Fortaleza, Brazil .,7 Pontificial Catholic University of Rio Grande do Sul (PUCRS) , Porto Alegre, Brazil
| | - Marcelo Bertolini
- 1 University of Fortaleza (UNIFOR) , Fortaleza, Brazil .,2 Federal University of Rio Grande do Sul (UFRGS) , Porto Alegre, Brazil
| |
Collapse
|
38
|
Pozor MA, Sheppard B, Hinrichs K, Kelleman AA, Macpherson ML, Runcan E, Choi YH, Diaw M, Mathews PM. Placental abnormalities in equine pregnancies generated by SCNT from one donor horse. Theriogenology 2016; 86:1573-1582. [PMID: 27325574 DOI: 10.1016/j.theriogenology.2016.05.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Revised: 05/17/2016] [Accepted: 05/19/2016] [Indexed: 01/06/2023]
Abstract
Placental changes associated with SCNT have been described in several species, but little information is available in this area in the horse. We evaluated the ultrasonographic, gross, and histopathological characteristics of placentas from three successful and five unsuccessful equine SCNT pregnancies, established using cells from a single donor horse. Starting at approximately 6-month gestation, the pregnancies were monitored periodically using transrectal (TR) and transabdominal (TA) ultrasonography (US) to examine the placentas, fetal fluids, and fetuses. Of the five mares that aborted, one mare did so suddenly without any abnormal signs detected by US and four had enlarged umbilical vessels visible on TA-US before abortion. Placental edema (TR-US) and intravascular thrombi in the umbilical cords were seen (TA-US) in two of these four mares; one mare aborted shortly after acute placental separation was identified on TA-US. In three mares that delivered live foals, TA-US showed engorged allantoic vessels and enlarged umbilical vessels. Two of these mares had placental thickening visible on TR-US, interpreted as a sign of placentitis, that subsided after aggressive medical treatment. Seven of the eight placentas were submitted for gross and histopathological examinations after delivery. All placentas had some degree of edema, abnormally engorged allantoic vessels, and enlarged umbilical vessels. Placentitis, large allantoic vesicles, cystic pouches in the fetal part of the cord, and hemorrhages and thrombi in the umbilical vessels were detected only in placentas from mares that aborted. Equine pregnancies resulting from SCNT may be associated with placental pathologies that can be detected using ultrasonography. However, interpreting their severity is difficult. Although placental abnormalities have been observed in SCNT pregnancies in other species, to the best of our knowledge, placentitis has not been previously reported and may be an important complication of equine SCNT pregnancies, leading to pregnancy loss.
Collapse
Affiliation(s)
- Malgorzata A Pozor
- Department of Large Animal Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA.
| | - Barbara Sheppard
- Department of Infectious Diseases and Pathology, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
| | - Katrin Hinrichs
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Audrey A Kelleman
- Department of Large Animal Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
| | - Margo L Macpherson
- Department of Large Animal Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
| | - Erin Runcan
- Department of Large Animal Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
| | - Young-Ho Choi
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Mouhamadou Diaw
- Department of Large Animal Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
| | - Philip M Mathews
- Equine Reproduction Center, Peterson & Smith Equine Hospital, Ocala, Florida, USA
| |
Collapse
|
39
|
Montazer-Torbati F, Boutinaud M, Brun N, Richard C, Neveu A, Jaffrézic F, Laloë D, LeBourhis D, Nguyen M, Chadi S, Jammes H, Renard JP, Chat S, Boukadiri A, Devinoy E. Differences during the first lactation between cows cloned by somatic cell nuclear transfer and noncloned cows. J Dairy Sci 2016; 99:4778-4794. [PMID: 27016834 DOI: 10.3168/jds.2015-10532] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 02/08/2016] [Indexed: 01/06/2023]
Abstract
Lactation performance is dependent on both the genetic characteristics and the environmental conditions surrounding lactating cows. However, individual variations can still be observed within a given breed under similar environmental conditions. The role of the environment between birth and lactation could be better appreciated in cloned cows, which are presumed to be genetically identical, but differences in lactation performance between cloned and noncloned cows first need to be clearly evaluated. Conflicting results have been described in the literature, so our aim was to clarify this situation. Nine cloned Prim' Holstein cows were produced by the transfer of nuclei from a single fibroblast cell line after cell fusion with enucleated oocytes. The cloned cows and 9 noncloned counterparts were raised under similar conditions. Milk production and composition were recorded monthly from calving until 200d in milk. At 67d in milk, biopsies were sampled from the rear quarter of the udder, their mammary epithelial cell content was evaluated, and mammary cell renewal, RNA, and DNA were then analyzed in relevant samples. The results showed that milk production did not differ significantly between cloned and noncloned cows, but milk protein and fat contents were less variable in cloned cows. Furthermore, milk fat yield and contents were lower in cloned cows during early lactation. At around 67 DIM, milk fat and protein yields, as well as milk fat, protein, and lactose contents, were also lower in cloned cows. These lower yields could be linked to the higher apoptotic rate observed in cloned cows. Apoptosis is triggered by insulin-like factor growth binding protein 5 (IGFBP5) and plasminogen activator inhibitor (PAI), which both interact with CSN1S2. During our experiments, CSN1S2 transcript levels were lower in the mammary gland of cloned cows. The mammary cell apoptotic rate observed in cloned cows may have been related to the higher levels of DNA (cytosine-5-)-methyltransferase 1 (DNMT1) transcripts, coding for products that maintain the epigenetic status of cells. We conclude, therefore, that milk production in cloned cows differs slightly from that of noncloned cows. These differences may be due, in part, to a higher incidence of subclinical mastitis. They were associated with differences in cell apoptosis and linked to variations in DNMT1 mRNA. However, milk protein and fat contents were more similar among cloned cows than among noncloned cows.
Collapse
Affiliation(s)
| | - M Boutinaud
- INRA, UMR1348 Pegase, F-35590 Saint Gilles, France; Agrocampus Ouest, UMR1348 Pegase, F-35000 Rennes, France
| | - N Brun
- INRA, UMR1313 GABI, F-78350 Jouy-en-Josas, France
| | - C Richard
- INRA, UMR1198 Biologie du Développement et Reproduction, F-78350 Jouy-en-Josas, France
| | - A Neveu
- INRA, UE1298 Unité commune d'expérimentation animale, F-78350 Jouy-en-Josas, France
| | - F Jaffrézic
- INRA, UMR1313 GABI, F-78350 Jouy-en-Josas, France
| | - D Laloë
- INRA, UMR1313 GABI, F-78350 Jouy-en-Josas, France
| | - D LeBourhis
- ALLICE, lieu-dit Le Perroi, F-37380 Nouzilly, France
| | - M Nguyen
- INRA, UMR1313 GABI, F-78350 Jouy-en-Josas, France
| | - S Chadi
- INRA, UMR1313 GABI, F-78350 Jouy-en-Josas, France
| | - H Jammes
- INRA, UMR1198 Biologie du Développement et Reproduction, F-78350 Jouy-en-Josas, France
| | - J-P Renard
- INRA, UMR1198 Biologie du Développement et Reproduction, F-78350 Jouy-en-Josas, France
| | - S Chat
- INRA, UMR1313 GABI, F-78350 Jouy-en-Josas, France
| | - A Boukadiri
- INRA, UMR1313 GABI, F-78350 Jouy-en-Josas, France
| | - E Devinoy
- INRA, UMR1313 GABI, F-78350 Jouy-en-Josas, France.
| |
Collapse
|
40
|
Handmade cloning: recent advances, potential and pitfalls. J Anim Sci Biotechnol 2015; 6:43. [PMID: 26473031 PMCID: PMC4606838 DOI: 10.1186/s40104-015-0043-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 09/21/2015] [Indexed: 12/02/2022] Open
Abstract
Handmade cloning (HMC) is the most awaited, simple and micromanipulator-free version of somatic cell nuclear transfer (SCNT). The requirement of expensive micromanipulators and skilled expertise is eliminated in this technique, proving it as a major revolution in the field of embryology. During the past years, many modifications have been incorporated in this technique to boost its efficiency. This alternative approach to micromanipulator based traditional cloning (TC) works wonder in generating comparable or even higher birth rates in addition to declining costs drastically and enabling cryopreservation. This technique is not only applicable to intraspecies nuclear transfer but also to interspecies nuclear transfer (iSCNT) thus permitting conservation of endangered species. It also offers unique possibilities for automation of SCNT which aims at production of transgenic animals that can cure certain human diseases by producing therapeutics hence, providing a healthier future for the wellbeing of humans. The present review aims at highlighting certain aspects of HMC including recent advancements in procedure and factors involved in elevating its efficiency besides covering the potentials and pitfalls of this technique.
Collapse
|
41
|
Transcriptomic Features of Bovine Blastocysts Derived by Somatic Cell Nuclear Transfer. G3-GENES GENOMES GENETICS 2015; 5:2527-38. [PMID: 26342001 PMCID: PMC4683625 DOI: 10.1534/g3.115.020016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Reprogramming incompletely occurs in most somatic cell nuclear transfer (SCNT) embryos, which results in misregulation of developmentally important genes and subsequent embryonic malfunction and lethality. Here we examined transcriptome profiles in single bovine blastocysts derived by in vitro fertilization (IVF) and SCNT. Different types of donor cells, cumulus cell and ear-skin fibroblast, were used to derive cSCNT and fSCNT blastocysts, respectively. SCNT blastocysts expressed 13,606 genes on average, similar to IVF (13,542). Correlation analysis found that both cSCNT and fSCNT blastocyst groups had transcriptomic features distinctive from the IVF group, with the cSCNT transcriptomes closer to the IVF ones than the fSCNT. Gene expression analysis identified 56 underrepresented and 78 overrepresented differentially expressed genes in both SCNT groups. A 400-kb locus harboring zinc-finger protein family genes in chromosome 18 were found coordinately down-regulated in fSCNT blastocysts, showing a feature of reprogramming-resistant regions. Probing into different categories of genes important for blastocyst development revealed that genes involved in trophectoderm development frequently were underrepresented, and those encoding epigenetic modifiers tended to be overrepresented in SCNT blastocysts. Our effort to identify reprogramming-resistant, differentially expressed genes can help map reprogramming error-prone loci onto the genome and elucidate how to handle the stochastic events of reprogramming to improve cloning efficiency.
Collapse
|
42
|
Li Q, Suasnavas E, Xiao L, Heywood S, Qi X, Zhou A, Isom SC. Label-free and non-invasive monitoring of porcine trophoblast derived cells: differentiation in serum and serum-free media. JOURNAL OF BIOPHOTONICS 2015; 8:638-645. [PMID: 25250877 DOI: 10.1002/jbio.201400062] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 08/03/2014] [Accepted: 08/27/2014] [Indexed: 06/03/2023]
Abstract
Traditional approaches to characterize stem cell differentiation are time-consuming, lengthy and invasive. Here, Raman microspectroscopy (RM) and atomic force microscopy (AFM) - both considered as non-invasive techniques - are applied to detect the biochemical and biophysical properties of trophoblast derived stem-like cells incubated up to 10 days under conditions designed to induce differentiation. Significant biochemical and biophysical differences between control cells and differentiated cells were observed. Quantitative real time PCR was also applied to analyze gene expression. The relationship between cell differentiation and associated cellular biochemical and biomechanical changes were discussed. Monitoring trophoblast cells differentiation.
Collapse
Affiliation(s)
- Qifei Li
- Department of Biological Engineering, Utah State University, Logan, UT, 84322
| | - Edison Suasnavas
- Department of Animal Science, Dairy and Veterinary Sciences, Utah State University, Logan, UT, 84322
| | - Lifu Xiao
- Department of Biological Engineering, Utah State University, Logan, UT, 84322
| | - Sierra Heywood
- Department of Animal Science, Dairy and Veterinary Sciences, Utah State University, Logan, UT, 84322
| | - Xiaojun Qi
- Department of Computer Science, Utah State University, Logan, UT, 84322
| | - Anhong Zhou
- Department of Biological Engineering, Utah State University, Logan, UT, 84322
| | - S Clay Isom
- Department of Animal Science, Dairy and Veterinary Sciences, Utah State University, Logan, UT, 84322
| |
Collapse
|
43
|
Mohapatra SK, Sandhu A, Singh KP, Singla SK, Chauhan MS, Manik R, Palta P. Establishment of Trophectoderm Cell Lines from Buffalo (Bubalus bubalis) Embryos of Different Sources and Examination of In Vitro Developmental Competence, Quality, Epigenetic Status and Gene Expression in Cloned Embryos Derived from Them. PLoS One 2015; 10:e0129235. [PMID: 26053554 PMCID: PMC4459972 DOI: 10.1371/journal.pone.0129235] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Accepted: 05/06/2015] [Indexed: 11/26/2022] Open
Abstract
Despite being successfully used to produce live offspring in many species, somatic cell nuclear transfer (NT) has had a limited applicability due to very low (>1%) live birth rate because of a high incidence of pregnancy failure, which is mainly due to placental dysfunction. Since this may be due to abnormalities in the trophectoderm (TE) cell lineage, TE cells can be a model to understand the placental growth disorders seen after NT. We isolated and characterized buffalo TE cells from blastocysts produced by in vitro fertilization (TE-IVF) and Hand-made cloning (TE-HMC), and compared their growth characteristics and gene expression, and developed a feeder-free culture system for their long-term culture. The TE-IVF cells were then used as donor cells to produce HMC embryos following which their developmental competence, quality, epigenetic status and gene expression were compared with those of HMC embryos produced using fetal or adult fibroblasts as donor cells. We found that although TE-HMC and TE-IVF cells have a similar capability to grow in culture, significant differences exist in gene expression levels between them and between IVF and HMC embryos from which they are derived, which may have a role in the placental abnormalities associated with NT pregnancies. Although TE cells can be used as donor cells for producing HMC blastocysts, their developmental competence and quality is lower than that of blastocysts produced from fetal or adult fibroblasts. The epigenetic status and expression level of many important genes is different in HMC blastocysts produced using TE cells or fetal or adult fibroblasts or those produced by IVF.
Collapse
Affiliation(s)
| | - Anjit Sandhu
- Animal Biotechnology Centre, National Dairy Research Institute, Karnal, India
| | - Karn Pratap Singh
- Animal Biotechnology Centre, National Dairy Research Institute, Karnal, India
| | - Suresh Kumar Singla
- Animal Biotechnology Centre, National Dairy Research Institute, Karnal, India
| | | | - Radheysham Manik
- Animal Biotechnology Centre, National Dairy Research Institute, Karnal, India
| | - Prabhat Palta
- Animal Biotechnology Centre, National Dairy Research Institute, Karnal, India
- * E-mail:
| |
Collapse
|
44
|
Smith LC, Therrien J, Filion F, Bressan F, Meirelles FV. Epigenetic consequences of artificial reproductive technologies to the bovine imprinted genes SNRPN, H19/IGF2, and IGF2R. Front Genet 2015; 6:58. [PMID: 25763013 PMCID: PMC4340261 DOI: 10.3389/fgene.2015.00058] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 02/07/2015] [Indexed: 12/28/2022] Open
Abstract
Animal breeders have made widespread use of assisted reproductive technologies to accelerate genetic improvement programs aimed at obtaining more, better and cheaper food products. Selection approaches have traditionally focused on Mendel’s laws of inheritance using parental phenotypic characteristics and quantitative genetics approaches to choose the best parents for the next generation, regardless of their gender. However, apart from contributing DNA sequence variants, male and female gametes carry parental-specific epigenetic marks that play key roles during pre- and post-natal development and growth of the offspring. We herein review the epigenetic anomalies that are associated with artificial reproductive technologies in current use in animal breeding programs. For instance, we demonstrate that bovine embryos and fetuses derived by in vitro culture and somatic cell nuclear transfer show epigenetic anomalies in the differentially methylated regions controlling the expression of some imprinted genes. Although these genomic imprinting errors are undetected in the somatic tissues after birth, further research is warranted to examine potential germ cell transmission of epimutations and the potential risks of reproducing cattle using artificial reproductive technologies.
Collapse
Affiliation(s)
- Lawrence C Smith
- Department of Veterinary Biomedicine, Centre de Recherche en Reproduction Animale, Faculty of Veterinary Medicine, University of Montreal , Saint-Hyacinthe, QC, Canada
| | - Jacinthe Therrien
- Department of Veterinary Biomedicine, Centre de Recherche en Reproduction Animale, Faculty of Veterinary Medicine, University of Montreal , Saint-Hyacinthe, QC, Canada
| | - France Filion
- Department of Veterinary Biomedicine, Centre de Recherche en Reproduction Animale, Faculty of Veterinary Medicine, University of Montreal , Saint-Hyacinthe, QC, Canada
| | - Fabiana Bressan
- Department of Veterinary Medicine, Faculty of Animal Sciences and Food Engineering, University of São Paulo, Pirassununga , Brazil
| | - Flávio V Meirelles
- Department of Veterinary Medicine, Faculty of Animal Sciences and Food Engineering, University of São Paulo, Pirassununga , Brazil
| |
Collapse
|
45
|
Su J, Liu X, Sun H, Wang Y, Wu Y, Guo Z, Zhang Y. Identification of differentially expressed microRNAs in placentas of cloned and normally produced calves by Solexa sequencing. Anim Reprod Sci 2015; 155:64-74. [PMID: 25735829 DOI: 10.1016/j.anireprosci.2015.02.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 01/26/2015] [Accepted: 02/02/2015] [Indexed: 01/28/2023]
Abstract
Aberrant gene expression caused by aberrant nuclear reprogramming results in developmental abnormalities in cloned animals and ultimately their death. MicroRNAs (miRNAs), a family of ∼ 22 nucleotide, non-coding, single-stranded RNA molecules, are considered as key regulators of gene expression. Numerous miRNAs and their expression patterns have been identified in various species. However, the significance of miRNAs in developmental abnormalities in cloned animals is unclear. Small RNA libraries were generated from the placentas of cloned (somatic cell nuclear transfer, SCNT) and normally produced (control) calves. A total of 18,815,541 clean reads were obtained from the SCNT library and 19,329,352 from the control library. In total, 430 conserved bovine miRNAs were identified in bovine placenta. Furthermore, the family, expression predominance, and base substitution of the conserved miRNAs were also analyzed. We found 135 conserved miRNAs that were differentially expressed significantly between the two samples, which suggest that these miRNAs may affect developmental abnormalities in cloned cattle and ultimately their death. The miRNA target prediction, gene ontology, and pathway analysis for these target genes were also carried out. The present study expands the collection of bovine miRNAs and could initiate further studies on the functions of miRNAs in developmental abnormalities and death in cloned animals.
Collapse
Affiliation(s)
- Jianmin Su
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, PR China
| | - Xin Liu
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, PR China
| | - Hongzheng Sun
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, PR China
| | - Yongsheng Wang
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, PR China
| | - Yongyan Wu
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, PR China
| | - Zekun Guo
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, PR China
| | - Yong Zhang
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, PR China.
| |
Collapse
|
46
|
Vascular alterations underlie developmental problems manifested in cloned cattle before or after birth. PLoS One 2015; 10:e0106663. [PMID: 25584533 PMCID: PMC4293144 DOI: 10.1371/journal.pone.0106663] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 08/01/2014] [Indexed: 12/16/2022] Open
Abstract
Although assisted reproductive techniques are commonly applied in humans and animals, they are frequently associated with major developmental deficits and reduced viability. To explore abnormalities associated with cloning or nuclear transfer (NT) as the most invasive of these methods, we used a bovine model to characterize abnormalities. Detailed necropsy examinations were done on 13 calves that died soon after birth; in addition, we included data from embryos and fetuses (produced by NT) that terminated prematurely. Bovine clones that survived until the neonatal period differed quantitatively and qualitatively from in-vivo-derived cattle. Although alterations affected a variety of organs (e.g. heart, lung and liver), there was a clear association with abberant vascular developmental during the early intrauterine phase. Therefore, we concluded that vascular problems were key alterations induced by cloning (presumably via epigenetic modifications).
Collapse
|
47
|
Richard C, Hue I, Gelin V, Neveux A, Campion E, Degrelle SA, Heyman Y, Chavatte-Palmer P. Transcervical collection of bovine embryos up to Day 21: an 8-year overview. Theriogenology 2014; 83:1101-9. [PMID: 25662200 DOI: 10.1016/j.theriogenology.2014.12.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 11/27/2014] [Accepted: 12/02/2014] [Indexed: 12/12/2022]
Abstract
Transcervical embryo collection is used routinely in the bovine species throughout the world to collect Day 6 to Day 9 embryos (early embryos) for genetic selection. For research purposes, however, the collection of embryos at later stages of pregnancy, i.e., Days 12 to 21 (late embryos), is needed. So far, for the recovery of late embryos, females are euthanized and embryo collection is performed after recovery of the genital tract. To reduce the number of animals used and still provide valuable material for embryo research, we have therefore developed a transcervical technique to collect late embryos. The objective of this study was to compare embryo recovery results at early and late stages within our laboratory. Altogether, 232 cows were used for this study. One hundred forty-five flushes were performed to collect embryos from Days 6 to 9, and 251 flushes were performed to collect embryos from Days 12 to 21. For the early embryos, a classical three-way collection equipment was used. To collect the late embryos, the same equipment was used, but the extensible flexible catheter that goes inside the external rigid catheter was removed, so that larger embryos could be collected through the remaining larger hole (two-way collection). All females were submitted to ovum pick up to remove the dominant follicle and were subsequently superovulated with FSH. Luteolysis was induced 48 hours before artificial insemination. Two artificial inseminations were performed with frozen semen, 48 and 56 hours after PGF2α injection. Before embryo collection, cows were treated with an epidural injection of a local anesthetic drug. The presence of CL was checked, and they were counted by rectal palpation. For all collections, the cervix was prepared with the initial introduction of a dilator. Then, the catheter was introduced in one horn, and the cuff was inflated as low as possible. For the collection of late embryos, the flushing solution (30 mL) was injected slowly twice to suspend the embryos before flushing the horn with 500 mL, and the same operation was performed on the second horn. There was no significant difference in the number of embryos collected per flush in the early- and late-stage (758 embryos collected, 5.22 ± 6.02 per flush vs. 1238 embryos collected, 4.93 ± 5.07 per flush, respectively). The number of embryos collected per CL, however, was significantly lower in the early versus late group (0.39 ± 0.32% vs. 0.44 ± 0.34%, respectively). The late collection allowed the retrieval of full conceptuses (embryonic and extraembryonic tissues), even at very late stages such as Days 18 to 21. Careful collection is needed, however, so that conceptuses are not damaged or torn: the horn must be massaged gently and the flush should be ideally recovered in one single flow. This technique is a powerful tool to collect the late-stage embryos for research purposes. Because it is not traumatic, animals can be used again for the same procedure.
Collapse
Affiliation(s)
- C Richard
- INRA, UMR 1198 Biologie du Développement et Reproduction, Jouy-en-Josas, France; ENVA, UMR 1198 Biologie du Développement et Reproduction, Maisons-Alfort, France.
| | - I Hue
- INRA, UMR 1198 Biologie du Développement et Reproduction, Jouy-en-Josas, France; ENVA, UMR 1198 Biologie du Développement et Reproduction, Maisons-Alfort, France
| | - V Gelin
- INRA, UCEA Bressonvilliers, Leudeville, France
| | - A Neveux
- INRA, UCEA Bressonvilliers, Leudeville, France
| | - E Campion
- INRA, UMR 1198 Biologie du Développement et Reproduction, Jouy-en-Josas, France
| | - S A Degrelle
- INRA, UMR 1198 Biologie du Développement et Reproduction, Jouy-en-Josas, France; INSERM, UMR-S1139767, Faculté des Sciences Pharmaceutiques et Biologiques, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Y Heyman
- INRA, UMR 1198 Biologie du Développement et Reproduction, Jouy-en-Josas, France
| | - P Chavatte-Palmer
- INRA, UMR 1198 Biologie du Développement et Reproduction, Jouy-en-Josas, France; ENVA, UMR 1198 Biologie du Développement et Reproduction, Maisons-Alfort, France
| |
Collapse
|
48
|
Martins-Júnior HA, Pinaffi FLV, Simas RC, Tarouco AK, Ferreira CR, Silva LA, Nogueira GP, Meirelles FV, Eberlin MN, Perecin F. Plasma steroid dynamics in late- and near-term naturally and artificially conceived bovine pregnancies as elucidated by multihormone high-resolution LC-MS/MS. Endocrinology 2014; 155:5011-23. [PMID: 25299569 DOI: 10.1210/en.2013-2166] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The plasma levels of corticosteroids and sex steroids during pregnancy are key indicators of mammalian placental function and the onset of parturition. Steroid hormones are believed to be disturbed in pregnancies produced using assisted reproductive technologies (ARTs) due to placental dysfunction and the frequently observed lack of parturition signals. To elucidate the plasma steroid dynamics, a liquid chromatography-tandem mass spectrometry method was developed and used to determine the levels of corticosteroids (corticosterone, 11-deoxycortisol, and cortisol) and their direct precursors (progesterone and 17α-OH-progesterone) as well as sex steroids (androstenedione, estrone, estrone sulfate, testosterone, and 17β-estradiol) in bovine plasma. The levels of these 10 steroids in recipient cows carrying naturally conceived (control), in vitro fertilized (IVF), or cloned (somatic cell nuclear transfer) conceptuses were compared during late-term pregnancy (30 days before parturition), during near-term pregnancy (1 day before parturition), and on the day of parturition (day 0). Significant differences were observed among the corticosteroid levels: higher levels of corticosterone, 11-deoxycortisol, and cortisol were detected in cloned pregnancies at day 30; lower levels of corticosterone were observed in ART-derived pregnancies at days 1 and 0; and estrone and estradiol levels were higher in IVF pregnancies throughout the final development. These results suggested an upregulation of the P450C11 and P450C21 enzymes 30 days before parturition in somatic cell nuclear transfer pregnancies and an overactivation of the aromatase enzyme in IVF pregnancies. Taken together, the monitoring of multiple steroid hormones revealed that the pregnancies obtained using ART exhibited plasma steroid concentration dynamics compatible with the dysregulation of steroidogenic tissues.
Collapse
Affiliation(s)
- Helio A Martins-Júnior
- Thomson Mass Spectrometry Laboratory (H.A.M.-J., R.C.S., C.R.F., M.N.E.), Institute of Chemistry, University of Campinas, Campinas, São Paulo, Brazil 13083-970; AB SCIEX of Brazil (H.A.M.-J.), São Paulo, São Paulo, Brazil 04719-002; Laboratory of Theriogenology Dr O. J. Ginther (F.L.V.P., L.A.S.), Department of Veterinary Medicine, School of Animal Sciences and Food Engineering (FZEA), University of São Paulo, Pirassununga, São Paulo, Brazil 13635-900; Laboratory of Molecular Morphophysiology and Development (A.K.T., F.V.M., F.P.), Department of Veterinary Medicine, School of Animal Sciences and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil 13635-900; Department of Production and Animal Health (R.C.S., G.P.N.), School of Veterinary Medicine, São Paulo State University, Araçatuba, São Paulo, Brazil 16050-680; and State Foundation of Agricultural Research (A.K.T.), Research Center Iwar Beckman, Hulha Negra, Rio Grande do Sul, Brazil 96400-970
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Ko YG, Hwang S, Kim SW, Kim H, Seong HH, Kim JH, Song Y, Yang BS, Song YM, Cho JH. Proteomic analysis of the extraembryonic tissues from cloned porcine fetus at day 35 of pregnancy. BMC Res Notes 2014; 7:861. [PMID: 25433481 PMCID: PMC4289280 DOI: 10.1186/1756-0500-7-861] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2014] [Accepted: 11/18/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Somatic cell cloning by nuclear transfer (SCNT) in pig is clearly of great benefit for basic research and biomedical applications. Even though cloned offspring have been successfully produced in pig, SCNT is struggling with the low efficiency. RESULTS In the present study, we investigated differentially expressed proteins of the extraembryonic tissue from pig SCNT fetus compared to control (normal) fetus. We obtained the extraembryonic tissue from embryos at day 35 of pregnancy and examined the protein expression profiles using two-dimensional electrophoresis (2-D) and Western blotting. The extraembryonic tissue of fetus in control pregnancy was compared to the extraembryonic tissue of SCNT fetus, which showed an abnormally small size and shape as well as exhibited abnormal placental morphology compared to control fetus. A proteomic analysis showed that the expression of 33 proteins was significantly increased or decreased in the extraembryonic tissue of SCNT fetus compared to control fetus. The differentially expressed proteins in the extraembryonic tissue of SCNT fetus included ATP or lipid binding proteins, antioxidant proteins, translation elongation factors, and transcription factors. Western blotting analysis indicated that antioxidant enzymes and anti-apoptotic proteins were down-regulated; however, the expression levels of apoptotic proteins, Bax and Hsp27, were increased in the extraembryonic tissue of SCNT fetus. Moreover, immunohistochemical analysis also showed that the expression of the catalase or GPX genes was decreased in the extraembryonic tissue with SCNT fetus compared to those with control fetus. In addition, we observed a significant decrease in DNA methytransferase1 (Dnmt1) expression in SCNT extraembryonic tissue, and the expression levels of Dnmt3a and Dnmt3b were abnormally higher in SCNT fetus compared to control fetus. Moreover, a marked increase in the frequency of TUNEL-positive cells was observed in the extraembryonic tissue in SCNT fetus. CONCLUSION These results demonstrated that pig SCNT fetus showed abnormal protein expression in the extraembryonic tissue, and extensive apoptosis occurred in the extraembryonic tissue of the SCNT fetus due to an increase in apoptotic protein expression or a decrease in antioxidant protein expression.
Collapse
Affiliation(s)
- Yeoung-Gyu Ko
- Animal Genetic Resources Station, National Institute of Animal Science, RDA, Namwon 590-832, Korea.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Bloise E, Feuer SK, Rinaudo PF. Comparative intrauterine development and placental function of ART concepti: implications for human reproductive medicine and animal breeding. Hum Reprod Update 2014; 20:822-39. [PMID: 24947475 PMCID: PMC4196686 DOI: 10.1093/humupd/dmu032] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 05/21/2014] [Accepted: 05/28/2014] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND The number of children conceived using assisted reproductive technologies (ART) has reached >5 million worldwide and continues to increase. Although the great majority of ART children are healthy, many reports suggest a forthcoming risk of metabolic complications, which is further supported by the Developmental Origins of Health and Disease hypothesis of suboptimal embryo/fetal conditions predisposing adult cardiometabolic pathologies. Accumulating evidence suggests that fetal and placental growth kinetics are important features predicting post-natal health, but the relationship between ART and intrauterine growth has not been systematically reviewed. METHODS Relevant studies describing fetoplacental intrauterine phenotypes of concepti generated by in vitro fertilization (IVF), intracytoplasmic sperm injection (ICSI) and somatic cell nuclear transfer (SCNT) in the mouse, bovine and human were comprehensively researched using PubMed and Google Scholar. Intrauterine growth plots were created from tabular formatted data available in selected reports. RESULTS ART pregnancies display minor but noticeable alterations in fetal and placental growth curves across mammalian species. In all species, there is evidence of fetal growth restriction in the earlier stages of pregnancy, followed by significant increases in placental size and accelerated fetal growth toward the end of gestation. However, there is a species-specific effect of ART on birthweights, that additionally vary in a culture condition-, strain-, and/or stage at transfer-specific manner. We discuss the potential mechanisms that underlie these changes, and how they are affected by specific components of ART procedures. CONCLUSIONS ART may promote measurable alterations to intrauterine growth trajectory and placental function. Key findings include evidence that birthweight is not a reliable marker of fetal stress, and that increases in embryo manipulation result in more deviant fetal growth curves. Because growth kinetics in early life are particularly relevant to adult metabolic physiology, we advise more rigorous assessment of fetal growth and placental function in human ART pregnancies, as well as continued follow-up of ART offspring throughout post-natal life. Finally, strategies to minimize embryo manipulations should be adopted whenever possible.
Collapse
Affiliation(s)
- Enrrico Bloise
- Laboratory of Molecular Endocrinology, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Sky K Feuer
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Paolo F Rinaudo
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|