1
|
Zhang X, Tu H, Zhou X, Wang B, Guo Y, Situ C, Qi Y, Li Y, Guo X. Quantitative Phosphoproteomic Profiling of Mouse Sperm Maturation in Epididymis Revealed Kinases Important for Sperm Motility. Mol Cell Proteomics 2024; 23:100810. [PMID: 38977202 PMCID: PMC11338950 DOI: 10.1016/j.mcpro.2024.100810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 07/01/2024] [Accepted: 07/04/2024] [Indexed: 07/10/2024] Open
Abstract
Transcriptionally and translationally silent sperm undergo functional maturation during epididymis traverse, which provides sperm ability to move and is crucial for successful fertilization. However, the molecular mechanisms governing sperm maturation remain poorly understood, especially at the protein post-translational modification level. In this study, we conducted a comprehensive quantitative phosphoproteomic analysis of mouse epididymal sperm from different regions (caput, corpus, and cauda) to unveil the dynamics of protein phosphorylation during sperm maturation. We identified 6447 phosphorylation sites in 1407 phosphoproteins, and 345 phosphoproteins were differentially phosphorylated between caput and cauda sperm. Gene ontology and KEGG pathway analyses showed enrichment of differentially phosphorylated proteins in energy metabolism, sperm motility, and fertilization. Kinase substrate network analysis followed by inhibition assay and quantitative phosphoproteomics analysis showed that TSSK2 kinase is important for sperm motility and progressive motility. This study systemically characterized the intricate phosphorylation regulation during sperm maturation in the mouse epididymis, which can be a basis to elucidate sperm motility acquisition, and to offer potential targets for male contraception and the treatment of male infertility.
Collapse
Affiliation(s)
- Xiangzheng Zhang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Haixia Tu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China; Department of Clinical Laboratory, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| | - Xin Zhou
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Bing Wang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China; School of Medicine, Southeast University, Nanjing, China
| | - Yueshuai Guo
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Chenghao Situ
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Yaling Qi
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Yan Li
- Department of Clinical Laboratory, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China.
| | - Xuejiang Guo
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
2
|
Iamsaard S, Kietinun S, Sattayasai J, Bunluepuech K, Wu ATH, Choowong-In P. Prevention of seminal vesicle damage by Mucuna pruriens var. pruriens seed extract in chronic unpredictable mild stress mice. PHARMACEUTICAL BIOLOGY 2023; 61:89-99. [PMID: 36565036 PMCID: PMC9793912 DOI: 10.1080/13880209.2022.2157018] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 10/16/2022] [Accepted: 12/04/2022] [Indexed: 06/17/2023]
Abstract
CONTEXT Thai Mucuna pruriens (L.) DC. var. pruriens (Fabaceae) or T-MP seed extract has been shown to improve sexual performance and sperm quality. OBJECTIVE This study investigates the preventive effects of T-MP against seminal vesicle damage, apoptotic and Nrf2 protein expression in mice under chronic unpredictable mild stress (CUMS). MATERIALS AND METHODS Forty-eight male ICR mice were divided into four groups: control, CUMS, T-MP300 + CUMS and T-MP600 + CUMS. Mice in control and CUMS groups received distilled water, while those in treated groups were pretreated with T-MP extract (300 or 600 mg/kg BW) for 14 consecutive days. The CMUS and co-treated groups were exposed to one random stressor (of 12 total) each day for 43 days. Components and histopathology of the seminal vesicle were examined, along with localization of androgen receptor (AR) and caspase 3. Expression of seminal AR, tyrosine phosphorylated (TyrPho), heat shock protein 70 (Hsp70), caspases (3 and 9) and nuclear factor erythroid 2-related factor 2 (Nrf2) proteins was investigated. RESULTS T-MP extract at a dose of 600 mg/kg BW improved seminal epithelial damage and secretion of fluid containing essential substances and proteins in CUMS mice. It also increased the expression of AR and TyrPho proteins. Additionally, T-MP increased expression of Nrf2 and inhibited seminal vesicular apoptosis through the suppression of Hsp70 and caspase expression. CONCLUSION T-MP seeds have an antiapoptotic property in chronic stress seminal vesicle. It is possible to apply this extract for the enhancement of seminal plasma quality.
Collapse
Affiliation(s)
- Sitthichai Iamsaard
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Research Institute for Human High Performance and Health Promotion (HHP & HP), Khon Kaen University, Khon Kaen, Thailand
| | - Somboon Kietinun
- Department of Integrative Medicine, Chulabhorn International College of Medicine, Thammasat University, Pathum Thani, Thailand
| | - Jintana Sattayasai
- Department of Pharmacology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Kingkan Bunluepuech
- Department of Applied Thai Traditional Medicine, School of Medicine, Walailak University, Nakhon Si Thammarat, Thailand
| | - Alexander Tsang-Hsien Wu
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan
- The PhD Program of Translational Medicine, College of Science and Technology, Taipei Medical University, Taipei, Taiwan
- Clinical Research Center, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Pannawat Choowong-In
- Department of Applied Thai Traditional Medicine, School of Medicine, Walailak University, Nakhon Si Thammarat, Thailand
- Center of Excellence in Marijuana, Hemp, and Kratom, Walailak University, Nakhon Si Thammarat, Thailand
| |
Collapse
|
3
|
Tsuchiya H, Fujinoki M, Azuma M, Koshimizu TA. Vasopressin V1a receptor and oxytocin receptor regulate murine sperm motility differently. Life Sci Alliance 2023; 6:e202201488. [PMID: 36650057 PMCID: PMC9846835 DOI: 10.26508/lsa.202201488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 01/06/2023] [Accepted: 01/06/2023] [Indexed: 01/19/2023] Open
Abstract
Specific receptors for the neurohypophyseal hormones, arginine vasopressin (AVP) and oxytocin, are present in the male reproductive organs. However, their exact roles remain unknown. To elucidate the physiological functions of pituitary hormones in male reproduction, this study first focused on the distribution and function of one of the AVP receptors, V1a. In situ hybridization analysis revealed high expression of the Avpr1a in Leydig cells of the testes and narrow/clear cells in the epididymis, with the expression pattern differing from that of the oxytocin receptor (OTR). Notably, persistent motility and highly proportional hyperactivation were observed in spermatozoa from V1a receptor-deficient mice. In contrast, OTR blocking by antagonist atosiban decreased hyperactivation rate. Furthermore, AVP stimulation could alter the extracellular pH mediated by the V1a receptor. The results highlight the crucial role of neurohypophyseal hormones in male reproductive physiology, with potential contradicting roles of V1a and OTR in sperm maturation. Our findings suggest that V1a receptor antagonists are potential therapeutic drugs for male infertility.
Collapse
Affiliation(s)
- Hiroyoshi Tsuchiya
- Division of Molecular Pharmacology, Department of Pharmacology, Jichi Medical University, Shimotsuke, Japan
| | - Masakatsu Fujinoki
- Research Center for Laboratory Animals, Comprehensive Research Facilities for Advanced Medical Science, School of Medicine, Dokkyo Medical University, Mibu, Japan
| | - Morio Azuma
- Division of Molecular Pharmacology, Department of Pharmacology, Jichi Medical University, Shimotsuke, Japan
| | - Taka-Aki Koshimizu
- Division of Molecular Pharmacology, Department of Pharmacology, Jichi Medical University, Shimotsuke, Japan
| |
Collapse
|
4
|
Ke S, Zhang R, He Y, Mu H, Sun F, Liu W, Li J, Song X. Human adenylate kinase 6 regulates WNK1 (with no lysine kinase-1) phosphorylation states and affects ion homeostasis in NT2 cells. Exp Cell Res 2021; 402:112565. [PMID: 33744230 DOI: 10.1016/j.yexcr.2021.112565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/12/2021] [Accepted: 03/14/2021] [Indexed: 10/21/2022]
Abstract
Adenylate kinase 6 (AK6), a nucleus localized phosphotransferase in mammalians, shows ubiquitously expression and broad substrate activity in different tissues and cell types. Although the function of AK6 has been extensively studied in different cancer cell lines, its role in mammalian germline is still unknown. Here we showed that knockdown of AK6 inhibits cell proliferation and promotes cell apoptosis in human testicular carcinoma (NT2 cells). Co-immunoprecipitation experiment and in vitro pull down assay identified WNK1 (with no lysine kinase-1) as one of the AK6 interacting proteins in NT2 cells. Moreover, we found that AK6 regulates the phosphorylation states of WNK1 (Thr60) and affects phosphorylation level of Akt (Ser473) upon hypotonic condition, probably affecting chloride channel and regulating ion transport and homeostasis in NT2 cells and consequently contributing to the decreased cell proliferation rate. In conclusion, AK6 regulates WNK1 phosphorylation states and affects ion homeostasis in NT2 cells. These findings provide new insights into the function of AK6 and WNK1 in human testicular carcinoma. This work also provides foundation for further mechanism study of AK6 in spermatogenesis.
Collapse
Affiliation(s)
- Shengwei Ke
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Ran Zhang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yaohui He
- School of Pharmaceutical Science, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen, Fujian, 361102, China
| | - Huawei Mu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Fei Sun
- Institute of Reproductive Medicine, Nantong University, Nantong, Jiangsu, 226019, China
| | - Wen Liu
- School of Pharmaceutical Science, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen, Fujian, 361102, China
| | - Jianyuan Li
- Yu Huang Ding Medical Research Centre, Yan Tai University, Yantai, Shandong, 264000, China
| | - Xiaoyuan Song
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230026, China.
| |
Collapse
|
5
|
Zhang P, Huang Y, Fu Q, He W, Xiao K, Zhang M. Integrated analysis of phosphoproteome and ubiquitylome in epididymal sperm of buffalo (Bubalus bubalis). Mol Reprod Dev 2021; 88:15-33. [PMID: 33140506 PMCID: PMC7894524 DOI: 10.1002/mrd.23432] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 09/14/2020] [Accepted: 10/13/2020] [Indexed: 12/20/2022]
Abstract
In mammals, sperm need to mature in the epididymis to gain fertilization competency. However, the molecular mechanism underlying buffalo sperm maturation remains elusive. Exploring sperm physiology at the posttranslational modification (PTM) level could help to develop our understanding of these mechanisms. Protein phosphorylation and ubiquitination are major PTMs in the regulation of many biological processes. In the present study, to our knowledge, we report the first phosphoproteome and ubiquitylome of sperm collected from the caput, corpus, and cauda segments of the epididymis using liquid chromatography-mass spectrometry combined with affinity purification. In total, 647 phosphorylation sites in 294 proteins and 1063 ubiquitination sites in 446 proteins were characterized. Some of these proteins were associated with cellular developmental processes and energy metabolic pathways. Interestingly, 84 proteins were both phosphorylated and ubiquitinated, simultaneously. Some of these proteins were involved in, for example, spermatogenesis, reproduction, and spermatid development. Taken together, these data provide a theoretical basis for further functional analysis of phosphorylation and ubiquitination in epididymal sperm of buffalo and other mammals, and serve as an important resource for exploring the physiological mechanism underlying sperm maturation.
Collapse
Affiliation(s)
- Peng‐fei Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, Animal Reproduction InstituteGuangxi UniversityNanningGuangxiChina
| | - Yu‐lin Huang
- Department of Cell and Genetics, College of Basic MedicineGuangxi University of Chinese MedicineNanningGuangxiChina
| | - Qiang Fu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, Animal Reproduction InstituteGuangxi UniversityNanningGuangxiChina
| | - Weng‐tan He
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, Animal Reproduction InstituteGuangxi UniversityNanningGuangxiChina
| | - Kai Xiao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, Animal Reproduction InstituteGuangxi UniversityNanningGuangxiChina
| | - Ming Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, Animal Reproduction InstituteGuangxi UniversityNanningGuangxiChina
| |
Collapse
|
6
|
Inhalation of ammonium sulfate and ammonium nitrate adversely affect sperm function. Reprod Toxicol 2020; 96:424-431. [PMID: 32866586 DOI: 10.1016/j.reprotox.2020.08.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/19/2020] [Accepted: 08/22/2020] [Indexed: 01/09/2023]
Abstract
Among the components of air pollution in developing countries and Asia, (NH4)2SO4 and NH4NO3 are known as major water-soluble in-organic compounds that cause particulate matter. Several researchers have been reported that the (NH4)2SO4 and NH4NO3 induce abnormal decreases in body weight, as well as pneumotoxic, and immunotoxic. Moreover, while it has been reported that (NH4)2SO4 and NH4NO3 have detrimental effects on reproduction, specific effects on male fertility have not been addressed in depth. Therefore, the present study evaluated the reproductive toxicity of (NH4)2SO4 and NH4NO3 in spermatozoa under the capacitation condition. Results showed that various sperm motion parameters were significantly altered after inhalation of (NH4)2SO4 and NH4NO3. In particular, alterations to a range of motion kinematic parameters and to capacitation status were observed after capacitation. In addition, protein kinase A (PKA) activity and tyrosine phosphorylation were altered by (NH4)2SO4 and NH4NO3 regardless of capacitation. Taken together, our results show that inhalation of (NH4)2SO4 and NH4NO3 may induce adverse effects on male fertility such as sperm motility, motion kinematics, and capacitation status via unusual tyrosine phosphorylation by abnormal PKA activity. Therefore, we suggest that exposure to (NH4)2SO4 and NH4NO3 should be highlighted as a health risk, as it may lead to male reproductive toxicity in humans and animals.
Collapse
|
7
|
Mochida K, Hasegawa A, Ogonuki N, Inoue K, Ogura A. Early production of offspring by in vitro fertilization using first-wave spermatozoa from prepubertal male mice. J Reprod Dev 2019; 65:467-473. [PMID: 31447476 PMCID: PMC6815745 DOI: 10.1262/jrd.2019-042] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Mature male mice (aged 10–12 weeks or older) are conventionally used for in vitro fertilization (IVF) in order to achieve high fertilization rates (e.g., > 70%). Here,
we sought to determine the earliest age at which male mice (C57BL/6J strain) can be used efficiently for producing offspring via IVF. Because we noted that the addition of reduced
glutathione (GSH) to the IVF medium significantly increased the fertilizing ability of spermatozoa from prepubertal males, we used this IVF protocol for all experiments. Spermatozoa first
reached the caudal region of the epididymides at day 35; however, they were unable to fertilize oocytes. Caudal epididymal spermatozoa first became competent for oocyte fertilization at day
37, albeit at a low rate (2.9%). A high fertilization rate (72.0%) was obtained at day 40, and 52.4% of the embryos thus obtained developed into offspring after embryo transfer. Moreover, we
found that corpus epididymal spermatozoa in prepubertal mice could fertilize oocytes; however, the fertilization rates were always < 50%, regardless of the age of the males. Caput
epididymal spermatozoa failed to fertilize oocytes irrespective of the age of the males. Therefore, we propose that caudal epididymal spermatozoa from male mice aged 40 days can be
efficiently used for IVF, to obtain offspring in the shortest attainable time. This protocol will reduce the turnover time required for the generation of mice by ~1 month compared with that
of the conventional IVF protocol.
Collapse
Affiliation(s)
- Keiji Mochida
- RIKEN BioResource Center, Tsukuba, Ibaraki 305-0074, Japan
| | - Ayumi Hasegawa
- RIKEN BioResource Center, Tsukuba, Ibaraki 305-0074, Japan
| | - Narumi Ogonuki
- RIKEN BioResource Center, Tsukuba, Ibaraki 305-0074, Japan
| | - Kimiko Inoue
- RIKEN BioResource Center, Tsukuba, Ibaraki 305-0074, Japan.,Graduate School of Life and Environmental Science, University of Tsukuba, Ibaraki 305-8572, Japan
| | - Atsuo Ogura
- RIKEN BioResource Center, Tsukuba, Ibaraki 305-0074, Japan.,Graduate School of Life and Environmental Science, University of Tsukuba, Ibaraki 305-8572, Japan.,RIKEN Cluster for Pioneering Research, Saitama 351-0198, Japan
| |
Collapse
|
8
|
Raspa M, Mahabir E, Paoletti R, Protti M, Mercolini L, Schiller P, Scavizzi F. Effects of oral d-aspartate on sperm quality in B6N mice. Theriogenology 2018; 121:53-61. [DOI: 10.1016/j.theriogenology.2018.07.040] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 07/30/2018] [Accepted: 07/30/2018] [Indexed: 11/16/2022]
|
9
|
Schubert C. Pathway to Sperm Maturity. Biol Reprod 2016. [DOI: 10.1095/biolreprod.115.137521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
10
|
Davis BW, Seabury CM, Brashear WA, Li G, Roelke-Parker M, Murphy WJ. Mechanisms Underlying Mammalian Hybrid Sterility in Two Feline Interspecies Models. Mol Biol Evol 2015; 32:2534-46. [PMID: 26006188 PMCID: PMC4592343 DOI: 10.1093/molbev/msv124] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The phenomenon of male sterility in interspecies hybrids has been observed for over a century, however, few genes influencing this recurrent phenotype have been identified. Genetic investigations have been primarily limited to a small number of model organisms, thus limiting our understanding of the underlying molecular basis of this well-documented "rule of speciation." We utilized two interspecies hybrid cat breeds in a genome-wide association study employing the Illumina 63 K single-nucleotide polymorphism array. Collectively, we identified eight autosomal genes/gene regions underlying associations with hybrid male sterility (HMS) involved in the function of the blood-testis barrier, gamete structural development, and transcriptional regulation. We also identified several candidate hybrid sterility regions on the X chromosome, with most residing in close proximity to complex duplicated regions. Differential gene expression analyses revealed significant chromosome-wide upregulation of X chromosome transcripts in testes of sterile hybrids, which were enriched for genes involved in chromatin regulation of gene expression. Our expression results parallel those reported in Mus hybrids, supporting the "Large X-Effect" in mammalian HMS and the potential epigenetic basis for this phenomenon. These results support the value of the interspecies feline model as a powerful tool for comparison to rodent models of HMS, demonstrating unique aspects and potential commonalities that underpin mammalian reproductive isolation.
Collapse
Affiliation(s)
- Brian W Davis
- College of Veterinary Medicine, Texas A&M University Interdisciplinary Program in Genetics, Texas A&M University
| | - Christopher M Seabury
- College of Veterinary Medicine, Texas A&M University Interdisciplinary Program in Genetics, Texas A&M University
| | - Wesley A Brashear
- College of Veterinary Medicine, Texas A&M University Interdisciplinary Program in Genetics, Texas A&M University
| | - Gang Li
- College of Veterinary Medicine, Texas A&M University
| | - Melody Roelke-Parker
- College of Veterinary Medicine, Texas A&M University National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - William J Murphy
- College of Veterinary Medicine, Texas A&M University Interdisciplinary Program in Genetics, Texas A&M University
| |
Collapse
|
11
|
Baker MA. Proteomics of post-translational modifications of mammalian spermatozoa. Cell Tissue Res 2015; 363:279-287. [DOI: 10.1007/s00441-015-2249-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Accepted: 06/18/2015] [Indexed: 12/25/2022]
|
12
|
Reid AT, Anderson AL, Roman SD, McLaughlin EA, McCluskey A, Robinson PJ, Aitken RJ, Nixon B. Glycogen synthase kinase 3 regulates acrosomal exocytosis in mouse spermatozoa via dynamin phosphorylation. FASEB J 2015; 29:2872-82. [PMID: 25808536 DOI: 10.1096/fj.14-265553] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 03/09/2015] [Indexed: 11/11/2022]
Abstract
The dynamin family of GTPases has been implicated as novel regulators of the acrosome reaction, a unique exocytotic event that is essential for fertilization. Dynamin activity during the acrosome reaction is accompanied by phosphorylation of key serine residues. We now tested the hypothesis that glycogen synthase kinase 3 (GSK3) is the protein kinase responsible for dynamin phosphorylation at these phosphosites in mouse spermatozoa. Pharmacologic inhibition of GSK3 in mature mouse spermatozoa (CHIR99021: IC50 = 6.7 nM) led to a significant reduction in dynamin phosphorylation (10.3% vs. 27.3%; P < 0.001), acrosomal exocytosis (9.7% vs. 25.7%; P < 0.01), and in vitro fertilization (53% vs. 100%; P < 0.01). GSK3 was shown to be present in developing germ cells where it colocalized with dynamin in the peri-acrosomal domain. However, additional GSK3 was acquired by maturing mouse spermatozoa within the male reproductive tract, via a novel mechanism involving direct interaction of sperm heads with extracellular structures known as epididymal dense bodies. These data reveal a novel mode for the cellular acquisition of a protein kinase and identify a key role for GSK3 in the regulation of sperm maturation and acrosomal exocytosis.
Collapse
Affiliation(s)
- Andrew T Reid
- *School of Environmental and Life Sciences, Discipline of Biological Sciences, and School of Environmental and Life Sciences, Discipline of Chemistry, The University of Newcastle, Callaghan, New South Wales, Australia; and Children's Medical Research Institute, The University of Sydney, Westmead, New South Wales, Australia
| | - Amanda L Anderson
- *School of Environmental and Life Sciences, Discipline of Biological Sciences, and School of Environmental and Life Sciences, Discipline of Chemistry, The University of Newcastle, Callaghan, New South Wales, Australia; and Children's Medical Research Institute, The University of Sydney, Westmead, New South Wales, Australia
| | - Shaun D Roman
- *School of Environmental and Life Sciences, Discipline of Biological Sciences, and School of Environmental and Life Sciences, Discipline of Chemistry, The University of Newcastle, Callaghan, New South Wales, Australia; and Children's Medical Research Institute, The University of Sydney, Westmead, New South Wales, Australia
| | - Eileen A McLaughlin
- *School of Environmental and Life Sciences, Discipline of Biological Sciences, and School of Environmental and Life Sciences, Discipline of Chemistry, The University of Newcastle, Callaghan, New South Wales, Australia; and Children's Medical Research Institute, The University of Sydney, Westmead, New South Wales, Australia
| | - Adam McCluskey
- *School of Environmental and Life Sciences, Discipline of Biological Sciences, and School of Environmental and Life Sciences, Discipline of Chemistry, The University of Newcastle, Callaghan, New South Wales, Australia; and Children's Medical Research Institute, The University of Sydney, Westmead, New South Wales, Australia
| | - Phillip J Robinson
- *School of Environmental and Life Sciences, Discipline of Biological Sciences, and School of Environmental and Life Sciences, Discipline of Chemistry, The University of Newcastle, Callaghan, New South Wales, Australia; and Children's Medical Research Institute, The University of Sydney, Westmead, New South Wales, Australia
| | - R John Aitken
- *School of Environmental and Life Sciences, Discipline of Biological Sciences, and School of Environmental and Life Sciences, Discipline of Chemistry, The University of Newcastle, Callaghan, New South Wales, Australia; and Children's Medical Research Institute, The University of Sydney, Westmead, New South Wales, Australia
| | - Brett Nixon
- *School of Environmental and Life Sciences, Discipline of Biological Sciences, and School of Environmental and Life Sciences, Discipline of Chemistry, The University of Newcastle, Callaghan, New South Wales, Australia; and Children's Medical Research Institute, The University of Sydney, Westmead, New South Wales, Australia
| |
Collapse
|
13
|
Rodríguez-Tobón A, Fierro R, León-Galván MA, Rosado A, Cortés-Barberena E, Arenas-Ríos E. Tyrosine phosphorylation as evidence of epididymal cauda participation in the sperm maturation process ofCorynorhinus mexicanusbat. ACTA ZOOL-STOCKHOLM 2015. [DOI: 10.1111/azo.12124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ahiezer Rodríguez-Tobón
- Doctorado en Biología Experimental; Universidad Autónoma Metropolitana-Iztapalapa; Av. San Rafael Atlixco No. 186, Col. Vicentina CP 09340 Iztapalapa DF México
| | - Reyna Fierro
- Departamento de Ciencias de la Salud; Universidad Autónoma Metropolitana-Iztapalapa; Av. San Rafael Atlixco No. 186, Col. Vicentina CP 09340 Iztapalapa DF México
| | - Miguel Angel León-Galván
- Departamento de Biología; Universidad Autónoma Metropolitana-Iztapalapa; Av. San Rafael Atlixco No. 186, Col. Vicentina CP 09340 Iztapalapa DF México
| | - Adolfo Rosado
- Departamento de Biología de la Reproducción; Universidad Autónoma Metropolitana-Iztapalapa; Av. San Rafael Atlixco No. 186, Col. Vicentina CP 09340 Iztapalapa DF México
| | - Edith Cortés-Barberena
- Departamento de Ciencias de la Salud; Universidad Autónoma Metropolitana-Iztapalapa; Av. San Rafael Atlixco No. 186, Col. Vicentina CP 09340 Iztapalapa DF México
| | - Edith Arenas-Ríos
- Departamento de Biología de la Reproducción; Universidad Autónoma Metropolitana-Iztapalapa; Av. San Rafael Atlixco No. 186, Col. Vicentina CP 09340 Iztapalapa DF México
| |
Collapse
|
14
|
Abstract
Spermatozoa are quite unique amongst cell types. Although produced in the testis, both nuclear gene transcription and translation are switched off once the pre-cursor round cell begins to elongate and differentiate into what is morphologically recognized as a spermatozoon. However, the spermatozoon is very immature, having no ability for motility or egg recognition. Both of these events occur once the spermatozoa transit a secondary organ known as the epididymis. During the ~12 day passage that it takes for a sperm cell to pass through the epididymis, post-translational modifications of existing proteins play a pivotal role in the maturation of the cell. One major facet of such is protein phosphorylation. In order to characterize phosphorylation events taking place during sperm maturation, both pure sperm cell populations and pre-fractionation of phosphopeptides must be established. Using back flushing techniques, a method for the isolation of pure spermatozoa of high quality and yield from the distal or caudal epididymides is outlined. The steps for solubilization, digestion, and pre-fractionation of sperm phosphopeptides through TiO2 affinity chromatography are explained. Once isolated, phosphopeptides can be injected into MS to identify both protein phosphorylation events on specific amino acid residues and quantify the levels of phosphorylation taking place during the sperm maturation processes.
Collapse
Affiliation(s)
- Mark A Baker
- School of Environmental and Life Science, University of Newcastle;
| | | | - Anita Weinberg
- School of Environmental and Life Science, University of Newcastle
| | - Tony Velkov
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University
| |
Collapse
|
15
|
Baker MA, Weinberg A, Hetherington L, Villaverde AISB, Velkov T. Analysis of protein thiol changes occurring during rat sperm epididymal maturation. Biol Reprod 2014; 92:11. [PMID: 25411390 DOI: 10.1095/biolreprod.114.123679] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The maturation of spermatozoa throughout the epididymal environment occurs in the complete absence of nuclear protein biosynthesis. As such, these cells rely heavily on posttranslational modifications of existing proteins in order to obtain the potential for fertilization. We have used an OxiCat approach to label both free and oxidized cysteine residues in rat sperm proteins and compared the ratio of reduced:oxidized peptides as these cells undergo epididymal transit. In all, 20 peptides, corresponding to 15 proteins, underwent a change in their redox status. Included in this list were A-kinase anchoring protein 4 and fatty acid-binding protein 9. Both of these proteins undergo intradisulfide bonding, leading to reduced solubility and, in the case of the latter, is likely to cause a loss of protein function. Interestingly, two glycolytic enzymes, hexokinase-1 and lactate dehydrogenase, also display increased cysteine oxidation during epididymal transit, which may be involved in the regulation of the enzyme activities.
Collapse
Affiliation(s)
- Mark A Baker
- Discipline of Biological Sciences, University of Newcastle. Callaghan, New South Wales, Australia
| | - Anita Weinberg
- Discipline of Biological Sciences, University of Newcastle. Callaghan, New South Wales, Australia
| | - Louise Hetherington
- Discipline of Biological Sciences, University of Newcastle. Callaghan, New South Wales, Australia
| | | | - Tony Velkov
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| |
Collapse
|
16
|
Dacheux JL, Dacheux F. New insights into epididymal function in relation to sperm maturation. Reproduction 2014; 147:R27-42. [DOI: 10.1530/rep-13-0420] [Citation(s) in RCA: 195] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Testicular spermatozoa acquire fertility only after 1 or 2 weeks of transit through the epididymis. At the end of this several meters long epididymal tubule, the male gamete is able to move, capacitate, migrate through the female tract, bind to the egg membrane and fuse to the oocyte to result in a viable embryo. All these sperm properties are acquired after sequential modifications occurring either at the level of the spermatozoon or in the epididymal surroundings. Over the last few decades, significant increases in the understanding of the composition of the male gamete and its surroundings have resulted from the use of new techniques such as genome sequencing, proteomics combined with high-sensitivity mass spectrometry, and gene-knockout approaches. This review reports and discusses the most relevant new results obtained in different species regarding the various cellular processes occurring at the sperm level, in particular, those related to the development of motility and egg binding during epididymal transit.
Collapse
|
17
|
Baker MA, Naumovski N, Hetherington L, Weinberg A, Velkov T, Aitken RJ. Head and flagella subcompartmental proteomic analysis of human spermatozoa. Proteomics 2013; 13:61-74. [PMID: 23161668 DOI: 10.1002/pmic.201200350] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Revised: 10/16/2012] [Accepted: 10/25/2012] [Indexed: 01/02/2023]
Abstract
Subcellular proteomics not only deepens our knowledge of what proteins are present within cells, but also opens our understanding as to where those proteins reside. Given the highly differentiated, cross-linked state of spermatozoa, such studies have proven difficult to perform. In this study we have fractionated spermatozoa into two components, consisting of either the head or flagellar region. Following SDS-PAGE, 1 mm slices were digested and used for LC-MS/MS analysis. In total, 1429 proteins were identified with 721 proteins being exclusively found in the tail and 521 exclusively in the head. Not only is this the largest reported proteomic analysis of human spermatozoa, but also it has provided novel insights into the compartmentalization of proteins, particularly receptors, never previously reported to be present in this cell type.
Collapse
Affiliation(s)
- Mark A Baker
- Priority Research Centre in Reproductive Science, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, Australia.
| | | | | | | | | | | |
Collapse
|
18
|
Fiedler SE, Dudiki T, Vijayaraghavan S, Carr DW. Loss of R2D2 proteins ROPN1 and ROPN1L causes defects in murine sperm motility, phosphorylation, and fibrous sheath integrity. Biol Reprod 2013; 88:41. [PMID: 23303679 DOI: 10.1095/biolreprod.112.105262] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The fibrous sheath (FS) is a flagellar cytoskeletal structure unique to sperm that surrounds the outer dense fibers and axoneme. Its primary components are A-kinase anchoring proteins (AKAPs) 3 and 4, which suggests that the FS affects flagellar beating via the scaffolding of signaling pathways necessary for motility. Sperm proteins ROPN1 and ROPN1L bind AKAP3. To determine the role of ROPN1 and ROPN1L in sperm function, we created mice deficient in ROPN1 (RKO), mice deficient in ROPN1L (RLKO), and double knockout mice (DKO). All three strains of mice had normal testicular morphology and spermatogenesis. Only the DKOs had obvious defects in sperm morphology (thinning and shredding of the principal piece), which was accompanied by a reduction in AKAP3 levels. RLKO mice had slightly reduced sperm motility and increased levels of ROPN1. RKO mice had moderately impaired motility and increased levels of ROPN1L. DKO sperm were immotile. We have previously determined that RKO male mice are subfertile, and DKO males are infertile. Together these data indicate that ROPN1L and ROPN1 compensate for each other in the absence of the opposing protein, possibly to maintain AKAP3 incorporation in the FS. Sperm from mice lacking ROPN1L exhibited reductions in both cAMP-dependent protein kinase (PKA) phosphorylation of a 270-kDa protein (perhaps FSCB), and in capacitation-induced tyrosine phosphorylation. Sperm from mice lacking ROPN1 had reduced levels of FSCB and increased tyrosine phosphorylation of noncapacitated sperm. These data demonstrate that mutations in ROPN1 and ROPN1L can cause defects in FS integrity, sperm motility, and PKA-dependent signaling processes, leading to male infertility.
Collapse
Affiliation(s)
- Sarah E Fiedler
- Portland Veterans Affairs Medical Center and Department of Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| | | | | | | |
Collapse
|
19
|
Protein-tyrosine kinase signaling in the biological functions associated with sperm. JOURNAL OF SIGNAL TRANSDUCTION 2012; 2012:181560. [PMID: 23209895 PMCID: PMC3503396 DOI: 10.1155/2012/181560] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Revised: 05/17/2012] [Accepted: 05/31/2012] [Indexed: 01/07/2023]
Abstract
In sexual reproduction, two gamete cells (i.e., egg and sperm) fuse (fertilization) to create a newborn with a genetic identity distinct from those of the parents. In the course of these developmental processes, a variety of signal transduction events occur simultaneously in each of the two gametes, as well as in the fertilized egg/zygote/early embryo. In particular, a growing body of knowledge suggests that the tyrosine kinase Src and/or other protein-tyrosine kinases are important elements that facilitate successful implementation of the aforementioned processes in many animal species. In this paper, we summarize recent findings on the roles of protein-tyrosine phosphorylation in many sperm-related processes (from spermatogenesis to epididymal maturation, capacitation, acrosomal exocytosis, and fertilization).
Collapse
|
20
|
Baker MA, Hetherington L, Weinberg A, Naumovski N, Velkov T, Pelzing M, Dolman S, Condina MR, Aitken RJ. Analysis of phosphopeptide changes as spermatozoa acquire functional competence in the epididymis demonstrates changes in the post-translational modification of Izumo1. J Proteome Res 2012; 11:5252-64. [PMID: 22954305 DOI: 10.1021/pr300468m] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Spermatozoa are functionally inert when they emerge from the testes. Functional competence is conferred upon these cells during a post-testicular phase of sperm maturation in the epididymis. Remarkably, this functional transformation of epididymal spermatozoa occurs in the absence of nuclear gene transcription or protein translation. To understand the cellular mechanisms underpinning epididymal maturation, we have performed a label-free, MS-based, comparative quantification of peptides from caput, corpus and caudal epididymal spermatozoa. In total, 68 phosphopeptide changes could be detected during epididymal maturation corresponding to the identification of 22 modified proteins. Included in this list are the sodium-bicarbonate cotransporter, the sperm specific serine kinase 1, AKAP4 and protein kinase A regulatory subunit. Furthermore, four phosphopeptide changes came from Izumo1, the sperm-egg fusion protein, in the cytoplasmic segment of the protein. 2D-PAGE confirmed that Izumo1 is post-translationally modified during epididymal transit. Interestingly, phosphorylation on Izumo1 was detected on residue S339 in the caput and corpus but not caudal cells. Furthermore, Izumo1 exhibited four phosphorylated residues when spermatozoa reached the cauda, which were absent from caput cells. A model is advanced suggesting that these phospho-regulations are likely to act as a scaffold for the association of adaptor proteins with Izumo1 as these cells prepare for fertilization.
Collapse
Affiliation(s)
- Mark A Baker
- Priority Research Centre in Reproductive Science, School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, 2308, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Baker MA, Nixon B, Naumovski N, Aitken RJ. Proteomic insights into the maturation and capacitation of mammalian spermatozoa. Syst Biol Reprod Med 2012; 58:211-7. [DOI: 10.3109/19396368.2011.639844] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
22
|
Chao HCA, Chung CL, Pan HA, Liao PC, Kuo PL, Hsu CC. Protein tyrosine phosphatase non-receptor type 14 is a novel sperm-motility biomarker. J Assist Reprod Genet 2011; 28:851-61. [PMID: 21701840 DOI: 10.1007/s10815-011-9602-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Accepted: 06/08/2011] [Indexed: 12/13/2022] Open
Abstract
PURPOSE To understand the molecular basis of sperm-motility and to identify related novel motility biomarkers. METHODS Two-dimensional electrophoresis (2DE) followed by Reverse-phase-nano-high-performance liquid chromatography-electrospray ionization tandem mass spectrometry (RP-nano-HPLC-ESI-MS/MS) were applied to establish the human sperm proteome. Then the sperm proteome of moderate-motile human sperm fraction and that of good-motile human sperm fraction from pooled spermatozoa of forty normozoospermic donors (Group 1 subjects) were compared to identify the dysregulated proteins. Among these down-regulated proteins, Protein tyrosine phosphatase non-receptor type 14 (PTPN14) was chosen to reconfirm by Western blotting and semi-quantitative reverse transcription polymerase chain reaction. For clinical application, Western blotting and real-time reverse transcription polymerase chain reaction was performed to compare the expression level of PTPN14 in (Group 2 subjects) nine normozoospermic controls and thirty-three asthenozoospermic patients (including 21 mild asthenozoospermic cases and 12 severe cases). Finally, bioinformatic tools prediction and immunofluorescence assay were performed to elucidate the potential localization of PTPN14. RESULTS The expression levels of three proteins were observed to be lower in the moderate-motile sperm fraction than in good-motile sperm of group 1 subjects. Among three proteins with persistent down-regulation in the moderate-motile sperm, we reconfirmed that the expression level of PTPN14 was significantly lower in both mRNA and protein levels from the moderate-motile sperm fraction. Further, down-regulation of PTPN14 was found at the translational and transcriptional level in the asthenozoospermic men. Finally, Bioinformatic tools prediction and immunofluorescence assay showed that PTPN14 maybe predominantly localized at the mitochondria in the midpiece of human ejaculated sperm. CONCLUSIONS Proteomics tools were applied to identify three possible sperm motility-related proteins. Among these proteins, PTPN14 was highly likely a novel sperm-motility biomarker and a potential mitochondrial protein.
Collapse
Affiliation(s)
- Hsin-Chih Albert Chao
- Division of Obstetrics and Gynecology, National Cheng Kung University College of Medicine and Hospital, Dou-Liou Branch, Yunlin, Taiwan
| | | | | | | | | | | |
Collapse
|
23
|
Baker MA, Smith ND, Hetherington L, Pelzing M, Condina MR, Aitken RJ. Use of Titanium Dioxide To Find Phosphopeptide and Total Protein Changes During Epididymal Sperm Maturation. J Proteome Res 2011; 10:1004-17. [DOI: 10.1021/pr1007224] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
| | | | | | - Matthias Pelzing
- Bruker Biosciences, PTY LTD, 28 Albert St, Preston, VIC 3072, Australia
| | - Mark R. Condina
- Bruker Biosciences, PTY LTD, 28 Albert St, Preston, VIC 3072, Australia
| | | |
Collapse
|
24
|
Abstract
Limited knowledge of the genetic causes of male infertility has resulted in few treatment and targeted therapeutic options. Although the ideal approach to identify infertility causing mutations is to conduct studies in the human population, this approach has progressed slowly due to the limitations described herein. Given the complexity of male fertility, the entire process cannot be modeled in vitro. As such, animal models, in particular mouse models, provide a valuable alternative for gene identification and experimentation. Since the introduction of molecular biology and recent advances in animal model production, there has been a substantial acceleration in the identification and characterization of genes associated with many diseases, including infertility. Three major types of mouse models are commonly used in biomedical research, including knockout/knockin/gene-trapped, transgenic and chemical-induced point mutant mice. Using these mouse models, over 400 genes essential for male fertility have been revealed. It has, however, been estimated that thousands of genes are involved in the regulation of the complex process of male fertility, as many such genes remain to be characterized. The current review is by no means a comprehensive list of these mouse models, rather it contains examples of how mouse models have advanced our knowledge of post-natal germ cell development and male fertility regulation.
Collapse
|
25
|
Joseph A, Hess RA, Schaeffer DJ, Ko C, Hudgin-Spivey S, Chambon P, Shur BD. Absence of estrogen receptor alpha leads to physiological alterations in the mouse epididymis and consequent defects in sperm function. Biol Reprod 2010; 82:948-57. [PMID: 20130267 DOI: 10.1095/biolreprod.109.079889] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Male mice deficient in ESR1 (ERalpha) (Esr1KO mice) are infertile, and sperm recovered from the cauda epididymis exhibit reduced motility and fail to fertilize eggs in vitro. These effects on sperm appear to result from defective epididymal function and not a direct effect on spermatogenesis, as Esr1KO germ cells transplanted into wild-type testes yield normal offspring. We hypothesized that the previously described defect in efferent duct fluid reabsorption would lead to alterations in the epididymal fluid milieu, which would negatively impact sperm function. Analysis of the epididymal fluid revealed that the Esr1KO maintains a higher luminal pH throughout the epididymis, confirming an inability of the efferent ducts and/or epididymis to properly acidify the luminal contents. Subsequent studies showed that these abnormalities were not the result of global defects in epididymal function since protein secretion by the Esr1KO epididymis appeared normal as judged by SDS-PAGE of total secreted proteins and by immunoblotting of candidate secreted proteins. To gain insight into the basis of the aberrant fluid homeostasis in the Esr1KO epididymis, the expression of several enzymes and transporters known to be involved in acid/base regulation were analyzed. The levels of SLC9A3 (NHE3) as well as carbonic anhydrase XIV and SLC4A4 (NBC1) were all reduced in the proximal portion of the Esr1KO epididymis, while other components appeared unaffected, including other ion transporters and ATP6V0A1 (V-ATPase). The altered luminal milieu of the Esr1KO epididymis was shown to lead to a corresponding increase in the intracellular pH of Esr1KO sperm, relative to sperm from control animals. Since pH and bicarbonate ions are critical regulators of sperm cAMP levels and motility, we attempted to bypass the abnormal luminal and intracellular environment by supplementing sperm with exogenous cAMP. This treatment rescued all defective motility parameters, as assayed by CASA, further showing that motility defects are not intrinsic to the sperm but, rather, result from the abnormal epididymal milieu.
Collapse
Affiliation(s)
- Avenel Joseph
- Department of Veterinary Biosciences, College of Veterinary Medicine, University of Illinois, Urbana-Champaign, Illinois, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
|
27
|
Borg CL, Wolski KM, Gibbs GM, O'Bryan MK. Phenotyping male infertility in the mouse: how to get the most out of a 'non-performer'. Hum Reprod Update 2009; 16:205-24. [PMID: 19758979 PMCID: PMC2816191 DOI: 10.1093/humupd/dmp032] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Functional male gametes are produced through complex processes that take place within the testis, epididymis and female reproductive tract. A breakdown at any of these phases can result in male infertility. The production of mutant mouse models often yields an unexpected male infertility phenotype. It is with this in mind that the current review has been written. The review aims to act as a guide to the ‘non-reproductive biologist’ to facilitate a systematic analysis of sterile or subfertile mice and to assist in extracting the maximum amount of information from each model. METHODS This is a review of the original literature on defects in the processes that take a mouse spermatogonial stem cell through to a fully functional spermatozoon, which result in male infertility. Based on literature searches and personal experience, we have outlined a step-by-step strategy for the analysis of an infertile male mouse line. RESULTS A wide range of methods can be used to define the phenotype of an infertile male mouse. These methods range from histological methods such as electron microscopy and immunohistochemistry, to hormone analyses and methods to assess sperm maturation status and functional competence. CONCLUSION With the increased rate of genetically modified mouse production, the generation of mouse models with unexpected male infertility is increasing. This manuscript will help to ensure that the maximum amount of information is obtained from each mouse model and, by extension, will facilitate the knowledge of both normal fertility processes and the causes of human infertility.
Collapse
Affiliation(s)
- Claire L Borg
- Department of Anatomy and Developmental Biology, The School of Biomedical Sciences, Monash University, Clayton 3800, Australia
| | | | | | | |
Collapse
|
28
|
Baker MA, Hetherington L, Curry B, Aitken RJ. Phosphorylation and consequent stimulation of the tyrosine kinase c-Abl by PKA in mouse spermatozoa; its implications during capacitation. Dev Biol 2009; 333:57-66. [PMID: 19560455 DOI: 10.1016/j.ydbio.2009.06.022] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2008] [Revised: 06/18/2009] [Accepted: 06/19/2009] [Indexed: 01/04/2023]
Abstract
Upon ejaculation, spermatozoa undergo a series of post-translational modifications in a process known as capacitation in order to prepare for fertilization. In the absence of capacitation, fertilization cannot occur. Spermatozoa are unusual in that one of the hallmarks of capacitation is a global up-regulation in phosphotyrosine expression, which is known to be mediated upstream by PKA. Little is known about the signaling events downstream of PKA apart from the involvement of SRC, as a key mediator of PKA-induced tyrosine phosphorylation in the sperm tail. Here we describe the presence of c-Abl in mouse spermatozoa. In vitro analysis confirmed that PKA can up-regulate c-Abl kinase activity. In vivo, this tyrosine kinase was found to associate, and become threonine phosphorylated by PKA in the sperm flagellum. By treating spermatozoa with hemolysin we could demonstrate that a significant proportion of the tyrosine phosphorylation associated with capacitation could be suppressed by the c-Abl inhibitor, Gleevac. This is the first report of c-Abl being up-regulated by PKA for any cell type. We present a model, whereby these kinases may operate together with SRC to ensure optimal levels of tyrosine phosphorylation in the sperm flagellum during the attainment of a capacitated state.
Collapse
Affiliation(s)
- Mark A Baker
- ARC Centre of Excellence in Biotechnology and Development, Reproductive Science Group, School of Environmental and Life Sciences, University of Newcastle, NSW 2308, Australia
| | | | | | | |
Collapse
|
29
|
Bennetts LE, De Iuliis GN, Nixon B, Kime M, Zelski K, McVicar CM, Lewis SE, Aitken RJ. Impact of estrogenic compounds on DNA integrity in human spermatozoa: evidence for cross-linking and redox cycling activities. Mutat Res 2008; 641:1-11. [PMID: 18342339 DOI: 10.1016/j.mrfmmm.2008.02.002] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2007] [Accepted: 02/02/2008] [Indexed: 05/26/2023]
Abstract
A great deal of circumstantial evidence has linked DNA damage in human spermatozoa with adverse reproductive outcomes including reduced fertility and high rates of miscarriage. Although oxidative stress is thought to make a significant contribution to DNA damage in the male germ line, the factors responsible for creating this stress have not been elucidated. One group of compounds that are thought to be active in this context are the estrogens, either generated as a result of the endogenous metabolism of androgens within the male reproductive tract or gaining access to the latter as a consequence of environmental exposure. In this study, a wide variety of estrogenic compounds were assessed for their direct effects on human spermatozoa in vitro. DNA integrity was assessed using the Comet and TUNEL assays, lesion frequencies were quantified by QPCR using targets within the mitochondrial and nuclear (beta-globin) genomes, DNA adducts were characterized by mass spectrometry and redox activity was monitored using dihydroethidium (DHE) as the probe. Of the estrogenic and estrogen analogue compounds evaluated, catechol estrogens, quercetin, diethylstilbestrol and pyrocatechol stimulated intense redox activity while genistein was only active at the highest doses tested. Other estrogens and estrogen analogues, such as 17beta-estradiol, nonylphenol, bisphenol A and 2,3-dihydroxynaphthalene were inactive. Estrogen-induced redox activity was associated with a dramatic loss of motility and, in the case of 2-hydroxyestradiol, the induction of significant DNA fragmentation. Mass spectrometry also indicated that catechol estrogens were capable of forming dimers that can cross-link the densely packed DNA strands in sperm chromatin, impairing nuclear decondensation. These results highlight the potential importance of estrogenic compounds in creating oxidative stress and DNA damage in the male germ line and suggest that further exploration of these compounds in the aetiology of male infertility is warranted.
Collapse
Affiliation(s)
- L E Bennetts
- ARC Centre of Excellence in Biotechnology and Development and Discipline of Biological Sciences, University of Newcastle, NSW, Australia
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Mitchell LA, Nixon B, Baker MA, Aitken RJ. Investigation of the role of SRC in capacitation-associated tyrosine phosphorylation of human spermatozoa. ACTA ACUST UNITED AC 2008; 14:235-43. [DOI: 10.1093/molehr/gan007] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
31
|
Aitken RJ, Nixon B, Lin M, Koppers AJ, Lee YH, Baker MA. Proteomic changes in mammalian spermatozoa during epididymal maturation. Asian J Androl 2007; 9:554-64. [PMID: 17589795 DOI: 10.1111/j.1745-7262.2007.00280.x] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Epididymal maturation is associated with the activation of a cAMP-induced tyrosine phosphorylation cascade, which is ultimately associated with the expression of capacitation-dependent sperm functions, such as hyperactivated movement and acrosomal exocytosis. As spermatozoa progress through the epididymis they first acquire the capacity to phosphorylate tyrosine on targets on the principal piece, followed by the midpiece. By the time these cells have reached the cauda epididymidis they can phosphorylate the entire tail from neck to endpiece. This particular pattern of phosphorylation is associated with the ontogeny of fully functional spermatozoa that are capable of fertilizing the oocyte. Proteomic analyses indicate that this change is associated with the phosphorylation of several mitochondrial proteins, creation of a mitochondrial membrane potential and activation of mitochondrial free radical generation. At least in rodent species, activation of sperm mitochondria appears to be a particularly important part of epididymal maturation.
Collapse
Affiliation(s)
- R John Aitken
- The ARC Centre of Excellence in Biotechnology and Development, University of Newcastle, Newcastle, NSW 2308, Australia.
| | | | | | | | | | | |
Collapse
|