1
|
Li F, Karimi N, Wang S, Pan T, Dong J, Wang X, Ma S, Shan Q, Liu C, Zhang Y, Li W, Feng G. mRNA isoform switches during mouse zygotic genome activation. Cell Prolif 2024; 57:e13655. [PMID: 38764347 PMCID: PMC11216927 DOI: 10.1111/cpr.13655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/29/2024] [Accepted: 05/03/2024] [Indexed: 05/21/2024] Open
Affiliation(s)
- Fan Li
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of Zoology, Chinese Academy of SciencesBeijingChina
- Key Laboratory of Organ Regeneration and ReconstructionChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Najmeh Karimi
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of Zoology, Chinese Academy of SciencesBeijingChina
- Key Laboratory of Organ Regeneration and ReconstructionChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Siqi Wang
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of Zoology, Chinese Academy of SciencesBeijingChina
- Key Laboratory of Organ Regeneration and ReconstructionChinese Academy of SciencesBeijingChina
- Beijing Institute for Stem Cell and Regenerative MedicineBeijingChina
| | - Tianshi Pan
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of Zoology, Chinese Academy of SciencesBeijingChina
- Key Laboratory of Organ Regeneration and ReconstructionChinese Academy of SciencesBeijingChina
- College of Life SciencesNortheast Agricultural UniversityHarbinChina
| | - Jingxi Dong
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of Zoology, Chinese Academy of SciencesBeijingChina
- Key Laboratory of Organ Regeneration and ReconstructionChinese Academy of SciencesBeijingChina
| | - Xin Wang
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of Zoology, Chinese Academy of SciencesBeijingChina
- Key Laboratory of Organ Regeneration and ReconstructionChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
- Medical SchoolUniversity of Chinese Academy of SciencesBeijingChina
| | - Sinan Ma
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of Zoology, Chinese Academy of SciencesBeijingChina
- Key Laboratory of Organ Regeneration and ReconstructionChinese Academy of SciencesBeijingChina
- College of Life SciencesNortheast Agricultural UniversityHarbinChina
| | - Qingtong Shan
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of Zoology, Chinese Academy of SciencesBeijingChina
- Key Laboratory of Organ Regeneration and ReconstructionChinese Academy of SciencesBeijingChina
- College of Life SciencesNortheast Agricultural UniversityHarbinChina
| | - Chao Liu
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of Zoology, Chinese Academy of SciencesBeijingChina
- Key Laboratory of Organ Regeneration and ReconstructionChinese Academy of SciencesBeijingChina
- Beijing Institute for Stem Cell and Regenerative MedicineBeijingChina
| | - Ying Zhang
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of Zoology, Chinese Academy of SciencesBeijingChina
- Key Laboratory of Organ Regeneration and ReconstructionChinese Academy of SciencesBeijingChina
- Beijing Institute for Stem Cell and Regenerative MedicineBeijingChina
| | - Wei Li
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of Zoology, Chinese Academy of SciencesBeijingChina
- Key Laboratory of Organ Regeneration and ReconstructionChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
- Beijing Institute for Stem Cell and Regenerative MedicineBeijingChina
| | - Guihai Feng
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of Zoology, Chinese Academy of SciencesBeijingChina
- Key Laboratory of Organ Regeneration and ReconstructionChinese Academy of SciencesBeijingChina
- Beijing Institute for Stem Cell and Regenerative MedicineBeijingChina
| |
Collapse
|
2
|
Han Y, Shan TD, Huang HT, Song MQ, Chen L, Li Q. Activation of lncRNA DANCR by H3K27 acetylation regulates proliferation of colorectal cancer cells. Discov Oncol 2024; 15:249. [PMID: 38940959 PMCID: PMC11213841 DOI: 10.1007/s12672-024-01124-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/25/2024] [Indexed: 06/29/2024] Open
Abstract
The long noncoding DANCR functions as a tumor oncogene in many cancers, including colorectal cancer (CRC). However, the molecular mechanism of DANCR in CRC has not been explored. This study probed the function and potential mechanism by which DANCR contributes to the progression of CRC. The obtained data indicated that DANCR is overexpressed in CRC tissues and cell lines. Knockdown of DANCR hindered CRC cell proliferation, which was mediated by cyclin D1 and CDK4. Bioinformatic analysis, luciferase reporter assays and subcellular fractionation verified that DANCR directly binds to miR-508-5p. Moreover, DANCR acts as a miR-508-5p ceRNA to regulate expression of ATF1. In addition, upregulation of DANCR is attributed to H3K27 acetylation at the promoter region. In conclusion, our study confirmed that activation of lncRNA DANCR by H3K27 acetylation has an oncogenic role in CRC progression and provides a potential therapeutic target for CRC.
Collapse
Affiliation(s)
- Yue Han
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao University, 16 Jiang Su Road, Qingdao, 266000, Shandong, People's Republic of China
| | - Ti-Dong Shan
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao University, 16 Jiang Su Road, Qingdao, 266000, Shandong, People's Republic of China.
| | - Hai-Tao Huang
- The International Medical Department, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, 262000, People's Republic of China
| | - Ming-Quan Song
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao University, 16 Jiang Su Road, Qingdao, 266000, Shandong, People's Republic of China
| | - Li Chen
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao University, 16 Jiang Su Road, Qingdao, 266000, Shandong, People's Republic of China
| | - Qian Li
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao University, 16 Jiang Su Road, Qingdao, 266000, Shandong, People's Republic of China
| |
Collapse
|
3
|
Zhang Y, He XJ, Barron AB, Li Z, Jin MJ, Wang ZL, Huang Q, Zhang LZ, Wu XB, Yan WY, Zeng ZJ. The diverging epigenomic landscapes of honeybee queens and workers revealed by multiomic sequencing. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2023; 155:103929. [PMID: 36906046 DOI: 10.1016/j.ibmb.2023.103929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/27/2023] [Accepted: 03/02/2023] [Indexed: 05/10/2023]
Abstract
The role of the epigenome in phenotypic plasticity is unclear presently. Here we used a multiomics approach to explore the nature of the epigenome in developing honey bee (Apis mellifera) workers and queens. Our data clearly showed distinct queen and worker epigenomic landscapes during the developmental process. Differences in gene expression between workers and queens become more extensive and more layered during the process of development. Genes known to be important for caste differentiation were more likely to be regulated by multiple epigenomic systems than other differentially expressed genes. We confirmed the importance of two candidate genes for caste differentiation by using RNAi to manipulate the expression of two genes that differed in expression between workers and queens were regulated by multiple epigenomic systems. For both genes the RNAi manipulation resulted in a decrease in weight and fewer ovarioles of newly emerged queens compared to controls. Our data show that the distinct epigenomic landscapes of worker and queen bees differentiate during the course of larval development.
Collapse
Affiliation(s)
- Yong Zhang
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045, PR China; Jiangxi Province Honeybee Biology and Beekeeping Nanchang, Jiangxi, 330045, PR China
| | - Xu Jiang He
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045, PR China; Jiangxi Province Honeybee Biology and Beekeeping Nanchang, Jiangxi, 330045, PR China
| | - Andrew B Barron
- Department of Biological Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
| | - Zhen Li
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045, PR China; Jiangxi Province Honeybee Biology and Beekeeping Nanchang, Jiangxi, 330045, PR China
| | - Meng Jie Jin
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045, PR China; Jiangxi Province Honeybee Biology and Beekeeping Nanchang, Jiangxi, 330045, PR China
| | - Zi Long Wang
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045, PR China; Jiangxi Province Honeybee Biology and Beekeeping Nanchang, Jiangxi, 330045, PR China
| | - Qiang Huang
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045, PR China; Jiangxi Province Honeybee Biology and Beekeeping Nanchang, Jiangxi, 330045, PR China
| | - Li Zhen Zhang
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045, PR China; Jiangxi Province Honeybee Biology and Beekeeping Nanchang, Jiangxi, 330045, PR China
| | - Xiao Bo Wu
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045, PR China; Jiangxi Province Honeybee Biology and Beekeeping Nanchang, Jiangxi, 330045, PR China
| | - Wei Yu Yan
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045, PR China; Jiangxi Province Honeybee Biology and Beekeeping Nanchang, Jiangxi, 330045, PR China
| | - Zhi Jiang Zeng
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045, PR China; Jiangxi Province Honeybee Biology and Beekeeping Nanchang, Jiangxi, 330045, PR China.
| |
Collapse
|
4
|
Yu J, Xie X, Ma Y, Yang Y, Wang C, Xia G, Ding X, Liu X. Effects and potential mechanism of Ca 2+/calmodulin‑dependent protein kinase II pathway inhibitor KN93 on the development of ovarian follicle. Int J Mol Med 2022; 50:121. [PMID: 35929517 PMCID: PMC9387563 DOI: 10.3892/ijmm.2022.5177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/11/2022] [Indexed: 11/09/2022] Open
Abstract
Adequate regulation of the speed of follicular development has been reported to prolong the reproductive life of the ovary. The aim of the present study was to assess the potential effects and mechanism of the Ca2+/calmodulin-dependent protein kinase II (CaMKII) pathway on the development of ovarian follicle. In the present study, the expression of CaMKII was measured in the ovary of mice at different developmental stages by immunofluorescence, confirming that CaMKII has a role in follicular development. Subsequently, the 17.5 days post-coitus (dpc) embryonic ovaries were collected and cultured with KN93 for 4 days in vitro. It was revealed that KN93 inhibited the development of follicles, where it reduced the expression levels of oocyte and granulosa cell markers DEAD-box helicase 4 (DDX4) and forkhead box L2 (FOXL2). These results suggested that KN93 could delay follicular development. Proteomics technology was then used to find that 262 proteins of KN93 treated 17.5 dpc embryonic ovaries were significantly altered after in vitro culture. Bioinformatics analysis was used to analyze these altered proteins. In total, four important Kyoto Encyclopedia of Genes and Genome pathways, namely steroid biosynthesis, p53 signaling pathway and retinol metabolism and metabolic pathways, were particularly enriched. Further analysis revealed that the upregulated proteins NADP-dependent steroid dehydrogenase-like (Nsdhl), lanosterol synthase (Lss), farnesyl-diphosphate farnesyltransferase 1 (Fdft1), cytochrome P450 family 51 family A member 1 (Cyp51a1), hydroxymethylglutaryl-CoA synthase 1 (Hmgcs1), fatty acid synthase (Fasn) and dimethylallyltranstransferase (Fdps) were directly interacting with each other in the four enriched pathways. In summary, the potential mechanism of KN93 in slowing down follicular development most likely lies in its inhibitory effects on CaMKII, which upregulated the expression of Nsdhl, Lss, Fdft1, Cyp51a1, Hmgcs1, Fasn and Fdps. This downregulated the expression of oocyte and granulosa cell markers DDX4 and FOXL2 in the follicles, thereby delaying follicular development. Overall, these results provide novel insight into the potential mechanism by which KN93 and CaMKII can delay follicular development.
Collapse
Affiliation(s)
- Jianjie Yu
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in Western China, College of Life Science, Ningxia University, Yinchuan, Ningxia Hui Autonomous Region 750021, P.R. China
| | - Xianguo Xie
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in Western China, College of Life Science, Ningxia University, Yinchuan, Ningxia Hui Autonomous Region 750021, P.R. China
| | - Yabo Ma
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in Western China, College of Life Science, Ningxia University, Yinchuan, Ningxia Hui Autonomous Region 750021, P.R. China
| | - Yi Yang
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in Western China, College of Life Science, Ningxia University, Yinchuan, Ningxia Hui Autonomous Region 750021, P.R. China
| | - Chao Wang
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in Western China, College of Life Science, Ningxia University, Yinchuan, Ningxia Hui Autonomous Region 750021, P.R.China
| | - Guoliang Xia
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in Western China, College of Life Science, Ningxia University, Yinchuan, Ningxia Hui Autonomous Region 750021, P.R. China
| | - Xiangbin Ding
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300384, P.R. China
| | - Xinfeng Liu
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in Western China, College of Life Science, Ningxia University, Yinchuan, Ningxia Hui Autonomous Region 750021, P.R. China
| |
Collapse
|
5
|
ATF1 Restricts Human Herpesvirus 6A Replication via Beta Interferon Induction. J Virol 2022; 96:e0126422. [PMID: 36154610 DOI: 10.1128/jvi.01264-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The stimulus-induced cAMP response element (CRE)-binding protein (CREB) family of transcription factors bind to CREs to regulate diverse cellular responses, including proliferation, survival, and differentiation. Human herpesvirus 6A (HHV-6A), which belongs to the Betaherpesvirinae subfamily, is a lymphotropic herpesvirus frequently found in patients with neuroinflammatory diseases. Previous reports implicated the importance of CREs in the HHV-6A life cycle, although the effects of the binding of transcription factors to CREs in viral replication have not been fully elucidated. In this study, we analyzed the role of the CREB family of transcription factors during HHV-6A replication. We found that HHV-6A infection enhanced phosphorylation of the CREB family members CREB1 and activating transcription factor 1 (ATF1). Knockout (KO) of CREB1 or ATF1 enhanced viral gene expression and viral replication. The increase in viral yields in supernatants from ATF1-KO cells was greater than that in supernatants from CREB1-KO cells. Transcriptome sequencing (RNA-seq) analysis showed that sensors of the innate immune system were downregulated in ATF1-KO cells, and mRNAs of beta interferon (IFN-β) and IFN-regulated genes were reduced in these cells infected with HHV-6A. IFN-β treatment of ATF1-KO cells reduced progeny viral yields significantly, suggesting that the enhancement of viral replication was caused by a reduction of IFN-β. Taken together, our results suggest that ATF1 is activated during HHV-6A infection and restricts viral replication via IFN-β induction. IMPORTANCE Human herpesvirus 6A (HHV-6A) is a ubiquitous herpesvirus implicated in Alzheimer's disease, although its role in its pathogenesis has not been confirmed. Here, we showed that the transcription factor ATF1 restricts HHV-6A replication, mediated by IFN-β induction. Our study provides new insights into the role of ATF1 in innate viral immunity and reveals the importance of IFN-β for regulation of HHV-6A replication, which possibly impairs HHV-6A pathogenesis.
Collapse
|
6
|
Maleki-Ghaleh H, Siadati MH, Omidi Y, Kavanlouei M, Barar J, Akbari-Fakhrabadi A, Adibkia K, Beygi-Khosrowshahi Y. Synchrotron SAXS/WAXS and TEM studies of zinc doped natural hydroxyapatite nanoparticles and their evaluation on osteogenic differentiation of human mesenchymal stem cells. MATERIALS CHEMISTRY AND PHYSICS 2022; 276:125346. [DOI: 10.1016/j.matchemphys.2021.125346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
7
|
Li Y, Tang J, Ji X, Hua MM, Liu M, Chang L, Gu Y, Shi C, Ni W, Liu J, Shi HJ, Huang X, O'Neill C, Jin X. Regulation of the mammalian maternal-to-embryonic transition by eukaryotic translation initiation factor 4E. Development 2021; 148:268308. [PMID: 34013332 PMCID: PMC8254863 DOI: 10.1242/dev.190793] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 05/12/2021] [Indexed: 12/24/2022]
Abstract
Eukaryotic translation initiation factor 4E (eIF4E) mediates cap-dependent translation. Genetic and inhibitor studies show that eIF4E expression is required for the successful transition from maternal to embryonic control of mouse embryo development. eIF4E was present in the oocyte and in the cytoplasm soon after fertilization and during each stage of early development. Functional knockout (Eif4e−/−) by PiggyBac [Act-RFP] transposition resulted in peri-implantation embryonic lethality because of the failure of normal epiblast formation. Maternal stores of eIF4E supported development up to the two- to four-cell stage, after which new expression occurred from both maternal and paternal inherited alleles. Inhibition of the maternally acquired stores of eIF4E (using the inhibitor 4EGI-1) resulted in a block at the two-cell stage. eIF4E activity was required for new protein synthesis in the two-cell embryo and Eif4e−/− embryos had lower translational activity compared with wild-type embryos. eIF4E-binding protein 1 (4E-BP1) is a hypophosphorylation-dependent negative regulator of eIF4E. mTOR activity was required for 4E-BP1 phosphorylation and inhibiting mTOR retarded embryo development. Thus, this study shows that eIF4E activity is regulated at key embryonic transitions in the mammalian embryo and is essential for the successful transition from maternal to embryonic control of development. Summary: Combined use of a PB [Act-RFP] transgenesis model, selective pharmacological inhibition and expression analyses verified the essential role of eIF4E in the transition from maternal to embryonic control of mouse development.
Collapse
Affiliation(s)
- Yan Li
- Reproductive Medicine Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, 325000, China
| | - Jianan Tang
- NHC Key Lab of Reproduction Regulation, Shanghai Institute of Planned Parenthood Research, Fudan University, Shanghai, 200032, China
| | - Xu Ji
- Department of Pharmacology, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, Jiangsu Province, 211816, China
| | - Min-Min Hua
- NHC Key Lab of Reproduction Regulation, Shanghai Institute of Planned Parenthood Research, Fudan University, Shanghai, 200032, China
| | - Miao Liu
- Reproductive Medical Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Lu Chang
- Department of Pharmacology, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, Jiangsu Province, 211816, China
| | - Yihua Gu
- NHC Key Lab of Reproduction Regulation, Shanghai Institute of Planned Parenthood Research, Fudan University, Shanghai, 200032, China
| | - Changgen Shi
- NHC Key Lab of Reproduction Regulation, Shanghai Institute of Planned Parenthood Research, Fudan University, Shanghai, 200032, China
| | - Wuhua Ni
- Reproductive Medicine Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, 325000, China
| | - Jing Liu
- Department of Pharmacology, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, Jiangsu Province, 211816, China
| | - Hui-Juan Shi
- NHC Key Lab of Reproduction Regulation, Shanghai Institute of Planned Parenthood Research, Fudan University, Shanghai, 200032, China
| | - Xuefeng Huang
- Reproductive Medicine Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, 325000, China
| | - Christopher O'Neill
- Human Reproduction Unit, Sydney Center for Regenerative and Developmental Medicine, Kolling Institute for Medical Research, Sydney Medical School, University of Sydney, St. Leonards, New South Wales, 2065, Australia
| | - Xingliang Jin
- Reproductive Medicine Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, 325000, China.,Human Reproduction Unit, Sydney Center for Regenerative and Developmental Medicine, Kolling Institute for Medical Research, Sydney Medical School, University of Sydney, St. Leonards, New South Wales, 2065, Australia
| |
Collapse
|
8
|
Tabara M, Shiraishi K, Takii R, Fujimoto M, Nakai A, Matsuyama H. Testicular localization of activating transcription factor 1 and its potential function during spermatogenesis. Biol Reprod 2021; 105:976-986. [PMID: 34007999 DOI: 10.1093/biolre/ioab099] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 04/16/2021] [Accepted: 05/14/2021] [Indexed: 12/13/2022] Open
Abstract
Activating transcription factor 1 (ATF1), belonging to the CREB/ATF family of transcription factors, is highly expressed in the testes. However, its role in spermatogenesis has not yet been established. Here, we aimed to elucidate the impact of ATF1 in spermatogenesis by examining the expression pattern of ATF1 in mice and the effect of ATF1 knockdown in the mouse testes. We found that ATF1 is expressed in various organs, with very high levels in the testes. Immunohistochemical staining showed that ATF1 was localized in the nuclei of spermatogonia and co-localized with proliferating cell nuclear antigen. In ATF1-deficient mice, the seminiferous tubules of the testis contained cells at all developmental stages; however, the number of spermatocytes was decreased. Proliferating cell nuclear antigen expression was decreased and apoptotic cells were rare in the seminiferous tubules. These results indicate that ATF1 plays a role in male germ cell proliferation and sperm production.
Collapse
Affiliation(s)
- Masanori Tabara
- Department of Urology, School of Medicine, Yamaguchi University, Ube, Yamaguchi 755-8505, Japan.,Department of Biochemistry and Molecular Biology, School of Medicine, Yamaguchi University, Ube, Yamaguchi 755-8505, Japan
| | - Koji Shiraishi
- Department of Urology, School of Medicine, Yamaguchi University, Ube, Yamaguchi 755-8505, Japan
| | - Ryosuke Takii
- Department of Biochemistry and Molecular Biology, School of Medicine, Yamaguchi University, Ube, Yamaguchi 755-8505, Japan
| | - Mitsuaki Fujimoto
- Department of Biochemistry and Molecular Biology, School of Medicine, Yamaguchi University, Ube, Yamaguchi 755-8505, Japan
| | - Akira Nakai
- Department of Biochemistry and Molecular Biology, School of Medicine, Yamaguchi University, Ube, Yamaguchi 755-8505, Japan
| | - Hideyasu Matsuyama
- Department of Urology, School of Medicine, Yamaguchi University, Ube, Yamaguchi 755-8505, Japan
| |
Collapse
|
9
|
Vandenberghe LTM, Heindryckx B, Smits K, Popovic M, Szymanska K, Bonte D, Peelman L, Deforce D, De Sutter P, Van Soom A, De Schauwer C. Intracellular localisation of platelet-activating factor during mammalian embryo development in vitro: a comparison of cattle, mouse and human. Reprod Fertil Dev 2018; 31:658-670. [PMID: 30458920 DOI: 10.1071/rd18146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 10/05/2018] [Indexed: 11/23/2022] Open
Abstract
Platelet-activating factor (PAF) is a well-known marker for embryo quality and viability. For the first time, we describe an intracellular localisation of PAF in oocytes and embryos of cattle, mice and humans. We showed that PAF is represented in the nucleus, a signal that was lost upon nuclear envelope breakdown. This process was confirmed by treating the embryos with nocodazole, a spindle-disrupting agent that, as such, arrests the embryo in mitosis, and by microinjecting a PAF-specific antibody in bovine MII oocytes. The latter resulted in the absence of nuclear PAF in the pronuclei of the zygote and reduced further developmental potential. Previous research indicates that PAF is released and taken up from the culture medium by preimplantation embryos invitro, in which bovine serum albumin (BSA) serves as a crucial carrier molecule. In the present study we demonstrated that nuclear PAF does not originate from an extracellular source because embryos cultured in polyvinylpyrrolidone or BSA showed similar levels of PAF in their nuclei. Instead, our experiments indicate that cytosolic phospholipase A2 (cPLA2) is likely to be involved in the intracellular production of PAF, because treatment with arachidonyl trifluoromethyl ketone (AACOCF3), a specific cPLA2 inhibitor, clearly lowered PAF levels in the nuclei of bovine embryos.
Collapse
Affiliation(s)
- L T M Vandenberghe
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - B Heindryckx
- Ghent-Fertility and Stem cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium
| | - K Smits
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - M Popovic
- Ghent-Fertility and Stem cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium
| | - K Szymanska
- Physiology Group, Department of Basic Medical Sciences, Ghent University, De Pintelaan 185, 9000 Ghent, Belgium
| | - D Bonte
- Ghent-Fertility and Stem cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium
| | - L Peelman
- Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Heidestraat 19, 9820 Merelbeke, Belgium
| | - D Deforce
- Laboratory of Pharmaceutical Biotechnology, Ghent University, Harelbekestraat 72, 9000 Ghent, Belgium
| | - P De Sutter
- Ghent-Fertility and Stem cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium
| | - A Van Soom
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - C De Schauwer
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| |
Collapse
|
10
|
Park KH, Choi Y, Yoon DS, Lee KM, Kim D, Lee JW. Zinc Promotes Osteoblast Differentiation in Human Mesenchymal Stem Cells Via Activation of the cAMP-PKA-CREB Signaling Pathway. Stem Cells Dev 2018; 27:1125-1135. [PMID: 29848179 DOI: 10.1089/scd.2018.0023] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The crucial trace element zinc stimulates osteogenesis in vitro and in vivo. However, the pathways mediating these effects remain poorly understood. This study aimed to investigate the effects of zinc on osteoblast differentiation in human bone marrow-derived mesenchymal stem cells (hBMSCs) and to identify the molecular mechanisms of these effects. In hBMSCs, zinc exposure resulted in a dose-dependent increase in osteogenesis and increased mRNA and protein levels of the master transcriptional factor RUNX2. Analyzing the upstream signaling pathways of RUNX2, we found that protein kinase A (PKA) signaling inhibition blocked zinc-induced osteogenic effects. Zinc exposure increased transcriptional activity and protein levels of phospho-CREB and enhanced translocation of phospho-CREB into the nucleus. These effects were reversed by H-89, a potent inhibitor of PKA. Moreover, zinc exposure led to dose-dependent increases in levels of intracellular cyclic adenosine monophosphate (cAMP). These findings indicate that zinc activates the PKA signaling pathway by triggering an increase in intracellular cAMP, leading to enhanced osteogenic differentiation in hBMSCs. Our results suggest that zinc exerts osteogenic effects in hBMSCs by activation of RUNX2 via the cAMP-PKA-CREB signaling pathway. Zinc supplementation may offer a promise as a potential pharmaceutical therapy for osteoporosis and other bone loss conditions.
Collapse
Affiliation(s)
- Kwang Hwan Park
- 1 Department of Orthopaedic Surgery, Yonsei University College of Medicine , Seoul, South Korea
| | - Yoorim Choi
- 1 Department of Orthopaedic Surgery, Yonsei University College of Medicine , Seoul, South Korea .,2 Brain Korea 21 Plus Project for Medical Sciences, Yonsei University College of Medicine , Seoul, South Korea
| | - Dong Suk Yoon
- 3 Department of Internal Medicine, Brody School of Medicine at East Carolina University , Greenville, North Carolina
| | - Kyoung-Mi Lee
- 1 Department of Orthopaedic Surgery, Yonsei University College of Medicine , Seoul, South Korea .,4 Severance Biomedical Science Institute, Yonsei University College of Medicine , South Korea
| | - Dohyun Kim
- 1 Department of Orthopaedic Surgery, Yonsei University College of Medicine , Seoul, South Korea
| | - Jin Woo Lee
- 1 Department of Orthopaedic Surgery, Yonsei University College of Medicine , Seoul, South Korea .,2 Brain Korea 21 Plus Project for Medical Sciences, Yonsei University College of Medicine , Seoul, South Korea .,4 Severance Biomedical Science Institute, Yonsei University College of Medicine , South Korea
| |
Collapse
|
11
|
Bertoldo MJ, Locatelli Y, O'Neill C, Mermillod P. Impacts of and interactions between environmental stress and epigenetic programming during early embryo development. Reprod Fertil Dev 2017; 27:1125-36. [PMID: 24965854 DOI: 10.1071/rd14049] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 03/31/2014] [Indexed: 01/24/2023] Open
Abstract
The processes of assisted reproductive technologies (ART) involve a variety of interventions that impact on the oocyte and embryo. Critically, these interventions cause considerable stress and coincide with important imprinting events throughout gametogenesis, fertilisation and early embryonic development. It is now accepted that the IVM and in vitro development of gametes and embryos can perturb the natural course of development to varying degrees of severity. Altered gene expression and, more recently, imprinting disorders relating to ART have become a focused area of research. Although various hypotheses have been put forward, most research has been observational, with little attempt to discover the mechanisms and periods of sensitivity during embryo development that are influenced by the culture conditions following fertilisation. The embryo possesses innate survival factor signalling pathways, yet when an embryo is placed in culture, this signalling in response to in vitro stress becomes critically important in mitigating the effects of stresses caused by the in vitro environment. It is apparent that not all embryos possess this ability to adequately adapt to the stresses experienced in vitro, most probably due to an inadequate oocyte. It is speculated that it is important that embryos use their survival signalling mechanisms to maintain normal epigenetic programming. The seeming redundancy in the function of various survival signalling pathways would support this notion. Any invasion into the natural, highly orchestrated and dynamic process of sexual reproduction could perturb the normal progression of epigenetic programming. Therefore the source of gametes and the subsequent culture conditions of gametes and embryos are critically important and require careful attention. It is the aim of this review to highlight avenues of research to elucidate the effects of stress and the relationship with epigenetic programming. The short- and long-term health and viability of human and animal embryos derived in vitro will also be discussed.
Collapse
Affiliation(s)
- Michael J Bertoldo
- Institut National de la Recherche Agronomique (INRA), UMR85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
| | - Yann Locatelli
- Institut National de la Recherche Agronomique (INRA), UMR85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
| | - Christopher O'Neill
- Centre for Developmental and Regenerative Medicine, Kolling Institute for Medical Research, Sydney Medical School, University of Sydney, NSW 2065, Australia
| | - Pascal Mermillod
- Institut National de la Recherche Agronomique (INRA), UMR85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
| |
Collapse
|
12
|
Orozco-Lucero E, Dufort I, Sirard MA. Regulation of ATF1 and ATF2 transcripts by sequences in their 3' untranslated region in cleavage-stage cattle embryos. Mol Reprod Dev 2017; 84:296-309. [PMID: 28198054 DOI: 10.1002/mrd.22785] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 01/06/2017] [Accepted: 01/31/2017] [Indexed: 12/22/2022]
Abstract
The sequence of a 3' untranslated region (3'UTR) of mRNA governs the timing of its polyadenylation and translation in mammalian oocytes and early embryos. The objective of this study was to assess the influence of cis-elements in the 3'UTR of the developmentally important ATF1 and ATF2 transcripts on their timely translation during first cleavages in bovine embryos. Eight different reporter mRNAs (coding sequence of green fluorescent protein [GFP] fused to the 3'UTR of short or long isoforms of cattle ATF1 or -2, with or without polyadenylation) or a control GFP mRNA were microinjected separately into presumptive bovine zygotes at 18 hr post-insemination (hpi), followed by epifluorescence assessment for GFP translation between 24 and 80 hpi (expressed as percentage of GFP-positive embryos calculated from the total number of individuals). The presence of either polyadenine or 3'UTR sequence in deadenylated constructs is required for GFP translation (implying the need for polyadenylation), and all exogenous mRNAs that met either criteria were translated as soon as 24 hpi-except for long-deadenylated ATF2-UTR, whose translation began at 36 hpi. Overall, GFP was more visibly translated in competent (cleaving) embryos, particularly in long ATF1/2 constructs. The current data shows a timely GFP translation in bovine embryos depending on sequences in the 3'UTR of ATF1/2, and indicates a difference between short and long isoforms. In addition, cleaving embryos displayed increased translational capacity of the tested constructs. Functional confirmation of the identification cis-sequences in the 3'UTR of ATF1/2 will contribute to the understanding of maternal mRNA translation regulation during early cattle development.
Collapse
Affiliation(s)
- Ernesto Orozco-Lucero
- Faculté des Sciences de l'Agriculture et de l'Alimentation, Département des Sciences Animales, Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle (CRDSI), Pavillon INAF, Université Laval, Québec, Quebec, Canada
| | - Isabelle Dufort
- Faculté des Sciences de l'Agriculture et de l'Alimentation, Département des Sciences Animales, Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle (CRDSI), Pavillon INAF, Université Laval, Québec, Quebec, Canada
| | - Marc-André Sirard
- Faculté des Sciences de l'Agriculture et de l'Alimentation, Département des Sciences Animales, Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle (CRDSI), Pavillon INAF, Université Laval, Québec, Quebec, Canada
| |
Collapse
|
13
|
Finley J. Oocyte activation and latent HIV-1 reactivation: AMPK as a common mechanism of action linking the beginnings of life and the potential eradication of HIV-1. Med Hypotheses 2016; 93:34-47. [PMID: 27372854 DOI: 10.1016/j.mehy.2016.05.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 05/12/2016] [Indexed: 01/22/2023]
Abstract
In all mammalian species studied to date, the initiation of oocyte activation is orchestrated through alterations in intracellular calcium (Ca(2+)) signaling. Upon sperm binding to the oocyte plasma membrane, a sperm-associated phospholipase C (PLC) isoform, PLC zeta (PLCζ), is released into the oocyte cytoplasm. PLCζ hydrolyzes phosphatidylinositol 4,5-bisphosphate (PIP2) to produce diacylglycerol (DAG), which activates protein kinase C (PKC), and inositol 1,4,5-trisphosphate (IP3), which induces the release of Ca(2+) from endoplasmic reticulum (ER) Ca(2+) stores. Subsequent Ca(2+) oscillations are generated that drive oocyte activation to completion. Ca(2+) ionophores such as ionomycin have been successfully used to induce artificial human oocyte activation, facilitating fertilization during intra-cytoplasmic sperm injection (ICSI) procedures. Early studies have also demonstrated that the PKC activator phorbol 12-myristate 13-acetate (PMA) acts synergistically with Ca(2+) ionophores to induce parthenogenetic activation of mouse oocytes. Interestingly, the Ca(2+)-induced signaling cascade characterizing sperm or chemically-induced oocyte activation, i.e. the "shock and live" approach, bears a striking resemblance to the reactivation of latently infected HIV-1 viral reservoirs via the so called "shock and kill" approach, a method currently being pursued to eradicate HIV-1 from infected individuals. PMA and ionomycin combined, used as positive controls in HIV-1 latency reversal studies, have been shown to be extremely efficient in reactivating latent HIV-1 in CD4(+) memory T cells by inducing T cell activation. Similar to oocyte activation, T cell activation by PMA and ionomycin induces an increase in intracellular Ca(2+) concentrations and activation of DAG, PKC, and downstream Ca(2+)-dependent signaling pathways necessary for proviral transcription. Interestingly, AMPK, a master regulator of cell metabolism that is activated thorough the induction of cellular stress (e.g. increase in Ca(2+) concentration, reactive oxygen species generation, increase in AMP/ATP ratio) is essential for oocyte maturation, T cell activation, and mitochondrial function. In addition to the AMPK kinase LKB1, CaMKK2, a Ca(2+)/calmodulin-dependent kinase that also activates AMPK, is present in and activated on T cell activation and is also present in mouse oocytes and persists until the zygote and two-cell stages. It is our hypothesis that AMPK activation represents a central node linking T cell activation-induced latent HIV-1 reactivation and both physiological and artificial oocyte activation. We further propose the novel observation that various compounds that have been shown to reactivate latent HIV-1 (e.g. PMA, ionomycin, metformin, bryostatin, resveratrol, etc.) or activate oocytes (PMA, ionomycin, ethanol, puromycin, etc.) either alone or in combination likely do so via stress-induced activation of AMPK.
Collapse
|
14
|
O’Neill C, Li Y, Jin X. Survival Signalling in the Preimplantation Embryo. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 843:129-49. [DOI: 10.1007/978-1-4939-2480-6_5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
15
|
Armant DR. Intracellular Ca2+ signaling and preimplantation development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 843:151-71. [PMID: 25956298 PMCID: PMC10412982 DOI: 10.1007/978-1-4939-2480-6_6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The key, versatile role of intracellular Ca2+ signaling during egg activation after fertilization has been appreciated for several decades. More recently, evidence has accumulated supporting the concept that cytoplasmic Ca2+ is also a major signaling nexus during subsequent development of the fertilized ovum. This chapter will review the molecular reactions that regulate intracellular Ca2+ levels and cell function, the role of Ca2+ signaling during egg activation and specific examples of repetitive Ca2+ signaling found throughout pre- and peri-implantation development. Many of the upstream and downstream pathways utilized during egg activation are also critical for specific processes that take place during embryonic development. Much remains to be done to elucidate the full complexity of Ca2+ signaling mechanisms in preimplantation embryos to the level of detail accomplished for egg activation. However, an emerging concept is that because this second messenger can be modulated downstream of numerous receptors and is able to bind and activate multiple cytoplasmic signaling proteins, it can help the coordination of development through up- and downstream pathways that change with each embryonic stage.
Collapse
Affiliation(s)
- D Randall Armant
- Department of Obstetrics and Gynecology, Wayne State University C.S. Mott Center for Human Growth and Development, 275 E. Hancock Street, 48201-1405, Detroit, MI, USA,
| |
Collapse
|
16
|
Jin XL, O'Neill C. The regulation of the expression and activation of the essential ATF1 transcription factor in the mouse preimplantation embryo. Reproduction 2014; 148:147-57. [DOI: 10.1530/rep-13-0535] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The co-expression of the CREB and ATF1 transcription factors is required for the development of preimplantation embryos. Embryotropin-mediated, calcium/calmodulin-dependent signalling activates CREB-induced transcription in the two-cell embryo, but the regulation of ATF1 in the embryo is not known. This study demonstrates that ATF1 begins to accumulate within both pronuclei of the mouse zygote by 20 h post-human chorionic gonadotrophin. This did not require new transcription (not blocked by α-amanitin), but was dependent upon protein synthesis (blocked by puromycin) and the activity of P38 MAP kinase. ATF1 becomes an active transcription factor upon being phosphorylated. A marked accumulation of phosphorylated ATF1 was evident in two-cell embryos and this persisted in subsequent stages of development. This phosphorylation was enhanced by the actions of autocrine embryotropic mediators (including Paf) and required the mutual actions of P38 MAP kinase and calmodulin-dependent pathways for maximum levels of phosphorylation. The combined inhibition of these two pathways blocked embryonic genome activation (EGA) and caused embryos to enter a developmental block at the two-cell stage. The members of the CREB family of transcription factors can generate one of the most diverse transcriptomes of any transcription factor. The demonstration of the presence of activated CREB and ATF1 within the embryonic nucleus at the time of EGA places these transcription factors as priority targets as key regulators of EGA.
Collapse
|
17
|
Gou LT, Dai P, Liu MF. Small noncoding RNAs and male infertility. WILEY INTERDISCIPLINARY REVIEWS-RNA 2014; 5:733-45. [PMID: 25044449 DOI: 10.1002/wrna.1252] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 05/29/2014] [Accepted: 06/03/2014] [Indexed: 11/07/2022]
Abstract
Small noncoding RNAs (ncRNAs) are a novel class of gene regulators that modulate gene expression at transcriptional, post-transcriptional, and epigenetic levels, and they play crucial roles in almost all cellular processes in eukaryotes. Recent studies have indicated that several types of small noncoding RNAs, including microRNAs (miRNAs), endo-small interference RNAs (endo-siRNAs), and Piwi-interacting RNAs (piRNAs), are expressed in the male germline and are required for spermatogenesis in animals. In this review, we summarize the recent knowledge of these small noncoding RNAs in male germ cells and their biological functions and mechanisms of action in animal spermatogenesis.
Collapse
Affiliation(s)
- Lan-Tao Gou
- Center for RNA Research, State Key Laboratory of Molecular Biology-University of Chinese Academy of Sciences, Shanghai, China; Shanghai Key Laboratory of Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | | | | |
Collapse
|
18
|
Gohin M, Fournier E, Dufort I, Sirard MA. Discovery, identification and sequence analysis of RNAs selected for very short or long poly A tail in immature bovine oocytes. Mol Hum Reprod 2013; 20:127-38. [PMID: 24233545 DOI: 10.1093/molehr/gat080] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
A major challenge in applying genomics to oocyte physiology is that many RNAs are present but will not be translated into proteins, making it difficult to draw conclusions from RNAseq and array data. Oocyte maturation and early embryo development rely on maternal storage of specific RNAs with a short poly(A) tail, which must be elongated for translation. To resolve the role of key genes during that period, we aimed to characterize both extremes of mRNA: deadenylated RNA and long polyA tails mRNA population in immature bovine oocytes. Using magnetic beads coupled to oligodT, we isolated deadenylated (A-, 20-50 adenosines) from polyadenylated (A+, up to 200 adenosines) RNAs. After transcriptomic analysis, we observed that A+ candidates are associated with short-term processes required for immediate cell survival (translation or protein transport) or meiotic resumption, while several A- candidates are involved in processes (chromatin modification, gene transcription and post-transcriptional modifications) that will be extremely important in the development of the early embryo. In addition to a list of candidates probably translated early or late, sequence analysis revealed that cytoplasmic polyadenylation element (CPE) and U(3)GU(3) were enriched in A- sequences. Moreover, a motif associated with polyadenylation signals (MAPS, U(5)CU(2)) appeared to be enriched in 3'untranslated regions (UTR) with CPE or U(3)GU(3) sequences in bovine but also in zebrafish and Xenopus tropicalis. To further validate our methodology, we measured specific tail length of known candidates (AURKA, PTTG1, H2A1) but also determined the poly(A) tail length of other candidate RNAs (H3F3A, H1FOO, DAZAP2, ATF1, ATF2, KAT5, DAZL, ELAVL2). In conclusion, we have reported a methodology to isolate deadenylated from polyadenylated RNAs in samples with small total RNA quantities such as mammals. Moreover, we identified deadenylated RNAs in bovine oocytes that may be stored for the long-term process of early embryo development and described a conserved motif enriched in the 3'UTR of deadenylated RNAs.
Collapse
Affiliation(s)
- Maella Gohin
- Centre de Recherche en Biologie de la Reproduction, Faculté des Sciences de L'Agriculture et de L'Alimentation, Département des Sciences Animales, 2440 Bl. Hochelaga, Pavillon INAF, Université Laval, Québec, QC, Canada G1V 0A6
| | | | | | | |
Collapse
|
19
|
MicroRNA and piRNA profiles in normal human testis detected by next generation sequencing. PLoS One 2013; 8:e66809. [PMID: 23826142 PMCID: PMC3691314 DOI: 10.1371/journal.pone.0066809] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2013] [Accepted: 05/12/2013] [Indexed: 01/04/2023] Open
Abstract
Background MicroRNAs (miRNAs) are the class of small endogenous RNAs that play an important regulatory role in cells by negatively affecting gene expression at transcriptional and post-transcriptional levels. There have been extensive studies aiming to discover miRNAs and to analyze their functions in the cells from a variety of species. However, there are no published studies of miRNA profiles in human testis using next generation sequencing (NGS) technology. Results We employed Solexa sequencing technology to profile miRNAs in normal human testis. Total 770 known and 5 novel human miRNAs, and 20121 piRNAs were detected, indicating that the human testis has a complex population of small RNAs. The expression of 15 known and 5 novel detected miRNAs was validated by qRT-PCR. We have also predicted the potential target genes of the abundant known and novel miRNAs, and subjected them to GO and pathway analysis, revealing the involvement of miRNAs in many important biological phenomenon including meiosis and p53-related pathways that are implicated in the regulation of spermatogenesis. Conclusions This study reports the first genome-wide miRNA profiles in human testis using a NGS approach. The presence of large number of miRNAs and the nature of their target genes suggested that miRNAs play important roles in spermatogenesis. Here we provide a useful resource for further elucidation of the regulatory role of miRNAs and piRNAs in the spermatogenesis. It may also facilitate the development of prophylactic strategies for male infertility.
Collapse
|
20
|
Survival signaling in the preimplantation embryo. Theriogenology 2012; 77:773-84. [PMID: 22325248 DOI: 10.1016/j.theriogenology.2011.12.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Revised: 12/12/2011] [Accepted: 01/12/2012] [Indexed: 11/24/2022]
Abstract
The autopoietic development of the preimplantation embryo may in part be explained by the actions of autocrine tropic ligands. The net effect of these mediators is to support the survival of cells within the early embryo. In the mouse, the actions of autocrine ligands are required by the 2-cell stage of development, and they can act in concert with paracrine mediators present within the reproductive tract. These mediators act via 1-o-phosphatidylinositol-3-kinase signaling which has the dual effects of activating calcium/calmodulin-dependent kinase/CREB transcription factor and AKT (protein kinase B)/MDM2 mediated survival pathways. The activated CREB drives transcription of prosurvival effectors, including the proto-oncogenes c-Fos and Bcl2. The AKT induces the phosphorylation and activation of MDM2 which causes the ubiquitination and resultant degradation of P53 resulting in the latency of P53 action. Tropic signals provide coordinated mechanisms for maintaining the survival of the cells of the early embryo. Disturbance of survival signaling has the net effect of reducing the number of cells populating the early embryo, due in part to the P53-mediated reduction in the pluripotent inner cell mass stem cell population within the embryo. The resultant embryos have a markedly reduced capacity for development beyond the implantation stage and those that do implant tend to be anembryonic.
Collapse
|
21
|
Liang X, Zhou D, Wei C, Luo H, Liu J, Fu R, Cui S. MicroRNA-34c enhances murine male germ cell apoptosis through targeting ATF1. PLoS One 2012; 7:e33861. [PMID: 22479460 PMCID: PMC3316505 DOI: 10.1371/journal.pone.0033861] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Accepted: 02/18/2012] [Indexed: 12/16/2022] Open
Abstract
Background MicroRNAs (miRNAs) play vital regulatory roles in many cellular processes. The expression of miRNA (miR)-34c is highly enriched in adult mouse testis, but its roles and underlying mechanisms of action are not well understood. Methodology/Principal Findings In the present study, we show that miR-34c is detected in mouse pachytene spermatocytes and continues to be highly expressed in spermatids. To explore the specific functions of miR-34c, we have established an in vivo model by transfecting miR-34c inhibitors into primary spermatocytes to study the loss-of-function of miR-34c. The results show that silencing of miR-34c significantly increases the Bcl-2/Bax ratio and prevents germ cell from apoptosis induced by deprivation of testosterone. Moreover, ectopic expression of the miR-34c in GC-2 cell trigger the cell apoptosis with a decreased Bcl-2/Bax ratio and miR-34c inhibition lead to a low spontaneous apoptotic ratio and an increased Bcl-2/Bax ratio. Furthermore, ectopic expression of miR-34c reduces ATF1 protein expression without affecting ATF1 mRNA level via directly binding to ATF1's 3′UTR, indicating that ATF1 is one of miR-34c's target genes. Meanwhile, the knockdown of ATF1 significantly decreases the Bcl-2/Bax ratio and triggers GC-2 cell apoptosis. Inhibition of miR-34c does not decrease the GC-2 cell apoptosis ratio in ATF1 knockdown cells. Conclusions/Significance Our study shows for the first time that miR-34c functions, at least partially, by targeting the ATF1 gene in germ cell apoptosis, providing a novel mechanism with involvement of miRNA in the regulation of germ cell apoptosis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Sheng Cui
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, People's Republic of China
- * E-mail:
| |
Collapse
|
22
|
Li Y, O'Neill C. Persistence of cytosine methylation of DNA following fertilisation in the mouse. PLoS One 2012; 7:e30687. [PMID: 22292019 PMCID: PMC3266909 DOI: 10.1371/journal.pone.0030687] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Accepted: 12/22/2011] [Indexed: 12/31/2022] Open
Abstract
Normal development of the mammalian embryo requires epigenetic reprogramming of the genome. The level of cytosine methylation of CpG-rich (5meC) regions of the genome is a major epigenetic regulator and active global demethylation of 5meC throughout the genome is reported to occur within the first cell-cycle following fertilization. An enzyme or mechanism capable of catalysing such rapid global demethylation has not been identified. The mouse is a widely used model for studying developmental epigenetics. We have reassessed the evidence for this phenomenon of genome-wide demethylation following fertilisation in the mouse. We found when using conventional methods of immunolocalization that 5meC showed a progressive acid-resistant antigenic masking during zygotic maturation which gave the appearance of demethylation. Changing the unmasking strategy by also performing tryptic digestion revealed a persistence of a methylated state. Analysis of methyl binding domain 1 protein (MBD1) binding confirmed that the genome remained methylated following fertilisation. The maintenance of this methylated state over the first several cell-cycles required the actions of DNA methyltransferase activity. The study shows that any 5meC remodelling that occurs during early development is not explained by a global active loss of 5meC staining during the cleavage stage of development and global loss of methylation following fertilization is not a major component of epigenetic reprogramming in the mouse zygote.
Collapse
Affiliation(s)
- Yan Li
- Sydney Medical School, Centre for Developmental and Regenerative Medicine, Kolling Institute for Medical Research, University of Sydney, Sydney, Australia
| | - Chris O'Neill
- Sydney Medical School, Centre for Developmental and Regenerative Medicine, Kolling Institute for Medical Research, University of Sydney, Sydney, Australia
- * E-mail:
| |
Collapse
|
23
|
Jin XL, O'Neill C. Regulation of the expression of proto-oncogenes by autocrine embryotropins in the early mouse embryo. Biol Reprod 2011; 84:1216-24. [PMID: 21248291 DOI: 10.1095/biolreprod.110.087007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Autocrine embryotropins act as survival signals for the preimplantation embryo. In this study we examined the role of Paf in the transcription of the key proto-oncogenes Bcl2 and Fos. Transcripts were detected in oocytes and some cohorts of zygotes but not in cohorts of 2-cell, 8-cell, and blastocyst stage embryos. Immunolocalization of BCL2 and FOS showed little staining in oocytes and zygotes but increased staining in the embryo from the 2-cell to blastocyst stage. Paf (37 nM) treatment of 2-cell embryos caused an alpha-amanitin (26 μM)-sensitive increase in Bcl2 and Fos transcripts 20 min after treatment that subsided by 40 min. This increase was blocked by inhibition of calcium (by BAPTA-AM) or phosphatidylinositol-3-kinase signaling (by LY294002). Paf challenge also caused increased staining of BCL2 and FOS. Increased staining of FOS required new protein synthesis that had a half-life of 2-4 h after Paf challenge. Only a small proportion (∼12%) of individual 2-cell embryos collected from the reproductive tract had detectable Bcl2 and Fos. This dichotomous pattern of transcript expression is consistent with the known periodic actions of Paf (which has a periodicity of ∼90 min) and the relatively short half-life of the resulting transcripts. A BCL2 antagonist (HA14-1) caused a dose-dependent decrease in the capacity of cultured zygotes to develop to morphological blastocysts, which was partially reversed by the simultaneous addition of Paf to medium. The results show that Paf induces periodic transient transcriptions of key proto-oncogenes that result in the persistent presence of the resulting proteins in the preimplantation phase of development.
Collapse
Affiliation(s)
- Xing Liang Jin
- Centre for Developmental and Regenerative Medicine, Kolling Institute for Medical Research, Sydney Medical School, University of Sydney, New South Wales, Australia
| | | |
Collapse
|