1
|
Cavarocchi E, Drouault M, Ribeiro JC, Simon V, Whitfield M, Touré A. Human asthenozoospermia: Update on genetic causes, patient management, and clinical strategies. Andrology 2025. [PMID: 39748639 DOI: 10.1111/andr.13828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/28/2024] [Accepted: 12/09/2024] [Indexed: 01/04/2025]
Abstract
BACKGROUND In mammals, sperm fertilization potential relies on efficient progression within the female genital tract to reach and fertilize the oocyte. This fundamental property is supported by the flagellum, an evolutionarily conserved organelle, which contains dynein motor proteins that provide the mechanical force for sperm propulsion and motility. Primary motility of the sperm cells is acquired during their transit through the epididymis and hyperactivated motility is acquired throughout the journey in the female genital tract by a process called capacitation. These activation processes rely on the micro-environment of the genital tracts. In particular, during capacitation, a panoply of ion transporters located at the surface of the sperm cells mediate complex ion exchanges, which induce an increase in plasma membrane fluidity, the alkalinization of the cytoplasm and protein phosphorylation cascades that are compulsory for sperm hyperactivation and fertilization potential. As a consequence, both structural and functional defects of the sperm flagellum can affect sperm motility, resulting in asthenozoospermia, which constitutes the most predominant pathological condition associated with human male infertility. OBJECTIVES Herein, we have performed a literature review to provide a comprehensive description of the recent advances in the genetics of human asthenozoospermia. RESULTS AND DISCUSSION We describe the currently knowledge on gene mutations that affect sperm morphology and motility, namely, asthenoteratozoospermia; we also specify the gene mutations that exclusively affect sperm function and activation, resulting in functional asthenozoospermia. We discuss the benefit of this knowledge for patient and couple management, in terms of genetic counselling and diagnosis of male infertility as a sole phenotype or in association with ciliary defects. Last, we discuss the current strategies that have been initiated for the development of potential therapeutical and contraceptive strategies targeting genes that are essential for sperm function and activation.
Collapse
Affiliation(s)
- Emma Cavarocchi
- Institute for Advanced Biosciences, INSERM U 1209, CNRS UMR 5309, Université Grenoble Alpes, Team "Physiopathology and Pathophysiology of Sperm Cells", Grenoble, France
- Faculty of Medicine, Centre Hospitalier Universitaire de Québec-Research Center, Department of Obstetrics, Gynecology, and Reproduction, Université Laval, Quebec, Canada
| | - Maëva Drouault
- Institute for Advanced Biosciences, INSERM U 1209, CNRS UMR 5309, Université Grenoble Alpes, Team "Physiopathology and Pathophysiology of Sperm Cells", Grenoble, France
| | - Joao C Ribeiro
- Institute for Advanced Biosciences, INSERM U 1209, CNRS UMR 5309, Université Grenoble Alpes, Team "Physiopathology and Pathophysiology of Sperm Cells", Grenoble, France
- Unit for Multidisciplinary Research in Biomedicine, Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health, University of Porto, Porto, Portugal
- LAQV-REQUIMTE and Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Violaine Simon
- Institute for Advanced Biosciences, INSERM U 1209, CNRS UMR 5309, Université Grenoble Alpes, Team "Physiopathology and Pathophysiology of Sperm Cells", Grenoble, France
| | - Marjorie Whitfield
- Institute for Advanced Biosciences, INSERM U 1209, CNRS UMR 5309, Université Grenoble Alpes, Team "Physiopathology and Pathophysiology of Sperm Cells", Grenoble, France
| | - Aminata Touré
- Institute for Advanced Biosciences, INSERM U 1209, CNRS UMR 5309, Université Grenoble Alpes, Team "Physiopathology and Pathophysiology of Sperm Cells", Grenoble, France
| |
Collapse
|
2
|
Ren H, Zhang Y, Bi Y, Wang H, Fang G, Zhao P. Target silencing of porcine SPAG6 and PPP1CC by shRNA attenuated sperm motility. Theriogenology 2024; 219:138-146. [PMID: 38430798 DOI: 10.1016/j.theriogenology.2024.02.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/01/2024] [Accepted: 02/27/2024] [Indexed: 03/05/2024]
Abstract
The quality of sperm significantly influences the reproductive efficiency of pig herds. High-quality sperm is necessary for efficient fertilization and to maximize the litter numbers in commercial pig farming. However, the understanding of genes regulating porcine sperm motility and viability is limited. In this study, we validated porcine sperm/Sertoli-specific promoters through the luciferase reporter system and identified vital genes for sperm quality via loss-of-function means. Further, the shRNAs driven by the ACE and SP-10 promoters were used to knockdown the SPAG6 and PPP1CC genes which were provisionally important for sperm quality. We assessed the effects of SPAG6 and PPP1CC knockdown on sperm motility by using the sperm quality analyzer and flow cytometry. The results showed that the ACE promoter is active in both porcine Sertoli cells and sperms, whereas the SP-10 promoter is operating exclusively in sperm cells. Targeted interference with SPAG6 and PPP1CC expression in sperm cells decreases the motility and increases apoptosis rates in porcine sperms. These findings not only offer new genetic tools for targeting male germ cells but also highlight the crucial roles of SPAG6 and PPP1CC in porcine sperm function.
Collapse
Affiliation(s)
- Hongyan Ren
- Hubei Key Laboratory of Animal Embryo Engineering and Molecular Breeding, Hubei Academy of Agricultural Sciences, Wuhan, Hubei Province, PR China
| | - Yandi Zhang
- Hubei Key Laboratory of Animal Embryo Engineering and Molecular Breeding, Hubei Academy of Agricultural Sciences, Wuhan, Hubei Province, PR China
| | - Yanzhen Bi
- Hubei Key Laboratory of Animal Embryo Engineering and Molecular Breeding, Hubei Academy of Agricultural Sciences, Wuhan, Hubei Province, PR China
| | - Heng Wang
- College of Animal Science and Technology, Shandong Agricultural University, Taian, PR China
| | - Guijie Fang
- Key Laboratory of Fermentation Engineering (Ministry of Education), College of Bioengineering, Hubei University of Technology, Wuhan, Hubei Province, PR China.
| | - Pengxiang Zhao
- College of Animal Science and Technology, Shandong Agricultural University, Taian, PR China.
| |
Collapse
|
3
|
Bae JW, Hwang JM, Yoon M, Kwon WS. Bifenthrin Diminishes Male Fertility Potential by Inducing Protein Defects in Mouse Sperm. TOXICS 2024; 12:53. [PMID: 38251009 PMCID: PMC10821346 DOI: 10.3390/toxics12010053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/03/2024] [Accepted: 01/09/2024] [Indexed: 01/23/2024]
Abstract
A synthetic pyrethroid pesticide, bifenthrin, has been commonly used as an effective exterminator, although the rise in its usage has raised concerns regarding its effects on the environment and public health, including reproduction, globally. The current study investigated the function-related molecular disparities and mechanisms in bifenthrin-exposed sperm cells and the underlying mechanism. Therefore, epididymal spermatozoa were released, and various concentrations of bifenthrin were treated (0.1, 1, 10, and 100 μM) to evaluate their effects on sperm. The findings showed that although bifenthrin had no effect on sperm viability, various other sperm functions (e.g., motility, spontaneous acrosome reaction, and capacitation) related to male fertility were decreased, commencing at a 1 µM treatment. Molecular studies revealed nine differentially expressed sperm proteins that were implicated in motile cilium assembly, sperm structure, and metabolic processes. Furthermore, bifenthrin affected sperm functions through abnormal diminution of the expression of specific sperm proteins. Collectively, these findings provide greater insights into how bifenthrin affects male fertility at the molecular level.
Collapse
Affiliation(s)
- Jeong-Won Bae
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju 37224, Gyeongsangbuk-do, Republic of Korea; (J.-W.B.); (J.-M.H.); (M.Y.)
| | - Ju-Mi Hwang
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju 37224, Gyeongsangbuk-do, Republic of Korea; (J.-W.B.); (J.-M.H.); (M.Y.)
| | - Minjung Yoon
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju 37224, Gyeongsangbuk-do, Republic of Korea; (J.-W.B.); (J.-M.H.); (M.Y.)
- Research Institute for Innovative Animal Science, Kyungpook National University, Sangju 37224, Gyeongsangbuk-do, Republic of Korea
| | - Woo-Sung Kwon
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju 37224, Gyeongsangbuk-do, Republic of Korea; (J.-W.B.); (J.-M.H.); (M.Y.)
- Research Institute for Innovative Animal Science, Kyungpook National University, Sangju 37224, Gyeongsangbuk-do, Republic of Korea
| |
Collapse
|
4
|
Mariani NAP, Silva JV, Fardilha M, Silva EJR. Advances in non-hormonal male contraception targeting sperm motility. Hum Reprod Update 2023; 29:545-569. [PMID: 37141450 DOI: 10.1093/humupd/dmad008] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 03/23/2023] [Indexed: 05/06/2023] Open
Abstract
BACKGROUND The high rates of unintended pregnancy and the ever-growing world population impose health, economic, social, and environmental threats to countries. Expanding contraceptive options, including male methods, are urgently needed to tackle these global challenges. Male contraception is limited to condoms and vasectomy, which are unsuitable for many couples. Thus, novel male contraceptive methods may reduce unintended pregnancies, meet the contraceptive needs of couples, and foster gender equality in carrying the contraceptive burden. In this regard, the spermatozoon emerges as a source of druggable targets for on-demand, non-hormonal male contraception based on disrupting sperm motility or fertilization. OBJECTIVE AND RATIONALE A better understanding of the molecules governing sperm motility can lead to innovative approaches toward safe and effective male contraceptives. This review discusses cutting-edge knowledge on sperm-specific targets for male contraception, focusing on those with crucial roles in sperm motility. We also highlight challenges and opportunities in male contraceptive drug development targeting spermatozoa. SEARCH METHODS We conducted a literature search in the PubMed database using the following keywords: 'spermatozoa', 'sperm motility', 'male contraception', and 'drug targets' in combination with other related terms to the field. Publications until January 2023 written in English were considered. OUTCOMES Efforts for developing non-hormonal strategies for male contraception resulted in the identification of candidates specifically expressed or enriched in spermatozoa, including enzymes (PP1γ2, GAPDHS, and sAC), ion channels (CatSper and KSper), transmembrane transporters (sNHE, SLC26A8, and ATP1A4), and surface proteins (EPPIN). These targets are usually located in the sperm flagellum. Their indispensable roles in sperm motility and male fertility were confirmed by genetic or immunological approaches using animal models and gene mutations associated with male infertility due to sperm defects in humans. Their druggability was demonstrated by the identification of drug-like small organic ligands displaying spermiostatic activity in preclinical trials. WIDER IMPLICATIONS A wide range of sperm-associated proteins has arisen as key regulators of sperm motility, providing compelling druggable candidates for male contraception. Nevertheless, no pharmacological agent has reached clinical developmental stages. One reason is the slow progress in translating the preclinical and drug discovery findings into a drug-like candidate adequate for clinical development. Thus, intense collaboration among academia, private sectors, governments, and regulatory agencies will be crucial to combine expertise for the development of male contraceptives targeting sperm function by (i) improving target structural characterization and the design of highly selective ligands, (ii) conducting long-term preclinical safety, efficacy, and reversibility evaluation, and (iii) establishing rigorous guidelines and endpoints for clinical trials and regulatory evaluation, thus allowing their testing in humans.
Collapse
Affiliation(s)
- Noemia A P Mariani
- Department of Biophysics and Pharmacology, Institute of Biosciences of Botucatu, São Paulo State University, Botucatu, Brazil
| | - Joana V Silva
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal
- QOPNA & LAQV, Department of Chemistry, University of Aveiro, Aveiro, Portugal
- Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Margarida Fardilha
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal
| | - Erick J R Silva
- Department of Biophysics and Pharmacology, Institute of Biosciences of Botucatu, São Paulo State University, Botucatu, Brazil
| |
Collapse
|
5
|
Ferreira AF, Santiago J, Silva JV, Oliveira PF, Fardilha M. PP1, PP2A and PP2B Interplay in the Regulation of Sperm Motility: Lessons from Protein Phosphatase Inhibitors. Int J Mol Sci 2022; 23:ijms232315235. [PMID: 36499559 PMCID: PMC9737803 DOI: 10.3390/ijms232315235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/30/2022] [Accepted: 12/01/2022] [Indexed: 12/11/2022] Open
Abstract
Male fertility relies on the ability of spermatozoa to fertilize the egg in the female reproductive tract (FRT). Spermatozoa acquire activated motility during epididymal maturation; however, to be capable of fertilization, they must achieve hyperactivated motility in the FRT. Extensive research found that three protein phosphatases (PPs) are crucial to sperm motility regulation, the sperm-specific protein phosphatase type 1 (PP1) isoform gamma 2 (PP1γ2), protein phosphatase type 2A (PP2A) and protein phosphatase type 2B (PP2B). Studies have reported that PP activity decreases during epididymal maturation, whereas protein kinase activity increases, which appears to be a requirement for motility acquisition. An interplay between these PPs has been extensively investigated; however, many specific interactions and some inconsistencies remain to be elucidated. The study of PPs significantly advanced following the identification of naturally occurring toxins, including calyculin A, okadaic acid, cyclosporin, endothall and deltamethrin, which are powerful and specific PP inhibitors. This review aims to overview the protein phosphorylation-dependent biochemical pathways underlying sperm motility acquisition and hyperactivation, followed by a discussion of the PP inhibitors that allowed advances in the current knowledge of these pathways. Since male infertility cases still attain alarming numbers, additional research on the topic is required, particularly using other PP inhibitors.
Collapse
Affiliation(s)
- Ana F. Ferreira
- Laboratory of Signal Transduction, Institute for Biomedicine-iBiMED, Medical Sciences Department, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Joana Santiago
- Laboratory of Signal Transduction, Institute for Biomedicine-iBiMED, Medical Sciences Department, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Joana V. Silva
- Laboratory of Signal Transduction, Institute for Biomedicine-iBiMED, Medical Sciences Department, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Pedro F. Oliveira
- QOPNA & LAQV, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Margarida Fardilha
- Laboratory of Signal Transduction, Institute for Biomedicine-iBiMED, Medical Sciences Department, University of Aveiro, 3810-193 Aveiro, Portugal
- Correspondence: ; Tel.: +351-918-143-947
| |
Collapse
|
6
|
Is IIIG9 a New Protein with Exclusive Ciliary Function? Analysis of Its Potential Role in Cancer and Other Pathologies. Cells 2022; 11:cells11203327. [PMID: 36291193 PMCID: PMC9600092 DOI: 10.3390/cells11203327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/23/2022] [Accepted: 10/03/2022] [Indexed: 11/16/2022] Open
Abstract
The identification of new proteins that regulate the function of one of the main cellular phosphatases, protein phosphatase 1 (PP1), is essential to find possible pharmacological targets to alter phosphatase function in various cellular processes, including the initiation and development of multiple diseases. IIIG9 is a regulatory subunit of PP1 initially identified in highly polarized ciliated cells. In addition to its ciliary location in ependymal cells, we recently showed that IIIG9 has extraciliary functions that regulate the integrity of adherens junctions. In this review, we perform a detailed analysis of the expression, localization, and function of IIIG9 in adult and developing normal brains. In addition, we provide a 3D model of IIIG9 protein structure for the first time, verifying that the classic structural and conformational characteristics of the PP1 regulatory subunits are maintained. Our review is especially focused on finding evidence linking IIIG9 dysfunction with the course of some pathologies, such as ciliopathies, drug dependence, diseases based on neurological development, and the development of specific high-malignancy and -frequency brain tumors in the pediatric population. Finally, we propose that IIIG9 is a relevant regulator of PP1 function in physiological and pathological processes in the CNS.
Collapse
|
7
|
scAPAmod: Profiling Alternative Polyadenylation Modalities in Single Cells from Single-Cell RNA-Seq Data. Int J Mol Sci 2022; 23:ijms23158123. [PMID: 35897701 PMCID: PMC9329739 DOI: 10.3390/ijms23158123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 07/01/2022] [Accepted: 07/21/2022] [Indexed: 11/17/2022] Open
Abstract
Alternative polyadenylation (APA) is a key layer of gene expression regulation, and APA choice is finely modulated in cells. Advances in single-cell RNA-seq (scRNA-seq) have provided unprecedented opportunities to study APA in cell populations. However, existing studies that investigated APA in single cells were either confined to a few cells or focused on profiling APA dynamics between cell types or identifying APA sites. The diversity and pattern of APA usages on a genomic scale in single cells remains unappreciated. Here, we proposed an analysis framework based on a Gaussian mixture model, scAPAmod, to identify patterns of APA usage from homogeneous or heterogeneous cell populations at the single-cell level. We systematically evaluated the performance of scAPAmod using simulated data and scRNA-seq data. The results show that scAPAmod can accurately identify different patterns of APA usages at the single-cell level. We analyzed the dynamic changes in the pattern of APA usage using scAPAmod in different cell differentiation and developmental stages during mouse spermatogenesis and found that even the same gene has different patterns of APA usages in different differentiation stages. The preference of patterns of usages of APA sites in different genomic regions was also analyzed. We found that patterns of APA usages of the same gene in 3′ UTRs (3′ untranslated region) and non-3′ UTRs are different. Moreover, we analyzed cell-type-specific APA usage patterns and changes in patterns of APA usages across cell types. Different from the conventional analysis of single-cell heterogeneity based on gene expression profiling, this study profiled the heterogeneous pattern of APA isoforms, which contributes to revealing the heterogeneity of single-cell gene expression with higher resolution.
Collapse
|
8
|
Modulation of protein phosphatase 1 gamma 2 during cell division of cervical cancer HeLa cells. Contemp Oncol (Pozn) 2021; 25:125-132. [PMID: 34667439 PMCID: PMC8506433 DOI: 10.5114/wo.2021.107745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/13/2021] [Indexed: 12/04/2022] Open
Abstract
Introduction Protein phosphatases (PP) and kinases are known to regulate the cell cycle dynamics. Although kinases have been studied extensively, most of the phosphatases are still unexplored. Therefore, the present study aimed to investigate the association of an isoform of PP1 family protein phosphatases 1 gamma 2 (PP1γ2) in the regulation of cervical cancer HeLa cell proliferation. Material and methods Expression of PP1γ2 transcript and protein was assessed in the cervical cancer cell line of HeLa cells through RT-PCR and western blotting. Flow cytometry was employed to confirm its expression quantitatively, and Immuno-fluorescence was done to evaluate the distribution of PP1γ2 in the dividing mononuclear and Taxol-induced multipolar HeLa cells. PP1γ2-specific siRNA-mediated silencing was done to understand downstream pathways. The effect of the hypoxic tumour microenvironment on PP1γ2 expression was also evaluated. Results RT-PCR and western blotting confirmed the expression of PP1γ2 in HeLa cells, and flow cytometry analysis established intracellular expression of PP1γ2. Immunofluorescence is localized PP1γ2 in the nucleus of mononuclear cells during interphase, whereas it is transiently redistributed to spindle poles throughout the cell division and localized back to the nucleus after complete karyokinesis. Taxol-induced multipolar HeLa cells also showed a temporal redistribution of PP1γ2 on the spindle poles. Hypoxic conditions upregulated PP1γ2 expression, but downregulated PP1γ2 levels through siRNA increased GSK3β phosphorylation. Conclusions Collectively, data suggests that PP1γ2 is modulated during HeLa cell division and regulates GSK3β phosphorylation, which may regulate downstream signalling of cell division.
Collapse
|
9
|
Liu Y, Zhang C, Wang S, Hu Y, Jing J, Ye L, Jing R, Ding Z. Dependence of sperm structural and functional integrity on testicular calcineurin isoform PPP3R2 expression. J Mol Cell Biol 2021; 12:515-529. [PMID: 31900494 PMCID: PMC7493031 DOI: 10.1093/jmcb/mjz115] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 09/05/2019] [Accepted: 11/27/2019] [Indexed: 01/09/2023] Open
Abstract
After leaving the testis, mammalian sperm undergo a sequential maturation process in the epididymis followed by capacitation during their movement through the female reproductive tract. These phenotypic changes are associated with modification of protein phosphorylation and membrane remodeling, which is requisite for sperm to acquire forward motility and induce fertilization. However, the molecular mechanisms underlying sperm maturation and capacitation are still not fully understood. Herein, we show that PPP3R2, a testis-specific regulatory subunit of protein phosphatase 3 (an isoform of calcineurin in the testis), is essential for sperm maturation and capacitation. Knockout of Ppp3r2 in mice leads to male sterility due to sperm motility impairment and morphological defects. One very noteworthy change includes increases in sperm membrane stiffness. Moreover, PPP3R2 regulates sperm maturation and capacitation via (i) modulation of membrane diffusion barrier function at the annulus and (ii) facilitation of cholesterol efflux during sperm capacitation. Taken together, PPP3R2 plays a critical role in modulating cholesterol efflux and mediating the dynamic control of membrane remodeling during sperm maturation and capacitation.
Collapse
Affiliation(s)
- Yue Liu
- Department of Histology, Embryology, Genetics and Developmental Biology, Shanghai Key Laboratory for Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Chujun Zhang
- Department of Clinical Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Shiyao Wang
- Department of Clinical Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yanqin Hu
- Department of Histology, Embryology, Genetics and Developmental Biology, Shanghai Key Laboratory for Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jia Jing
- Department of Histology, Embryology, Genetics and Developmental Biology, Shanghai Key Laboratory for Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Luyao Ye
- Department of Clinical Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ran Jing
- Department of Clinical Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zhide Ding
- Department of Histology, Embryology, Genetics and Developmental Biology, Shanghai Key Laboratory for Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
10
|
Dudiki T, Joudeh N, Sinha N, Goswami S, Eisa A, Kline D, Vijayaraghavan S. The protein phosphatase isoform PP1γ1 substitutes for PP1γ2 to support spermatogenesis but not normal sperm function and fertility†. Biol Reprod 2020; 100:721-736. [PMID: 30379985 DOI: 10.1093/biolre/ioy225] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 08/11/2018] [Accepted: 10/16/2018] [Indexed: 01/09/2023] Open
Abstract
Four isoforms of serine/threonine phosphatase type I, PP1α, PP1β, PP1γ1, and PP1γ2, are derived from three genes. The PP1γ1 and PP1γ2 isoforms are alternately spliced transcripts of the protein phosphatase 1 catalytic subunit gamma gene (Ppp1cc). While PP1γ1 is ubiquitous in somatic cells, PP1γ2 is expressed exclusively in testicular germ cells and sperm. Ppp1cc knockout male mice (-/-), lacking both PP1γ1 and PP1γ2, are sterile due to impaired sperm morphogenesis. Fertility and normal sperm function can be restored by transgenic expression of PP1γ2 alone in testis of Ppp1cc (-/-) mice. The purpose of this study was to determine whether the PP1γ1 isoform is functionally equivalent to PP1γ2 in supporting spermatogenesis and male fertility. Significant levels of transgenic PP1γ1 expression occurred only when the transgene lacked a 1-kb 3΄UTR region immediately following the stop codon of the PP1γ1 transcript. PP1γ1 was also incorporated into sperm at levels comparable to PP1γ2 in sperm from wild-type mice. Spermatogenesis was restored in mice expressing PP1γ1 in the absence of PP1γ2. However, males from the transgenic rescue lines were subfertile. Sperm from the PP1γ1 rescue mice were unable to fertilize eggs in vitro. Intrasperm localization of PP1γ1 and the association of the protein regulators of the phosphatase were altered in epididymal sperm in transgenic PP1γ1 compared to PP1γ2. Thus, the ubiquitous isoform PP1γ1, not normally expressed in differentiating germ cells, could replace PP1γ2 to support spermatogenesis and spermiation. However, PP1γ2, which is the PP1 isoform in mammalian sperm, has an isoform-specific role in supporting normal sperm function and fertility.
Collapse
Affiliation(s)
- Tejasvi Dudiki
- Department of Biological Sciences, Kent State University, Kent, Ohio, USA
| | - Nidaa Joudeh
- Department of Biological Sciences, Kent State University, Kent, Ohio, USA
| | - Nilam Sinha
- Department of Biological Sciences, Kent State University, Kent, Ohio, USA.,School of Veterinary Medicine, University of Pennsylvania, Philadelphia Pennsylvania, USA
| | - Suranjana Goswami
- Department of Biological Sciences, Kent State University, Kent, Ohio, USA
| | - Alaa Eisa
- Department of Biological Sciences, Kent State University, Kent, Ohio, USA
| | - Douglas Kline
- Department of Biological Sciences, Kent State University, Kent, Ohio, USA
| | | |
Collapse
|
11
|
Dey S, Brothag C, Vijayaraghavan S. Signaling Enzymes Required for Sperm Maturation and Fertilization in Mammals. Front Cell Dev Biol 2019; 7:341. [PMID: 31921853 PMCID: PMC6930163 DOI: 10.3389/fcell.2019.00341] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 12/03/2019] [Indexed: 12/18/2022] Open
Abstract
In mammals, motility and fertilizing ability of spermatozoa develop during their passage through the epididymis. After ejaculation, sperm undergo capacitation and hyperactivation in the female reproductive tract - a motility transition that is required for sperm penetration of the egg. Both epididymal initiation of sperm motility and hyperactivation are essential for male fertility. Motility initiation in the epididymis and sperm hyperactivation involve changes in metabolism, cAMP (cyclic adenosine mono-phosphate), calcium and pH acting through protein kinases and phosphatases. Despite this knowledge, we still do not understand, in biochemical terms, how sperm acquire motility in the epididymis and how motility is altered in the female reproductive tract. Recent data show that the sperm specific protein phosphatase PP1γ2, glycogen synthase kinase 3 (GSK3), and the calcium regulated phosphatase calcineurin (PP2B), are involved in epididymal sperm maturation. The protein phosphatase PP1γ2 is present only in testis and sperm in mammals. PP1γ2 has a isoform-specific requirement for normal function of mammalian sperm. Sperm PP1γ2 is regulated by three proteins - inhibitor 2, inhibitor 3 and SDS22. Changes in phosphorylation of these three inhibitors and their binding to PP1γ2 are involved in initiation and activation of sperm motility. The inhibitors are phosphorylated by protein kinases, one of which is GSK3. The isoform GSK3α is essential for epididymal sperm maturation and fertility. Calcium levels dramatically decrease during sperm maturation and initiation of motility suggesting that the calcium activated sperm phosphatase (PP2B) activity also decreases. Loss of PP2B results in male infertility due to impaired sperm maturation in the epididymis. Thus the three signaling enzymes PP1γ2, GSK3, and PP2B along with the documented PKA (protein kinase A) have key roles in sperm maturation and hyperactivation. Significantly, all these four signaling enzymes are present as specific isoforms only in placental mammals, a testimony to their essential roles in the unique aspects of sperm function in mammals. These findings should lead to a better biochemical understanding of the basis of male infertility and should lead to novel approaches to a male contraception and managed reproduction.
Collapse
|
12
|
First Insights on the Presence of the Unfolded Protein Response in Human Spermatozoa. Int J Mol Sci 2019; 20:ijms20215518. [PMID: 31694346 PMCID: PMC6861958 DOI: 10.3390/ijms20215518] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 10/31/2019] [Accepted: 11/04/2019] [Indexed: 01/04/2023] Open
Abstract
The unfolded protein response (UPR) is involved in protein quality control and is activated in response to several stressors. Although in testis the UPR mechanisms are well described, their presence in spermatozoa is contentious. We aimed to investigate the presence of UPR-related proteins in human sperm and the impact of oxidative stress induction in UPR activation. To identify UPR-related proteins in human sperm, a bioinformatic approach was adopted. To explore the activation of UPR, sperm were exposed to hydrogen peroxide (H2O2) and motility, vitality, and the levels of UPR-related proteins were assessed. We identified 97 UPR-related proteins in human sperm and showed, for the first time, the presence of HSF1, GADD34, and phosphorylated eIF2α. Additionally, the exposure of human sperm to H2O2 resulted in a significant decrease in sperm viability and motility and an increase in the levels of HSF1, HSP90, HSP60, HSP27, and eIF2α; all proteins involved in sensing and response to unfolded proteins. This study gave us a first insight into the presence of UPR mechanisms in the male gamete. However, the belief that sperm are devoid of transcription and translation highlight the need to clarify if these pathways are activated in sperm in the same way as in somatic cells.
Collapse
|
13
|
Eisa AA, De S, Detwiler A, Gilker E, Ignatious AC, Vijayaraghavan S, Kline D. YWHA (14-3-3) protein isoforms and their interactions with CDC25B phosphatase in mouse oogenesis and oocyte maturation. BMC DEVELOPMENTAL BIOLOGY 2019; 19:20. [PMID: 31640562 PMCID: PMC6805688 DOI: 10.1186/s12861-019-0200-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 09/13/2019] [Indexed: 12/21/2022]
Abstract
Background Immature mammalian oocytes are held arrested at prophase I of meiosis by an inhibitory phosphorylation of cyclin-dependent kinase 1 (CDK1). Release from this meiotic arrest and germinal vesicle breakdown is dependent on dephosphorylation of CDK1 by the protein, cell cycle division 25B (CDC25B). Evidence suggests that phosphorylated CDC25B is bound to YWHA (14-3-3) proteins in the cytoplasm of immature oocytes and is thus maintained in an inactive form. The importance of YWHA in meiosis demands additional studies. Results Messenger RNA for multiple isoforms of the YWHA protein family was detected in mouse oocytes and eggs. All seven mammalian YWHA isoforms previously reported to be expressed in mouse oocytes, were found to interact with CDC25B as evidenced by in situ proximity ligation assays. Interaction of YWHAH with CDC25B was indicated by Förster Resonance Energy Transfer (FRET) microscopy. Intracytoplasmic microinjection of oocytes with R18, a known, synthetic, non-isoform-specific, YWHA-blocking peptide promoted germinal vesicle breakdown. This suggests that inhibiting the interactions between YWHA proteins and their binding partners releases the oocyte from meiotic arrest. Microinjection of isoform-specific, translation-blocking morpholino oligonucleotides to knockdown or downregulate YWHA protein synthesis in oocytes suggested a role for a specific YWHA isoform in maintaining the meiotic arrest. More definitively however, and in contrast to the knockdown experiments, oocyte-specific and global deletion of two isoforms of YWHA, YWHAH (14-3-3 eta) or YWHAE (14-3-3 epsilon) indicated that the complete absence of either or both isoforms does not alter oocyte development and release from the meiotic prophase I arrest. Conclusions Multiple isoforms of the YWHA protein are expressed in mouse oocytes and eggs and interact with the cell cycle protein CDC25B, but YWHAH and YWHAE isoforms are not essential for normal mouse oocyte maturation, fertilization and early embryonic development.
Collapse
Affiliation(s)
- Alaa A Eisa
- School of Biomedical Sciences, Kent State University, Kent, OH, 22422, USA
| | - Santanu De
- Department of Biological Sciences, Nova Southeastern University, Fort Lauderdale, FL, 33314, USA
| | - Ariana Detwiler
- Department of Environmental and Occupational Health, University of Pittsburgh Graduate School of Public Health, UPMC Hillman Cancer Center, Pittsburgh, PA, 15213, USA
| | - Eva Gilker
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | | | | | - Douglas Kline
- Department of Biological Sciences, Kent State University, Kent, OH, 44242, USA.
| |
Collapse
|
14
|
Bhattacharjee R, Goswami S, Dey S, Gangoda M, Brothag C, Eisa A, Woodgett J, Phiel C, Kline D, Vijayaraghavan S. Isoform-specific requirement for GSK3α in sperm for male fertility. Biol Reprod 2019; 99:384-394. [PMID: 29385396 DOI: 10.1093/biolre/ioy020] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 01/22/2018] [Indexed: 12/28/2022] Open
Abstract
Glycogen synthase kinase 3 (GSK3) is a highly conserved protein kinase regulating key cellular functions. Its two isoforms, GSK3α and GSK3β, are encoded by distinct genes. In most tissues the two isoforms are functionally interchangeable, except in the developing embryo where GSK3β is essential. One functional allele of either of the two isoforms is sufficient to maintain normal tissue functions. Both GSK3 isoforms, present in sperm from several species including human, are suggested to play a role in epididymal initiation of sperm motility. Using genetic approaches, we have tested requirement for each of the two GSK3 isoforms in testis and sperm. Both GSK3 isoforms are expressed at high levels during the onset of spermatogenesis. Conditional knockout of GSK3α, but not GSK3β, in developing testicular germ cells in mice results in male infertility. Mice lacking one allele each of GSK3α and GSK3β are fertile. Despite overlapping expression and localization in differentiating spermatids, GSK3β does not substitute for GSK3α. Loss of GSK3α impairs sperm hexokinase activity resulting in low ATP levels. Net adenine nucleotide levels in caudal sperm lacking GSK3α resemble immature caput epididymal sperm. Changes in the association of the protein phosphatase PP1γ2 with its protein interactors occurring during epididymal sperm maturation is impaired in sperm lacking GSK3α. The isoform-specific requirement for GSK3α is likely due to its specific binding partners in the sperm principal piece. Testis and sperm are unique in their specific requirement of GSK3α for normal function and male fertility.
Collapse
Affiliation(s)
| | - Suranjana Goswami
- Department of Biological Sciences, Kent State University, Kent, Ohio, USA
| | - Souvik Dey
- Department of Biological Sciences, Kent State University, Kent, Ohio, USA
| | - Mahinda Gangoda
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio, USA
| | - Cameron Brothag
- School of Biomedical Sciences, Kent State University, Kent, Ohio, USA
| | - Alaa Eisa
- School of Biomedical Sciences, Kent State University, Kent, Ohio, USA
| | - James Woodgett
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
| | - Christopher Phiel
- Department of Integrative Biology, University of Colorado Denver, Denver, Colorado, USA
| | - Douglas Kline
- Department of Biological Sciences, Kent State University, Kent, Ohio, USA
| | | |
Collapse
|
15
|
Ferreira M, Beullens M, Bollen M, Van Eynde A. Functions and therapeutic potential of protein phosphatase 1: Insights from mouse genetics. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2019; 1866:16-30. [PMID: 30056088 PMCID: PMC7114192 DOI: 10.1016/j.bbamcr.2018.07.019] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 07/16/2018] [Accepted: 07/19/2018] [Indexed: 02/07/2023]
Abstract
Protein phosphatase 1 (PP1) catalyzes more than half of all phosphoserine/threonine dephosphorylation reactions in mammalian cells. In vivo PP1 does not exist as a free catalytic subunit but is always associated with at least one regulatory PP1-interacting protein (PIP) to generate a large set of distinct holoenzymes. Each PP1 complex controls the dephosphorylation of only a small subset of PP1 substrates. We screened the literature for genetically engineered mouse models and identified models for all PP1 isoforms and 104 PIPs. PP1 itself and at least 49 PIPs were connected to human disease-associated phenotypes. Additionally, phenotypes related to 17 PIPs were clearly linked to altered PP1 function, while such information was lacking for 32 other PIPs. We propose structural reverse genetics, which combines structural characterization of proteins with mouse genetics, to identify new PP1-related therapeutic targets. The available mouse models confirm the pleiotropic action of PP1 in health and diseases.
Collapse
Affiliation(s)
- Mónica Ferreira
- Laboratory of Biosignaling & Therapeutics, KU Leuven Department of Cellular and Molecular Medicine, University of Leuven, B-3000 Leuven, Belgium
| | - Monique Beullens
- Laboratory of Biosignaling & Therapeutics, KU Leuven Department of Cellular and Molecular Medicine, University of Leuven, B-3000 Leuven, Belgium
| | - Mathieu Bollen
- Laboratory of Biosignaling & Therapeutics, KU Leuven Department of Cellular and Molecular Medicine, University of Leuven, B-3000 Leuven, Belgium
| | - Aleyde Van Eynde
- Laboratory of Biosignaling & Therapeutics, KU Leuven Department of Cellular and Molecular Medicine, University of Leuven, B-3000 Leuven, Belgium.
| |
Collapse
|
16
|
Lin CH, Shen YR, Wang HY, Chiang CW, Wang CY, Kuo PL. Regulation of septin phosphorylation: SEPT12 phosphorylation in sperm septin assembly. Cytoskeleton (Hoboken) 2018; 76:137-142. [PMID: 30160375 DOI: 10.1002/cm.21491] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 08/08/2018] [Accepted: 08/12/2018] [Indexed: 12/11/2022]
Abstract
The sperm annulus, a septin-based ring structure, is important for reproductive physiology. It is composed of SEPT12-based septin core complex followed by assembling as octameric filament. In clinical examinations, mutations of Septin12 result in male infertility, immotile sperm, as well as sperm with defective annuli. The dynamic assembly of septin filaments is regulated by several post-translational modifications, including sumoylation, acetylation, and phosphorylation. Here, we briefly review the biological significance and the regulation of SEPT12 phosphorylation in the mammalian sperm physiology. During mammalian spermiogenesis, the phosphorylation of SEPT12 on Ser198 residue is important in regulating mammalian annulus architectures. SEPT12 phosphomimetic knock-in mice displayed poor male fertility due to weak sperm motility and loss of the sperm annulus. SEPT12 is phosphorylated via Protein kinase A (PKA), and its phosphorylation interfered with SEPT12 polymerization into complexes and filaments. Taken together, the phosphorylation status of SEPT12 is crucial for its function in regulating the mammalian sperm physiology.
Collapse
Affiliation(s)
- Chun-Hsiang Lin
- Department of Obstetrics and Gynecology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Ru Shen
- Department of Obstetrics and Gynecology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Han-Yu Wang
- Department of Obstetrics and Gynecology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chi-Wu Chiang
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chia-Yih Wang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Pao-Lin Kuo
- Department of Obstetrics and Gynecology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Obstetrics and Gynecology, National Cheng-Kung University Hospital, Tainan, Taiwan
| |
Collapse
|
17
|
Goswami S, Korrodi-Gregório L, Sinha N, Bhutada S, Bhattacharjee R, Kline D, Vijayaraghavan S. Regulators of the protein phosphatase PP1γ2, PPP1R2, PPP1R7, and PPP1R11 are involved in epididymal sperm maturation. J Cell Physiol 2018; 234:3105-3118. [PMID: 30144392 DOI: 10.1002/jcp.27130] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 07/05/2018] [Indexed: 02/06/2023]
Abstract
The serine/threonine protein phosphatase 1 (PP1) inhibitors PPP1R2, PPP1R7, and PPP1R11 are evolutionarily ancient and highly conserved proteins. Four PP1 isoforms, PP1α, PP1β, PP1γ1, and PP1γ2, exist; three of them except PP1γ2 are ubiquitous. The fact that PP1γ2 isoform is present only in mammalian testis and sperm led to the notion that isoform-specific regulators for PP1γ2 in sperm may be responsible for its function. In this report, we studied these inhibitors, PPP1R2, R7, and R11, to determine their spatial and temporal expression in testis and their regulatory functions in sperm. We show that, similar to PP1γ2, the three inhibitors are expressed at high levels in developing spermatogenic cells. However, the transcripts for the regulators are expressed as unique sizes in testis compared with somatic tissues. The three regulators share localization with PP1γ2 in the head and the principal piece of sperm. We show that the association of inhibitors to PP1γ2 changes during epididymal sperm maturation. In immotile caput epididymal sperm, PPP1R2 and PPP1R7 are not bound to PP1γ2, whereas in motile caudal sperm, all three inhibitors are bound as heterodimers or heterotrimers. In caudal sperm from male mice lacking sAC and glycogen synthase kinase 3, where motility and fertility are impaired, the association of PP1γ2 to the inhibitors resembles immature caput sperm. Changes in the association of the regulators with PP1γ2, due to their phosphorylation, are part of biochemical mechanisms responsible for the development of motility and fertilizing ability of sperm during their passage through the epididymis.
Collapse
Affiliation(s)
- Suranjana Goswami
- Department of Biological Sciences, Kent State University, Kent, Ohio
| | - Luís Korrodi-Gregório
- Laboratory of Signal Transduction, Department of Medical Sciences, Institute of Biomedicine-iBiMED, University of Aveiro, Aveiro, Portugal
| | - Nilam Sinha
- Department of Biological Sciences, Kent State University, Kent, Ohio
| | - Sumit Bhutada
- Department of Biological Sciences, Kent State University, Kent, Ohio
| | | | - Douglas Kline
- Department of Biological Sciences, Kent State University, Kent, Ohio
| | | |
Collapse
|
18
|
Huang Z, Danshina PV, Mohr K, Qu W, Goodson SG, O’Connell TM, O’Brien DA. Sperm function, protein phosphorylation, and metabolism differ in mice lacking successive sperm-specific glycolytic enzymes†. Biol Reprod 2017; 97:586-597. [DOI: 10.1093/biolre/iox103] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 08/25/2017] [Indexed: 11/13/2022] Open
|
19
|
Serrano JB, Martins F, Sousa JC, Pereira CD, van Pelt AMM, Rebelo S, da Cruz E Silva OAB. Descriptive Analysis of LAP1 Distribution and That of Associated Proteins throughout Spermatogenesis. MEMBRANES 2017; 7:E22. [PMID: 28387711 PMCID: PMC5489856 DOI: 10.3390/membranes7020022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 03/12/2017] [Accepted: 04/02/2017] [Indexed: 12/12/2022]
Abstract
Spermatogenesis comprises highly complex differentiation processes. Nuclear envelope (NE) proteins have been associated with these processes, including lamins, lamina-associated polypeptide (LAP) 2 and the lamin B-receptor. LAP1 is an important NE protein whose function has not been fully elucidated, but several binding partners allow predicting putative LAP1 functions. To date, LAP1 had not been associated with spermatogenesis. In this study, LAP1 expression and cellular/subcellular localization during spermatogenesis in human and mouse testes is established for the first time. The fact that LAP1 is expressed during nuclear elongation in spermiogenesis and is located at the spermatids' centriolar pole is singularly important. LAP1 binds to members of the protein phosphatase 1 (PP1) family. Similar localization of LAP1 and PP1γ2, a testis-specific PP1 isoform, suggests a shared function for both proteins during spermiogenesis. Furthermore, this study suggests an involvement of LAP1 in manchette development and chromatin regulation possibly via interaction with acetylated α-tubulin and lamins, respectively. Taken together, the present results indicate that, by moving to the posterior pole in spermatids, LAP1 can contribute to the achievement of non-random, sperm-specific chromatin distribution, as well as modulate cellular remodeling during spermiogenesis. In addition, LAP1 seems to be associated with dynamic microtubule changes related to manchette formation and flagella development.
Collapse
Affiliation(s)
- Joana B Serrano
- Neuroscience and Signaling Laboratory, Department of Medical Sciences, Institute for Biomedicine-iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Filipa Martins
- Neuroscience and Signaling Laboratory, Department of Medical Sciences, Institute for Biomedicine-iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - João C Sousa
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, 4710-057 Braga, Portugal.
- ICVS/3B's-PT Government Associate Laboratory, University of Minho, 4710-057 Braga/Guimarães, Portugal.
| | - Cátia D Pereira
- Neuroscience and Signaling Laboratory, Department of Medical Sciences, Institute for Biomedicine-iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Ans M M van Pelt
- Center for Reproductive Medicine, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands.
| | - Sandra Rebelo
- Neuroscience and Signaling Laboratory, Department of Medical Sciences, Institute for Biomedicine-iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Odete A B da Cruz E Silva
- Neuroscience and Signaling Laboratory, Department of Medical Sciences, Institute for Biomedicine-iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
20
|
Schwarz T, Prieler B, Schmid JA, Grzmil P, Neesen J. Ccdc181 is a microtubule-binding protein that interacts with Hook1 in haploid male germ cells and localizes to the sperm tail and motile cilia. Eur J Cell Biol 2017; 96:276-288. [PMID: 28283191 DOI: 10.1016/j.ejcb.2017.02.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 01/20/2017] [Accepted: 02/16/2017] [Indexed: 10/20/2022] Open
Abstract
Disruption of murine Hook1 results in a disturbed spermatogenesis and consequently leads to male infertility in mice. Within these mice abnormal sperm development starts with a disorganization of the microtubular manchette in elongating spermatids that leads to an abnormal head shape as well as to distinctive structural changes in the flagella of the sperm. To elucidate Hook1 function in male germ cell differentiation a yeast two-hybrid screen was performed using a murine testicular library, which leads to the identification of several putative Hook1 interacting proteins. One of the isolated cDNA fragments encodes for the coiled-coil domain containing protein 181 (Ccdc181). The putative interaction of Ccdc181 with Hook1 was verified by FRET analysis and interacting regions were identified using yeast two-hybrid assays. Furthermore, Ccdc181 seems to interact directly with microtubules and localizes to the microtubular manchette of elongating spermatids, resembling the previously reported localization of Hook1. According to the observed immunostaining pattern the RNA expression of Ccdc181 is less prominent in pre-meiotic stages of sperm development but increases in the haploid phase of spermatogenesis and seems to be restricted to male germ cells. However, Ccdc181 expression is also observed to a lower extent in somatic tissues, particularly, in tissues containing ciliated epithelia. Additionally, Ccdc181 protein is found to localize to the sperm flagella and to the basal half of motile cilia, whereas Ccdc181 was not detected in primary non-motile cilia. Furthermore, we showed that Ccdc181 is a putative interacting partner of the different catalytic subunits of Pp1, raising the hypothesis that Ccdc181 plays a role in mediating ciliary motility.
Collapse
Affiliation(s)
- Thomas Schwarz
- Institute for Medical Genetics, Medical University of Vienna, 1090, Vienna, Austria.
| | - Barbara Prieler
- Institute for Medical Genetics, Medical University of Vienna, 1090, Vienna, Austria
| | - Johannes A Schmid
- Center for Physiology and Pharmacology, Medical University of Vienna, 1090, Vienna, Austria
| | - Pawel Grzmil
- Department of Genetics and Evolution, Institute of Zoology, Jagiellonian University, Gronostajowa 9, 30-387, Krakow, Poland
| | - Juergen Neesen
- Institute for Medical Genetics, Medical University of Vienna, 1090, Vienna, Austria
| |
Collapse
|
21
|
Silva JV, Freitas MJ, Felgueiras J, Fardilha M. The power of the yeast two-hybrid system in the identification of novel drug targets: building and modulating PPP1 interactomes. Expert Rev Proteomics 2015; 12:147-58. [PMID: 25795147 DOI: 10.1586/14789450.2015.1024226] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Since the description of the yeast two-hybrid (Y2H) method, it has become more and more evident that it is the most commonly used method to identify protein-protein interactions (PPIs). The improvements in the original Y2H methodology in parallel with the idea that PPIs are promising drug targets, offer an excellent opportunity to apply the principles of this molecular biology technique to the pharmaceutical field. Additionally, the theoretical developments in the networks field make PPI networks very useful frameworks that facilitate many discoveries in biomedicine. This review highlights the relevance of Y2H in the determination of PPIs, specifically phosphoprotein phosphatase 1 interactions, and its possible outcomes in pharmaceutical research.
Collapse
Affiliation(s)
- Joana Vieira Silva
- Signal Transduction Laboratory, Institute for Research in Biomedicine - iBiMED, Health Sciences Program, University of Aveiro, Aveiro, Portugal
| | | | | | | |
Collapse
|
22
|
Matsuura M, Yogo K. TMEM225: a possible protein phosphatase 1γ2 (PP1γ2) regulator localizes to the equatorial segment in mouse spermatozoa. Mol Reprod Dev 2015; 82:139-48. [PMID: 25605614 DOI: 10.1002/mrd.22453] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 12/05/2014] [Indexed: 11/08/2022]
Abstract
Tmem225 encodes a putative four-transmembrane domain protein that has an RVxF motif, which is known to be a consensus site for interacting with serine/threonine protein phosphatase 1 (PP1). We previously identified Tmem225 as one of 53 spermatogenesis-associated transmembrane protein genes, with no known physiological function. In this study, we investigated the expression and molecular characteristics of TMEM225 in mice. Tmem225 production was found to be specific to testicular germ cells, with expression increasing during spermatogenesis. In mature spermatozoa, TMEM225 is localized to the equatorial segment of the acrosome but not to the midpiece or tail. TMEM225 appears to be an outer and/or inner acrosomal membrane protein that is lost from the dorsal region of the acrosome after the acrosome reaction. TMEM225 interacts with PP1 in vivo, and a pull-down assay revealed that the carboxy-terminal region of TMEM225 can bind to PP1γ2, the predominant isoform of PP1 in male germ cells. In addition, TMEM225 inhibited PP1γ2 activity in vitro via its RVxF motif. Our results suggest that in mice, TMEM225 is involved in the differentiation and function of spermatozoa through the regulation of PP1γ2 activity, which is necessary for normal spermatogenesis as well as spermatozoa capacitation and motility.
Collapse
Affiliation(s)
- Minami Matsuura
- Laboratory of Animal Physiology, Graduate School of Agriculture, Shizuoka University, Shizuoka, Japan
| | | |
Collapse
|
23
|
Korrodi-Gregório L, Esteves SLC, Fardilha M. Protein phosphatase 1 catalytic isoforms: specificity toward interacting proteins. Transl Res 2014; 164:366-91. [PMID: 25090308 DOI: 10.1016/j.trsl.2014.07.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 06/26/2014] [Accepted: 07/01/2014] [Indexed: 01/21/2023]
Abstract
The coordinated and reciprocal action of serine-threonine protein kinases and protein phosphatases produces transitory phosphorylation, a fundamental regulatory mechanism for many biological processes. Phosphoprotein phosphatase 1 (PPP1), a major serine-threonine phosphatase, in particular, is ubiquitously distributed and regulates a broad range of cellular functions, including glycogen metabolism, cell cycle progression, and muscle relaxation. PPP1 has evolved effective catalytic machinery but in vitro lacks substrate specificity. In vivo, its specificity is achieved not only by the existence of different PPP1 catalytic isoforms, but also by binding of the catalytic moiety to a large number of regulatory or targeting subunits. Here, we will address exhaustively the existence of diverse PPP1 catalytic isoforms and the relevance of their specific partners and consequent functions.
Collapse
Affiliation(s)
- Luís Korrodi-Gregório
- Laboratório de Transdução de Sinais, Departamento de Biologia, Secção Autónoma de Ciências de Saúde, Centro de Biologia Celular, Universidade de Aveiro, Aveiro, Portugal
| | - Sara L C Esteves
- Laboratório de Transdução de Sinais, Departamento de Biologia, Secção Autónoma de Ciências de Saúde, Centro de Biologia Celular, Universidade de Aveiro, Aveiro, Portugal
| | - Margarida Fardilha
- Laboratório de Transdução de Sinais, Departamento de Biologia, Secção Autónoma de Ciências de Saúde, Centro de Biologia Celular, Universidade de Aveiro, Aveiro, Portugal.
| |
Collapse
|
24
|
Freitas MJ, Korrodi-Gregório L, Morais-Santos F, Cruz e Silva ED, Fardilha M. TCTEX1D4 interactome in human testis: unraveling the function of dynein light chain in spermatozoa. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2014; 18:242-53. [PMID: 24606217 DOI: 10.1089/omi.2013.0133] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Studies were designed to identify the TCTEX1D4 interactome in human testis, with the purpose of unraveling putative protein complexes essential to male reproduction and thus novel TCTEX1D4 functions. TCTEX1D4 is a dynein light chain that belongs to the DYNT1/TCTEX1 family. In spermatozoa, it appears to be important to sperm motility, intraflagellar transport, and acrosome reaction. To contribute to the knowledge on TCTEX1D4 function in testis and spermatozoa, a yeast two-hybrid assay was performed in testis, which allowed the identification of 40 novel TCTEX1D4 interactors. Curiously, another dynein light chain, TCTEX1D2, was identified and its existence demonstrated for the first time in human spermatozoa. Immunofluorescence studies proved that TCTEX1D2 is an intra-acrosomal protein also present in the midpiece, suggesting a role in cargo movement in human spermatozoa. Further, an in silico profile of TCTEX1D4 revealed that most TCTEX1D4 interacting proteins were not previously characterized and the ones described present a very broad nature. This reinforces TCTEX1D4 as a dynein light chain that is capable of interacting with a variety of functionally different proteins. These observations collectively contribute to a deeper molecular understanding of the human spermatozoa function.
Collapse
Affiliation(s)
- Maria João Freitas
- Signal Transduction Laboratory, Centre for Cell Biology, Biology Department, Health Sciences Department, University of Aveiro , Aveiro, Portugal
| | | | | | | | | |
Collapse
|
25
|
MacLeod G, Taylor P, Mastropaolo L, Varmuza S. Comparative phosphoproteomic analysis of the mouse testis reveals changes in phosphopeptide abundance in response to Ppp1cc deletion. EUPA OPEN PROTEOMICS 2014. [DOI: 10.1016/j.euprot.2013.11.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
26
|
Protein phosphatases decrease their activity during capacitation: a new requirement for this event. PLoS One 2013; 8:e81286. [PMID: 24312544 PMCID: PMC3846847 DOI: 10.1371/journal.pone.0081286] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 10/21/2013] [Indexed: 11/19/2022] Open
Abstract
There are few reports on the role of protein phosphatases during capacitation. Here, we report on the role of PP2B, PP1, and PP2A during human sperm capacitation. Motile sperm were resuspended in non-capacitating medium (NCM, Tyrode's medium, albumin- and bicarbonate-free) or in reconstituted medium (RCM, NCM plus 2.6% albumin/25 mM bicarbonate). The presence of the phosphatases was evaluated by western blotting and the subcellular localization by indirect immunofluorescence. The function of these phosphatases was analyzed by incubating the sperm with specific inhibitors: okadaic acid, I2, endothall, and deltamethrin. Different aliquots were incubated in the following media: 1) NCM; 2) NCM plus inhibitors; 3) RCM; and 4) RCM plus inhibitors. The percent capacitated sperm and phosphatase activities were evaluated using the chlortetracycline assay and a phosphatase assay kit, respectively. The results confirm the presence of PP2B and PP1 in human sperm. We also report the presence of PP2A, specifically, the catalytic subunit and the regulatory subunits PR65 and B. PP2B and PP2A were present in the tail, neck, and postacrosomal region, and PP1 was present in the postacrosomal region, neck, middle, and principal piece of human sperm. Treatment with phosphatase inhibitors rapidly (≤1 min) increased the percent of sperm depicting the pattern B, reaching a maximum of ∼40% that was maintained throughout incubation; after 3 h, the percent of capacitated sperm was similar to that of the control. The enzymatic activity of the phosphatases decreased during capacitation without changes in their expression. The pattern of phosphorylation on threonine residues showed a sharp increase upon treatment with the inhibitors. In conclusion, human sperm express PP1, PP2B, and PP2A, and the activity of these phosphatases decreases during capacitation. This decline in phosphatase activities and the subsequent increase in threonine phosphorylation may be an important requirement for the success of sperm capacitation.
Collapse
|
27
|
Sinha N, Puri P, Nairn AC, Vijayaraghavan S. Selective ablation of Ppp1cc gene in testicular germ cells causes oligo-teratozoospermia and infertility in mice. Biol Reprod 2013; 89:128. [PMID: 24089200 DOI: 10.1095/biolreprod.113.110239] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The four isoforms of serine/threonine phosphoprotein phosphatase 1 (PP1), derived from three genes, are among the most conserved proteins known. The Ppp1cc gene encodes two alternatively spliced variants, PP1 gamma1 (PPP1CC1) and PP1 gamma2 (PPP1CC2). Global deletion of the Ppp1cc gene, which causes loss of both isoforms, results in male infertility due to impaired spermatogenesis. This phenotype was assumed to be due to the loss of PPP1CC2, which is abundant in testis. While PPP1CC2 is predominant, other PP1 isoforms are also expressed in testis. Given the significant homology between the four PP1 isoforms, the lack of compensation by the other PP1 isoforms for loss of one, only in testis, is surprising. Here we document, for the first time, expression patterns of the PP1 isoforms in postnatal developing and adult mouse testis. The timing and sites of testis expression of PPP1CC1 and PPP1CC2 in testis are nonoverlapping. PPP1CC2 is the only one of the four PP1 isoforms not detected in sertoli cells and spermatogonia. Conversely, PPP1CC2 may be the only PP1 isoform expressed in postmeiotic germ cells. Deletion of the Ppp1cc gene in germ cells at the differentiated spermatogonia stage of development and beyond in Stra8 promoter-driven Cre transgenic mice results in oligo-terato-asthenozoospermia and male infertility, thus phenocopying global Ppp1cc null (-/-) mice. Taken together, these results confirm that spermatogenic defects observed in the global Ppp1cc knockout mice and in mice expressing low levels of PPP1CC2 in testis are due to compromised functions of PPP1CC2 in meiotic and postmeiotic germ cells.
Collapse
Affiliation(s)
- Nilam Sinha
- Department of Biological Sciences, Kent State University, Kent, Ohio
| | | | | | | |
Collapse
|
28
|
MacLeod G, Shang P, Booth GT, Mastropaolo LA, Manafpoursakha N, Vogl AW, Varmuza S. PPP1CC2 can form a kinase/phosphatase complex with the testis-specific proteins TSSK1 and TSKS in the mouse testis. Reproduction 2013; 147:1-12. [PMID: 24088291 DOI: 10.1530/rep-13-0224] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The mouse protein phosphatase gene Ppp1cc is essential for male fertility, with mutants displaying a failure in spermatogenesis including a widespread loss of post-meiotic germ cells and abnormalities in the mitochondrial sheath. This phenotype is hypothesized to be responsible for the loss of the testis-specific isoform PPP1CC2. To identify PPP1CC2-interacting proteins with a function in spermatogenesis, we carried out GST pull-down assays in mouse testis lysates. Amongst the identified candidate interactors was the testis-specific protein kinase TSSK1, which is also essential for male fertility. Subsequent interaction experiments confirmed the capability of PPP1CC2 to form a complex with TSSK1 mediated by the direct interaction of each with the kinase substrate protein TSKS. Interaction between PPP1CC2 and TSKS is mediated through an RVxF docking motif on the TSKS surface. Phosphoproteomic analysis of the mouse testis identified a novel serine phosphorylation site within the TSKS RVxF motif that appears to negatively regulate binding to PPP1CC2. Immunohistochemical analysis of TSSK1 and TSKS in the Ppp1cc mutant testis showed reduced accumulation to distinct cytoplasmic foci and other abnormalities in their distribution consistent with the loss of germ cells and seminiferous tubule disorganization observed in the Ppp1cc mutant phenotype. A comparison of Ppp1cc and Tssk1/2 knockout phenotypes via electron microscopy revealed similar abnormalities in the morphology of the mitochondrial sheath. These data demonstrate a novel kinase/phosphatase complex in the testis that could play a critical role in the completion of spermatogenesis.
Collapse
Affiliation(s)
- Graham MacLeod
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, Ontario, Canada M5S 3G5
| | | | | | | | | | | | | |
Collapse
|
29
|
Fardilha M, Ferreira M, Pelech S, Vieira S, Rebelo S, Korrodi-Gregorio L, Sousa M, Barros A, Silva V, da Cruz e Silva OAB, da Cruz e Silva EF. "Omics" of human sperm: profiling protein phosphatases. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2013; 17:460-72. [PMID: 23895272 DOI: 10.1089/omi.2012.0119] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Phosphorylation is a major regulatory mechanism in eukaryotic cells performed by the concerted actions of kinases and phosphatases (PPs). Protein phosphorylation has long been relevant to sperm physiology, from acquisition of motility in the epididymis to capacitation in the female reproductive tract. While the precise kinases involved in the regulation of sperm phosphorylation have been studied for decades, the PPs have only recently received research interest. Tyrosine phosphorylation was first implicated in the regulation of several sperm-related functions, from capacitation to oocyte binding. Only afterwards, in 1996, the inhibition of the serine/threonine-PP phosphoprotein phosphatase 1 (PPP1) by okadaic acid and calyculin-A was shown to initiate motility in caput epididymal sperm. Today, the current mechanisms of sperm motility acquisition based on PPP1 and its regulators are still far from being fully understood. PPP1CC2, specifically expressed in mammalian sperm, has been considered to be the only sperm-specific serine/threonine-PP, while other PPP1 isoforms were thought to be absent from sperm. This article examines the "Omics" of human sperm, and reports, for the first time, the identification of three new serine/threonine-protein PPs, PPP1CB, PPP4C, and PPP6C, in human sperm, together with two tyrosine-PPs, MKP1 and PTP1C. We specifically localized in sperm PPP1CB and PPP1CC2 from the PPP1 subfamily, and PPP2CA, PPP4C, and PPP6C from the PPP2 subfamily of the serine/threonine-PPs. A semi-quantitative analysis was performed to determine the various PPs' differential expression in sperm head and tail. These findings contribute to a comprehensive understanding of human sperm PPs, and warrant further research for their clinical and therapeutic significance.
Collapse
Affiliation(s)
- Margarida Fardilha
- Centro de Biologia Celular, Secção Autónoma de Ciências da Saúde, Departamento de Biologia, Universidade de Aveiro, Aveiro, Portugal.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
DeVaul N, Wang R, Sperry AO. PPP1R42, a PP1 binding protein, regulates centrosome dynamics in ARPE-19 cells. Biol Cell 2013; 105:359-71. [PMID: 23718219 DOI: 10.1111/boc.201300019] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 05/24/2013] [Indexed: 12/20/2022]
Abstract
BACKGROUND The centrosome is the primary site for microtubule nucleation in cells and orchestrates reorganisation of the microtubule cytoskeleton during the cell cycle. The activities of the centrosome must be closely aligned with progression of the cell cycle; misregulation of centrosome separation and duplication is a hallmark of cancer. In a subset of cells, including the developing spermatid, the centrosome becomes specialised to form the basal body thereby supporting growth of the axoneme in morphogenesis of cilia and flagella, structures critical for signalling and motility. Mammalian spermatogenesis is an excellent model system to investigate the transformations in cellular architecture that accompany these changes including formation of the flagellum. We have previously identified a leucine-rich repeat protein (PPP1R42) that contains a protein phosphatase-1 binding site and translocates from the apical nucleus to the centrosome at the base of the flagellum during spermiogenesis. In this manuscript, we examine localisation and function of PPP1R42 in a ciliated epithelial cell model as a first step in understanding the role of this protein in centrosome function and flagellar formation. RESULTS We demonstrate that PPP1R42 localises to the basal body in ARPE-19 retinal epithelial cells. Co-localisation and co-immunoprecipitation experiments further show that PPP1R42 interacts with γ-tubulin. Inhibition of PPP1R42 with small interfering RNAs causes accumulation of centrosomes indicating premature centrosome separation. Importantly, the activity of two signalling molecules that regulate centrosome separation, PP1 phosphatase and NEK2 kinase, changes when PPP1R42 is inhibited: PP1 activity is reduced with a corresponding increase in NEK2 activity. CONCLUSIONS We have identified a role for the PP1-binding protein, PPP1R42, in centrosome separation in ciliated ARPE-19 cells. Our finding that inhibition of PPP1R42 expression increases the number of centrosomes per cell is consistent with our model that PPP1R42 is a positive regulator of PP1. PPP1R42 depletion reduces the activity of PP1 leading to activation of NEK2, the kinase responsible for phosphorylation of centrosomal linker proteins promoting centrosome separation. This work identifies a new molecule localised to the centrosome and basal body with a role in the complex signalling network responsible for controlling centrosome activities.
Collapse
Affiliation(s)
- Nicole DeVaul
- Department of Anatomy and Cell Biology, East Carolina University, Brody School of Medicine, Greenville, NC, USA
| | | | | |
Collapse
|
31
|
Korrodi-Gregório L, Ferreira M, Vintém AP, Wu W, Muller T, Marcus K, Vijayaraghavan S, Brautigan DL, da Cruz E Silva OAB, Fardilha M, da Cruz E Silva EF. Identification and characterization of two distinct PPP1R2 isoforms in human spermatozoa. BMC Cell Biol 2013; 14:15. [PMID: 23506001 PMCID: PMC3606321 DOI: 10.1186/1471-2121-14-15] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Accepted: 03/11/2013] [Indexed: 11/29/2022] Open
Abstract
Background Protein Ser/Thr Phosphatase PPP1CC2 is an alternatively spliced isoform of PPP1C that is highly enriched in testis and selectively expressed in sperm. Addition of the phosphatase inhibitor toxins okadaic acid or calyculin A to caput and caudal sperm triggers and stimulates motility, respectively. Thus, the endogenous mechanisms of phosphatase inhibition are fundamental for controlling sperm function and should be characterized. Preliminary results have shown a protein phosphatase inhibitor activity resembling PPP1R2 in bovine and primate spermatozoa. Results Here we show conclusively, for the first time, that PPP1R2 is present in sperm. In addition, we have also identified a novel protein, PPP1R2P3. The latter was previously thought to be an intron-less pseudogene. We show that the protein corresponding to the pseudogene is expressed. It has PPP1 inhibitory potency similar to PPP1R2. The potential phosphosites in PPP1R2 are substituted by non-phosphorylable residues, T73P and S87R, in PPP1R2P3. We also confirm that PPP1R2/PPP1R2P3 are phosphorylated at Ser121 and Ser122, and report a novel phosphorylation site, Ser127. Subfractionation of sperm structures show that PPP1CC2, PPP1R2/PPP1R2P3 are located in the head and tail structures. Conclusions The conclusive identification and localization of sperm PPP1R2 and PPP1R2P3 lays the basis for future studies on their roles in acrosome reaction, sperm motility and hyperactivation. An intriguing possibility is that a switch in PPP1CC2 inhibitory subunits could be the trigger for sperm motility in the epididymis and/or sperm hyperactivation in the female reproductive tract.
Collapse
Affiliation(s)
- Luis Korrodi-Gregório
- Laboratory of Signal Transduction, Centre for Cell Biology, Biology Department, University of Aveiro, 3810-193 Aveiro, Portugal
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
The blood-testis barrier (BTB) is a large junctional complex composed of tight junctions, adherens junctions, and gap junctions between adjacent Sertoli cells in the seminiferous tubules of the testis. Maintenance of the BTB as well as the controlled disruption and reformation of the barrier is essential for spermatogenesis and male fertility. Tyrosine phosphorylation of BTB proteins is known to regulate the integrity of adherens and tight junctions found at the BTB. SHP2 is a nonreceptor protein tyrosine phosphatase (PTP) and a key regulator of growth factor-mediated tyrosine kinase signaling pathways. We found that SHP2 is localized to Sertoli-Sertoli cell junctions in rat testis. The overexpression of a constitutive active SHP2 mutant, SHP2 Q79R, up-regulated the BTB disruptor ERK1/2 via Src kinase in primary rat Sertoli cells in culture. Furthermore, focal adhesion kinase (FAK), which also supports BTB integrity, was found to interact with SHP2 and constitutive activation of SHP2 decreased FAK tyrosine phosphorylation. Expression of the SHP2 Q79R mutant in primary cultured Sertoli cells also resulted in the loss of tight junction and adherens junction integrity that corresponded with the disruption of the actin cytoskeleton and mislocalization of adherens junction and tight junction proteins N-cadherin, β-catenin, and ZO-1 away from the plasma membrane. These results suggest that SHP2 is a key regulator of BTB integrity and Sertoli cell support of spermatogenesis and fertility.
Collapse
Affiliation(s)
- Pawan Puri
- Center for Research in Reproductive Physiology, Department of Cell Biology and Molecular Physiology, Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | | |
Collapse
|
33
|
Sinha N, Pilder S, Vijayaraghavan S. Significant expression levels of transgenic PPP1CC2 in testis and sperm are required to overcome the male infertility phenotype of Ppp1cc null mice. PLoS One 2012; 7:e47623. [PMID: 23082183 PMCID: PMC3474748 DOI: 10.1371/journal.pone.0047623] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2012] [Accepted: 09/14/2012] [Indexed: 11/19/2022] Open
Abstract
PPP1CC2, one of four isoforms of the ser/thr protein phosphatase PP1, is a mammalian-specific splice variant of the Ppp1cc gene, and the only isoform whose expression is confined almost completely to spermatogenic cells. Additionally, PPP1CC2 is the sole isoform found in mammalian spermatozoa. Although PPP1CC1, the other Ppp1cc product, is expressed in many tissues including testis, the only phenotype resulting from deletion of Ppp1cc gene is male infertility. To determine which of the products of Ppp1cc is essential for male fertility, we created two PPP1CC2 transgenes, eTg-G2 and pTg-G2, where Ppp1cc2 expression was driven by the putative endogenous promoter of Ppp1cc or by the testis specific human Pgk2 promoter, respectively. Our results demonstrate that the 2.6-kb genomic region directly upstream of the Ppp1cc structural gene can drive expression of Ppp1cc2, and recapitulate the wild-type tissue specificity of PPP1CC2 in transgenic mice. More importantly, we show that expression of PPP1CC2 alone, via either promoter, is able not only to restore normal spermatogenesis, but the fertility of Ppp1cc null mice as well, provided that transgenic PPP1CC2 expression in testis reaches at least a lower threshold level equivalent to approximately 50% of its expression by a Ppp1cc +/- male. We conclude that the endogenous Ppp1cc promoter normally functions in the testis to maintain a sufficient level of PPP1CC2 expression for normal spermatogenesis to occur, and that production of spermatozoa capable of fertilization in vivo can take place in the complete absence of PPP1CC1 expression.
Collapse
Affiliation(s)
- Nilam Sinha
- Department of Biological Sciences, Kent State University, Kent, Ohio, United States of America
- * E-mail: (NS); (SV)
| | - Stephen Pilder
- Department of Anatomy and Cell Biology, Temple University School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Srinivasan Vijayaraghavan
- Department of Biological Sciences, Kent State University, Kent, Ohio, United States of America
- * E-mail: (NS); (SV)
| |
Collapse
|
34
|
Kinases, phosphatases and proteases during sperm capacitation. Cell Tissue Res 2012; 349:765-82. [DOI: 10.1007/s00441-012-1370-3] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Accepted: 02/07/2012] [Indexed: 12/17/2022]
|
35
|
Sperm development and motility are regulated by PP1 phosphatases in Caenorhabditis elegans. Genetics 2011; 190:143-57. [PMID: 22042574 DOI: 10.1534/genetics.111.135376] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Sperm from different species have evolved distinctive motility structures, including tubulin-based flagella in mammals and major sperm protein (MSP)-based pseudopods in nematodes. Despite such divergence, we show that sperm-specific PP1 phosphatases, which are required for male fertility in mouse, function in multiple processes in the development and motility of Caenorhabditis elegans amoeboid sperm. We used live-imaging analysis to show the PP1 phosphatases GSP-3 and GSP-4 (GSP-3/4) are required to partition chromosomes during sperm meiosis. Postmeiosis, tracking fluorescently labeled sperm revealed that both male and hermaphrodite sperm lacking GSP-3/4 are immotile. Genetic and in vitro activation assays show lack of GSP-3/4 causes defects in pseudopod development and the rate of pseudopodial treadmilling. Further, GSP-3/4 are required for the localization dynamics of MSP. GSP-3/4 shift localization in concert with MSP from fibrous bodies that sequester MSP at the base of the pseudopod, where directed MSP disassembly facilitates pseudopod contraction. Consistent with a role for GSP-3/4 as a spatial regulator of MSP disassembly, MSP is mislocalized in sperm lacking GSP-3/4. Although a requirement for PP1 phosphatases in nematode and mammalian sperm suggests evolutionary conservation, we show PP1s have independently evolved sperm-specific paralogs in separate lineages. Thus PP1 phosphatases are highly adaptable and employed across a broad range of sexually reproducing species to regulate male fertility.
Collapse
|
36
|
Wang R, Sperry AO. PP1 forms an active complex with TLRR (lrrc67), a putative PP1 regulatory subunit, during the early stages of spermiogenesis in mice. PLoS One 2011; 6:e21767. [PMID: 21738792 PMCID: PMC3128092 DOI: 10.1371/journal.pone.0021767] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Accepted: 06/06/2011] [Indexed: 12/29/2022] Open
Abstract
Mammalian spermatogenesis is a highly regulated developmental pathway that demands dramatic rearrangement of the cytoskeleton of the male germ cell. We have described previously a leucine rich repeat protein, TLRR (also known as lrrc67), which is associated with the spermatid cytoskeleton in mouse testis and is a binding partner of protein phosphatase-1 (PP1), an extremely well conserved signaling molecule. The activity of PP1 is modulated by numerous specific regulators of which TLRR is a candidate. In this study we measured the phosphatase activity of the TLRR-PP1 complex in the adult and the developing mouse testis, which contains varying populations of developing germ cell types, in order to determine whether TLRR acts as an activator or an inhibitor of PP1 and whether the phosphatase activity of this complex is developmentally regulated during spermatogenesis. Additionally, we assayed the ability of bacterially expressed TLRR to affect the enzymatic activity of PP1. Furthermore, we examined phosphorylation of TLRR, and elements of the spermatid cytoskeleton during the first wave of spermatogenesis in the developing testis. We demonstrate here that the TLRR complex is associated with a phosphatase activity in adult mouse testis. The relative phosphatase activity of this complex appears to reach a peak at about 21 days after birth, when pachytene spermatocytes and round spermatids are abundant in the seminiferous epithelium of the mouse testis. TLRR, in addition to tubulin and kinesin-1B, is phosphorylated during the first wave of spermatogenesis. These findings indicate that the TLRR-PP1 complex is active prior to translocation of TLRR toward the sperm flagella and that TLRR, and constituents of the spermatid cytoskeleton, may be subject to regulation by reversible phosphorylation during spermatogenesis in murine testis.
Collapse
Affiliation(s)
- Rong Wang
- Department of Anatomy and Cell Biology, Brody School of Medicine at East Carolina University, Greenville, North Carolina, United States of America
| | - Ann O. Sperry
- Department of Anatomy and Cell Biology, Brody School of Medicine at East Carolina University, Greenville, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
37
|
Ruan Y, Cheng M, Ou Y, Oko R, van der Hoorn FA. Ornithine decarboxylase antizyme Oaz3 modulates protein phosphatase activity. J Biol Chem 2011; 286:29417-29427. [PMID: 21712390 DOI: 10.1074/jbc.m111.274647] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ornithine decarboxylase antizyme 3 (Oaz3) is expressed in spermatids, makes up the antizyme family of Oaz genes with Oaz1 and Oaz2, and was proposed to encode a 22 kDa antizyme protein involved in polyamine regulation similar to the 22 kDa OAZ1 and OAZ2 proteins. Here we demonstrate however that the major product encoded by Oaz3 is a 12 kDa protein, p12, which lacks the antizyme domain that interacts with ornithine decarboxylase. We show that p12 does not affect ornithine decarboxylase levels, providing an explanation for the surprising observation made in Oaz3 knock-out male mice, which do not display altered testis polyamine metabolism. This suggested a novel activity for Oaz3 p12. Using immuno-electron microscopy we localized p12 to two structures in the mammalian sperm tail, viz. the outer dense fibers and fibrous sheath, as well as to the connecting piece linking head and tail. We identified myosin phosphatase targeting subunit 3 (MYPT3), a regulator of protein phosphatase PP1β, as a major p12-interacting protein, and show that MYPT3 is present in sperm tails and that its ankyrin repeat binds p12. We show that MYPT3 can also bind protein phosphatase PP1γ2, the only protein phosphatase present in sperm tails, and that p12- MYPT3 interaction modulates the activity of both PP1β and PP1γ2. This is, to our knowledge, the first demonstration of a novel activity for an Oaz-encoded protein.
Collapse
Affiliation(s)
- Yibing Ruan
- Department of Biochemistry & Molecular Biology, University of Calgary, Calgary T2N 4N1, Canada and
| | - Min Cheng
- Department of Biochemistry & Molecular Biology, University of Calgary, Calgary T2N 4N1, Canada and
| | - Young Ou
- Department of Biochemistry & Molecular Biology, University of Calgary, Calgary T2N 4N1, Canada and
| | - Richard Oko
- Department of Anatomy & Cell Biology, Queens University, Kingston K7L 3N6, Canada
| | - Frans A van der Hoorn
- Department of Biochemistry & Molecular Biology, University of Calgary, Calgary T2N 4N1, Canada and.
| |
Collapse
|
38
|
Fardilha M, Esteves SLC, Korrodi-Gregório L, Pelech S, da Cruz E Silva OAB, da Cruz E Silva E. Protein phosphatase 1 complexes modulate sperm motility and present novel targets for male infertility. Mol Hum Reprod 2011; 17:466-77. [PMID: 21257602 DOI: 10.1093/molehr/gar004] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Infertility is a growing concern in modern society, with 30% of cases being due to male factors, namely reduced sperm concentration, decreased motility and abnormal morphology. Sperm cells are highly compartmentalized, almost devoid of transcription and translation consequently processes such as protein phosphorylation provide a key general mechanism for regulating vital cellular functions, more so than for undifferentiated cells. Reversible protein phosphorylation is the principal mechanism regulating most physiological processes in eukaryotic cells. To date, hundreds of protein kinases have been identified, but significantly fewer phosphatases (PPs) are responsible for counteracting their action. This discrepancy can be explained in part by the mechanism used to control phosphatase activity, which is based on regulatory interacting proteins. This is particularly true for PP1, a major serine/threonine-PP, for which >200 interactors (PP1 interacting proteins-PIPs) have been indentified that control its activity, subcellular location and substrate specificity. For PP1, several isoforms have been described, among them PP1γ2, a testis/sperm-enriched PP1 isoform. Recent findings support our hypothesis that PP1γ2 is involved in the regulation of sperm motility. This review summarizes the known sperm-specific PP1-PIPs, involved in the acquisition of mammalian sperm motility. The complexes that PP1 routinely forms with different proteins are addressed and the role of PP1/A-kinase anchoring protein complexes in sperm motility is considered. Furthermore, the potential relevance of targeting PP1-PIPs complexes to infertility diagnostics and therapeutics as well as to male contraception is also discussed.
Collapse
Affiliation(s)
- Margarida Fardilha
- Signal Transduction Laboratory, Centre for Cell Biology, Health Sciences Department and Biology Department, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal.
| | | | | | | | | | | |
Collapse
|
39
|
Henderson H, Macleod G, Hrabchak C, Varmuza S. New candidate targets of protein phosphatase-1c-gamma-2 in mouse testis revealed by a differential phosphoproteome analysis. ACTA ACUST UNITED AC 2010; 34:339-51. [PMID: 20618881 DOI: 10.1111/j.1365-2605.2010.01085.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Reversible phosphorylation has been implicated in many developmental processes. Dephosphorylation is mediated by several families of phosphatases, including type 1 serine/threonine phosphatases (protein phosphatase-1 or PP1). The loss of the murine Ppp1cc gene causes male infertility as a result of impaired spermatogenesis. Ppp1cc encodes two splice isoforms, PPP1CC1 and PPP1CC2, with the latter being the most abundant isoform in the testis. However, the details of PPP1CC2's involvement in spermatogenesis are still unknown. As a phosphatase has been removed from the mutant mouse, a search for hyperphosphorylated proteins in the mutant testis may reveal the direct downstream targets of PPP1CC2. Using a whole tissue proteomics approach to identify testis-specific dephosphorylation targets of PPP1CC2, we found that two-dimensional electrophoresis identified 10 potential targets in the Ppp1cc null testis several of which are factors known to be important for spermatogenesis, such as HSPA2. Another potential target, tubulin, was found to be misregulated during Ppp1cc(-/-) spermatogenesis, disrupting manchette development. This work represents the first survey of the testicular phosphoproteome under pathological conditions.
Collapse
Affiliation(s)
- H Henderson
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
40
|
Hermo L, Pelletier RM, Cyr DG, Smith CE. Surfing the wave, cycle, life history, and genes/proteins expressed by testicular germ cells. Part 5: intercellular junctions and contacts between germs cells and Sertoli cells and their regulatory interactions, testicular cholesterol, and genes/proteins associated with more than one germ cell generation. Microsc Res Tech 2010; 73:409-94. [PMID: 19941291 DOI: 10.1002/jemt.20786] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In the testis, cell adhesion and junctional molecules permit specific interactions and intracellular communication between germ and Sertoli cells and apposed Sertoli cells. Among the many adhesion family of proteins, NCAM, nectin and nectin-like, catenins, and cadherens will be discussed, along with gap junctions between germ and Sertoli cells and the many members of the connexin family. The blood-testis barrier separates the haploid spermatids from blood borne elements. In the barrier, the intercellular junctions consist of many proteins such as occludin, tricellulin, and claudins. Changes in the expression of cell adhesion molecules are also an essential part of the mechanism that allows germ cells to move from the basal compartment of the seminiferous tubule to the adluminal compartment thus crossing the blood-testis barrier and well-defined proteins have been shown to assist in this process. Several structural components show interactions between germ cells to Sertoli cells such as the ectoplasmic specialization which are more closely related to Sertoli cells and tubulobulbar complexes that are processes of elongating spermatids embedded into Sertoli cells. Germ cells also modify several Sertoli functions and this also appears to be the case for residual bodies. Cholesterol plays a significant role during spermatogenesis and is essential for germ cell development. Lastly, we list genes/proteins that are expressed not only in any one specific generation of germ cells but across more than one generation.
Collapse
Affiliation(s)
- Louis Hermo
- Faculty of Medicine, Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada H3A 2B2.
| | | | | | | |
Collapse
|
41
|
Rotman T, Etkovitz N, Spiegel A, Rubinstein S, Breitbart H. Protein kinase A and protein kinase C(alpha)/PPP1CC2 play opposing roles in the regulation of phosphatidylinositol 3-kinase activation in bovine sperm. Reproduction 2010; 140:43-56. [PMID: 20442273 DOI: 10.1530/rep-09-0314] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In order to acquire fertilization competence, spermatozoa have to undergo biochemical changes in the female reproductive tract, known as capacitation. Signaling pathways that take place during the capacitation process are much investigated issue. However, the role and regulation of phosphatidylinositol 3-kinase (PI3K) in this process are still not clear. Previously, we reported that short-time activation of protein kinase A (PRKA, PKA) leads to PI3K activation and protein kinase C(alpha)(PRKCA, PKC(alpha)) inhibition. In the present study, we found that during the capacitation PI3K phosphorylation/activation increases. PI3K activation was PRKA dependent, and down-regulated by PRKCA. PRKCA is found to be highly active at the beginning of the capacitation, conditions in which PI3K is not active. Moreover, inhibition of PRKCA causes significant activation of PI3K. Similar activation of PI3K is seen when the phosphatase PPP1 is blocked suggesting that PPP1 regulates PI3K activity. We found that during the capacitation PRKCA and PPP1CC2 (PP1gamma2) form a complex, and the two enzymes were degraded during the capacitation, suggesting that this degradation enables the activation of PI3K. This degradation is mediated by PRKA, indicating that in addition to the direct activation of PI3K by PRKA, this kinase can enhance PI3K phosphorylation indirectly by enhancing the degradation and inactivation of PRKCA and PPP1CC2.
Collapse
Affiliation(s)
- T Rotman
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
| | | | | | | | | |
Collapse
|
42
|
TLRR (lrrc67) interacts with PP1 and is associated with a cytoskeletal complex in the testis. Biol Cell 2010; 102:173-89. [PMID: 19886865 DOI: 10.1042/bc20090091] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND INFORMATION Spermatozoa are formed via a complex series of cellular transformations, including acrosome and flagellum formation, nuclear condensation and elongation and removal of residual cytoplasm. Nuclear elongation is accompanied by the formation of a unique cytoskeletal structure, the manchette. We have previously identified a leucine-rich repeat protein that we have named TLRR (testis leucine-rich repeat), associated with the manchette that contains a PP1 (protein phosphatase-1)-binding site. Leucine-rich repeat proteins often mediate protein-protein interactions; therefore, we hypothesize that TLRR acts as a scaffold to link signalling molecules, including PP1, to the manchette near potential substrate proteins important for spermatogenesis. RESULTS TLRR and PP1 interact with one another as demonstrated by co-immunoprecipitation and the yeast two-hybrid assay. TLRR binds more strongly to PP1 gamma 2 than it does to PP1 alpha. Anti-phosphoserine antibodies immunoprecipitate TLRR from testis lysate, indicating that TLRR is a phosphoprotein. TLRR is part of a complex in testis that includes cytoskeletal proteins and constituents of the ubiquitin-proteasome pathway. The TLRR complex purified from 3T3 cells contains similar proteins, co-localizes with microtubules and is enriched at the microtubule-organizing centre. TLRR is also detected near the centrosome of elongated, but not mid-stage, spermatids. CONCLUSION We demonstrate here that TLRR interacts with PP1, particularly the testis-specific isoform, PP1 gamma 2. Immunoaffinity purification confirms that TLRR is associated with the spermatid cytoskeleton. In addition, proteins involved in protein stability are part of the TLRR complex. These results support our hypothesis that TLRR links signalling molecules to the spermatid cytoskeleton in order to regulate important substrates involved in spermatid transformation. The translocation of TLRR from the manchette to the centrosome region suggests a possible role for this protein in tail formation. Our finding that TLRR is associated with microtubules in cultured cells suggests that TLRR may play a common role in modulating the cytoskeleton in other cell types besides male germ cells.
Collapse
|
43
|
Soler DC, Kadunganattil S, Ramdas S, Myers K, Roca J, Slaughter T, Pilder SH, Vijayaraghavan S. Expression of transgenic PPP1CC2 in the testis of Ppp1cc-null mice rescues spermatid viability and spermiation but does not restore normal sperm tail ultrastructure, sperm motility, or fertility. Biol Reprod 2009; 81:343-52. [PMID: 19420386 DOI: 10.1095/biolreprod.109.076398] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Two isoforms of phosphoprotein phosphatase 1, PPP1CC1 and PPP1CC2, are translated from alternatively spliced transcripts of a single gene, Ppp1cc, and differ only at their extreme C-termini. While PPP1CC1 expression is almost ubiquitous, PPP1CC2 is largely restricted to testicular germ cells and mature spermatozoa. Targeted deletion of Ppp1cc leads to sterility of -/- males due to a combination of gross structural defects in developing spermatids resulting in apoptosis and faulty spermiation. Because PPP1CC2 is the only PP1 isoform that demonstrates high-level expression in wild-type meiotic and postmeiotic male germ cells, we have tested whether its loss in Ppp1cc-/- males is largely responsible for manifestation of this phenotype by expressing PPP1CC2 transgenically in the testis of Ppp1cc-/- mice (rescue mice). Herein, we demonstrate that PPP1CC2 expression in the Ppp1cc-/- testis is antiapoptotic, thus reestablishing spermatid development and spermiation. However, because aberrant flagellar morphogenesis is incompletely ameliorated, rescue males remain infertile. Because these results suggest that expression of PPP1CC2 in developing germ cells is essential but insufficient for normal spermatogenesis to occur, appropriate spatial and temporal expression of both PPP1CC isoforms in the testis during spermatogenesis appears to be necessary to produce structurally normal fertility-competent spermatozoa.
Collapse
Affiliation(s)
- David C Soler
- Biological Sciences, Kent State University, Kent, Ohio, USA
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Cheng L, Pilder S, Nairn AC, Ramdas S, Vijayaraghavan S. PP1gamma2 and PPP1R11 are parts of a multimeric complex in developing testicular germ cells in which their steady state levels are reciprocally related. PLoS One 2009; 4:e4861. [PMID: 19300506 PMCID: PMC2654099 DOI: 10.1371/journal.pone.0004861] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2008] [Accepted: 02/06/2009] [Indexed: 01/10/2023] Open
Abstract
Mice lacking the protein phosphatase 1 gamma isoforms, PP1gamma1 and PP1gamma2, are male-sterile due to defective germ cell morphogenesis and apoptosis. However, this deficiency causes no obvious abnormality in other tissues. A biochemical approach was employed to learn how expression versus deficiency of PP1gamma2, the predominant PP1 isoform in male germ cells, affects spermatogenesis. Methods used in this study include column chromatography, western blot and northern blot analyses, GST pull-down assays, immunoprecipitation, non-denaturing gel electrophoresis, phosphatase enzyme assays, protein sequencing, and immunohistochemistry. We report for the first time that in wild-type testis, PP1gamma2 forms an inactive complex with actin, protein phosphatase 1 regulatory subunit 7 (PPP1R7), and protein phosphatase 1 regulatory subunit 11 (PPP1R11), the latter, a potent PP1 inhibitor. Interestingly, PPP1R11 protein, but not its mRNA level, falls significantly in PP1gamma-null testis where mature sperm are virtually absent. Conversely, both mature sperm numbers and the PPP1R11 level increase substantially in PP1gamma-null testis expressing transgenic PP1gamma2. PPP1R11 also appears to be ubiquitinated in PP1gamma-null testis. The levels of PP1gamma2 and PPP1R11 were increased in phenotypically normal PP1alpha-null testis. However, in PP1alpha-null spleen, where PP1gamma2 normally is not expressed, PPP1R11 levels remained unchanged. Our data clearly show a direct reciprocal relationship between the levels of the protein phosphatase isoform PP1gamma2 and its regulator PPP1R11, and suggest that complex formation between these polypeptides in testis may prevent proteolysis of PPP1R11 and thus, germ cell apoptosis.
Collapse
Affiliation(s)
- Lina Cheng
- Department of Biological Sciences, Kent State University, Kent, Ohio, United States of America
| | - Stephen Pilder
- Department of Anatomy and Cell Biology, Temple University School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Angus C. Nairn
- Department of Psychiatry, Yale University, New Haven, Connecticut, United States of America
| | - Shandilya Ramdas
- Department of Biological Sciences, Kent State University, Kent, Ohio, United States of America
| | - Srinivasan Vijayaraghavan
- Department of Biological Sciences, Kent State University, Kent, Ohio, United States of America
- * E-mail:
| |
Collapse
|
45
|
Wu TF, Chu DS. Sperm chromatin: fertile grounds for proteomic discovery of clinical tools. Mol Cell Proteomics 2008; 7:1876-86. [PMID: 18504257 PMCID: PMC2559940 DOI: 10.1074/mcp.r800005-mcp200] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Indexed: 01/22/2023] Open
Abstract
Sperm are remarkably complex cells with a singularly important mission: to deliver paternal DNA and its associated factors to the oocyte to start a new life. The integrity of sperm DNA is a keystone of reproductive success, which includes fertilization and embryonic development. In addition, the significance in these processes of proteins that associate with sperm DNA is increasingly being appreciated. In this review, we highlight proteomic studies that have identified sperm chromatin proteins with fertility roles that have been validated by molecular studies in model organisms or correlations in the clinic. Up to 50% of male-factor infertility cases in the clinic have no known cause and therefore no direct treatment. In-depth study of the molecular basis of infertility has great potential to inform the development of sensitive diagnostic tools and effective therapies that will address this incongruity. Because sperm rely on testis-specific protein isoforms and post-translational modifications for their development and function, sperm-specific processes are ideal for proteomic explorations that can bridge the research lab and fertility clinic.
Collapse
Affiliation(s)
- Tammy F Wu
- Department of Biology, San Francisco State University, San Francisco, California 94132, USA
| | | |
Collapse
|
46
|
Chen Y, Zhang Z, Lv XY, Wang YD, Hu ZG, Sun H, Tan RZ, Liu YH, Bian GH, Xiao Y, Li QW, Yang QT, Ai JZ, Feng L, Yang Y, Wei YQ, Zhou Q. Expression of Pkd2l2 in testis is implicated in spermatogenesis. Biol Pharm Bull 2008; 31:1496-500. [PMID: 18670078 DOI: 10.1248/bpb.31.1496] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Pkd2l2 is a novel member of the polycystic kidney disease (PKD) gene family in mammals. Prominently expressed in testis, this gene is still poorly understood. In this study, reverse transcription polymerase chain reaction (RT-PCR) results showed a time-dependent expression pattern of Pkd2l2 in postnatal mouse testis. Immunohistochemical analysis revealed that Pkd2l2 encoded a protein, polycystin-L2, which was predominantly detectable in the plasma membrane of spermatocytes and round spermatids, as well as in the head and tail of elongating spermatids within seminiferous tubules in mouse testis tissue sections of postnatal day 14 and adult mice. A green fluorescent fusion protein of Pkd2l2 resided in the plasma membrane of HEK 293 and MDCK cells, suggesting that it functions as a plasma membrane protein. Overexpression of Pkd2l2 increased the intracellular calcium concentration of MDCK cells, as detected by flow cytometry. Collectively, these data indicated that Pkd2l2 may be involved in the mid-late stage of spermatogenesis through modulation of the intracellular calcium concentration.
Collapse
Affiliation(s)
- Ye Chen
- Core Facility of Gene Engineered Mice, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Sichuan, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
The roles of the epididymis and prostasomes in the attainment of fertilizing capacity by stallion sperm. Anim Reprod Sci 2008; 107:237-48. [DOI: 10.1016/j.anireprosci.2008.04.011] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
48
|
Puri P, Myers K, Kline D, Vijayaraghavan S. Proteomic analysis of bovine sperm YWHA binding partners identify proteins involved in signaling and metabolism. Biol Reprod 2008; 79:1183-91. [PMID: 18753613 DOI: 10.1095/biolreprod.108.068734] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Posttranslational modification of proteins by phosphorylation is involved in regulation of sperm function. Protein phosphatase 1 gamma isoform 2 (PPP1CC_v2) and protein YWHA (also known as 14-3-3) are likely to be key molecules in pathways involving sperm protein phosphorylation. We have shown that phosphorylated PPP1CC_v2 is bound to protein YWHAZ in spermatozoa. In somatic cells, protein YWHA is known to bind a number of phosphoproteins involved in signaling and energy metabolism. Thus, in addition to PPP1CC_v2, it is likely that sperm contain other YWHA-binding proteins. A goal of the present study was to identify these sperm YWHA-binding proteins. The binding proteins were isolated by affinity chromatography with GST-YWHAZ followed by elution with a peptide, R-11, which is known to disrupt YWHA complexes. The YWHA-binding proteins in sperm can be classified as those involved in fertilization, acrosome reaction, energy metabolism, protein folding, and ubiquitin-mediated proteolysis. A subset of these putative YWHA-binding proteins contain known amino acid consensus motifs, not only for YWHA binding but also for PPP1C binding. Identification of sperm PPP1CC_v2-binding proteins by microcystin-agarose chromatography confirmed that PPP1CC_v2 and YWHA interactomes contain several common proteins. These are metabolic enzymes phosphoglycerate kinase 2, hexokinase 1, and glucose phosphate isomerase; proteins involved in sperm-egg fusion; angiotensin-converting enzyme, sperm adhesion molecule, and chaperones; heat shock 70-kDa protein 5 (glucose-regulated protein 78 kDa; and heat shock 70-kDa protein 1-like. These proteins are likely to be phosphoproteins and potential PPP1CC_v2 substrates. Our data suggest that in addition to potential regulation of a number of important sperm functions, YWHA may act as an adaptor molecule for a subset of PPP1CC_v2 substrates.
Collapse
Affiliation(s)
- Pawan Puri
- Department of Biological Sciences, Kent State University, Kent, Ohio 44242, USA
| | | | | | | |
Collapse
|
49
|
Wang R, Sperry AO. Identification of a novel Leucine-rich repeat protein and candidate PP1 regulatory subunit expressed in developing spermatids. BMC Cell Biol 2008; 9:9. [PMID: 18237440 PMCID: PMC2270827 DOI: 10.1186/1471-2121-9-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2007] [Accepted: 01/31/2008] [Indexed: 01/21/2023] Open
Abstract
Background Spermatogenesis is comprised of a series of highly regulated developmental changes that transform the precursor germ cell into a highly specialized spermatozoon. The last phase of spermatogenesis, termed spermiogenesis, involves dramatic morphological change including formation of the acrosome, elongation and condensation of the nucleus, formation of the flagella, and disposal of unnecessary cytoplasm. A prominent cytoskeletal component of the developing spermatid is the manchette, a unique microtubular structure that surrounds the nucleus of the developing spermatid and is thought to assist in both the reshaping of the nucleus and redistribution of spermatid cytoplasm. Although the molecular motor KIFC1 has been shown to associate with the manchette, its precise role in function of the manchette and the identity of its testis specific protein partners are unknown. The purpose of this study was to identify proteins in the testis that interact with KIFC1 using a yeast 2 hybrid screen of a testis cDNA library. Results Thirty percent of the interacting clones identified in our screen contain an identical cDNA encoding a 40 kD protein. This interacting protein has 4 leucine-rich repeats in its amino terminal half and is expressed primarily in the testis; therefore we have named this protein testis leucine-rich repeat protein or TLRR. TLRR was also found to associate tightly with the KIFC1 targeting domain using affinity chromatography. In addition to the leucine-rich repeats, TLRR contains a consensus-binding site for protein phosphatase-1 (PP1). Immunocytochemistry using a TLRR specific antibody demonstrates that this protein is found near the manchette of developing spermatids. Conclusion We have identified a previously uncharacterized leucine-rich repeat protein that is expressed abundantly in the testis and associates with the manchette of developing spermatids, possibly through its interaction with the KIFC1 molecular motor. TLRR is homologous to a class of regulatory subunits for PP1, a central phosphatase in the reversible phosphorylation of proteins that is key to modulation of many intracellular processes. TLRR may serve to target this important signaling molecule near the nucleus of developing spermatids in order to control the cellular rearrangements of spermiogenesis.
Collapse
Affiliation(s)
- Rong Wang
- Department of Anatomy and Cell Biology, Brody School of Medicine at East Carolina University, Greenville, NC 27834 USA.
| | | |
Collapse
|
50
|
de Mateo S, Martínez-Heredia J, Estanyol JM, Domíguez-Fandos D, Vidal-Taboada JM, Ballescà JL, Oliva R. Marked correlations in protein expression identified by proteomic analysis of human spermatozoa. Proteomics 2007; 7:4264-77. [DOI: 10.1002/pmic.200700521] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|