1
|
Bu Y, Wang P, Li S, Li L, Zhang S, Wei H. Semen Protein CRISP3 Promotes Reproductive Performance of Boars through Immunomodulation. Int J Mol Sci 2024; 25:2264. [PMID: 38396941 PMCID: PMC10889302 DOI: 10.3390/ijms25042264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/09/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
Semen proteins play an important role in male reproductive performance and sperm fertilization ability and can be used as potential biomarkers to evaluate male fertility. The role of cysteine-rich secretory protein 3 (CRISP3) in male reproduction remains unknown. This study aimed to investigate the role of CRISP3 in the reproductive performance of boars. Our results showed that the CRISP3 protein content was significantly and positively correlated with boar fertility, sow delivery rate, and litter size. CRISP3 is highly expressed in the bulbourethral gland of adult boars and is enriched in the seminal plasma. It is localized in the post-acrosomal region of the sperm head and migrates to the anterior end of the tail after capacitation. The CRISP3 recombinant protein did not affect sperm motility and cleavage rate, but it significantly downregulated the mRNA expression of inflammatory factors IL-α, IL-1β, and IL-6 and the protein expression of IL-α and IL-6 in lipopolysaccharide (LPS)-induced RAW264.7 cells, indicating that CRISP3 has an immunomodulatory function. In conclusion, our study suggests that semen CRISP3 protein levels positively correlate with reproductive performance, which may be achieved by regulating immune responses in the female reproductive tract.
Collapse
Affiliation(s)
| | | | | | | | - Shouquan Zhang
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangdong 510642, China; (Y.B.)
| | - Hengxi Wei
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangdong 510642, China; (Y.B.)
| |
Collapse
|
2
|
Gonzalez SN, Sulzyk V, Weigel Muñoz M, Cuasnicu PS. Cysteine-Rich Secretory Proteins (CRISP) are Key Players in Mammalian Fertilization and Fertility. Front Cell Dev Biol 2021; 9:800351. [PMID: 34970552 PMCID: PMC8712725 DOI: 10.3389/fcell.2021.800351] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 11/15/2021] [Indexed: 11/20/2022] Open
Abstract
Mammalian fertilization is a complex process involving a series of successive sperm-egg interaction steps mediated by different molecules and mechanisms. Studies carried out during the past 30 years, using a group of proteins named CRISP (Cysteine-RIch Secretory Proteins), have significantly contributed to elucidating the molecular mechanisms underlying mammalian gamete interaction. The CRISP family is composed of four members (i.e., CRISP1-4) in mammals, mainly expressed in the male tract, present in spermatozoa and exhibiting Ca2+ channel regulatory abilities. Biochemical, molecular and genetic approaches show that each CRISP protein participates in more than one stage of gamete interaction (i.e., cumulus penetration, sperm-ZP binding, ZP penetration, gamete fusion) by either ligand-receptor interactions or the regulation of several capacitation-associated events (i.e., protein tyrosine phosphorylation, acrosome reaction, hyperactivation, etc.) likely through their ability to regulate different sperm ion channels. Moreover, deletion of different numbers and combination of Crisp genes leading to the generation of single, double, triple and quadruple knockout mice showed that CRISP proteins are essential for male fertility and are involved not only in gamete interaction but also in previous and subsequent steps such as sperm transport within the female tract and early embryo development. Collectively, these observations reveal that CRISP have evolved to perform redundant as well as specialized functions and are organized in functional modules within the family that work through independent pathways and contribute distinctly to fertility success. Redundancy and compensation mechanisms within protein families are particularly important for spermatozoa which are transcriptionally and translationally inactive cells carrying numerous protein families, emphasizing the importance of generating multiple knockout models to unmask the true functional relevance of family proteins. Considering the high sequence and functional homology between rodent and human CRISP proteins, these observations will contribute to a better understanding and diagnosis of human infertility as well as the development of new contraceptive options.
Collapse
Affiliation(s)
| | | | | | - Patricia S. Cuasnicu
- Instituto de Biología y Medicina Experimental (IByME-CONICET), Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
3
|
Dolati P, Zamiri MJ, Akhlaghi A, Khodabandeh Z, Mehrabani D, Atashi H, Jamhiri I. Reproductive and embryological toxicity of lead acetate in male mice and their offspring and mitigation effects of quercetin. J Trace Elem Med Biol 2021; 67:126793. [PMID: 34049200 DOI: 10.1016/j.jtemb.2021.126793] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/11/2021] [Accepted: 05/14/2021] [Indexed: 10/24/2022]
Abstract
Exposure to heavy metals not only impacts on fertility in males, it may also affect the offspring. The aim of the present study was to examine the toxic effects of lead acetate on fertility in male mice and their offspring, and the potential effect of quercetin on mitigating the likely effects. Experimental mice were randomly divided into three groups and administered with (i) distilled water (control); (ii) lead acetate (150 mg/kg BW/day); (iii) lead acetate (150 mg/kg BW/day) with quercetin (75 mg/kg BW/day). Lead acetate administration in male mice adversely affected their fertility through changes in sperm motility, viability, morphology, maturity, membrane integrity, and intracellular reactive oxygen species (P < 0.05). Similar findings were observed in the offspring of the lead-treated male mice. Early embryonic development and implantation rate were also adversely influenced in both the sires and offspring when male mice were treated with lead acetate (P < 0.05). The data demonstrated that down-regulation of Cks2 (CDC28 protein kinase regulatory subunit-2) in sperm had an association with early embryonic development in lead acetate treated group. In conclusion, lead acetate administration adversely impacted on the fertility of the male mice and their male offspring fertility; on the other hand, paternal quercetin co-administration somewhat ameliorated the adverse effects of lead on male mice and their offspring.
Collapse
Affiliation(s)
- Parisa Dolati
- Department of Animal Science, College of Agriculture, Shiraz University, Shiraz, Iran.
| | - Mohammad Javad Zamiri
- Department of Animal Science, College of Agriculture, Shiraz University, Shiraz, Iran.
| | - Amir Akhlaghi
- Department of Animal Science, College of Agriculture, Shiraz University, Shiraz, Iran.
| | - Zahra Khodabandeh
- Stem Cells Technology Research Center, Shiraz University of Medical Science, Shiraz, Iran.
| | - Davood Mehrabani
- Stem Cells Technology Research Center, Shiraz University of Medical Science, Shiraz, Iran; Li Ka Shing Centre for Health Research and Innovation, University of Alberta, Edmonton, AB, Canada.
| | - Hadi Atashi
- Department of Animal Science, College of Agriculture, Shiraz University, Shiraz, Iran.
| | - Iman Jamhiri
- Stem Cells Technology Research Center, Shiraz University of Medical Science, Shiraz, Iran.
| |
Collapse
|
4
|
Zhang M, Bromfield EG, Veenendaal T, Klumperman J, Helms JB, Gadella BM. Characterization of different oligomeric forms of CRISP2 in the perinuclear theca versus the fibrous tail structures of boar spermatozoa. Biol Reprod 2021; 105:1160-1170. [PMID: 34309660 DOI: 10.1093/biolre/ioab145] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 04/30/2021] [Accepted: 06/20/2021] [Indexed: 11/13/2022] Open
Abstract
Mammalian sperm carry a variety of highly condensed insoluble protein structures such as the perinuclear theca, the fibrous sheath and the outer dense fibers, which are essential to sperm function. We studied the role of cysteine rich secretory protein 2 (CRISP2); a known inducer of non-pathological protein amyloids, in pig sperm with a variety of techniques. CRISP2, which is synthesized during spermatogenesis, was localized by confocal immunofluorescent imaging in the tail and in the post-acrosomal region of the sperm head. High resolution localization by immunogold labeling electron microscopy (EM) of ultrathin cryosections revealed that CRISP2 was present in the perinuclear theca and neck region of the sperm head, as well as in the outer dense fibers and the fibrous sheath of the sperm tail. Interestingly, we found that under native, non-reducing conditions CRISP2 formed oligomers both in the tail and the head but with different molecular weights and different biochemical properties. The tail oligomers were insensitive to reducing conditions but nearly complete dissociated into monomers under 8 M urea treatment, while the head 250 kDa CRISP2 positive oligomer completely dissociated into CRISP2 monomers under reducing conditions. The head specific dissociation of CRISP2 oligomer is likely a result of the reduction of various sulfhydryl groups in the cysteine rich domain of this protein. The sperm head CRISP2 shared typical solubilization characteristics with other perinuclear theca proteins as was shown with sequential detergent and salt treatments. Thus, CRISP2 is likely to participate in the formation of functional protein complexes in both the sperm tail and sperm head, but with differing oligomeric organization and biochemical properties. Future studies will be devoted to the understand the role of CRISP2 in sperm protein complexes formation and how this contributes to the fertilization processes.
Collapse
Affiliation(s)
- M Zhang
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, the Netherlands
| | - E G Bromfield
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, the Netherlands.,Priority Research Centre for Reproductive Science, University of Newcastle, New South Wales, Australia
| | - T Veenendaal
- Section Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, the Netherlands
| | - J Klumperman
- Section Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, the Netherlands
| | - J B Helms
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, the Netherlands
| | - B M Gadella
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, the Netherlands.,Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
5
|
CRISP protein expression in semen of the endangered Malayan tapir (Tapirus indicus). Theriogenology 2021; 172:106-115. [PMID: 34153566 DOI: 10.1016/j.theriogenology.2021.06.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 05/08/2021] [Accepted: 06/06/2021] [Indexed: 11/20/2022]
Abstract
The Malayan tapir is a large endangered herbivore native to South-east Asia with fewer than 2500 animals remaining in the wild. Although a small number of animals (183 animals held by 60 institutions) are managed in zoos and breeding centres, there is limited information on the fundamental reproductive biology of this species. The purpose of this present study was to evaluate the associations of reproductive protein biomarkers (CRISP2 and CRISP3) in the seminal plasma and spermatozoa with reproductive characteristics in male Malayan tapirs. Ejaculates were collected from zoo-housed animals by electroejaculation and assessed for sperm motility and quality traits. Seminal plasma and sperm pellets were analysed for CRISP protein expression by immunoblotting. The reproductive tract of a single animal was also analysed for CRISP2 and CRISP3 protein expression and localization by immunohistochemistry. Our results showed that both CRISP2 and CRISP3 are expressed in the seminal plasma and spermatozoa derived from Malayan tapirs. CRISP expression was positively correlated with semen quality, especially ejaculate volume, number of motile sperm, and acrosomal integrity. In addition, CRISP2 and CRISP3 protein expression were slightly high in males that had recently sired an offspring. The results suggest that CRISP proteins may serve as biomarkers for ejaculate quality and fertility in male Malayan tapirs. These findings may have significant implications for planning future breeding and re-introduction efforts for this species.
Collapse
|
6
|
Gao F, Wang P, Wang K, Fan Y, Chen Y, Chen Y, Ye C, Feng M, Li L, Zhang S, Wei H. Investigation Into the Relationship Between Sperm Cysteine-Rich Secretory Protein 2 (CRISP2) and Sperm Fertilizing Ability and Fertility of Boars. Front Vet Sci 2021; 8:653413. [PMID: 33996980 PMCID: PMC8119884 DOI: 10.3389/fvets.2021.653413] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 04/08/2021] [Indexed: 11/13/2022] Open
Abstract
The proteins in the seminal plasma and on the sperm surface play important roles in sperm function and numerous reproductive processes. The cysteine-rich secretory proteins (CRISPs) are enriched biasedly in the male reproductive tract of mammals, and CRISP2 is the sole member of CRISPs produced during spermatogenesis; whereas the role of CRISP2 in fertilization and its association with fertility of boars are still unclear. This study aimed to investigate the relationship between the sperm CRISP2 and boar fertility, and explore its impact sperm fertilizing ability. The levels of CRISP2 protein in sperm were quantified by ELISA; correlation analysis was performed to evaluate the association between CRISP2 protein levels and boar reproductive parameters. Meanwhile, the expression of CRISP2 in boar reproductive organs and sperm, and the effects of CRISP2 on in vitro fertilization (IVF) were examined. The results showed that boars with high sperm levels of CRISP2 had high fertility. The protein levels of CRISP2 in sperm were positively correlated with the litter size (r = 0.412, p = 0.026), the number of live-born piglets (r = 0.421, p = 0.023) and the qualified piglets per litter (r = 0.381, p = 0.042). CRISP2 is specifically expressed in the testis and sperm of adult boars, and its location on sperm changed mainly from the post-acrosomal region to the apical segment of acrosome during capacitation. The cleavage rate was significantly decreased by adding the anti-CRISP2 antibody to the IVF medium, which indicates CRISP2 plays a critical role in fertilization. In conclusion, CRISP2 protein is specifically expressed in the adult testis and sperm and is associated with sperm fertilizing ability and boar fertility. Further mechanistic studies are warranted, in order to fully decipher the role of CRISP2 in the boar reproduction.
Collapse
Affiliation(s)
- Fenglei Gao
- Guangdong Provincial Key Lab of Agro-animal Genomics and Molecular Breeding, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China.,Department of Tropical Agriculture and Forestry, College of Guangdong Agriculture Industry Business Polytechnic, Guangzhou, China
| | - Ping Wang
- Guangdong Provincial Key Lab of Agro-animal Genomics and Molecular Breeding, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Kai Wang
- Guangdong Provincial Key Lab of Agro-animal Genomics and Molecular Breeding, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yushan Fan
- Guangdong Provincial Key Lab of Agro-animal Genomics and Molecular Breeding, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yuming Chen
- Guangdong Provincial Key Lab of Agro-animal Genomics and Molecular Breeding, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yun Chen
- Guangdong Provincial Key Lab of Agro-animal Genomics and Molecular Breeding, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Chao Ye
- Technology Department, Guangdong Wen's Foodstuffs Group Co., Ltd., Yunfu, China
| | - Meiying Feng
- Guangdong Provincial Key Lab of Agro-animal Genomics and Molecular Breeding, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China.,College of Life Sciences, Zhaoqing University, Zhaoqing, China
| | - Li Li
- Guangdong Provincial Key Lab of Agro-animal Genomics and Molecular Breeding, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Shouquan Zhang
- Guangdong Provincial Key Lab of Agro-animal Genomics and Molecular Breeding, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Hengxi Wei
- Guangdong Provincial Key Lab of Agro-animal Genomics and Molecular Breeding, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
7
|
The less conserved metal-binding site in human CRISP1 remains sensitive to zinc ions to permit protein oligomerization. Sci Rep 2021; 11:5498. [PMID: 33750840 PMCID: PMC7943821 DOI: 10.1038/s41598-021-84926-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 02/18/2021] [Indexed: 12/30/2022] Open
Abstract
Cysteine-rich secretory proteins (CRISPs) are a subgroup of the CRISP, antigen 5 and PR-1 (CAP) superfamily that is characterized by the presence of a conserved CAP domain. Two conserved histidines in the CAP domain are proposed to function as a Zn2+-binding site with unknown function. Human CRISP1 is, however, one of the few family members that lack one of these characteristic histidine residues. The Zn2+-dependent oligomerization properties of human CRISP1 were investigated using a maltose-binding protein (MBP)-tagging approach in combination with low expression levels in XL-1 Blue bacteria. Moderate yields of soluble recombinant MBP-tagged human CRISP1 (MBP-CRISP1) and the MBP-tagged CAP domain of CRISP1 (MBP-CRISP1ΔC) were obtained. Zn2+ specifically induced oligomerization of both MBP-CRISP1 and MBP-CRISP1ΔC in vitro. The conserved His142 in the CAP domain was essential for this Zn2+ dependent oligomerization process, confirming a role of the CAP metal-binding site in the interaction with Zn2+. Furthermore, MBP-CRISP1 and MBP-CRISP1ΔC oligomers dissociated into monomers upon Zn2+ removal by EDTA. Condensation of proteins is characteristic for maturing sperm in the epididymis and this process was previously found to be Zn2+-dependent. The Zn2+-induced oligomerization of human recombinant CRISP1 may shed novel insights into the formation of functional protein complexes involved in mammalian fertilization.
Collapse
|
8
|
Słowińska M, Pardyak L, Liszewska E, Judycka S, Bukowska J, Dietrich MA, Paukszto Ł, Jastrzębski J, Kozłowski K, Kowalczyk A, Jankowski J, Bilińska B, Ciereszko A. Characterization and biological role of cysteine-rich venom protein belonging to CRISPs from turkey seminal plasma†. Biol Reprod 2021; 104:1302-1321. [PMID: 33675663 DOI: 10.1093/biolre/ioab032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 11/26/2020] [Accepted: 02/23/2021] [Indexed: 12/11/2022] Open
Abstract
Turkey semen contains cysteine-rich secretory proteins (CRISPs) that belong to the dominant seminal plasma proteins. We aimed to isolate and characterize CRISP from turkey seminal plasma and evaluate its possible involvement in yellow semen syndrome (YSS). YSS, which is well characterized, causes reduced fertility and hatchability. The protein was purified using hydrophobic interaction, gel filtration, and reverse phase chromatography. It then was subjected to identification by mass spectrometry, analysis of physicochemical properties, and specific antibody production. The biological function of the isolated protein was tested and included its effects on sperm motility and migration and sperm-egg interactions. Sperm motility was measured with the CASA system using Hobson Sperm Tracker. The reproductive tract of turkey toms was analyzed for gene expression; immunohistochemistry was used for protein localization in the male reproductive tract, spermatozoa, and inner perivitelline layer. The isolated protein was identified as cysteine-rich venom protein-like isoform X2 (CRVP X2; XP_010706464.1) and contained feature motifs of CRISP family proteins. Turkey CRVP X2 was present in both spermatozoa and seminal plasma. The extensive secretion of CRVP X2 by the epithelial cells of the epididymis and ductus deferens suggests its involvement in post-testicular sperm maturation. The internally localized CRVP X2 in the proximal part of the sperm tail might be responsible for stimulation of sperm motility. CRVP X2 on the sperm head might be involved in several events prior to fusion and may also participate in gamete fusion itself. Although the mechanisms by which CRVP X2 mediates fertilization are still unknown, the involvement of complementary sites cannot be excluded. The disturbance of CRVP X2 expression can serve as an etiologic factor of YSS in the turkey. This study expands the understanding of the detailed mechanism of fertilization in birds by clarifying the specific role of CRVP X2.
Collapse
Affiliation(s)
- Mariola Słowińska
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences in Olsztyn, Olsztyn, Poland
| | - Laura Pardyak
- Center of Experimental and Innovative Medicine, University of Agriculture in Kraków, Kraków, Poland
| | - Ewa Liszewska
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences in Olsztyn, Olsztyn, Poland
| | - Sylwia Judycka
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences in Olsztyn, Olsztyn, Poland
| | - Joanna Bukowska
- Department of Biological Function of Food, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences in Olsztyn, Olsztyn, Poland
| | - Mariola Aleksandra Dietrich
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences in Olsztyn, Olsztyn, Poland
| | - Łukasz Paukszto
- Department of Plant Physiology, Genetics, and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Jan Jastrzębski
- Department of Plant Physiology, Genetics, and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Krzysztof Kozłowski
- Department of Poultry Science and Apiculture, Faculty of Animal Bioengineering, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Artur Kowalczyk
- Division of Poultry Breeding, Institute of Animal Breeding, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Jan Jankowski
- Department of Poultry Science and Apiculture, Faculty of Animal Bioengineering, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Barbara Bilińska
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University, Kraków, Poland
| | - Andrzej Ciereszko
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences in Olsztyn, Olsztyn, Poland
| |
Collapse
|
9
|
Arévalo L, Brukman NG, Cuasnicú PS, Roldan ERS. Evolutionary analysis of genes coding for Cysteine-RIch Secretory Proteins (CRISPs) in mammals. BMC Evol Biol 2020; 20:67. [PMID: 32513118 PMCID: PMC7278046 DOI: 10.1186/s12862-020-01632-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Accepted: 05/25/2020] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Cysteine-RIch Secretory Proteins (CRISP) are expressed in the reproductive tract of mammalian males and are involved in fertilization and related processes. Due to their important role in sperm performance and sperm-egg interaction, these genes are likely to be exposed to strong selective pressures, including postcopulatory sexual selection and/or male-female coevolution. We here perform a comparative evolutionary analysis of Crisp genes in mammals. Currently, the nomenclature of CRISP genes is confusing, as a consequence of discrepancies between assignments of orthologs, particularly due to numbering of CRISP genes. This may generate problems when performing comparative evolutionary analyses of mammalian clades and species. To avoid such problems, we first carried out a study of possible orthologous relationships and putative origins of the known CRISP gene sequences. Furthermore, and with the aim to facilitate analyses, we here propose a different nomenclature for CRISP genes (EVAC1-4, "EVolutionarily-analyzed CRISP") to be used in an evolutionary context. RESULTS We found differing selective pressures among Crisp genes. CRISP1/4 (EVAC1) and CRISP2 (EVAC2) orthologs are found across eutherian mammals and seem to be conserved in general, but show signs of positive selection in primate CRISP1/4 (EVAC1). Rodent Crisp1 (Evac3a) seems to evolve under a comparatively more relaxed constraint with positive selection on codon sites. Finally, murine Crisp3 (Evac4), which appears to be specific to the genus Mus, shows signs of possible positive selection. We further provide evidence for sexual selection on the sequence of one of these genes (Crisp1/4) that, unlike others, is thought to be exclusively expressed in male reproductive tissues. CONCLUSIONS We found differing selective pressures among CRISP genes and sexual selection as a contributing factor in CRISP1/4 gene sequence evolution. Our evolutionary analysis of this unique set of genes contributes to a better understanding of Crisp function in particular and the influence of sexual selection on reproductive mechanisms in general.
Collapse
Affiliation(s)
- Lena Arévalo
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales (CSIC), c/José Gutiérrez Abascal 2, 28006 Madrid, Spain
- Institute of Pathology, Department of Developmental Pathology, University Hospital Bonn, Bonn, 53127 Germany
| | - Nicolás G. Brukman
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), C1428ADN Buenos Aires, Argentina
| | - Patricia S. Cuasnicú
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), C1428ADN Buenos Aires, Argentina
| | - Eduardo R. S. Roldan
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales (CSIC), c/José Gutiérrez Abascal 2, 28006 Madrid, Spain
| |
Collapse
|
10
|
Zigo M, Maňásková-Postlerová P, Zuidema D, Kerns K, Jonáková V, Tůmová L, Bubeníčková F, Sutovsky P. Porcine model for the study of sperm capacitation, fertilization and male fertility. Cell Tissue Res 2020; 380:237-262. [PMID: 32140927 DOI: 10.1007/s00441-020-03181-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 01/28/2020] [Indexed: 12/12/2022]
Abstract
Mammalian fertilization remains a poorly understood event with the vast majority of studies done in the mouse model. The purpose of this review is to revise the current knowledge about semen deposition, sperm transport, sperm capacitation, gamete interactions and early embryonic development with a focus on the porcine model as a relevant, alternative model organism to humans. The review provides a thorough overview of post-ejaculation events inside the sow's reproductive tract including comparisons with humans and implications for human fertilization and assisted reproductive therapy (ART). Porcine methodology for sperm handling, preservation, in vitro capacitation, oocyte in vitro maturation, in vitro fertilization and intra-cytoplasmic sperm injection that are routinely used in pig research laboratories can be successfully translated into ART to treat human infertility. Last, but not least, new knowledge about mitochondrial inheritance in the pig can provide an insight into human mitochondrial diseases and new knowledge on polyspermy defense mechanisms could contribute to the development of new male contraceptives.
Collapse
Affiliation(s)
- Michal Zigo
- Division of Animal Sciences, University of Missouri, Columbia, MO, 65211, USA.
| | - Pavla Maňásková-Postlerová
- Laboratory of Reproductive Biology, Institute of Biotechnology of the Czech Academy of Sciences, 25250, Vestec, Czech Republic.,Department of Veterinary Sciences, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, 16521, Prague, Czech Republic
| | - Dalen Zuidema
- Division of Animal Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Karl Kerns
- Division of Animal Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Věra Jonáková
- Laboratory of Reproductive Biology, Institute of Biotechnology of the Czech Academy of Sciences, 25250, Vestec, Czech Republic
| | - Lucie Tůmová
- Department of Veterinary Sciences, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, 16521, Prague, Czech Republic
| | - Filipa Bubeníčková
- Department of Veterinary Sciences, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, 16521, Prague, Czech Republic
| | - Peter Sutovsky
- Division of Animal Sciences, University of Missouri, Columbia, MO, 65211, USA.,Department of Obstetrics, Gynecology & Women's Health, University of Missouri, Columbia, MO, 65211, USA
| |
Collapse
|
11
|
Yeste M, Jones C, Amdani SN, Coward K. Oocyte Activation and Fertilisation: Crucial Contributors from the Sperm and Oocyte. Results Probl Cell Differ 2017; 59:213-239. [PMID: 28247051 DOI: 10.1007/978-3-319-44820-6_8] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
This chapter intends to summarise the importance of sperm- and oocyte-derived factors in the processes of sperm-oocyte binding and oocyte activation. First, we describe the initial interaction between sperm and the zona pellucida, with particular regard to acrosome exocytosis. We then describe how sperm and oocyte membranes fuse, with special reference to the discovery of the sperm protein IZUMO1 and its interaction with the oocyte membrane receptor JUNO. We then focus specifically upon oocyte activation, the fundamental process by which the oocyte is alleviated from metaphase II arrest by a sperm-soluble factor. The identity of this sperm factor has been the source of much debate recently, although mounting evidence, from several different laboratories, provides strong support for phospholipase C ζ (PLCζ), a sperm-specific phospholipase. Herein, we discuss the evidence in support of PLCζ and evaluate the potential role of other candidate proteins, such as post-acrosomal WW-binding domain protein (PAWP/WBP2NL). Since the cascade of downstream events triggered by the sperm-borne oocyte activation factor heavily relies upon specialised cellular machinery within the oocyte, we also discuss the critical role of oocyte-borne factors, such as the inositol trisphosphate receptor (IP3R), protein kinase C (PKC), store-operated calcium entry (SOCE) and calcium/calmodulin-dependent protein kinase II (CaMKII), during the process of oocyte activation. In order to place the implications of these various factors and processes into a clinical context, we proceed to describe their potential association with oocyte activation failure and discuss how clinical techniques such as the in vitro maturation of oocytes may affect oocyte activation ability. Finally, we contemplate the role of artificial oocyte activating agents in the clinical rescue of oocyte activation deficiency and discuss options for more endogenous alternatives.
Collapse
Affiliation(s)
- Marc Yeste
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, C/ Maria Aurèlia Campany, 69, Campus Montilivi, E-17071, Girona, Spain. .,Nuffield Department of Obstetrics and Gynaecology, University of Oxford, Level 3, Women's Centre, John Radcliffe Hospital, Headington, Oxford, UK.
| | - Celine Jones
- Nuffield Department of Obstetrics and Gynaecology, University of Oxford, Level 3, Women's Centre, John Radcliffe Hospital, Headington, Oxford, UK
| | - Siti Nornadhirah Amdani
- Nuffield Department of Obstetrics and Gynaecology, University of Oxford, Level 3, Women's Centre, John Radcliffe Hospital, Headington, Oxford, UK
| | - Kevin Coward
- Nuffield Department of Obstetrics and Gynaecology, University of Oxford, Level 3, Women's Centre, John Radcliffe Hospital, Headington, Oxford, UK
| |
Collapse
|
12
|
Schorr-Lenz AM, Alves J, Henckes NAC, Seibel PM, Benham AM, Bustamante-Filho IC. GnRH immunization alters the expression and distribution of protein disulfide isomerases in the epididymis. Andrology 2016; 4:957-63. [DOI: 10.1111/andr.12205] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 03/18/2016] [Accepted: 04/02/2016] [Indexed: 01/03/2023]
Affiliation(s)
- A. M. Schorr-Lenz
- Centro de Ciências Biológicas e da Saúde; Univates; Lajeado RS Brazil
| | - J. Alves
- Centro de Ciências Biológicas e da Saúde; Univates; Lajeado RS Brazil
| | - N. A. C. Henckes
- Centro de Ciências Biológicas e da Saúde; Univates; Lajeado RS Brazil
| | - P. M. Seibel
- Centro de Ciências Biológicas e da Saúde; Univates; Lajeado RS Brazil
| | - A. M. Benham
- School of Biological and Biomedical Sciences; Durham University; Durham UK
| | | |
Collapse
|
13
|
Urra FA, Pulgar R, Gutiérrez R, Hodar C, Cambiazo V, Labra A. Identification and molecular characterization of five putative toxins from the venom gland of the snake Philodryas chamissonis (Serpentes: Dipsadidae). Toxicon 2015; 108:19-31. [PMID: 26410112 DOI: 10.1016/j.toxicon.2015.09.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 09/20/2015] [Accepted: 09/21/2015] [Indexed: 12/01/2022]
Abstract
Philodryas chamissonis is a rear-fanged snake endemic to Chile. Its bite produces mild to moderate symptoms with proteolytic and anti-coagulant effects. Presently, the composition of the venom, as well as, the biochemical and structural characteristics of its toxins, remains unknown. In this study, we cloned and reported the first full-length sequences of five toxin-encoding genes from the venom gland of this species: Type III snake venom metalloprotease (SVMP), snake venom serine protease (SVSP), Cysteine-rich secretory protein (CRISP), α and β subunits of C-type lectin-like protein (CLP) and C-type natriuretic peptide (NP). These genes are highly expressed in the venom gland and their sequences exhibited a putative signal peptide, suggesting that these are components of the venom. These putative toxins had different evolutionary relationships with those reported for some front-fanged snakes, being SVMP, SVSP and CRISP of P. chamissonis closely related to the toxins present in Elapidae species, while NP was more related to those of Viperidae species. In addition, analyses suggest that the α and β subunits of CLP of P. chamissonis might have a α-subunit scaffold in common with Viperidae species, whose highly variable C-terminal region might have allowed the diversification in α and β subunits. Our results provide the first molecular description of the toxins possibly implicated in the envenomation of prey and humans by the bite of P. chamissonis.
Collapse
Affiliation(s)
- Félix A Urra
- Laboratorio de Neuroetología, Programa de Fisiología y Biofísica, Facultad de Medicina, Universidad de Chile, Casilla 70005, Correo 7, Santiago, Chile; Laboratorio de Cáncer y Bioenergética, Programa de Farmacología Molecular y Clínica, Facultad de Medicina, Universidad de Chile, Casilla 70005, Correo 7, Santiago, Chile.
| | - Rodrigo Pulgar
- Laboratorio de Bioinformática y Expresión Génica, INTA, Universidad de Chile and Fondap Center for Genome Regulation (CGR), El Líbano 5524, Santiago, Chile
| | - Ricardo Gutiérrez
- Laboratorio de Bioinformática y Expresión Génica, INTA, Universidad de Chile and Fondap Center for Genome Regulation (CGR), El Líbano 5524, Santiago, Chile
| | - Christian Hodar
- Laboratorio de Bioinformática y Expresión Génica, INTA, Universidad de Chile and Fondap Center for Genome Regulation (CGR), El Líbano 5524, Santiago, Chile
| | - Verónica Cambiazo
- Laboratorio de Bioinformática y Expresión Génica, INTA, Universidad de Chile and Fondap Center for Genome Regulation (CGR), El Líbano 5524, Santiago, Chile
| | - Antonieta Labra
- Laboratorio de Neuroetología, Programa de Fisiología y Biofísica, Facultad de Medicina, Universidad de Chile, Casilla 70005, Correo 7, Santiago, Chile; Department of Biosciences, Centre for Ecological and Evolutionary Synthesis, University of Oslo, PB1066 Blinder, 0316 Oslo, Norway.
| |
Collapse
|
14
|
Caballero I, Parrilla I, Almiñana C, del Olmo D, Roca J, Martínez EA, Vázquez JM. Seminal plasma proteins as modulators of the sperm function and their application in sperm biotechnologies. Reprod Domest Anim 2012; 47 Suppl 3:12-21. [PMID: 22681294 DOI: 10.1111/j.1439-0531.2012.02028.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Seminal plasma (SP) is known to play an important role in mammalian fertilization. However, the variability found in its composition among species, males and even fractions of the same ejaculate has made difficult to completely understand its effect in sperm function. Proteins are one of the major SP components that modulate sperm functionality. During the last years, intensive work has been performed to characterize the role of these proteins. They have been found to influence sperm capacitation, formation of the oviductal sperm reservoir and sperm-oocyte interaction. Sperm biotechnologies, such as sperm cryopreservation and flow cytometric sex-sorting, that involve a substantial dilution of the SP are detrimental to sperm quality. Attempts to improve the outcome of these biotechnologies include the restoration of SP, which has produced contradictory results. To overcome this variability, different research groups have proposed the application of isolated SP proteins. Herein, we will review the current knowledge in the role of the major SP proteins as modulators of sperm functionality. Furthermore, we will discuss the possible applications of the SP proteins in sperm cryopreservation and flow cytometric sex-sorting.
Collapse
Affiliation(s)
- I Caballero
- Academic Unit of Reproductive and Developmental Medicine, Department of Human Metabolism, The Medical School, University of Sheffield, Sheffield, UK.
| | | | | | | | | | | | | |
Collapse
|
15
|
Song CY, Gao B, Wu H, Wang XY, Zhou HY, Wang SZ, Li BC, Chen GH, Mao JD. Spatial and Temporal Gene Expression of Fn-Type II and Cysteine-Rich Secretory Proteins in the Reproductive Tracts and Ejaculated Sperm of Chinese Meishan Pigs. Reprod Domest Anim 2011; 46:848-53. [DOI: 10.1111/j.1439-0531.2011.01753.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
16
|
Maňásková-Postlerová P, Davidová N, Jonáková V. Biochemical and binding characteristics of boar epididymal fluid proteins. J Chromatogr B Analyt Technol Biomed Life Sci 2010; 879:100-6. [PMID: 21163710 DOI: 10.1016/j.jchromb.2010.11.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Revised: 11/11/2010] [Accepted: 11/22/2010] [Indexed: 10/18/2022]
Abstract
During the passage through the epididymis, testicular spermatozoa are directly exposed to epididymal fluid and undergo maturation. Proteins and glycoproteins of epididymal fluid may be adsorbed on the sperm surface and participate in the sperm maturation process, potentially in sperm capacitation, gamete recognition, binding and fusion. In present study, we separated proteins from boar epididymal fluid and tested their binding abilities. Boar epididymal fluid proteins were separated by size exclusion chromatography and by high-performance liquid chromatography with reverse phase (RP HPLC). The protein fractions were characterized by SDS-electrophoresis and the electrophoretic separated proteins after transfer to nitrocellulose membranes were tested for the interaction with biotin-labeled ligands: glycoproteins of zona pellucida (ZP), hyaluronic acid and heparin. Simultaneously, changes in the interaction of epididymal spermatozoa with biotin-labeled ligands after pre-incubation with epididymal fluid fractions were studied on microtiter plates by the ELBA (enzyme-linked binding assay) test. The affinity of some low-molecular-mass epididymal proteins (12-17 kDa and 23 kDa) to heparin and hyaluronic acid suggests their binding ability to oviductal proteoglycans of the porcine oviduct and a possible role during sperm capacitation. Epididymal proteins of 12-18 kDa interacted with ZP glycoproteins. One of them was identified as Crisp3-like protein. The method using microtiter plates showed the ability of epididymal fluid fractions to change the interaction of the epididymal sperm surface with biotin-labeled ligands (ZP glycoproteins, hyaluronic acid and heparin). These findings indicate that some epididymal fluid proteins are bound to the sperm surface during epididymal maturation and might play a role in the sperm capacitation or the sperm-zona pellucida binding.
Collapse
Affiliation(s)
- Pavla Maňásková-Postlerová
- Laboratory of Diagnostics for Reproductive Medicine, Institute of Biotechnology, Academy of Sciences of the Czech Republic, v.v.i., Vídeňská 1083, 142 20 Prague 4, Czech Republic.
| | | | | |
Collapse
|