1
|
Ono M, Nakajima K, Tomizawa SI, Shirakawa T, Okada I, Saitsu H, Matsumoto N, Ohbo K. Spatial and temporal expression analysis of BMP signal modifiers, Smoc1 and Smoc2, from postnatal to adult developmental stages in the mouse testis. Gene Expr Patterns 2024; 54:119383. [PMID: 39510490 DOI: 10.1016/j.gep.2024.119383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 10/31/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024]
Abstract
Smoc1 and Smoc2, members of the SPARC family of genes, encode signaling molecules downstream of growth factors such as the TGF-β, FGF, and PDGF families. Smoc1 has been implicated in playing a crucial role in microphthalmia with limb anomalies in humans and mice, while Smoc2 deficiency causes dental developmental defects. Although developmental cytokines/growth factors including TGF-β superfamily have been shown to play critical roles in postnatal spermatogenesis, there are no reports analyzing the spatial and temporal expression of Smoc1 and Smoc2 in the postnatal testis. In this study, we investigated the mRNA and protein expression of Smoc1 and Smoc2 in neonatal, juvenile, and adult mouse testes by RNA in situ hybridization, immunofluorescence, and single-cell RNA-seq analysis. We show that Smoc1 and Smoc2 have distinct expression patterns in male germ cells: Smoc1 is more highly expressed than Smoc2 in the germline. In contrast, Smoc2 is highly expressed in testicular somatic cells from neonatal to juvenile stages. The Smoc2-expressing cells then switch from somatic cells to germ cells in adults. Thus, although SMOC1 and SMOC2 proteins are structurally very similar, their spatial and temporal expression patterns in the postnatal testis differ significantly, suggesting their distinct roles in reproduction.
Collapse
Affiliation(s)
- Michio Ono
- Department of Histology and Cell Biology, School of Medicine, Yokohama City University, 3-9, Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Kuniko Nakajima
- Department of Histology and Cell Biology, School of Medicine, Yokohama City University, 3-9, Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Shin-Ichi Tomizawa
- Department of Histology and Cell Biology, School of Medicine, Yokohama City University, 3-9, Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Takayuki Shirakawa
- Department of Histology and Cell Biology, School of Medicine, Yokohama City University, 3-9, Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Ippei Okada
- Department of Human Genetics, School of Medicine, Yokohama City University, 3-9, Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Hirotomo Saitsu
- Biochemistry Department, Hamamatsu University School of Medicine, 1-20-1, Handayama, Higashi-ku, Hamamatsu, 431-3192, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, School of Medicine, Yokohama City University, 3-9, Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Kazuyuki Ohbo
- Department of Histology and Cell Biology, School of Medicine, Yokohama City University, 3-9, Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan.
| |
Collapse
|
2
|
Viger RS, de Mattos K, Tremblay JJ. Insights Into the Roles of GATA Factors in Mammalian Testis Development and the Control of Fetal Testis Gene Expression. Front Endocrinol (Lausanne) 2022; 13:902198. [PMID: 35692407 PMCID: PMC9178088 DOI: 10.3389/fendo.2022.902198] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 04/22/2022] [Indexed: 12/28/2022] Open
Abstract
Defining how genes get turned on and off in a correct spatiotemporal manner is integral to our understanding of the development, differentiation, and function of different cell types in both health and disease. Testis development and subsequent male sex differentiation of the XY fetus are well-orchestrated processes that require an intricate network of cell-cell communication and hormonal signals that must be properly interpreted at the genomic level. Transcription factors are at the forefront for translating these signals into a coordinated genomic response. The GATA family of transcriptional regulators were first described as essential regulators of hematopoietic cell differentiation and heart morphogenesis but are now known to impact the development and function of a multitude of tissues and cell types. The mammalian testis is no exception where GATA factors play essential roles in directing the expression of genes crucial not only for testis differentiation but also testis function in the developing male fetus and later in adulthood. This minireview provides an overview of the current state of knowledge of GATA factors in the male gonad with a particular emphasis on their mechanisms of action in the control of testis development, gene expression in the fetal testis, testicular disease, and XY sex differentiation in humans.
Collapse
Affiliation(s)
- Robert S. Viger
- Centre de recherche en Reproduction, Développement et Santé Intergénérationnelle and Department of Obstetrics, Gynecology, and Reproduction, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
- Reproduction, Mother and Child Health, Centre de recherche du centre hospitalier universitaire de Québec—Université Laval, Quebec City, QC, Canada
| | - Karine de Mattos
- Reproduction, Mother and Child Health, Centre de recherche du centre hospitalier universitaire de Québec—Université Laval, Quebec City, QC, Canada
| | - Jacques J. Tremblay
- Centre de recherche en Reproduction, Développement et Santé Intergénérationnelle and Department of Obstetrics, Gynecology, and Reproduction, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
- Reproduction, Mother and Child Health, Centre de recherche du centre hospitalier universitaire de Québec—Université Laval, Quebec City, QC, Canada
| |
Collapse
|
3
|
Bélanger C, Cardinal T, Leduc E, Viger RS, Pilon N. CHARGE syndrome-associated proteins FAM172A and CHD7 influence male sex determination and differentiation through transcriptional and alternative splicing mechanisms. FASEB J 2022; 36:e22176. [PMID: 35129866 PMCID: PMC9304217 DOI: 10.1096/fj.202100837rr] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 01/05/2022] [Accepted: 01/10/2022] [Indexed: 11/11/2022]
Abstract
To gain further insight into chromatin‐mediated regulation of mammalian sex determination, we analyzed the role of the CHARGE syndrome‐associated proteins FAM172A and CHD7. This study is based on our prior discoveries that a subset of corresponding mutant mice display complete male‐to‐female sex reversal, and that both of these proteins regulate co‐transcriptional alternative splicing in neural crest cells. Here, we report that FAM172A and CHD7 are present in the developing gonads when sex determination normally occurs in mice. The interactome of FAM172A in pre‐Sertoli cells again suggests a role at the chromatin‐spliceosome interface, like in neural crest cells. Accordingly, analysis of Fam172a‐mutant pre‐Sertoli cells revealed transcriptional and splicing dysregulation of hundreds of genes. Many of these genes are similarly affected in Chd7‐mutant pre‐Sertoli cells, including several known key regulators of sex determination and subsequent formation of testis cords. Among them, we notably identified Sry as a direct transcriptional target and WNT pathway‐associated Lef1 and Tcf7l2 as direct splicing targets. The identified molecular defects are also associated with the abnormal morphology of seminiferous tubules in mutant postnatal testes. Altogether, our results thus identify FAM172A and CHD7 as new players in the regulation of male sex determination and differentiation in mice, and further highlight the importance of chromatin‐mediated regulatory mechanisms in these processes.
Collapse
Affiliation(s)
- Catherine Bélanger
- Molecular Genetics of Development Laboratory, Département des Sciences Biologiques, Université du Québec à Montréal (UQAM), Montréal, Québec, Canada.,Centre d'Excellence en Recherche sur les Maladies Orphelines - Fondation Courtois (CERMO-FC), Université du Québec à Montréal, Montréal, Québec, Canada
| | - Tatiana Cardinal
- Molecular Genetics of Development Laboratory, Département des Sciences Biologiques, Université du Québec à Montréal (UQAM), Montréal, Québec, Canada.,Centre d'Excellence en Recherche sur les Maladies Orphelines - Fondation Courtois (CERMO-FC), Université du Québec à Montréal, Montréal, Québec, Canada
| | - Elizabeth Leduc
- Molecular Genetics of Development Laboratory, Département des Sciences Biologiques, Université du Québec à Montréal (UQAM), Montréal, Québec, Canada.,Centre d'Excellence en Recherche sur les Maladies Orphelines - Fondation Courtois (CERMO-FC), Université du Québec à Montréal, Montréal, Québec, Canada
| | - Robert S Viger
- Reproduction, Mother and Child Health, Centre de recherche en reproduction, développement et santé intergénérationnelle (CRDSI), Centre de recherche du CHU de Québec-Université Laval, Quebec City, Québec, Canada.,Department of Obstetrics, Gynecology, and Reproduction, Faculty of Medicine, Université Laval, Quebec City, Québec, Canada
| | - Nicolas Pilon
- Molecular Genetics of Development Laboratory, Département des Sciences Biologiques, Université du Québec à Montréal (UQAM), Montréal, Québec, Canada.,Centre d'Excellence en Recherche sur les Maladies Orphelines - Fondation Courtois (CERMO-FC), Université du Québec à Montréal, Montréal, Québec, Canada.,Département de pédiatrie, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
4
|
Zomer HD, Reddi PP. Characterization of rodent Sertoli cell primary cultures. Mol Reprod Dev 2020; 87:857-870. [PMID: 32743879 PMCID: PMC7685524 DOI: 10.1002/mrd.23402] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 07/16/2020] [Indexed: 12/25/2022]
Abstract
Sertoli cells play a vital role in spermatogenesis by offering physical and nutritional support to the differentiating male germ cells. They form the blood-testis barrier and secrete growth factors essential for germ cell differentiation. Sertoli cell primary cultures are critical for understanding the regulation of spermatogenesis; however, obtaining pure cultures has been a challenge. Rodent Sertoli cell isolation protocols do not rule out contamination by the interstitial or connective tissue cells. Sertoli cell-specific markers could be helpful, but there is no consensus. Vimentin, the most commonly used marker, is not specific for Sertoli cells since its expression has been reported in peritubular myoid cells, mesenchymal stem cells, fibroblasts, macrophages, and endothelial cells, which contaminate Sertoli cell preparations. Markers based on transcription and growth factors also have limitations. Thus, the impediment to obtaining pure Sertoli cell cultures pertains to both the method of isolation and marker usage. The aim of this review is to discuss improvements to current methods of rodent Sertoli cell primary cultures, assess the properties of prepubertal versus mature Sertoli cell cultures, and propose steps to improve cellular characterization. Potential benefits of using contemporary approaches, including lineage tracing, specific cell ablation, and RNA-seq for obtaining Sertoli-specific transcript markers are discussed. Evaluating the specificity and applicability of these markers at the protein level to characterize Sertoli cells in culture would be critical. This review is expected to positively impact future work using primary cultures of rodent Sertoli cells.
Collapse
Affiliation(s)
- Helena D Zomer
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana Champaign, Urbana, Illinois
| | - Prabhakara P Reddi
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana Champaign, Urbana, Illinois
| |
Collapse
|
5
|
Bouchard MF, Bergeron F, Grenier Delaney J, Harvey LM, Viger RS. In Vivo Ablation of the Conserved GATA-Binding Motif in the Amh Promoter Impairs Amh Expression in the Male Mouse. Endocrinology 2019; 160:817-826. [PMID: 30759208 PMCID: PMC6426834 DOI: 10.1210/en.2019-00047] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 02/08/2019] [Indexed: 12/23/2022]
Abstract
GATA4 is an essential transcriptional regulator required for gonadal development, differentiation, and function. In the developing testis, proposed GATA4-regulated genes include steroidogenic factor 1 (Nr5a1), SRY-related HMG box 9 (Sox9), and anti-Müllerian hormone (Amh). Although some of these genes have been validated as genuine GATA4 targets, it remains unclear whether GATA4 is a direct regulator of endogenous Amh transcription. We used a CRISPR/Cas9-based approach to specifically inactivate or delete the sole GATA-binding motif of the proximal mouse Amh promoter. AMH mRNA and protein levels were assessed at developmental time points corresponding to elevated AMH levels: fetal and neonate testes in males and adult ovaries in females. In males, loss of GATA binding to the Amh promoter significantly reduced Amh expression. Although the loss of GATA binding did not block the initiation of Amh transcription, AMH mRNA and protein levels failed to upregulate in the developing fetal and neonate testis. Interestingly, adult male mice presented no anatomical anomalies and had no evidence of retained Müllerian duct structures, suggesting that AMH levels, although markedly reduced, were sufficient to masculinize the male embryo. In contrast to males, GATA binding to the Amh promoter was dispensable for Amh expression in the adult ovary. These results provide conclusive evidence that in males, GATA4 is a positive modulator of Amh expression that works in concert with other key transcription factors to ensure that the Amh gene is sufficiently expressed in a correct spatiotemporal manner during fetal and prepubertal testis development.
Collapse
Affiliation(s)
- Marie France Bouchard
- Reproduction, Mother and Child Health, Centre de Recherche du CHU de Québec–Université Laval, Quebec, Quebec, Canada
- Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle, Quebec, Quebec, Canada
| | - Francis Bergeron
- Reproduction, Mother and Child Health, Centre de Recherche du CHU de Québec–Université Laval, Quebec, Quebec, Canada
- Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle, Quebec, Quebec, Canada
| | - Jasmine Grenier Delaney
- Reproduction, Mother and Child Health, Centre de Recherche du CHU de Québec–Université Laval, Quebec, Quebec, Canada
- Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle, Quebec, Quebec, Canada
| | - Louis-Mathieu Harvey
- Reproduction, Mother and Child Health, Centre de Recherche du CHU de Québec–Université Laval, Quebec, Quebec, Canada
- Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle, Quebec, Quebec, Canada
| | - Robert S Viger
- Reproduction, Mother and Child Health, Centre de Recherche du CHU de Québec–Université Laval, Quebec, Quebec, Canada
- Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle, Quebec, Quebec, Canada
- Department of Obstetrics, Gynecology, and Reproduction, Université Laval, Quebec, Quebec, Canada
- Correspondence: Robert S. Viger, PhD, Reproduction, Mother and Child Health, Room T3-67, Centre de Recherche du CHU de Québec–Université Laval, 2705 Laurier Boulevard, Quebec, Quebec G1V 4G2, Canada. E-mail:
| |
Collapse
|
6
|
Bergeron F, Boulende Sab A, Bouchard MF, Taniguchi H, Souchkova O, Brousseau C, Tremblay JJ, Pilon N, Viger RS. Phosphorylation of GATA4 serine 105 but not serine 261 is required for testosterone production in the male mouse. Andrology 2019; 7:357-372. [PMID: 30793514 DOI: 10.1111/andr.12601] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 01/28/2019] [Accepted: 01/30/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND GATA4 is a transcription factor essential for male sex determination, testicular differentiation during fetal development, and male fertility in the adult. GATA4 exerts part of its function by regulating multiple genes in the steroidogenic enzyme pathway. In spite of these crucial roles, how the activity of this factor is regulated remains unclear. OBJECTIVES Studies in gonadal cell lines have shown that GATA4 is phosphorylated on at least two serine residues-serine 105 (S105) and serine 261 (S261)-and that this phosphorylation is important for GATA4 activity. The objective of the present study is to characterize the endogenous role of GATA4 S105 and S261 phosphorylation in the mouse testis. MATERIALS AND METHODS We examined both previously described GATA4 S105A mice and a novel GATA4 S261A knock-in mouse that we generated by CRISPR/Cas9 gene editing. The male phenotype of the mutants was characterized by assessing androgen-dependent organ weights, hormonal profiles, and expression of multiple testicular target genes using standard biochemical and molecular biology techniques. RESULTS The fecundity of crosses between GATA4 S105A mice was reduced but without a change in sex ratio. The weight of androgen-dependent organs was smaller when compared to wild-type controls. Plasma testosterone levels showed a 70% decrease in adult GATA4 S105A males. This decrease was associated with a reduction in Cyp11a1, Cyp17a1, and Hsd17b3 expression. GATA4 S261A mice were viable and testis morphology appeared normal. Testosterone production and steroidogenic enzyme expression were not altered in GATA4 S261A males. DISCUSSION AND CONCLUSION Our analysis showed that blocking GATA4 S105 phosphorylation is associated with decreased androgen production in males. In contrast, S261 phosphorylation by itself is dispensable for GATA4 function. These results confirm that endogenous GATA4 action is essential for normal steroid production in males and that this activity requires phosphorylation on at least one serine residue.
Collapse
Affiliation(s)
- F Bergeron
- Reproduction, Mother and Child Health, Centre de Recherche du CHU de Québec-Université Laval, Quebec, QC, Canada.,Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle (CRDSI), Quebec, QC, Canada
| | - A Boulende Sab
- Département des Sciences Biologiques and Centre d'excellence en Recherche sur les Maladies Orphelines - Fondation Courtois (CERMO-FC), Université du Québec à Montréal (UQAM), Montreal, QC, Canada
| | - M F Bouchard
- Reproduction, Mother and Child Health, Centre de Recherche du CHU de Québec-Université Laval, Quebec, QC, Canada.,Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle (CRDSI), Quebec, QC, Canada
| | - H Taniguchi
- Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzebiec, Poland
| | - O Souchkova
- Département des Sciences Biologiques and Centre d'excellence en Recherche sur les Maladies Orphelines - Fondation Courtois (CERMO-FC), Université du Québec à Montréal (UQAM), Montreal, QC, Canada
| | - C Brousseau
- Reproduction, Mother and Child Health, Centre de Recherche du CHU de Québec-Université Laval, Quebec, QC, Canada.,Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle (CRDSI), Quebec, QC, Canada
| | - J J Tremblay
- Reproduction, Mother and Child Health, Centre de Recherche du CHU de Québec-Université Laval, Quebec, QC, Canada.,Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle (CRDSI), Quebec, QC, Canada.,Department of Obstetrics, Gynecology, and Reproduction, Université Laval, Quebec, QC, Canada
| | - N Pilon
- Département des Sciences Biologiques and Centre d'excellence en Recherche sur les Maladies Orphelines - Fondation Courtois (CERMO-FC), Université du Québec à Montréal (UQAM), Montreal, QC, Canada
| | - R S Viger
- Reproduction, Mother and Child Health, Centre de Recherche du CHU de Québec-Université Laval, Quebec, QC, Canada.,Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle (CRDSI), Quebec, QC, Canada.,Department of Obstetrics, Gynecology, and Reproduction, Université Laval, Quebec, QC, Canada
| |
Collapse
|
7
|
Wagner-Mahler K, Kurzenne JY, Gastaud F, Hoflack M, Panaia Ferrari P, Berard E, Giuliano F, Karmous-Benailly H, Moceri P, Jouannelle C, Bourcier M, Robart E, Morel Y. Is interstitial 8p23 microdeletion responsible of 46,XY gonadal dysgenesis? One case report from birth to puberty. Mol Genet Genomic Med 2019; 7:e558. [PMID: 30690934 PMCID: PMC6418366 DOI: 10.1002/mgg3.558] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 11/09/2018] [Accepted: 12/02/2018] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Chromosome 8p deletions are associated with a variety of conditions, including cardiac abnormalities, mental, behavioral problems with variable morphotype and genitourinary anomalies in boys. METHODS We describe the follow-up over almost 15 years of a boy who initially presented with perineal hypospadias with a micropenis and cryptorchidism with 46,XY DSD. RESULTS Imaging, pathology, and hormonal exploration suggested gonadal dysgenesis. Further genetic studies were deemed necessary during follow-up. The child's further development recommended further genetic analyses. High-resolution analysis showed an interstitial deletion on the short arm of a chromosome 8: 46,XY,del(8)(p23.1p23.1). We reviewed the literature and found 102 cases including 54 boys: 62.7% had mental problems, 50.9% a dysmorphic disorder, 55.9% cardiac anomalies, and 46.3% of the boys had genitourinary anomalies. Our patient's genital abnormalities can be explained by the haploinsufficiency of the genes, such as GATA4 (OMIM 600576) that are included in the deleted area. CONCLUSION This case of severe 46,XY DSD raises the question of the role played by 8p23 microdeletion in gonadal dysgenesis. Clinicians are encouraged to look for this anomaly on chromosome 8 in cases of unexplained gonadal dysgenesis even when few signs suggestive of this anomaly are present.
Collapse
Affiliation(s)
- Kathy Wagner-Mahler
- Département de Pédiatrie, Centre Hospitalier de Nice, Nice, France.,Hôpitaux Pédiatriques de Nice CHU Lenval, Nice, France
| | - Jean-Yves Kurzenne
- Département de Pédiatrie, Centre Hospitalier de Nice, Nice, France.,Hôpitaux Pédiatriques de Nice CHU Lenval, Nice, France
| | | | - Marie Hoflack
- Hôpitaux Pédiatriques de Nice CHU Lenval, Nice, France
| | | | - Etienne Berard
- Département de Pédiatrie, Centre Hospitalier de Nice, Nice, France
| | | | | | - Pamela Moceri
- Département de Cardiologie, Centre Hospitalier de Nice, Nice, France
| | | | | | - Elise Robart
- Hôpitaux Pédiatriques de Nice CHU Lenval, Nice, France
| | - Yves Morel
- Centre Hospitalier Universitaire de Lyon - HCL GH Est, Centre de Biologie et Pathologie Est, Bron, France
| |
Collapse
|
8
|
Simon CS, Zhang L, Wu T, Cai W, Saiz N, Nowotschin S, Cai CL, Hadjantonakis AK. A Gata4 nuclear GFP transcriptional reporter to study endoderm and cardiac development in the mouse. Biol Open 2018; 7:bio.036517. [PMID: 30530745 PMCID: PMC6310872 DOI: 10.1242/bio.036517] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The GATA zinc-finger transcription factor GATA4 is expressed in a variety of tissues during mouse embryonic development and in adult organs. These include the primitive endoderm of the blastocyst, visceral endoderm of the early post-implantation embryo, as well as lateral plate mesoderm, developing heart, liver, lung and gonads. Here, we generate a novel Gata4 targeted allele used to generate both a Gata4H2B-GFP transcriptional reporter and a Gata4FLAG fusion protein to analyse dynamic expression domains. We demonstrate that the Gata4H2B-GFP transcriptional reporter faithfully recapitulates known sites of Gata4 mRNA expression and correlates with endogenous GATA4 protein levels. This reporter labels nuclei of Gata4 expressing cells and is suitable for time-lapse imaging and single cell analyses. As such, this Gata4H2B-GFP allele will be a useful tool for studying Gata4 expression and transcriptional regulation.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Claire S Simon
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Lu Zhang
- Department of Developmental and Regenerative Biology, The Mindich Child Health and Development Institute, and The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Tao Wu
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.,School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Weibin Cai
- Department of Developmental and Regenerative Biology, The Mindich Child Health and Development Institute, and The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Nestor Saiz
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Sonja Nowotschin
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Chen-Leng Cai
- Department of Developmental and Regenerative Biology, The Mindich Child Health and Development Institute, and The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Anna-Katerina Hadjantonakis
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
9
|
Kim BJ, Zaveri HP, Jordan VK, Hernandez-Garcia A, Jacob DJ, Zamora DL, Yu W, Schwartz RJ, Scott DA. RERE deficiency leads to decreased expression of GATA4 and the development of ventricular septal defects. Dis Model Mech 2018; 11:dmm.031534. [PMID: 30061196 PMCID: PMC6176990 DOI: 10.1242/dmm.031534] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 07/09/2018] [Indexed: 12/18/2022] Open
Abstract
Deletions of chromosome 1p36 are associated with a high incidence of congenital heart defects (CHDs). The arginine-glutamic acid dipeptide repeats gene (RERE) is located in a critical region for CHD on chromosome 1p36 and encodes a cardiac-expressed nuclear receptor co-regulator. Mutations affecting RERE cause atrial and ventricular septal defects (VSDs) in humans, and RERE-deficient mice also develop VSDs. During cardiac development, mesenchymal cells destined to form part of the atrioventricular (AV) septum are generated when endocardial cells in the AV canal undergo epithelial-to-mesenchymal transition (EMT) and migrate into the space between the endocardium and the myocardium. These newly generated mesenchymal cells then proliferate to fill the developing AV endocardial cushions. Here, we demonstrate that RERE-deficient mouse embryos have reduced numbers of mesenchymal cells in their AV endocardial cushions owing to decreased levels of EMT and mesenchymal cell proliferation. In the endocardium, RERE colocalizes with GATA4, a transcription factor required for normal levels of EMT and mesenchymal cell proliferation. Using a combination of in vivo and in vitro studies, we show that Rere and Gata4 interact genetically in the development of CHDs, RERE positively regulates transcription from the Gata4 promoter and GATA4 levels are reduced in the AV canals of RERE-deficient embryos. Tissue-specific ablation of Rere in the endocardium leads to hypocellularity of the AV endocardial cushions, defective EMT and VSDs, but does not result in decreased GATA4 expression. We conclude that RERE functions in the AV canal to positively regulate the expression of GATA4, and that deficiency of RERE leads to the development of VSDs through its effects on EMT and mesenchymal cell proliferation. However, the cell-autonomous role of RERE in promoting EMT in the endocardium must be mediated by its effects on the expression of proteins other than GATA4. This article has an associated First Person interview with the first author of the paper. Summary: In the developing atrioventricular canal, RERE promotes endothelial-to-mesenchymal transition and mesenchymal cell proliferation by positively regulating Gata4. Tissue-specific ablation of Rere in the endocardium causes ventricular septal defects.
Collapse
Affiliation(s)
- Bum Jun Kim
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hitisha P Zaveri
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Valerie K Jordan
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Andres Hernandez-Garcia
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Daron J Jacob
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Diana L Zamora
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Wei Yu
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77004, USA
| | - Robert J Schwartz
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77004, USA
| | - Daryl A Scott
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA .,Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
10
|
Jia W, Wu W, Yang D, Xiao C, Huang M, Long F, Su Z, Qin M, Liu X, Zhu YZ. GATA4 regulates angiogenesis and persistence of inflammation in rheumatoid arthritis. Cell Death Dis 2018; 9:503. [PMID: 29717129 PMCID: PMC5931571 DOI: 10.1038/s41419-018-0570-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 03/26/2018] [Accepted: 03/29/2018] [Indexed: 12/12/2022]
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by abnormal inflammation, angiogenesis, and cartilage destruction. In RA, neoangiogenesis is an early and crucial event to promote the formation of pannus, causing further inflammatory cell infiltration. The transcription factor GATA4 is a critical regulator of cardiac differentiation-specific gene expression. We find that a higher level of GATA4 exists in synovium of rheumatoid arthritis (RA) patients, but the function of GATA4 in RA remains unclear. In the present study, IL-1β induces inflammation in fibroblast-like synoviocytes (FLS) MH7A, which is accompanied with the increased expression of GATA4 and VEGF production. Through application of GATA4 loss-of-function assays, we confirm the requirement of GATA4 expression for inflammation induced by IL-1β in FLS. In addition, we demonstrate for the first time that GATA4 plays key roles in regulating VEGF secretion from RA FLS to promote cellular proliferation, induce cell migration, and angiogenic tube formation of endothelial cells. GATA4 induces the angiogenic factors VEGFA and VEGFC, by directly binding to the promoter and enhancing transcription. The knockdown of GATA4 attenuates the development of collagen-induced arthritis (CIA) and prevents RA-augmented angiogenesis in vivo, which are accompanied with decreased VEGF level. These results reveal a previously unrecognized function for GATA4 as a regulator of RA angiogenesis and we provide experimental data validating the therapeutic target of GATA4 in RA mice.
Collapse
Affiliation(s)
- Wanwan Jia
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, 201203, China.,State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau, China
| | - Weijun Wu
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Di Yang
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Chenxi Xiao
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Mengwei Huang
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Fen Long
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Zhenghua Su
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Ming Qin
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Xinhua Liu
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, 201203, China.
| | - Yi Zhun Zhu
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, 201203, China. .,State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau, China.
| |
Collapse
|
11
|
Zhou T, Guo S, Zhang Y, Weng Y, Wang L, Ma J. GATA4 regulates osteoblastic differentiation and bone remodeling via p38-mediated signaling. J Mol Histol 2017; 48:187-197. [PMID: 28393293 DOI: 10.1007/s10735-017-9719-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 03/20/2017] [Indexed: 12/16/2022]
Abstract
Osteoblasts play a major role in bone remodeling and are regulated by transcription factors. GATA4, a zinc finger transcription factor from the GATA family, has an unclear role in osteoblast differentiation. In this study, the role of GATA4 in osteoblast differentiation was studied both in vitro and in vivo by GATA4 knockdown. GATA4 expression increased during osteoblast differentiation. GATA4 knockdown in osteoblast precursor cells reduced alkaline phosphatase activity and decreased the formation of calcified nodule in an osteogenic-induced cell culture system. In vivo, micro-CT showed that local injection of lentivirus-delivered GATA4 shRNA caused reduced new bone formation during tooth movement. Histological analyses such as total collagen and Goldner's trichrome staining confirmed these results. In vivo immunohistochemical analysis showed reduced expression of osterix (OSX), osteopontin (OPN), and osteocalcin (OCN) in the shGATA4 group (P < 0.05). Consistently, both western blotting and quantitative reverse-transcription PCR proved that expression of osteogenesis-related genes, including OSX, OPN, and OCN, was significantly repressed in the shGATA4 group in vitro (P < 0.01). For further analysis of the pathways involved in this process, we examined the MAPK signaling pathway, and found knockdown of GATA4, downregulated p38 signaling pathways (P < 0.01). Collectively, these results imply GATA4 is a regulator of osteoblastic differentiation via the p38 signaling pathways.
Collapse
Affiliation(s)
- Tingting Zhou
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, 136 Hanzhong Road, Nanjing, Jiangsu, 210029, China
| | - Shuyu Guo
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, 136 Hanzhong Road, Nanjing, Jiangsu, 210029, China
| | - Yuxin Zhang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, 136 Hanzhong Road, Nanjing, Jiangsu, 210029, China
| | - Yajuan Weng
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, 136 Hanzhong Road, Nanjing, Jiangsu, 210029, China
| | - Lin Wang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, 136 Hanzhong Road, Nanjing, Jiangsu, 210029, China
| | - Junqing Ma
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, 136 Hanzhong Road, Nanjing, Jiangsu, 210029, China.
| |
Collapse
|
12
|
Mehta G, Kumarasamy S, Wu J, Walsh A, Liu L, Williams K, Joe B, de la Serna IL. MITF interacts with the SWI/SNF subunit, BRG1, to promote GATA4 expression in cardiac hypertrophy. J Mol Cell Cardiol 2015; 88:101-10. [PMID: 26388265 PMCID: PMC4640968 DOI: 10.1016/j.yjmcc.2015.09.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 09/03/2015] [Accepted: 09/17/2015] [Indexed: 11/26/2022]
Abstract
The transcriptional regulation of pathological cardiac hypertrophy involves the interplay of transcription factors and chromatin remodeling enzymes. The Microphthalmia-Associated Transcription Factor (MITF) is highly expressed in cardiomyocytes and is required for cardiac hypertrophy. However, the transcriptional mechanisms by which MITF promotes cardiac hypertrophy have not been elucidated. In this study, we tested the hypothesis that MITF promotes cardiac hypertrophy by activating transcription of pro-hypertrophy genes through interactions with the SWI/SNF chromatin remodeling complex. In an in vivo model of cardiac hypertrophy, expression of MITF and the BRG1 subunit of the SWI/SNF complex increased coordinately in response to pressure overload. Expression of MITF and BRG1 also increased in vitro when cardiomyocytes were stimulated with angiotensin II or a β-adrenergic agonist. Both MITF and BRG1 were required to increase cardiomyocyte size and activate expression of hypertrophy markers in response to β-adrenergic stimulation. We detected physical interactions between MITF and BRG1 in cardiomyocytes and found that they cooperate to regulate expression of a pro-hypertrophic transcription factor, GATA4. Our data show that MITF binds to the E box element in the GATA4 promoter and facilitates recruitment of BRG1. This is associated with enhanced expression of the GATA4 gene as evidenced by increased Histone3 lysine4 tri-methylation (H3K4me3) on the GATA4 promoter. Thus, in hypertrophic cardiomyoctes, MITF is a key transcriptional activator of a pro-hypertrophic gene, GATA4, and this regulation is dependent upon the BRG1 component of the SWI/SNF complex.
Collapse
Affiliation(s)
- Gaurav Mehta
- University of Toledo College of Medicine and Life Sciences, Department of Biochemistry and Cancer Biology, 3035 Arlington Ave, Toledo, OH 43614, USA
| | - Sivarajan Kumarasamy
- University of Toledo College of Medicine and Life Sciences, Program in Physiological Genomics, Center for Hypertension and Personalized Medicine, Department of Physiology and Pharmacology, 3035 Arlington Ave, Toledo, OH 43614, USA
| | - Jian Wu
- University of Toledo College of Medicine and Life Sciences, Department of Biochemistry and Cancer Biology, 3035 Arlington Ave, Toledo, OH 43614, USA
| | - Aaron Walsh
- University of Toledo College of Medicine and Life Sciences, Department of Biochemistry and Cancer Biology, 3035 Arlington Ave, Toledo, OH 43614, USA
| | - Lijun Liu
- University of Toledo College of Medicine and Life Sciences, Department of Biochemistry and Cancer Biology, 3035 Arlington Ave, Toledo, OH 43614, USA
| | - Kandace Williams
- University of Toledo College of Medicine and Life Sciences, Department of Biochemistry and Cancer Biology, 3035 Arlington Ave, Toledo, OH 43614, USA
| | - Bina Joe
- University of Toledo College of Medicine and Life Sciences, Program in Physiological Genomics, Center for Hypertension and Personalized Medicine, Department of Physiology and Pharmacology, 3035 Arlington Ave, Toledo, OH 43614, USA
| | - Ivana L de la Serna
- University of Toledo College of Medicine and Life Sciences, Department of Biochemistry and Cancer Biology, 3035 Arlington Ave, Toledo, OH 43614, USA.
| |
Collapse
|
13
|
Bergeron F, Nadeau G, Viger RS. GATA4 knockdown in MA-10 Leydig cells identifies multiple target genes in the steroidogenic pathway. Reproduction 2014; 149:245-57. [PMID: 25504870 DOI: 10.1530/rep-14-0369] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
GATA4 is an essential transcription factor required for the initiation of genital ridge formation, for normal testicular and ovarian differentiation at the time of sex determination, and for male and female fertility in adulthood. In spite of its crucial roles, the genes and/or gene networks that are ultimately regulated by GATA4 in gonadal tissues remain to be fully understood. This is particularly true for the steroidogenic lineages such as Leydig cells of the testis where many in vitro (promoter) studies have provided good circumstantial evidence that GATA4 is a key regulator of Leydig cell gene expression and steroidogenesis, but formal proof is still lacking. We therefore performed a microarray screening analysis of MA-10 Leydig cells in which Gata4 expression was knocked down using an siRNA strategy. Analysis identified several GATA4-regulated pathways including cholesterol synthesis, cholesterol transport, and especially steroidogenesis. A decrease in GATA4 protein was associated with decreased expression of steroidogenic genes previously suspected to be GATA4 targets such as Cyp11a1 and Star. Gata4 knockdown also led to an important decrease in other novel steroidogenic targets including Srd5a1, Gsta3, Hsd3b1, and Hsd3b6, as well as genes known to participate in cholesterol metabolism such as Scarb1, Ldlr, Soat1, Scap, and Cyp51. Consistent with the decreased expression of these genes, a reduction in GATA4 protein compromised the ability of MA-10 cells to produce steroids both basally and under hormone stimulation. These data therefore provide strong evidence that GATA4 is an essential transcription factor that sits atop of the Leydig cell steroidogenic program.
Collapse
Affiliation(s)
- Francis Bergeron
- ReproductionMother and Child Health, Room T3-67, Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec, Centre de Recherche en Biologie de la Reproduction (CRBR), 2705 Laurier Boulevard, Quebec City, Quebec, Canada G1V 4G2Department of Obstetrics and GynecologyFaculty of Medicine, Laval University, Quebec City, Quebec, Canada G1K 7P4
| | - Gabriel Nadeau
- ReproductionMother and Child Health, Room T3-67, Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec, Centre de Recherche en Biologie de la Reproduction (CRBR), 2705 Laurier Boulevard, Quebec City, Quebec, Canada G1V 4G2Department of Obstetrics and GynecologyFaculty of Medicine, Laval University, Quebec City, Quebec, Canada G1K 7P4
| | - Robert S Viger
- ReproductionMother and Child Health, Room T3-67, Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec, Centre de Recherche en Biologie de la Reproduction (CRBR), 2705 Laurier Boulevard, Quebec City, Quebec, Canada G1V 4G2Department of Obstetrics and GynecologyFaculty of Medicine, Laval University, Quebec City, Quebec, Canada G1K 7P4 ReproductionMother and Child Health, Room T3-67, Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec, Centre de Recherche en Biologie de la Reproduction (CRBR), 2705 Laurier Boulevard, Quebec City, Quebec, Canada G1V 4G2Department of Obstetrics and GynecologyFaculty of Medicine, Laval University, Quebec City, Quebec, Canada G1K 7P4
| |
Collapse
|
14
|
Mazaud-Guittot S, Prud'homme B, Bouchard MF, Bergeron F, Daems C, Tevosian SG, Viger RS. GATA4 autoregulates its own expression in mouse gonadal cells via its distal 1b promoter. Biol Reprod 2014; 90:25. [PMID: 24352556 DOI: 10.1095/biolreprod.113.113290] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Transcription factor GATA4 is required for the development and function of the mammalian gonads. We first reported that the GATA4 gene in both human and rodents is expressed as two major alternative transcripts that differ solely in their first untranslated exon (exon 1a vs. exon 1b). We had also showed by quantitative PCR that in mouse tissues, both Gata4 exon 1a- and 1b-containing transcripts are present in all sites that are normally positive for GATA4 protein. In adult tissues, exon 1a-containing transcripts generally predominate. A notable exception, however, is the testis where the Gata4 exon 1a and 1b transcripts exhibit a similar level of expression. We now confirm by in situ hybridization analysis that each transcript is also strongly expressed during gonad differentiation in both sexes in the rat. To gain further insights into how Gata4 gene expression is controlled, we characterized the mouse Gata4 promoter sequence located upstream of exon 1b. In vitro studies revealed that the Gata4 1b promoter is less active than the 1a promoter in several gonadal cell lines tested. Whereas we have previously shown that endogenous Gata4 transcription driven by the 1a promoter is dependent on a proximally located Ebox motif, we now show using complementary in vitro and in vivo approaches that Gata4 promoter 1b-directed expression is regulated by GATA4 itself. Thus, Gata4 transcription in the gonads and other tissues is ensured by distinct promoters that are regulated differentially and independently.
Collapse
Affiliation(s)
- Séverine Mazaud-Guittot
- Reproduction, Mother and Child Health, Centre de recherche du CHU de Québec and Centre de recherche en biologie de la reproduction (CRBR), Quebec City, Quebec, Canada
| | | | | | | | | | | | | |
Collapse
|
15
|
Chowdhury S, Bandholz AM, Parkash S, Dyack S, Rideout AL, Leppig KA, Thiese H, Wheeler PG, Tsang M, Ballif BC, Shaffer LG, Torchia BS, Ellison JW, Rosenfeld JA. Phenotypic and molecular characterization of 19q12q13.1 deletions: a report of five patients. Am J Med Genet A 2013; 164A:62-9. [PMID: 24243649 DOI: 10.1002/ajmg.a.36201] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 07/25/2013] [Indexed: 12/17/2022]
Abstract
A syndrome associated with 19q13.11 microdeletions has been proposed based on seven previous cases that displayed developmental delay, intellectual disability, speech disturbances, pre- and post-natal growth retardation, microcephaly, ectodermal dysplasia, and genital malformations in males. A 324-kb critical region was previously identified as the smallest region of overlap (SRO) for this syndrome. To further characterize this microdeletion syndrome, we present five patients with deletions within 19q12q13.12 identified using a whole-genome oligonucleotide microarray. Patients 1 and 2 possess deletions overlapping the SRO, and Patients 3-5 have deletions proximal to the SRO. Patients 1 and 2 share significant phenotypic overlap with previously reported cases, providing further definition of the 19q13.11 microdeletion syndrome phenotype, including the first presentation of ectrodactyly in the syndrome. Patients 3-5, whose features include developmental delay, growth retardation, and feeding problems, support the presence of dosage-sensitive genes outside the SRO that may contribute to the abnormal phenotypes observed in this syndrome. Multiple genotype-phenotype correlations outside the SRO are explored, including further validation of the deletion of WTIP as a candidate for male hypospadias observed in this syndrome. We postulate that unique patient-specific deletions within 19q12q13.1 may explain the phenotypic variability observed in this emerging contiguous gene deletion syndrome.
Collapse
Affiliation(s)
- Shimul Chowdhury
- Providence Sacred Heart Medical Center, Molecular Diagnostics, Spokane, Washington
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Murray TVA, Smyrnias I, Shah AM, Brewer AC. NADPH oxidase 4 regulates cardiomyocyte differentiation via redox activation of c-Jun protein and the cis-regulation of GATA-4 gene transcription. J Biol Chem 2013; 288:15745-59. [PMID: 23589292 DOI: 10.1074/jbc.m112.439844] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
NADPH oxidase 4 (Nox4) generates reactive oxygen species (ROS) that can modulate cellular phenotype and function in part through the redox modulation of the activity of transcription factors. We demonstrate here the potential of Nox4 to drive cardiomyocyte differentiation in pluripotent embryonal carcinoma cells, and we show that this involves the redox activation of c-Jun. This in turn acts to up-regulate GATA-4 expression, one of the earliest markers of cardiotypic differentiation, through a defined and highly conserved cis-acting motif within the GATA-4 promoter. These data therefore suggest a mechanism whereby ROS act in pluripotential cells in vivo to regulate the initial transcription of critical tissue-restricted determinant(s) of the cardiomyocyte phenotype, including GATA-4. The ROS-dependent activation, mediated by Nox4, of widely expressed redox-regulated transcription factors, such as c-Jun, is fundamental to this process.
Collapse
Affiliation(s)
- Thomas V A Murray
- Cardiovascular Division, King's College London British Heart Foundation Centre of Research Excellence, London SE5 9NU, United Kingdom
| | | | | | | |
Collapse
|
17
|
Castro IC, Breiling A, Luetkenhaus K, Ceteci F, Hausmann S, Kress S, Lyko F, Rudel T, Rapp UR. MYC-induced epigenetic activation of GATA4 in lung adenocarcinoma. Mol Cancer Res 2012; 11:161-72. [PMID: 23239811 DOI: 10.1158/1541-7786.mcr-12-0414-t] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Human lung cancer is a disease with high incidence and accounts for most cancer-related deaths in both men and women. Metastasis is a common event in non-small cell lung carcinoma (NSCLC), diminishing the survival chance of the patients with this type of tumor. It has been shown that MYC is involved in the development of metastasis from NSCLC, but the mechanism underlying this switch remained to be identified. Here, we focus on GATA4 as a MYC target in the development of metastasis with origin in lung adenocarcinoma, the most common type of NSCLC. Epigenetic alterations at the GATA4 promoter level were observed after MYC expression in lung adenocarcinoma in vivo and in vitro. Such alterations include site-specific demethylation that accompanies the displacement of the MYC-associated zinc finger protein (MAZ) from the GATA4 promoter, which leads to GATA4 expression. Histone modification analysis of the GATA4 promoter revealed a switch from repressive histone marks to active histone marks after MYC binding, which corresponds to active GATA4 expression. Our results thus identify a novel epigenetic mechanism by which MYC activates GATA4 leading to metastasis in lung adenocarcinoma, suggesting novel potential targets for the development of antimetastatic therapy.
Collapse
Affiliation(s)
- Inês C Castro
- Biocenter, Department of Microbiology, University of Würzburg, Würzburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Silversides DW, Raiwet DL, Souchkova O, Viger RS, Pilon N. Transgenic mouse analysis of Sry expression during the pre- and peri-implantation stage. Dev Dyn 2012; 241:1192-204. [PMID: 22539273 DOI: 10.1002/dvdy.23798] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2012] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND The SRY/Sry gene is expressed in pre-Sertoli cells of the male genital ridge and functions as the mammalian testis determining factor (TDF). In addition, expression of SRY/Sry outside the genital ridge has been reported, including preimplantation embryos, although the functional significance of this is not well understood. RESULTS Using Cre-mediated lineage studies and transgenic reporter mouse models, we now show that promoter sequences of human, pig and mouse SRY drive robust reporter gene expression in epiblast cells of peri-implantation embryos between embryonic day (E) 4.5 and E6.5. Analysis of endogenous Sry expression revealed that linear transcripts are produced by means of multiple polyadenylation sites in E4.5 embryos. Within the epiblast, SRY reporter expression mimics the expression seen using a Gata4 reporter model, but is dissimilar to that seen using an Oct4 reporter model. In addition, we report that overexpression of mouse Sry in embryonic stem cells leads to down-regulation of the core pluripotency markers Sox2 and Nanog. CONCLUSION We propose that SRY/Sry may function as a male-specific maturation factor in the peri-implantation mammalian embryo, providing a genetic mechanism to help explain the observation that male embryos are developmentally more advanced compared with female embryos, and suggesting a role for SRY beyond that of TDF.
Collapse
Affiliation(s)
- David W Silversides
- Department of Veterinary Biomedicine, Centre de Recherche en Reproduction Animale, Faculty of Veterinary Medicine, University of Montreal, St-Hyacinthe, QC, Canada.
| | | | | | | | | |
Collapse
|
19
|
Li J, Chen W, Wang D, Zhou L, Sakai F, Guan G, Nagahama Y. GATA4 is involved in the gonadal development and maturation of the teleost fish tilapia, Oreochromis niloticus. J Reprod Dev 2011; 58:237-42. [PMID: 22186677 DOI: 10.1262/jrd.11-131s] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
GATA4, a member of the GATA family, is a well-known transcription factor implicated in the regulation of sex determination and sexual differentiation in mammals. However, little is known about the possible role of GATA4 in fish reproduction. In the present study, a full-length GATA4 cDNA from the tilapia was cloned and characterized. The tilapia GATA4 gene contained an open reading frame (ORF) of 1179 nucleotides encoding a protein of 392 amino acids. Sequence alignment revealed that the tilapia GATA4 protein shared higher homology (ranging from 63.1 to 74.6%) with other vertebrates. RT-PCR analysis indicated that the GATA4 gene is expressed in the ovary, testis, liver, intestine and heart in adult tilapia. In situ hybridization was performed to examine the temporal and spatial expression patterns of GATA4 during tilapia gonadal differentiation and development. In the undifferentiated gonad, GATA4 was expressed in the somatic cells of both sexes. Subsequently, GATA4 expression persisted in the differentiated, juvenile and adult ovary and testis in tilapia. Our data indicate for the first time that GATA4 is not only necessary for the onset of gonadal differentiation, but also important for gonadal development and maturation.
Collapse
Affiliation(s)
- Jianzhong Li
- Key Lab of Protein Chemistry and Developmental Biology of the Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha 410081, China.
| | | | | | | | | | | | | |
Collapse
|
20
|
Boulende Sab A, Bouchard MF, Béland M, Prud'homme B, Souchkova O, Viger RS, Pilon N. An Ebox element in the proximal Gata4 promoter is required for Gata4 expression in vivo. PLoS One 2011; 6:e29038. [PMID: 22174950 PMCID: PMC3236771 DOI: 10.1371/journal.pone.0029038] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Accepted: 11/19/2011] [Indexed: 11/19/2022] Open
Abstract
GATA4 is an essential transcription factor required for the development and function of multiple tissues, including a major role in gonadogenesis. Despite its crucial role, the molecular mechanisms that regulate Gata4 expression in vivo remain poorly understood. We recently found that the Gata4 gene is expressed as multiple transcripts with distinct 5′ origins. These co-expressed alternative transcripts are generated by different non-coding first exons with transcripts E1a and E1b being the most prominent. Moreover, we previously showed that an Ebox element, located in Gata4 5′ flanking sequences upstream of exon 1a, is important for the promoter activity of these sequences in cell lines. To confirm the importance of this element in vivo, we generated and characterized Gata4 Ebox knockout mice. Quantitative PCR analyses realized on gonads, heart and liver at three developmental stages (embryonic, pre-pubertal and adult) revealed that the Ebox mutation leads to a robust and specific decrease (up to 89%) of Gata4 E1a transcript expression in all tissues and stages examined. However, a detailed characterization of the gonads revealed normal morphology and GATA4 protein levels in these mutants. Our qPCR data further indicate that this outcome is most likely due to the presence of Gata4 E1b mRNA, whose expression levels were not decreased by the Ebox mutation. In conclusion, our work clearly confirms the importance of the proximal Ebox element and suggests that adequate GATA4 protein expression is likely protected by a compensation mechanism between Gata4 E1a and E1b transcripts operating at the translational level.
Collapse
Affiliation(s)
- Alain Boulende Sab
- Molecular Genetics of Development, Department of Biological Sciences and BioMed Research Center, Faculty of Sciences, University of Quebec at Montreal (UQAM), Montreal, Quebec, Canada
- Reproduction, Perinatal and Child Health, CHUQ Research Centre and Centre de Recherche en Biologie de la Reproduction (CRBR), Department of Obstetrics and Gynecology, Faculty of Medicine, Laval University, Quebec City, Quebec, Canada
| | - Marie-France Bouchard
- Reproduction, Perinatal and Child Health, CHUQ Research Centre and Centre de Recherche en Biologie de la Reproduction (CRBR), Department of Obstetrics and Gynecology, Faculty of Medicine, Laval University, Quebec City, Quebec, Canada
| | - Mélanie Béland
- Molecular Genetics of Development, Department of Biological Sciences and BioMed Research Center, Faculty of Sciences, University of Quebec at Montreal (UQAM), Montreal, Quebec, Canada
| | - Bruno Prud'homme
- Reproduction, Perinatal and Child Health, CHUQ Research Centre and Centre de Recherche en Biologie de la Reproduction (CRBR), Department of Obstetrics and Gynecology, Faculty of Medicine, Laval University, Quebec City, Quebec, Canada
| | - Ouliana Souchkova
- Molecular Genetics of Development, Department of Biological Sciences and BioMed Research Center, Faculty of Sciences, University of Quebec at Montreal (UQAM), Montreal, Quebec, Canada
| | - Robert S. Viger
- Reproduction, Perinatal and Child Health, CHUQ Research Centre and Centre de Recherche en Biologie de la Reproduction (CRBR), Department of Obstetrics and Gynecology, Faculty of Medicine, Laval University, Quebec City, Quebec, Canada
- * E-mail: (RSV); (NP)
| | - Nicolas Pilon
- Molecular Genetics of Development, Department of Biological Sciences and BioMed Research Center, Faculty of Sciences, University of Quebec at Montreal (UQAM), Montreal, Quebec, Canada
- * E-mail: (RSV); (NP)
| |
Collapse
|
21
|
Gautier A, Sohm F, Joly JS, Le Gac F, Lareyre JJ. The Proximal Promoter Region of the Zebrafish gsdf Gene Is Sufficient to Mimic the Spatio-Temporal Expression Pattern of the Endogenous Gene in Sertoli and Granulosa Cells1. Biol Reprod 2011; 85:1240-51. [DOI: 10.1095/biolreprod.111.091892] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
22
|
Wood MA, Mukherjee P, Toocheck CA, Walker WH. Upstream stimulatory factor induces Nr5a1 and Shbg gene expression during the onset of rat Sertoli cell differentiation. Biol Reprod 2011; 85:965-76. [PMID: 21734262 DOI: 10.1095/biolreprod.111.093013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Within the testis, each Sertoli cell can support a finite number of developing germ cells. During development, the cessation of Sertoli cell proliferation and the onset of differentiation establish the final number of Sertoli cells and, thus, the total number of sperm that can be produced. The upstream stimulatory factors 1 and 2 (USF1 and USF2, respectively) differentially regulate numerous Sertoli cell genes during differentiation. To identify genes that are activated by USF proteins during differentiation, studies were conducted in Sertoli cells isolated from 5- and 11-day-old rats, representing proliferating and differentiating cells, respectively. Usf1 mRNA and USF1 protein levels were increased between 5 and 11 days after birth. In vitro studies revealed that USF1 and USF2 DNA-binding activity also increased at 11 days for the promoters of four potential target genes, Fshr, Gata4, Nr5a1, and Shbg. Chromatin immunoprecipitation assays confirmed that USF recruitment increased in vivo between 5 and 11 days after birth at the Fshr, Gata4, and Nr5a1 promoters. Expression of Nr5a1 and Shbg, but not of Fshr or Gata4, mRNAs was elevated in 11-day-old Sertoli cells compared with 5-day-old Sertoli cells. Transient transfection of USF1 and USF2 expression vectors up-regulated Nr5a1 and Shbg promoter activity. RNA interference assays demonstrated that USF1 and USF2 contribute to Nr5a1 and Shbg expression in differentiating cells. Together, these data indicate that increased USF levels induce the expression of Nr5a1 and Shbg during the differentiation of Sertoli cells, whereas Fshr and Gata4 expression is not altered by USF proteins during differentiation.
Collapse
Affiliation(s)
- Michelle A Wood
- Center for Research in Reproductive Physiology, Department of Obstetrics, Gynecology, and Reproduction Services, Magee Women's Research Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | | | | | | |
Collapse
|
23
|
Kumar TR. The "Glow"rious Sertoli and germ cells: mouse testis development visualized in multi-colors. Biol Reprod 2010; 84:201-4. [PMID: 20962250 DOI: 10.1095/biolreprod.110.088856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Affiliation(s)
- T Rajendra Kumar
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas 66160, USA.
| |
Collapse
|
24
|
Nel-Themaat L, Jang CW, Stewart MD, Akiyama H, Viger RS, Behringer RR. Sertoli cell behaviors in developing testis cords and postnatal seminiferous tubules of the mouse. Biol Reprod 2010; 84:342-50. [PMID: 20944081 DOI: 10.1095/biolreprod.110.086900] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Sertoli cells are the primary structural component of the fetal testis cords and postnatal seminiferous tubules. Live imaging technologies facilitate the visualization of cell morphologies and behaviors through developmental processes. A transgenic mouse line was generated using a fragment of the rat Gata4 gene to direct the expression of a dual-color fluorescent protein reporter in fetal and adult Sertoli cells. The reporter encoded a red fluorescent protein, monomeric Cherry (mCherry), fused to histone 2B and enhanced green fluorescent protein (EGFP) fused to a glycosylphosphatidylinositol sequence, with a self-cleaving 2A polypeptide separating the two fusion proteins. After translation, the red and green fluorescent proteins translocated to the nucleus and plasma membrane, respectively, of Sertoli cells. Transgene expression in testes was first detected by fluorescent microscopy around Embryonic Day 12.0. Sertoli cell division and migration were visualized during testis cord formation in organ culture. Initially, the Sertoli cells had mesenchyme-like morphologies and behaviors, but later, the cells migrated to the periphery of the testis cords to become epithelialized. In postnatal seminiferous tubules, Sertoli nuclei were evenly spaced when viewed from the external surface of tubules, and Sertoli cytoplasm and membranes were associated with germ cells basally in a rosette pattern. This mouse line was bred to previously described transgenic mouse lines expressing EGFP in Sertoli cytoplasm or a nuclear cyan fluorescent protein (Cerulean) and mCherry in plasma membranes of germ cells. This revealed the physical relationship between Sertoli and germ cells in developing testis cords and provided a novel perspective on Sertoli cell development.
Collapse
Affiliation(s)
- Liesl Nel-Themaat
- Department of Genetics, University of Texas M.D. Anderson Cancer Center, Houston, Texas, 77005, USA
| | | | | | | | | | | |
Collapse
|
25
|
Yoshida T, Gan Q, Franke AS, Ho R, Zhang J, Chen YE, Hayashi M, Majesky MW, Somlyo AV, Owens GK. Smooth and cardiac muscle-selective knock-out of Kruppel-like factor 4 causes postnatal death and growth retardation. J Biol Chem 2010; 285:21175-84. [PMID: 20439457 DOI: 10.1074/jbc.m110.112482] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Krüppel-like factor 4 (Klf4) is a transcription factor involved in differentiation and proliferation in multiple tissues. We demonstrated previously that tamoxifen-induced deletion of the Klf4 gene in mice accelerated neointimal formation but delayed down-regulation of smooth muscle cell differentiation markers in carotid arteries following injury. To further determine the role of Klf4 in the cardiovascular system, we herein derived mice deficient for the Klf4 gene in smooth and cardiac muscle using the SM22alpha promoter (SM22alpha-CreKI(+)/Klf4(loxP/loxP) mice). SM22alpha-CreKI(+)/Klf4(loxP/loxP) mice were born at the expected Mendelian ratio, but they gradually died after birth. Although approximately 40% of SM22alpha-CreKI(+)/Klf4(loxP/loxP) mice survived beyond postnatal day 28, they exhibited marked growth retardation. In wild-type mice, Klf4 was expressed in the heart from late embryonic development through adulthood, whereas it was not expressed in smooth muscle. No changes were observed in morphology or expression of smooth muscle cell differentiation markers in vessels of SM22alpha-CreKI(+)/Klf4(loxP/loxP) mice. Of interest, cardiac output was significantly decreased in SM22alpha-CreKI(+)/Klf4(loxP/loxP) mice, as determined by magnetic resonance imaging. Moreover, a lack of Klf4 in the heart resulted in the reduction in expression of multiple cardiac genes, including Gata4. In vivo chromatin immunoprecipitation assays on the heart revealed that Klf4 bound to the promoter region of the Gata4 gene. Results provide novel evidence that Klf4 plays a key role in late fetal and/or postnatal cardiac development.
Collapse
Affiliation(s)
- Tadashi Yoshida
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22908, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Mazaud Guittot S, Bouchard MF, Robert-Grenon JP, Robert C, Goodyer CG, Silversides DW, Viger RS. Conserved usage of alternative 5' untranslated exons of the GATA4 gene. PLoS One 2009; 4:e8454. [PMID: 20041118 PMCID: PMC2795200 DOI: 10.1371/journal.pone.0008454] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2009] [Accepted: 12/07/2009] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND GATA4 is an essential transcription factor required for the development and function of multiple organs. Despite this important role, our knowledge of how the GATA4 gene is regulated remains limited. To better understand this regulation, we characterized the 5' region of the mouse, rat, and human GATA4 genes. METHODOLOGY/PRINCIPAL FINDINGS Using 5' RACE, we identified novel transcription start sites in all three species. GATA4 is expressed as multiple transcripts with varying 5' ends encoded by alternative untranslated first exons. Two of these non-coding first exons are conserved between species: exon 1a located 3.5 kb upstream of the GATA4 ATG site in exon 2, and a second first exon (exon 1b) located 28 kb further upstream. Expression of both mRNA variants was found in all GATA4-expressing organs but with a preference for the exon 1a-containing transcript. The exception was the testis where exon 1a- and 1b-containing transcripts were similarly expressed. In some tissues such as the intestine, alternative transcript expression appears to be regionally regulated. Polysome analysis suggests that both mRNA variants contribute to GATA4 protein synthesis. CONCLUSIONS/SIGNIFICANCE Taken together, our results indicate that the GATA4 gene closely resembles the other GATA family members in terms of gene structure where alternative first exon usage appears to be an important mechanism for regulating its tissue- and cell-specific expression.
Collapse
Affiliation(s)
- Séverine Mazaud Guittot
- Reproduction, Perinatal and Child Health, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Quebec City, Canada
- Centre de Recherche en Biologie de la Reproduction (CRBR), Laval University, Quebec City, Canada
| | - Marie France Bouchard
- Reproduction, Perinatal and Child Health, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Quebec City, Canada
- Centre de Recherche en Biologie de la Reproduction (CRBR), Laval University, Quebec City, Canada
| | - Jean-Philippe Robert-Grenon
- Centre de Recherche en Biologie de la Reproduction (CRBR), Laval University, Quebec City, Canada
- Department of Animal Science, Laval University, Quebec City, Canada
| | - Claude Robert
- Centre de Recherche en Biologie de la Reproduction (CRBR), Laval University, Quebec City, Canada
- Department of Animal Science, Laval University, Quebec City, Canada
| | - Cynthia G. Goodyer
- McGill University Health Centre-Montreal Children's Hospital Research Institute, Montreal, Canada
| | | | - Robert S. Viger
- Reproduction, Perinatal and Child Health, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Quebec City, Canada
- Centre de Recherche en Biologie de la Reproduction (CRBR), Laval University, Quebec City, Canada
- Department of Obstetrics and Gynecology, Laval University, Quebec City, Canada
- * E-mail:
| |
Collapse
|
27
|
Joziasse IC, van der Smagt JJ, Poot M, Hochstenbach R, Nelen MR, van Gijn M, Dooijes D, Mulder BJM, Doevendans PA. A duplication including GATA4 does not co-segregate with congenital heart defects. Am J Med Genet A 2009; 149A:1062-6. [PMID: 19353638 DOI: 10.1002/ajmg.a.32769] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Irene C Joziasse
- Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Pilon N, Raiwet D, Viger RS, Silversides DW. Novel pre- and post-gastrulation expression of Gata4 within cells of the inner cell mass and migratory neural crest cells. Dev Dyn 2008; 237:1133-43. [PMID: 18351674 DOI: 10.1002/dvdy.21496] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
GATA4 is a transcription factor known to be important for the development of many organs such as the heart, intestine, and gonads. However, information regarding the control of its expression is only now beginning to emerge. To further understand the regulation of Gata4 expression during mouse embryonic development, we have generated a novel knockin allele allowing expression of the Cre recombinase under the control of Gata4 regulatory sequences. When these Gata4(Cre/+) mice were crossed with the Cre reporter mouse R26R-YFP, we surprisingly found widespread mosaic YFP expression in e10.0 embryos. This particular expression pattern was traced back to the e5.5 stage via a cell lineage study, suggesting activation of transcription at the Gata4 locus around the blastocyst stage. In accordance with this hypothesis, we found that Gata4 is expressed in cultured embryonic stem (ES) cells and within the inner cell mass (ICM) of e4.5 blastocysts. Interestingly, such early Gata4 transcription can be recapitulated in transgenic reporter studies using 5 kb of the proximal rat Gata4 promoter. During mouse development, these 5-kb regulatory sequences were previously reported to direct reporter gene expression to Sertoli cells of the testes [Mazaud Guittot et al. (2007) Biol Reprod 76:85-95]. We now show that these regulatory sequences can also drive robust fluorescent reporter gene expression in migratory neural crest cells. Comparisons to Wnt1-Cre-mediated YFP labelling of neural crest cells suggest that most of the migratory neural crest cells are labelled in e9.5 to e11.5 Gata4p[5kb]-RFP or -GFP embryos. Analysis of GFP transcription via whole-mount in situ hybridization in e10.5 and e11.5 embryos demonstrated that the 5-kb Gata4 promoter is preferentially active in cells of the boundary caps at the dorsal root entry zone and motor exit points flanking the neural tube. RT-PCR gene expression analysis of FACS-purified GFP-positive cells from e9.5 Gata4p[5kb]-GFP embryos revealed co-expression of Gata4 with many neural crest stem cell markers. Together with sphere-forming and differentiation cell culture assays, our results indicate that the Gata4 promoter is active within at least a subset of the neural crest stem cells. Taken altogether, our studies have revealed new Gata4 expression patterns during mouse embryonic development, which are controlled by its 5-kb proximal 5' flanking sequences.
Collapse
Affiliation(s)
- Nicolas Pilon
- Department of Veterinary Biomedicine, Faculty of Veterinary Medicine, University of Montreal, St-Hyacinthe, QC, Canada
| | | | | | | |
Collapse
|
29
|
Abstract
Imaging is one of the fastest growing fields of study. New technologies and multimodal approaches are increasing the application of imaging to determine molecular targets and functional processes in vivo. The identification of a specific target, transporter, or biological process using imaging has introduced major breakthroughs to the field of endocrinology primarily utilizing computed tomography, magnetic resonance imaging, ultrasonography, positron emission tomography, single-photon emission computed tomography, and optical imaging. This review provides a general background to the specific developments in imaging that pertains to in vivo function and target identification in endocrine-based diseases.
Collapse
Affiliation(s)
- Joanna E Burdette
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612, USA.
| |
Collapse
|
30
|
GATA factors and androgen receptor collaborate to transcriptionally activate the Rhox5 homeobox gene in Sertoli cells. Mol Cell Biol 2008; 28:2138-53. [PMID: 18212046 DOI: 10.1128/mcb.01170-07] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
How Sertoli-specific expression is initiated is poorly understood. Here, we address this issue using the proximal promoter (Pp) from the Rhox5 homeobox gene. Its Sertoli cell-specific expression is achieved, in part, through a negative regulatory element that inhibits Pp transcription in non-Sertoli cell lines. Complementing this negative regulation is positive regulation conferred by four androgen-response elements (AREs) that interact with the androgen receptor (AR), a nuclear hormone receptor expressed at high levels in Sertoli cells. A third control mechanism is provided by a consensus GATA-binding site that is crucial for Pp transcription both in vitro and in vivo. Several lines of evidence suggested that GATA factors and AR act cooperatively to activate Pp transcription: (i) the GATA-binding site crucial for Pp transcription is in close proximity to two of the AREs, (ii) GATA and AR form a complex with the Pp in vitro, (iii) overexpression of GATA factors rescued expression from mutant Pp constructs harboring defective AREs, and (iv) incubation of a Sertoli cell line with testosterone triggered corecruitment of AR and GATA4 to the Pp. Collectively, our results suggest that the Rhox5 gene achieves Sertoli cell-specific transcription using a combinatorial strategy involving negative and cooperative positive regulation.
Collapse
|
31
|
Viger RS, Guittot SM, Anttonen M, Wilson DB, Heikinheimo M. Role of the GATA family of transcription factors in endocrine development, function, and disease. Mol Endocrinol 2008; 22:781-98. [PMID: 18174356 DOI: 10.1210/me.2007-0513] [Citation(s) in RCA: 193] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The WGATAR motif is a common nucleotide sequence found in the transcriptional regulatory regions of numerous genes. In vertebrates, these motifs are bound by one of six factors (GATA1 to GATA6) that constitute the GATA family of transcriptional regulatory proteins. Although originally considered for their roles in hematopoietic cells and the heart, GATA factors are now known to be expressed in a wide variety of tissues where they act as critical regulators of cell-specific gene expression. This includes multiple endocrine organs such as the pituitary, pancreas, adrenals, and especially the gonads. Insights into the functional roles played by GATA factors in adult organ systems have been hampered by the early embryonic lethality associated with the different Gata-null mice. This is now being overcome with the generation of tissue-specific knockout models and other knockdown strategies. These approaches, together with the increasing number of human GATA-related pathologies have greatly broadened the scope of GATA-dependent genes and, importantly, have shown that GATA action is not necessarily limited to early development. This has been particularly evident in endocrine organs where GATA factors appear to contribute to the transcription of multiple hormone-encoding genes. This review provides an overview of the GATA family of transcription factors as they relate to endocrine function and disease.
Collapse
Affiliation(s)
- Robert S Viger
- Ontogeny-Reproduction Research Unit, Room T1-49, CHUQ Research Centre, 2705 Laurier Boulevard, Quebec City, Quebec, Canada G1V 4G2.
| | | | | | | | | |
Collapse
|