1
|
Guseva EA, Averina OA, Isaev SV, Pletnev PI, Bragina EE, Permyakov OA, Buev VS, Priymak AV, Emelianova MA, Pshanichnaya L, Romanov EA, Novikova SE, Petriukov KS, Golovina AY, Grigorieva OO, Manskikh VN, Korshunova DS, Silaeva YY, Deykin AV, Rubtsova MP, Zgoda VG, Mazur AM, Prokhortchouk EB, Dontsova OA, Sergiev PV. Positioning of sperm tail longitudinal columns depends on NSUN7, an RNA-binding protein destabilizing elongated spermatid transcripts. RNA (NEW YORK, N.Y.) 2025; 31:709-723. [PMID: 40032361 PMCID: PMC12001970 DOI: 10.1261/rna.080320.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Accepted: 02/16/2025] [Indexed: 03/05/2025]
Abstract
Spermatozoid's flagella assemble in transcriptionally silent spermatids and thus depend on posttranscriptional regulation of gene expression. Mutations in Nsun7 gene are known to cause male infertility in human and mice. We identified m5C-specific NSUN7 RNA methyltransferase as a protein present in elongated spermatids and interacting with RNAs specific for this type of spermatozoid's precursor cells. Inactivation of the Nsun7 gene in mice leads to upregulation of its RNA interactors, thus indicating that NSUN7 downregulates a set of RNAs in the elongated spermatids. A physiologic consequence of Nsun7 gene knockout is male infertility, which is mechanistically explained by the observed mispositioning of longitudinal columns relative to the axonemal microtubular doublets leading to a motility defect.
Collapse
Affiliation(s)
- Ekaterina A Guseva
- Center of Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, 143025 Skolkovo, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
- Faculty of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Olga A Averina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
- Faculty of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Sergey V Isaev
- Center for Brain Research, Medical University Vienna, 1090 Vienna, Austria
| | - Philipp I Pletnev
- Faculty of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Elizaveta E Bragina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
- Research Centre for Medical Genetics, Moscow 115522, Russia
| | - Oleg A Permyakov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
- Faculty of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Vitaly S Buev
- Faculty of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Anastasia V Priymak
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Mariia A Emelianova
- Center of Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, 143025 Skolkovo, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | | | - Evgeny A Romanov
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I. Kulakov, 117198 Moscow, Russia
| | | | - Kirill S Petriukov
- Faculty of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Anna Ya Golovina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Olga O Grigorieva
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
- Faculty of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Vasily N Manskikh
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | | | | | | | - Maria P Rubtsova
- Faculty of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Victor G Zgoda
- Institute of Biomedical Chemistry, 119121 Moscow, Russia
| | - Alexander M Mazur
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia
| | - Egor B Prokhortchouk
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia
| | - Olga A Dontsova
- Center of Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, 143025 Skolkovo, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
- Faculty of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia
| | - Petr V Sergiev
- Center of Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, 143025 Skolkovo, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
- Faculty of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
| |
Collapse
|
2
|
Barth A, Perry VEA, Hamilton LE, Sutovsky P, Oko R. The Ultrastructure and Composition of Bovine Spermatozoa. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2025; 240:1-64. [PMID: 40272586 DOI: 10.1007/978-3-031-70126-9_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Abstract
This chapter provides a cytological and compositional evaluation of the various compartments and sub-compartments making up the bull spermatozoon. The intention is to define the sperm head and tail compartments from an ultrastructural perspective and attribute to them their protein constituents gathered from both traditional and modern proteomic approaches. Common to both approaches, the compositional analysis is dependent on the fractionation and isolation of the sperm compartments combined with polyacrylamide gel electrophoresis (PAGE) and Western blotting to detect the identities of the proteins, and immunocytochemistry to confirm their residency. As will be appreciated, the identity of a particular sperm protein together with its residency provide valuable insights not only into its role, but also to the role of the specific sperm compartment it occupies, in development and/or fertilization. Attention is also given in this chapter to the consequences (on sperm structure and fertility) of inactivating genes that play key roles in sperm formation, especially if their phenotypes appear to match common bull sperm abnormalities. The keywords below cover the sperm head and tail compartments addressed in this chapter.
Collapse
Affiliation(s)
- Albert Barth
- Department of Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada.
| | - Viv E A Perry
- Queensland Sperm Morphology Laboratory (QSML), Goondiwindi, QLD, Australia
| | - Lauren E Hamilton
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
| | - Peter Sutovsky
- Division of Animal Science and Department of Obstetrics, Gynecology & Women's Health, University of Missouri, Columbia, MO, USA
| | - Richard Oko
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| |
Collapse
|
3
|
Guseva EA, Buev VS, Mirzaeva SE, Pletnev PI, Dontsova OA, Sergiev PV. Structure and Composition of Spermatozoa Fibrous Sheath in Diverse Groups of Metazoa. Int J Mol Sci 2024; 25:7663. [PMID: 39062905 PMCID: PMC11276731 DOI: 10.3390/ijms25147663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/01/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
The proper functioning and assembly of the sperm flagella structures contribute significantly to spermatozoa motility and overall male fertility. However, the fine mechanisms of assembly steps are poorly studied due to the high diversity of cell types, low solubility of the corresponding protein structures, and high tissue and cell specificity. One of the open questions for investigation is the attachment of longitudinal columns to the doublets 3 and 8 of axonemal microtubules through the outer dense fibers. A number of mutations affecting the assembly of flagella in model organisms are known. Additionally, evolutionary genomics data and comparative analysis of flagella morphology are available for a set of non-model species. This review is devoted to the analysis of diverse ultrastructures of sperm flagellum of Metazoa combined with an overview of the evolutionary distribution and function of the mammalian fibrous sheath proteins.
Collapse
Affiliation(s)
- Ekaterina A. Guseva
- Center of Life Sciences, Skolkovo Institute of Science and Technology, 143025 Skolkovo, Russia; (E.A.G.); (O.A.D.)
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
- Faculty of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (V.S.B.); (S.E.M.); (P.I.P.)
| | - Vitaly S. Buev
- Faculty of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (V.S.B.); (S.E.M.); (P.I.P.)
- Faculty of Bioengeneering and Bioinformatics, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Sabina E. Mirzaeva
- Faculty of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (V.S.B.); (S.E.M.); (P.I.P.)
| | - Philipp I. Pletnev
- Faculty of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (V.S.B.); (S.E.M.); (P.I.P.)
| | - Olga A. Dontsova
- Center of Life Sciences, Skolkovo Institute of Science and Technology, 143025 Skolkovo, Russia; (E.A.G.); (O.A.D.)
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
- Faculty of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (V.S.B.); (S.E.M.); (P.I.P.)
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia
| | - Petr V. Sergiev
- Center of Life Sciences, Skolkovo Institute of Science and Technology, 143025 Skolkovo, Russia; (E.A.G.); (O.A.D.)
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
- Faculty of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (V.S.B.); (S.E.M.); (P.I.P.)
| |
Collapse
|
4
|
Tian Y, Chen X, Pu J, Liang Y, Li W, Xu X, Tan X, Yu S, Shao T, Ma Y, Wang B, Chen Y, Li Y. Spermatogenic cell-specific type 1 hexokinase (HK1S) is essential for capacitation-associated increase in tyrosine phosphorylation and male fertility in mice. PLoS Genet 2024; 20:e1011357. [PMID: 39074078 DOI: 10.1371/journal.pgen.1011357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 06/27/2024] [Indexed: 07/31/2024] Open
Abstract
Hexokinase (HK) catalyzes the first irreversible rate-limiting step in glycolysis that converts glucose to glucose-6-phosphate. HK1 is ubiquitously expressed in the brain, erythrocytes, and other tissues where glycolysis serves as the major source of ATP production. Spermatogenic cell-specific type 1 hexokinase (HK1S) is expressed in sperm but its physiological role in male mice is still unknown. In this study, we generate Hk1s knockout mice using the CRISPR/Cas9 system to study the gene function in vivo. Hk1s mRNA is exclusively expressed in testes starting from postnatal day 18 and continuing to adulthood. HK1S protein is specifically localized in the outer surface of the sperm fibrous sheath (FS). Depletion of Hk1s leads to infertility in male mice and reduces sperm glycolytic pathway activity, yet they have normal motile parameters and ATP levels. In addition, by using in vitro fertilization (IVF), Hk1s deficient sperms are unable to fertilize cumulus-intact or cumulus-free oocytes, but can normally fertilize zona pellucida-free oocytes. Moreover, Hk1s deficiency impairs sperm migration into the oviduct, reduces acrosome reaction, and prevents capacitation-associated increases in tyrosine phosphorylation, which are probable causes of infertility. Taken together, our results reveal that HK1S plays a critical role in sperm function and male fertility in mice.
Collapse
Affiliation(s)
- Yingchao Tian
- The School of Public Health, Xinxiang Medical University, Xinxiang, Henan, China
| | - Xiu Chen
- Department of Pharmacy, Heze University, Heze, Shandong, China
| | - Jie Pu
- Department of Pharmacology, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yuxin Liang
- The School of Public Health, Xinxiang Medical University, Xinxiang, Henan, China
| | - Weixi Li
- The School of Public Health, Xinxiang Medical University, Xinxiang, Henan, China
| | - Xiaotong Xu
- National Institute of Biological Sciences, Beijing, Beijing, China
| | - Xinshui Tan
- National Institute of Biological Sciences, Beijing, Beijing, China
| | - Shuntai Yu
- National Institute of Biological Sciences, Beijing, Beijing, China
| | - Tianyu Shao
- National Institute of Biological Sciences, Beijing, Beijing, China
| | - Yan Ma
- National Institute of Biological Sciences, Beijing, Beijing, China
| | - Bingwei Wang
- Department of Pharmacology, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yongjie Chen
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Yushan Li
- The School of Public Health, Xinxiang Medical University, Xinxiang, Henan, China
| |
Collapse
|
5
|
Chen Q, Malki S, Xu X, Bennett B, Lackford BL, Kirsanov O, Geyer CB, Hu G. Cnot3 is required for male germ cell development and spermatogonial stem cell maintenance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.13.562256. [PMID: 37873304 PMCID: PMC10592795 DOI: 10.1101/2023.10.13.562256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
The foundation of spermatogenesis and lifelong fertility is provided by spermatogonial stem cells (SSCs). SSCs divide asymmetrically to either replenish their numbers (self-renewal) or produce undifferentiated progenitors that proliferate before committing to differentiation. However, regulatory mechanisms governing SSC maintenance are poorly understood. Here, we show that the CCR4-NOT mRNA deadenylase complex subunit CNOT3 plays a critical role in maintaining spermatogonial populations in mice. Cnot3 is highly expressed in undifferentiated spermatogonia, and its deletion in spermatogonia resulted in germ cell loss and infertility. Single cell analyses revealed that Cnot3 deletion led to the de-repression of transcripts encoding factors involved in spermatogonial differentiation, including those in the glutathione redox pathway that are critical for SSC maintenance. Together, our study reveals that CNOT3 - likely via the CCR4-NOT complex - actively degrades transcripts encoding differentiation factors to sustain the spermatogonial pool and ensure the progression of spermatogenesis, highlighting the importance of CCR4-NOT-mediated post-transcriptional gene regulation during male germ cell development.
Collapse
Affiliation(s)
- Qing Chen
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
- Present address: Clinical Microbiome Unit (CMU), Laboratory of Host Immunity and Microbiome (LHIM), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Safia Malki
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Xiaojiang Xu
- Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
- Present address: Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA 70112
| | - Brian Bennett
- Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Brad L. Lackford
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Oleksandr Kirsanov
- Department of Anatomy & Cell Biology, Brody School of Medicine at East Carolina University, Greenville, NC, USA
| | - Christopher B. Geyer
- Department of Anatomy & Cell Biology, Brody School of Medicine at East Carolina University, Greenville, NC, USA
- East Carolina Diabetes and Obesity Institute East Carolina University, Greenville, NC, USA
| | - Guang Hu
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| |
Collapse
|
6
|
Romarowski A, Fejzo J, Nayyab S, Martin-Hidalgo D, Gervasi MG, Balbach M, Violante S, Salicioni AM, Cross J, Levin LR, Buck J, Visconti PE. Mouse sperm energy restriction and recovery (SER) revealed novel metabolic pathways. Front Cell Dev Biol 2023; 11:1234221. [PMID: 37655160 PMCID: PMC10466171 DOI: 10.3389/fcell.2023.1234221] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 08/02/2023] [Indexed: 09/02/2023] Open
Abstract
Mammalian sperm must undergo capacitation to become fertilization-competent. While working on mice, we recently developed a new methodology for treating sperm in vitro, which results in higher rates of fertilization and embryo development after in vitro fertilization. Sperm incubated in media devoid of nutrients lose motility, although they remain viable. Upon re-adding energy substrates, sperm resume motility and become capacitated with improved functionality. Here, we explore how sperm energy restriction and recovery (SER) treatment affects sperm metabolism and capacitation-associated signaling. Using extracellular flux analysis and metabolite profiling and tracing via nuclear magnetic resonance (NMR) and mass spectrometry (MS), we found that the levels of many metabolites were altered during the starvation phase of SER. Of particular interest, two metabolites, AMP and L-carnitine, were significantly increased in energy-restricted sperm. Upon re-addition of glucose and initiation of capacitation, most metabolite levels recovered and closely mimic the levels observed in capacitating sperm that have not undergone starvation. In both control and SER-treated sperm, incubation under capacitating conditions upregulated glycolysis and oxidative phosphorylation. However, ATP levels were diminished, presumably reflecting the increased energy consumption during capacitation. Flux data following the fate of 13C glucose indicate that, similar to other cells with high glucose consumption rates, pyruvate is converted into 13C-lactate and, with lower efficiency, into 13C-acetate, which are then released into the incubation media. Furthermore, our metabolic flux data show that exogenously supplied glucose is converted into citrate, providing evidence that in sperm cells, as in somatic cells, glycolytic products can be converted into Krebs cycle metabolites.
Collapse
Affiliation(s)
- Ana Romarowski
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, United States
- Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (IBYME-CONICET), Buenos Aires, Argentina
| | - Jasna Fejzo
- Institute for Applied Life Sciences, University of Massachusetts, Amherst, MA, United States
| | - Saman Nayyab
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, United States
| | | | - Maria G. Gervasi
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, United States
| | - Melanie Balbach
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, United States
| | - Sara Violante
- Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Ana M. Salicioni
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, United States
| | - Justin Cross
- Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Lonny R. Levin
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, United States
| | - Jochen Buck
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, United States
| | - Pablo E. Visconti
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, United States
| |
Collapse
|
7
|
Xiong W, Ge H, Shen C, Li C, Zhang X, Tang L, Shen Y, Lu S, Zhang H, Wang Z. PRSS37 deficiency leads to impaired energy metabolism in testis and sperm revealed by DIA-based quantitative proteomic analysis. Reprod Sci 2023; 30:145-168. [PMID: 35471551 DOI: 10.1007/s43032-022-00918-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 03/12/2022] [Indexed: 01/11/2023]
Abstract
Our previous studies have reported that a putative trypsin-like serine protease, PRSS37, is exclusively expressed in testicular germ cells during late spermatogenesis and essential for sperm migration from the uterus into the oviduct and sperm-egg recognition via mediating the interaction between PDILT and ADAM3. In the present study, the global proteome profiles of wild-type (wt) and Prss37-/- mice in testis and sperm were compared employing data independent acquisition (DIA) technology. Overall, 2506 and 459 differentially expressed proteins (DEPs) were identified in Prss37-null testis and sperm, respectively, when compared to control groups. Bioinformatic analyses revealed that most of DEPs were related to energy metabolism. Of note, the DEPs associated with pathways for the catabolism such as glucose via glycolysis, fatty acids via β-oxidation, and amino acids via oxidative deamination were significantly down-regulated. Meanwhile, the DEPs involved in the tricarboxylic acid cycle (TCA cycle) and oxidative phosphorylation (OXPHOS) were remarkably decreased. The DIA data were further confirmed by a markedly reduction of intermediate metabolites (citrate and fumarate) in TCA cycle and terminal metabolite (ATP) in OXPHOS system after disruption of PRSS37. These outcomes not only provide a more comprehensive understanding of the male fertility of energy metabolism modulated by PRSS37 but also furnish a dynamic proteomic resource for further reproductive biology studies.
Collapse
Affiliation(s)
- Wenfeng Xiong
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital Affiliated To Shanghai Jiao Tong University School of Medicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Haoyang Ge
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital Affiliated To Shanghai Jiao Tong University School of Medicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Chunling Shen
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital Affiliated To Shanghai Jiao Tong University School of Medicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200025, China.
| | - Chaojie Li
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital Affiliated To Shanghai Jiao Tong University School of Medicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Xiaohong Zhang
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital Affiliated To Shanghai Jiao Tong University School of Medicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Lingyun Tang
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital Affiliated To Shanghai Jiao Tong University School of Medicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Yan Shen
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital Affiliated To Shanghai Jiao Tong University School of Medicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Shunyuan Lu
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital Affiliated To Shanghai Jiao Tong University School of Medicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Hongxin Zhang
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital Affiliated To Shanghai Jiao Tong University School of Medicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Zhugang Wang
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital Affiliated To Shanghai Jiao Tong University School of Medicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200025, China.
| |
Collapse
|
8
|
Amaral A. Energy metabolism in mammalian sperm motility. WIREs Mech Dis 2022; 14:e1569. [DOI: 10.1002/wsbm.1569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/18/2022] [Accepted: 05/21/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Alexandra Amaral
- Department of Developmental Genetics Max Planck Institute for Molecular Genetics Berlin Germany
| |
Collapse
|
9
|
Alves LQ, Ruivo R, Valente R, Fonseca MM, Machado AM, Plön S, Monteiro N, García-Parraga D, Ruiz-Díaz S, Sánchez-Calabuig MJ, Gutiérrez-Adán A, Castro LFC. A drastic shift in the energetic landscape of toothed whale sperm cells. Curr Biol 2021; 31:3648-3655.e9. [PMID: 34171300 DOI: 10.1016/j.cub.2021.05.062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 05/25/2021] [Accepted: 05/27/2021] [Indexed: 12/22/2022]
Abstract
Mammalian spermatozoa are a notable example of metabolic compartmentalization.1 Energy in the form of ATP production, vital for motility, capacitation, and fertilization, is subcellularly separated in sperm cells. While glycolysis provides a local, rapid, and low-yielding input of ATP along the flagellum fibrous sheath, oxidative phosphorylation (OXPHOS), far more efficient over a longer time frame, is concentrated in the midpiece mitochondria.2 The relative weight of glycolysis and OXPHOS pathways in sperm function is variable among species and sensitive to oxygen and substrate availability.3-5 Besides partitioning energy production, sperm cell energetics display an additional singularity: the occurrence of sperm-specific gene duplicates and alternative spliced variants, with conserved function but structurally bound to the flagellar fibrous sheath.6,7 The wider selective forces driving the compartmentalization and adaptability of this energy system in mammalian species remain largely unknown, much like the impact of ecosystem resource availability (e.g., carbohydrates, fatty acids, and proteins) and dietary adaptations in reproductive physiology traits.8 Here, we investigated the Cetacea, an iconic group of fully aquatic and carnivorous marine mammals, evolutionarily related to extant terrestrial herbivores.9 In this lineage, episodes of profound trait remodeling have been accompanied by clear genomic signatures.10-14 We show that toothed whales exhibit impaired sperm glycolysis, due to gene and exon erosion, and demonstrate that dolphin spermatozoa motility depends on endogenous fatty acid β-oxidation, but not carbohydrates. Such unique energetic rewiring substantiates the observation of large mitochondria in toothed whale spermatozoa and emphasizes the radical physiological reorganization imposed by the transition to a carbohydrate-depleted marine environment.
Collapse
Affiliation(s)
- Luís Q Alves
- CIMAR/CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - Raquel Ruivo
- CIMAR/CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - Raul Valente
- CIMAR/CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal; FCUP - Department of Biology, Faculty of Sciences, University of Porto (U. Porto), Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - Miguel M Fonseca
- CIMAR/CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - André M Machado
- CIMAR/CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal; FCUP - Department of Biology, Faculty of Sciences, University of Porto (U. Porto), Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - Stephanie Plön
- Department of Pathology, Stellenbosch University, PO Box 241, Cape Town 8000, South Africa
| | - Nuno Monteiro
- FCUP - Department of Biology, Faculty of Sciences, University of Porto (U. Porto), Rua do Campo Alegre, 4169-007 Porto, Portugal; CIBIO - Research Centre in Biodiversity and Genetic Resources, Campus Agrário de Vairão, Rua Padre Armando Quintas, 4485-661 Vairão, Portugal
| | - David García-Parraga
- Veterinary Services, L'Oceanográfic, Ciudad de las Artes y las Ciencias, Junta de Murs i Vals, s/n, 46013 Valencia, Spain
| | - Sara Ruiz-Díaz
- Departamento de Reproducción Animal, INIA, Av. Puerta de Hierro, 18, 28040 Madrid, Spain; Mistral Fertility Clinics S.L., Clínica Tambre, 28002 Madrid, Spain
| | - Maria J Sánchez-Calabuig
- Departamento de Reproducción Animal, INIA, Av. Puerta de Hierro, 18, 28040 Madrid, Spain; Department of Animal Medicine and Surgery, Faculty of Veterinary Science, University Complutense of Madrid, 28040 Madrid, Spain
| | - Alfonso Gutiérrez-Adán
- Departamento de Reproducción Animal, INIA, Av. Puerta de Hierro, 18, 28040 Madrid, Spain.
| | - L Filipe C Castro
- CIMAR/CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal; FCUP - Department of Biology, Faculty of Sciences, University of Porto (U. Porto), Rua do Campo Alegre, 4169-007 Porto, Portugal.
| |
Collapse
|
10
|
Tung CK, Suarez SS. Co-Adaptation of Physical Attributes of the Mammalian Female Reproductive Tract and Sperm to Facilitate Fertilization. Cells 2021; 10:cells10061297. [PMID: 34073739 PMCID: PMC8225031 DOI: 10.3390/cells10061297] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/17/2021] [Accepted: 05/21/2021] [Indexed: 12/20/2022] Open
Abstract
The functions of the female reproductive tract not only encompass sperm migration, storage, and fertilization, but also support the transport and development of the fertilized egg through to the birth of offspring. Further, because the tract is open to the external environment, it must also provide protection against invasive pathogens. In biophysics, sperm are considered “pusher microswimmers”, because they are propelled by pushing fluid behind them. This type of swimming by motile microorganisms promotes the tendency to swim along walls and upstream in gentle fluid flows. Thus, the architecture of the walls of the female tract, and the gentle flows created by cilia, can guide sperm migration. The viscoelasticity of the fluids in the tract, such as mucus secretions, also promotes the cooperative swimming of sperm that can improve fertilization success; at the same time, the mucus can also impede the invasion of pathogens. This review is focused on how the mammalian female reproductive tract and sperm interact physically to facilitate the movement of sperm to the site of fertilization. Knowledge of female/sperm interactions can not only explain how the female tract can physically guide sperm to the fertilization site, but can also be applied for the improvement of in vitro fertilization devices.
Collapse
Affiliation(s)
- Chih-Kuan Tung
- Department of Physics, North Carolina A&T State University, Greensboro, NC 27411, USA
- Correspondence:
| | - Susan S. Suarez
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14853, USA;
| |
Collapse
|
11
|
Abstract
Drug metabolizing enzymes catalyze the biotransformation of many of drugs and chemicals. The drug metabolizing enzymes are distributed among several evolutionary families and catalyze a range of detoxication reactions, including oxidation/reduction, conjugative, and hydrolytic reactions that serve to detoxify potentially toxic compounds. This detoxication function requires that drug metabolizing enzymes exhibit substrate promiscuity. In addition to their catalytic functions, many drug metabolizing enzymes possess functions unrelated to or in addition to catalysis. Such proteins are termed 'moonlighting proteins' and are defined as proteins with multiple biochemical or biophysical functions that reside in a single protein. This review discusses the diverse moonlighting functions of drug metabolizing enzymes and the roles they play in physiological functions relating to reproduction, vision, cell signaling, cancer, and transport. Further research will likely reveal new examples of moonlighting functions of drug metabolizing enzymes.
Collapse
Affiliation(s)
- Philip G Board
- John Curtin School of Medical Research, ANU College of Health and Medicine, The Australian National University, Canberra, ACT, Australia
| | - M W Anders
- Department of Pharmacology and Physiology, University of Rochester Medical Center, New York, NY, USA
| |
Collapse
|
12
|
Gu NH, Zhao WL, Wang GS, Sun F. Comparative analysis of mammalian sperm ultrastructure reveals relationships between sperm morphology, mitochondrial functions and motility. Reprod Biol Endocrinol 2019; 17:66. [PMID: 31416446 PMCID: PMC6696699 DOI: 10.1186/s12958-019-0510-y] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 08/02/2019] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Sperm morphology mainly refers to the shape of the head, the length of the flagellar segments, including the midpiece, principal piece and end piece, and the size of the accessory structures, including axonemes, outer dense fibers (ODFs), mitochondrial sheath (MS) and fibrous sheath (FS). Across species, there is considerable diversity in morphology. An established theory posits that the length of the sperm flagellum, especially the length of the midpiece, is a critical factor influencing sperm metabolism and velocity. However, our understanding of the relationships between sperm ultrastructures and the sperm flagellar length is incomplete. METHODS The morphologies of sperm from 10 mammalian species, human, mouse, rat, dog, rabbit, goat, pig, bull, guinea pig and golden hamster, were examined by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). According to the SEM and TME images, the length of sperm heads and flagellar segments, the cross-sectional areas of the accessory structures and flagella and the width of sperm heads were measured using Image J software. The variation tendencies (referred to as slope) of the accessory structures along flagella were calculated by the linear regression method. Mitochondrial functions were measured using commercial kits. The velocities of sperm were measured using CASA software. RESULTS The three-dimensional morphologies of sperm from 10 species and the slopes of internal accessory structures along flagella were obtained. The width of the axoneme tapered slightly from the base to the tip of the sperm flagellum, and slopes of the axonemes correlated negatively with the variability in flagellar length across species. Additionally, the cross-sectional areas of the ODFs and/or the MS were positively correlated with the lengths of the midpiece, principal piece, and total flagellum, as well as with sperm velocities. Mitochondrial volumes were positively correlated with ATP content and sperm swimming velocities. CONCLUSIONS Our results not only show the relationship between sperm internal structures, flagellar length and sperm physiology but also provide sizes of mitochondria and ODFs as new targets with which to study the regulation of sperm length and velocity.
Collapse
Affiliation(s)
- Ni-Hao Gu
- 0000 0004 0368 8293grid.16821.3cInternational Peace Maternity and Child Health Hospital, School of Medicine,Shanghai Jiao Tong University, Shanghai, 200030 China
- Shanghai Key Laboratory of Embryo Orignal Diseases, Shanghai, 200030 China
- 0000 0004 0368 8293grid.16821.3cShanghai Municipal Key Clinical Speciality, Shanghai Jiao Tong University, Shanghai, 200030 China
| | - Wen-Long Zhao
- 0000 0004 0368 8293grid.16821.3cInternational Peace Maternity and Child Health Hospital, School of Medicine,Shanghai Jiao Tong University, Shanghai, 200030 China
- Shanghai Key Laboratory of Embryo Orignal Diseases, Shanghai, 200030 China
- 0000 0004 0368 8293grid.16821.3cShanghai Municipal Key Clinical Speciality, Shanghai Jiao Tong University, Shanghai, 200030 China
| | - Gui-Shuan Wang
- 0000 0000 9530 8833grid.260483.bInstitute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001 Jiangsu China
| | - Fei Sun
- 0000 0004 0368 8293grid.16821.3cInternational Peace Maternity and Child Health Hospital, School of Medicine,Shanghai Jiao Tong University, Shanghai, 200030 China
- Shanghai Key Laboratory of Embryo Orignal Diseases, Shanghai, 200030 China
- 0000 0004 0368 8293grid.16821.3cShanghai Municipal Key Clinical Speciality, Shanghai Jiao Tong University, Shanghai, 200030 China
- 0000 0000 9530 8833grid.260483.bInstitute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001 Jiangsu China
| |
Collapse
|
13
|
Yang M, Hu J, Xia M, Wang Y, Tian F, Li W, Sun Y, Zhou Z. Zinc pyrithione induces immobilization of human spermatozoa and suppresses the response of the cAMP/PKA signaling pathway. Eur J Pharm Sci 2019; 137:104984. [PMID: 31276740 DOI: 10.1016/j.ejps.2019.104984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 06/18/2019] [Accepted: 07/01/2019] [Indexed: 11/29/2022]
Abstract
Zinc pyrithione (ZPT), a zinc coordination complex, is used as an antimicrobial agent. This study investigated the molecular mechanisms underlying ZPT-induced spermatozoa immobilization by examining plasma membrane integrity, mitochondrial dysfunction, and the cAMP/PKA signaling pathway response. ZPT inhibited spermatozoa motility and movement patterns in a concentration-dependent manner. The 100% effective concentration (EC100) and median effective concentration (EC50) at which ZPT-induced spermatozoa immobilization at 20 s were 40 μmol/L and 16.19 μmol/L, respectively. ZPT did not significantly disrupt spermatozoa plasma membranes, but it exerted a strong and significant effect on the depolarization of mitochondria. In addition, ZPT exposure induced intracellular H+ accumulation and Ca2+ dissipation in spermatozoa, accompanied by suppression of the cAMP/PKA signaling pathway. Thus, ZPT induces spermatozoa immobilization without significant plasma membrane injury and so could be a candidate microbicidal spermicide.
Collapse
Affiliation(s)
- Mingjun Yang
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, Shanghai 200032, China
| | - Jingying Hu
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, Shanghai 200032, China
| | - Minjie Xia
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, Shanghai 200032, China
| | - Yuzhu Wang
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, Shanghai 200032, China
| | - Fang Tian
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, Shanghai 200032, China
| | - Weihua Li
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, Shanghai 200032, China.
| | - Yinqiang Sun
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Zhijun Zhou
- School of Public Health/MOE Key Laboratory of Public Health Safety of Ministry of Education/NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China.
| |
Collapse
|
14
|
Fanny J, Julien S, Francisco-Jose FG, Sabiha E, Sophie DD, Luc B, Hélène B, Nicolas S, Valérie M. Gel electrophoresis of human sperm: a simple method for evaluating sperm protein quality. Basic Clin Androl 2018; 28:10. [PMID: 30186608 PMCID: PMC6120067 DOI: 10.1186/s12610-018-0076-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 07/04/2018] [Indexed: 11/21/2022] Open
Abstract
Background The limitations of conventional sperm analyses have highlighted the need for additional means of evaluating sperm quality. Methods In a study of a cohort of 245 men with known conventional sperm parameters, one-dimensional PAGE was used to monitor protein content and quality in samples from individual ejaculates. Results The sperm protein content varied markedly from sample to another, especially in the high-molecular-weight range. The intensity of the 80–110 kDa bands was correlated with progressive motility (r = 0.15, p = 0.015) and was significantly higher (p = 0.0367) in the group of men with conventional parameters above the World Health Organization’s 2010 reference values than in the group with at least one subnormal parameter (i.e. semen volume, sperm concentration, sperm count per ejaculate, progressive motility, proportion of normal forms or multiple anomaly index below the lower reference value). Using mass spectrometry, the 80–110 kDa bands were found to correspond primarily to three proteins from the flagellum’s fibrous sheath: A-kinase anchor protein 4, A-kinase anchor protein 3, and spermatogenic cell-specific type 1 hexokinase. Conclusion One-dimensional PAGE constitutes a simple, rapid, reliable, inexpensive method for analyzing proteins associated with sperm motility in individual human ejaculates.
Collapse
Affiliation(s)
- Jumeau Fanny
- 1EA 4308 - GQG - Gametogenesis and gamete quality, University of Lille, F-59000 Lille, France.,2CHU Lille, Reproductive Biology - Spermiology - CECOS Institute, F-59000 Lille, France.,University of Lille, Institut National de la Santé et de la Recherche Medicale (INSERM), CHU Lille, UMR-S 1172 JPArc, F-59000 Lille, France.,6Present address: Reproductive Biology Laboratory - CECOS, Rouen University Hospital, Rouen University, F-76031 Rouen, France
| | - Sigala Julien
- 1EA 4308 - GQG - Gametogenesis and gamete quality, University of Lille, F-59000 Lille, France.,2CHU Lille, Reproductive Biology - Spermiology - CECOS Institute, F-59000 Lille, France.,University of Lille, Institut National de la Santé et de la Recherche Medicale (INSERM), CHU Lille, UMR-S 1172 JPArc, F-59000 Lille, France
| | - Fernandez-Gomez Francisco-Jose
- University of Lille, Institut National de la Santé et de la Recherche Medicale (INSERM), CHU Lille, UMR-S 1172 JPArc, F-59000 Lille, France
| | - Eddarkaoui Sabiha
- University of Lille, Institut National de la Santé et de la Recherche Medicale (INSERM), CHU Lille, UMR-S 1172 JPArc, F-59000 Lille, France
| | - Duban-Deweer Sophie
- 4EA 2465 - LBHE Blood-Brain Barrier Laboratory, University of Artois, F-62307 Lens, France
| | - Buée Luc
- University of Lille, Institut National de la Santé et de la Recherche Medicale (INSERM), CHU Lille, UMR-S 1172 JPArc, F-59000 Lille, France
| | - Béhal Hélène
- 5CHU Lille, EA 2694 - Santé publique: épidémiologie et qualité des soins, University of Lille, F-59000 Lille, France
| | - Sergeant Nicolas
- University of Lille, Institut National de la Santé et de la Recherche Medicale (INSERM), CHU Lille, UMR-S 1172 JPArc, F-59000 Lille, France
| | - Mitchell Valérie
- 1EA 4308 - GQG - Gametogenesis and gamete quality, University of Lille, F-59000 Lille, France.,2CHU Lille, Reproductive Biology - Spermiology - CECOS Institute, F-59000 Lille, France
| |
Collapse
|
15
|
Sun Z, Wei R, Luo G, Niu R, Wang J. Proteomic identification of sperm from mice exposed to sodium fluoride. CHEMOSPHERE 2018; 207:676-681. [PMID: 29857199 DOI: 10.1016/j.chemosphere.2018.05.153] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 05/23/2018] [Accepted: 05/24/2018] [Indexed: 05/26/2023]
Abstract
Fluoride is a widespread environmental pollutant which can induce low sperm quality and fertilizing ability. However, effect of fluoride on proteomic changes of sperm is unknown. In this study, two-dimensional electrophoresis (2DE) and mass spectrometry (MS) were used to investigate the differently expressed proteins of sperm from mice exposed to fluoride. 180 male mice were randomly divided into three groups, and were administrated with the distilled water containing 0, 25, and 100 mg L-1 NaF, respectively. After 45, 90 and 180 day's exposure, mice were sacrificed and sperm from the cauda epididymis and vas deferens were collected for 2DE. 16 differently expressed spots were picked up to identify using MS, 15 of which were successfully identified. Many of them are associated with the sperm function such as sperm motility, maturation, capacitation and acrosome reaction, lipid peroxidation, detoxification, inflammation, and stability of membrane structure. These results could contribute to the explanation and further research of mechanisms underlying sperm damage induced by fluoride.
Collapse
Affiliation(s)
- Zilong Sun
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Ruifen Wei
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, China; Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Guangying Luo
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, China; Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Ruiyan Niu
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Jundong Wang
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, China.
| |
Collapse
|
16
|
TCTE1 is a conserved component of the dynein regulatory complex and is required for motility and metabolism in mouse spermatozoa. Proc Natl Acad Sci U S A 2017. [PMID: 28630322 PMCID: PMC5502601 DOI: 10.1073/pnas.1621279114] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Flagella and cilia are critical cellular organelles that provide a means for cells to sense and progress through their environment. The central component of flagella and cilia is the axoneme, which comprises the "9+2" microtubule arrangement, dynein arms, radial spokes, and the nexin-dynein regulatory complex (N-DRC). Failure to properly assemble components of the axoneme leads to defective flagella and in humans leads to a collection of diseases referred to as ciliopathies. Ciliopathies can manifest as severe syndromic diseases that affect lung and kidney function, central nervous system development, bone formation, visceral organ organization, and reproduction. T-Complex-Associated-Testis-Expressed 1 (TCTE1) is an evolutionarily conserved axonemal protein present from Chlamydomonas (DRC5) to mammals that localizes to the N-DRC. Here, we show that mouse TCTE1 is testis-enriched in its expression, with its mRNA appearing in early round spermatids and protein localized to the flagellum. TCTE1 is 498 aa in length with a leucine rich repeat domain at the C terminus and is present in eukaryotes containing a flagellum. Knockout of Tcte1 results in male sterility because Tcte1-null spermatozoa show aberrant motility. Although the axoneme is structurally normal in Tcte1 mutant spermatozoa, Tcte1-null sperm demonstrate a significant decrease of ATP, which is used by dynein motors to generate the bending force of the flagellum. These data provide a link to defining the molecular intricacies required for axoneme function, sperm motility, and male fertility.
Collapse
|
17
|
Al-Maghrebi M, Renno WM. Altered expression profile of glycolytic enzymes during testicular ischemia reperfusion injury is associated with the p53/TIGAR pathway: effect of fructose 1,6-diphosphate. PeerJ 2016; 4:e2195. [PMID: 27441124 PMCID: PMC4941766 DOI: 10.7717/peerj.2195] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Accepted: 06/08/2016] [Indexed: 12/21/2022] Open
Abstract
Background. Testicular ischemia reperfusion injury (tIRI) is considered the mechanism underlying the pathology of testicular torsion and detorsion. Left untreated, tIRI can induce testis dysfunction, damage to spermatogenesis and possible infertility. In this study, we aimed to assess the activities and expression of glycolytic enzymes (GEs) in the testis and their possible modulation during tIRI. The effect of fructose 1,6-diphosphate (FDP), a glycolytic intermediate, on tIRI was also investigated. Methods. Male Sprague-Dawley rats were divided into three groups: sham, unilateral tIRI, and tIRI + FDP (2 mg/kg). tIRI was induced by occlusion of the testicular artery for 1 h followed by 4 h of reperfusion. FDP was injected peritoneally 30 min prior to reperfusion. Histological and biochemical analyses were used to assess damage to spermatogenesis, activities of major GEs, and energy and oxidative stress markers. The relative mRNA expression of GEs was evaluated by real-time PCR. ELISA and immunohistochemistry were used to evaluate the expression of p53 and TP53-induced glycolysis and apoptosis regulator (TIGAR). Results. Histological analysis revealed tIRI-induced spermatogenic damage as represented by a significant decrease in the Johnsen biopsy score. In addition, tIRI reduced the activities of hexokinase 1, phosphofructokinase-1, glyceraldehyde 3-phosphate dehydrogenase, and lactate dehydrogenase C. However, mRNA expression downregulation was detected only for hexokinase 1, phosphoglycerate kinase 2, and lactate dehydrogenase C. ATP and NADPH depletion was also induced by tIRI and was accompanied by an increased Malondialdehyde concentration, reduced glutathione level, and reduced superoxide dismutase and catalase enzyme activities. The immunoexpression of p53 and TIGAR was markedly increased after tIRI. The above tIRI-induced alterations were attenuated by FDP treatment. Discussion. Our findings indicate that tIRI-induced spermatogenic damage is associated with dysregulation of GE activity and gene expression, which were associated with activation of the TIGAR/p53 pathway. FDP treatment had a beneficial effect on alleviating the damaging effects of tIRI. This study further emphasizes the importance of metabolic regulation for proper spermatogenesis.
Collapse
Affiliation(s)
- May Al-Maghrebi
- Faculty of Medicine—Department of Biochemistry, Kuwait University, Jabriyah, Kuwait
| | - Waleed M. Renno
- Faculty of Medicine—Department of Anatomy, Kuwait University, Jabriyah, Kuwait
| |
Collapse
|
18
|
Kumar S, Parameswaran S, Sharma RK. Novel myristoylation of the sperm-specific hexokinase 1 isoform regulates its atypical localization. Biol Open 2015; 4:1679-87. [PMID: 26581589 PMCID: PMC4736023 DOI: 10.1242/bio.012831] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The hexokinase 1 variant in mammalian spermatozoa (HK1S) has a unique N-terminus and this isoform atypically localizes to the plasma membrane. However, the mechanism of this process currently remains ambiguous. In this report, we show that fatty acylation underlies the specific sorting of HK1S. Employing chimeric reporter constructs, we first established that compartmentalization of HK1S does not function exclusively in sperm cells and that this feature is swappable to somatic HEK293 cells. Although the N-terminus lacks the classical consensus signature for myristoylation and the sequence-based predictions fail to predict myristoylation of HK1S, complementary experimental approaches confirmed that HK1S is myristoylated. Using live-cell confocal microscopy, we show that the mutation of a single amino acid, the myristoyl recipient Gly(2), impedes the prominent feature of plasma membrane association and relocates the enzyme to the cytosol but not the nucleus. Additionally, substitutions of the putatively palmitoylated Cys(5) is also reflected in a similar loss of compartmentalization of the protein. Taken together, our findings conclusively demonstrate that the N-terminal 'MGQICQ' motif in the unique GCS domain of HK1S acquires hydrophobicity by dual lipidic modifications, N-myristoylation and palmitoylation, to serve the requirements for membranous associations and thus its compartmentalization.
Collapse
Affiliation(s)
- Sujeet Kumar
- Department of Pathology and Laboratory Medicine, Cancer Cluster, College of Medicine, University of Saskatchewan, 107 Wiggins Road, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Sreejit Parameswaran
- Department of Pathology and Laboratory Medicine, Cancer Cluster, College of Medicine, University of Saskatchewan, 107 Wiggins Road, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Rajendra K Sharma
- Department of Pathology and Laboratory Medicine, Cancer Cluster, College of Medicine, University of Saskatchewan, 107 Wiggins Road, Saskatoon, Saskatchewan S7N 5E5, Canada
| |
Collapse
|
19
|
Anfuso CD, Olivieri M, Bellanca S, Salmeri M, Motta C, Scalia M, Satriano C, La Vignera S, Burrello N, Caporarello N, Lupo G, Calogero AE. Asthenozoospermia and membrane remodeling enzymes: a new role for phospholipase A2. Andrology 2015; 3:1173-82. [PMID: 26446356 DOI: 10.1111/andr.12101] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Revised: 07/14/2015] [Accepted: 08/01/2015] [Indexed: 01/29/2023]
Abstract
Phosholipase A2 (PLA2 ) activity in the seminal plasma and in sperm heads is closely related to sperm motility and male fertility. Therefore, the purpose of this study was to investigate the possible involvement of different isoforms of phospholipase in asthenozoospermia. To accomplish this, cPLA2 , phospho-cPLA2 , iPLA2 , and sPLA2 were evaluated by immunofluorescence and immunoblot analyses in spermatozoa obtained from 22 normozoospermic men and 28 asthenozoospermic patients. We found significant differences in cPLA2 and its phosphorylated/activated form, iPLA2 , and sPLA2 content and distribution in normal and asthenozoospermic patients. cPLA2 was localized in heads, midpieces, and tails of all spermatozoa as constitutive enzyme, less expressed in the tail of spermatozoa with low progressive motility. While active phospho-cPLA2 distribution was homogeneous throughout the cell body of control-donor spermatozoa, lower levels were detected in the tails of asthenozoospermic patients, as opposed to its strong presence in heads. Low immunofluorescence signal for iPLA2 was found in astenozoospermic patients, whereas sPLA2 was significantly lower in the heads of asthenozoospermic patients. Spermatozoa with low progressive motility showed differences both in terms of total specific activity and of intracellular distribution. cPLA2 , iPLA2 , and sPLA2 specific activities correlated positively and in a significantly manner with sperm progressive motility both in normozoospermic men and asthenozoospermic patients. In conclusion, PLA2 s are expressed in different areas of human spermatozoa. Spermatozoa with low motility showed differences in total specific activity and enzyme distributions. We speculated that PLA2 expression and/or different distribution could be potential biomarkers of asthenozoospermia, one of the major causes of male factor infertility.
Collapse
Affiliation(s)
- C D Anfuso
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | - M Olivieri
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | - S Bellanca
- Department of General Surgery and Medical-Surgical Specialties, School of Medicine, University of Catania, Catania, Italy
| | - M Salmeri
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | - C Motta
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | - M Scalia
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | - C Satriano
- Department of Chemical Sciences, School of Medicine, University of Catania, Catania, Italy
| | - S La Vignera
- Department of Clinical and Experimental Medicine, School of Medicine, University of Catania, Catania, Italy
| | - N Burrello
- Department of Clinical and Experimental Medicine, School of Medicine, University of Catania, Catania, Italy
| | - N Caporarello
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | - G Lupo
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | - A E Calogero
- Department of Clinical and Experimental Medicine, School of Medicine, University of Catania, Catania, Italy
| |
Collapse
|
20
|
Tourmente M, Villar-Moya P, Rial E, Roldan ERS. Differences in ATP Generation Via Glycolysis and Oxidative Phosphorylation and Relationships with Sperm Motility in Mouse Species. J Biol Chem 2015; 290:20613-26. [PMID: 26048989 DOI: 10.1074/jbc.m115.664813] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Indexed: 12/20/2022] Open
Abstract
Mouse sperm produce enough ATP to sustain motility by anaerobic glycolysis and respiration. However, previous studies indicated that an active glycolytic pathway is required to achieve normal sperm function and identified glycolysis as the main source of ATP to fuel the motility of mouse sperm. All the available evidence has been gathered from the studies performed using the laboratory mouse. However, comparative studies of closely related mouse species have revealed a wide range of variation in sperm motility and ATP production and that the laboratory mouse has comparatively low values in these traits. In this study, we compared the relative reliance on the usage of glycolysis or oxidative phosphorylation as ATP sources for sperm motility between mouse species that exhibit significantly different sperm performance parameters. We found that the sperm of species with higher oxygen consumption/lactate excretion rate ratios were able to produce higher amounts of ATP, achieving higher swimming velocities. Additionally, we show that the species with higher respiration/glycolysis ratios have a higher degree of dependence upon active oxidative phosphorylation. Moreover, we characterize for the first time two mouse species in which sperm depend on functional oxidative phosphorylation to achieve normal performance. Finally, we discuss that sexual selection could promote adaptations in sperm energetic metabolism tending to increase the usage of a more efficient pathway for the generation of ATP (and faster sperm).
Collapse
Affiliation(s)
- Maximiliano Tourmente
- From the Reproductive Ecology and Biology Group, Museo Nacional de Ciencias Naturales (Consejo Superior de Investigaciones Científicas), 28006 Madrid and
| | - Pilar Villar-Moya
- From the Reproductive Ecology and Biology Group, Museo Nacional de Ciencias Naturales (Consejo Superior de Investigaciones Científicas), 28006 Madrid and
| | - Eduardo Rial
- the Mitochondrial Bioenergetics Research Group, Centro de Investigaciones Biológicas (Consejo Superior de Investigaciones Científicas), 28040 Madrid, Spain
| | - Eduardo R S Roldan
- From the Reproductive Ecology and Biology Group, Museo Nacional de Ciencias Naturales (Consejo Superior de Investigaciones Científicas), 28006 Madrid and
| |
Collapse
|
21
|
Reid AT, Anderson AL, Roman SD, McLaughlin EA, McCluskey A, Robinson PJ, Aitken RJ, Nixon B. Glycogen synthase kinase 3 regulates acrosomal exocytosis in mouse spermatozoa via dynamin phosphorylation. FASEB J 2015; 29:2872-82. [PMID: 25808536 DOI: 10.1096/fj.14-265553] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 03/09/2015] [Indexed: 11/11/2022]
Abstract
The dynamin family of GTPases has been implicated as novel regulators of the acrosome reaction, a unique exocytotic event that is essential for fertilization. Dynamin activity during the acrosome reaction is accompanied by phosphorylation of key serine residues. We now tested the hypothesis that glycogen synthase kinase 3 (GSK3) is the protein kinase responsible for dynamin phosphorylation at these phosphosites in mouse spermatozoa. Pharmacologic inhibition of GSK3 in mature mouse spermatozoa (CHIR99021: IC50 = 6.7 nM) led to a significant reduction in dynamin phosphorylation (10.3% vs. 27.3%; P < 0.001), acrosomal exocytosis (9.7% vs. 25.7%; P < 0.01), and in vitro fertilization (53% vs. 100%; P < 0.01). GSK3 was shown to be present in developing germ cells where it colocalized with dynamin in the peri-acrosomal domain. However, additional GSK3 was acquired by maturing mouse spermatozoa within the male reproductive tract, via a novel mechanism involving direct interaction of sperm heads with extracellular structures known as epididymal dense bodies. These data reveal a novel mode for the cellular acquisition of a protein kinase and identify a key role for GSK3 in the regulation of sperm maturation and acrosomal exocytosis.
Collapse
Affiliation(s)
- Andrew T Reid
- *School of Environmental and Life Sciences, Discipline of Biological Sciences, and School of Environmental and Life Sciences, Discipline of Chemistry, The University of Newcastle, Callaghan, New South Wales, Australia; and Children's Medical Research Institute, The University of Sydney, Westmead, New South Wales, Australia
| | - Amanda L Anderson
- *School of Environmental and Life Sciences, Discipline of Biological Sciences, and School of Environmental and Life Sciences, Discipline of Chemistry, The University of Newcastle, Callaghan, New South Wales, Australia; and Children's Medical Research Institute, The University of Sydney, Westmead, New South Wales, Australia
| | - Shaun D Roman
- *School of Environmental and Life Sciences, Discipline of Biological Sciences, and School of Environmental and Life Sciences, Discipline of Chemistry, The University of Newcastle, Callaghan, New South Wales, Australia; and Children's Medical Research Institute, The University of Sydney, Westmead, New South Wales, Australia
| | - Eileen A McLaughlin
- *School of Environmental and Life Sciences, Discipline of Biological Sciences, and School of Environmental and Life Sciences, Discipline of Chemistry, The University of Newcastle, Callaghan, New South Wales, Australia; and Children's Medical Research Institute, The University of Sydney, Westmead, New South Wales, Australia
| | - Adam McCluskey
- *School of Environmental and Life Sciences, Discipline of Biological Sciences, and School of Environmental and Life Sciences, Discipline of Chemistry, The University of Newcastle, Callaghan, New South Wales, Australia; and Children's Medical Research Institute, The University of Sydney, Westmead, New South Wales, Australia
| | - Phillip J Robinson
- *School of Environmental and Life Sciences, Discipline of Biological Sciences, and School of Environmental and Life Sciences, Discipline of Chemistry, The University of Newcastle, Callaghan, New South Wales, Australia; and Children's Medical Research Institute, The University of Sydney, Westmead, New South Wales, Australia
| | - R John Aitken
- *School of Environmental and Life Sciences, Discipline of Biological Sciences, and School of Environmental and Life Sciences, Discipline of Chemistry, The University of Newcastle, Callaghan, New South Wales, Australia; and Children's Medical Research Institute, The University of Sydney, Westmead, New South Wales, Australia
| | - Brett Nixon
- *School of Environmental and Life Sciences, Discipline of Biological Sciences, and School of Environmental and Life Sciences, Discipline of Chemistry, The University of Newcastle, Callaghan, New South Wales, Australia; and Children's Medical Research Institute, The University of Sydney, Westmead, New South Wales, Australia
| |
Collapse
|
22
|
Agarwal A, Sharma R, Durairajanayagam D, Ayaz A, Cui Z, Willard B, Gopalan B, Sabanegh E. Major protein alterations in spermatozoa from infertile men with unilateral varicocele. Reprod Biol Endocrinol 2015; 13:8. [PMID: 25890347 PMCID: PMC4383193 DOI: 10.1186/s12958-015-0007-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 02/11/2015] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND The etiology of varicocele, a common cause of male factor infertility, remains unclear. Proteomic changes responsible for the underlying pathology of unilateral varicocele have not been evaluated. The objective of this prospective study was to employ proteomic techniques and bioinformatic tools to identify and analyze proteins of interest in infertile men with unilateral varicocele. METHODS Spermatozoa from infertile men with unilateral varicocele (n=5) and from fertile men (control; n=5) were pooled in two groups respectively. Proteins were extracted and separated by 1-D SDS-PAGE. Bands were digested and identified on a LTQ-Orbitrap Elite hybrid mass spectrometer system. Bioinformatic analysis identified the pathways and functions of the differentially expressed proteins (DEP). RESULTS Sperm concentration, motility and morphology were lower, and reactive oxygen species levels were higher in unilateral varicocele patients compared to healthy controls. The total number of proteins identified were 1055, 1010 and 1042 in the fertile group, and 795, 713 and 763 proteins in the unilateral varicocele group. Of the 369 DEP between both groups, 120 proteins were unique to the fertile group and 38 proteins were unique to the unilateral varicocele group. Compared to the control group, 114 proteins were overexpressed while 97 proteins were underexpressed in the unilateral varicocele group. We have identified 29 proteins of interest that are involved in spermatogenesis and other fundamental reproductive events such as sperm maturation, acquisition of sperm motility, hyperactivation, capacitation, acrosome reaction and fertilization. The major functional pathways of the 359 DEP related to the unilateral varicocele group involve metabolism, disease, immune system, gene expression, signal transduction and apoptosis. Functional annotations showed that unilateral varicocele mostly affected small molecule biochemistry and post-translational modification proteins. Proteins expressed uniquely in the unilateral varicocele group were cysteine-rich secretory protein 2 precursor (CRISP2) and arginase-2 (ARG2). CONCLUSIONS The expression of these proteins of interest are altered and possibly functionally compromised in infertile men with unilateral varicocele. If validated, these proteins may lead to potential biomarker(s) and help better understand the mechanism involved in the pathophysiology of unilateral varicocele in infertile men.
Collapse
Affiliation(s)
- Ashok Agarwal
- Center for Reproductive Medicine, Glickman Urological & Kidney Institute, Cleveland Clinic, Mail Code X-11, 10681 Carnegie Avenue, Cleveland, OH, 44195, USA.
| | - Rakesh Sharma
- Center for Reproductive Medicine, Glickman Urological & Kidney Institute, Cleveland Clinic, Mail Code X-11, 10681 Carnegie Avenue, Cleveland, OH, 44195, USA.
| | - Damayanthi Durairajanayagam
- Center for Reproductive Medicine, Glickman Urological & Kidney Institute, Cleveland Clinic, Mail Code X-11, 10681 Carnegie Avenue, Cleveland, OH, 44195, USA.
| | - Ahmet Ayaz
- Center for Reproductive Medicine, Glickman Urological & Kidney Institute, Cleveland Clinic, Mail Code X-11, 10681 Carnegie Avenue, Cleveland, OH, 44195, USA.
| | - Zhihong Cui
- Center for Reproductive Medicine, Glickman Urological & Kidney Institute, Cleveland Clinic, Mail Code X-11, 10681 Carnegie Avenue, Cleveland, OH, 44195, USA.
| | - Belinda Willard
- Proteomics Research Core Services, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA.
| | - Banu Gopalan
- Proteomics Research Core Services, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA.
| | - Edmund Sabanegh
- Center for Reproductive Medicine, Glickman Urological & Kidney Institute, Cleveland Clinic, Mail Code X-11, 10681 Carnegie Avenue, Cleveland, OH, 44195, USA.
| |
Collapse
|
23
|
Hereng TH, Elgstøen KBP, Eide L, Rosendal KR, Skålhegg BS. Serum albumin and HCO3- regulate separate pools of ATP in human spermatozoa. Hum Reprod 2014; 29:918-30. [PMID: 24578478 DOI: 10.1093/humrep/deu028] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
STUDY QUESTION Do the known capacitating agents HCO(3)(-) and serum albumin regulate the generation of ATP required for sperm motility and capacitation? SUMMARY ANSWER Serum albumin and HCO(3)(-) seem to regulate two separate pools of ATP by different mechanisms in human spermatozoa. WHAT IS KNOWN ALREADY Sperm capacitation is a maturation process that naturally occurs in the female reproductive tract preparing the sperm cell for fertilization. It is a highly energy-depending process as it involves hyperactive motility and substantial levels of protein phosphorylation. STUDY DESIGN, SIZE, DURATION Human sperm cells from four (motility experiments) and three (all other experiments) healthy donors were used. Untreated cells were compared with cells treated with HCO(3)(-) and serum albumin for up to 4 h. PARTICIPANTS/MATERIALS, SETTING, METHODS Changes in glycolysis and mitochondrial respiration rates upon treatment with serum albumin and HCO(3)(-) were analysed by metabolic tracing of (13)C-labelled substrates and respirometry studies, respectively. Levels of hyperactive spermatozoa and ATP content were measured during 4 h of incubation under capacitating conditions. MAIN RESULTS AND THE ROLE OF CHANCE We found that HCO(3)(-) significantly (P < 0.05) increased glycolytic flux by >3-folds via a cAMP/PKA sensitive pathway. This was accompanied by an increase in hyperactive motility. In contrast, serum albumin significantly increased endogenous ATP levels by 50% without stimulating hyperactive motility or glycolysis, indicating that this pool of ATP is separately located from the HCO(3)(-)-induced ATP. The increase in ATP induced by albumin could be mimicked by treatment with the cholesterol acceptors 2-hydroxypropyl- and methyl-β-cyclodextrin and counteracted by co-incubation with cholesterol sulphate to the level of the non-treated control (P < 0.05), pointing to cholesterol extraction from the sperm cell membrane as the main mechanism. However, the concentration of cyclodextrins needed to directly detect cholesterol extraction from the sperm cells was not compatible with maintenance of sperm viability. The increase in ATP seemed not to be dependent on the sperm-specific Ca(2+) channel CatSper. Finally, we demonstrated that neither HCO(3)(-) nor serum albumin stimulated mitochondrial respiration rates. However, serum albumin increased the respiratory capacity of mitochondria by >50%, an effect that was counteracted by HCO(3)(-). LIMITATIONS, REASONS FOR CAUTION Great variation in motility and capacitation is observed between sperm cells from different species. Hence, caution should be taken when extrapolating the findings in this work on human spermatozoa to sperm from other species. WIDER IMPLICATIONS OF THE FINDINGS It is already established that an efficient energy-generation is required to support sperm motility and capacitation. However, the mechanisms explaining how ATP production is regulated in spermatozoa are not fully understood. Our findings indicate that HCO(3)(-) stimulates hyperactive motility by increasing glycolytic flux and ATP production in a cAMP/PKA sensitive fashion. On the other hand, serum albumin seems to increase ATP concentration at a different location and by a mechanism different from glycolysis that involves extraction of cholesterol from the sperm cell membrane. These new insights into sperm metabolism may pave the way for both the development of new and improved male contraceptives and optimized assisted reproduction techniques. STUDY FUNDING The work was funded by Spermatech AS, The University of Oslo and the Research Council of Norway. COMPETING INTEREST(S) T.H.H. and K.R.R. are employees at Spermatech. B.S.S is a shareholder in Spermatech.
Collapse
|
24
|
Ijiri TW, Vadnais ML, Huang AP, Lin AM, Levin LR, Buck J, Gerton GL. Thiol changes during epididymal maturation: a link to flagellar angulation in mouse spermatozoa? Andrology 2014. [PMID: 24254994 PMCID: PMC4253137 DOI: 10.1111/andr.147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Caput epididymal wild-type spermatozoa and cauda epididymal spermatozoa from mice null for the adenylyl cyclase Adcy10 gene are immotile unless stimulated by a membrane-permeant cyclic AMP analogue. Both types of spermatozoa exhibit flagellar angulation where the head folds back under these conditions. As sperm proteins undergo oxidation of sulfhydryl groups and the flagellum becomes more stable to external forces during epididymal transit, we hypothesized that ADCY10 is involved in a mechanism regulating flagellar stabilization. Although no differences were observed in global sulfhydryl status between caput and cauda epididymal spermatozoa from wild-type or Adcy10-null mice, two-dimensional fluorescence difference gel electrophoresis was performed to identify specific mouse sperm proteins containing sulfhydryl groups that became oxidized during epididymal maturation. A-kinase anchor protein 4, fatty acid-binding protein 9 (FABP9), glutathione S-transferase mu 5 and voltage-dependent anion channel 2 exhibited changes in thiol status between caput and cauda epididymal spermatozoa. The level and thiol status of each of these proteins were quantified in wild-type and Adcy10-null cauda epididymal spermatozoa. No differences in the abundance of any protein were observed; however, FABP9 in Adcy10-null cauda epididymal spermatozoa contained fewer disulfide bonds than wild-type sperm cells. In caput epididymal spermatozoa, FABP9 was detected in the cytoplasmic droplet, principal piece, midpiece, and non-acrosomal area of the head. However, in cauda epididymal spermatozoa, this protein localized to the perforatorium, post-acrosomal region and principal piece. Together, these results suggest that thiol changes during epididymal maturation have a role in the stabilization of the sperm flagellum.
Collapse
Affiliation(s)
- T W Ijiri
- Center for Research on Reproduction and Women's Health, Perelman School of Medicine, University of PennsylvaniaPhiladelphia, PA, USA,Department of Molecular Biosciences, Kyoto Sangyo UniversityKyoto, Japan
| | - M L Vadnais
- Center for Research on Reproduction and Women's Health, Perelman School of Medicine, University of PennsylvaniaPhiladelphia, PA, USA
| | - A P Huang
- Center for Research on Reproduction and Women's Health, Perelman School of Medicine, University of PennsylvaniaPhiladelphia, PA, USA
| | - A M Lin
- Center for Research on Reproduction and Women's Health, Perelman School of Medicine, University of PennsylvaniaPhiladelphia, PA, USA
| | - L R Levin
- Department of Pharmacology, Weill Cornell Medical CollegeNew York, NY, USA
| | - J Buck
- Department of Pharmacology, Weill Cornell Medical CollegeNew York, NY, USA
| | - G L Gerton
- Center for Research on Reproduction and Women's Health, Perelman School of Medicine, University of PennsylvaniaPhiladelphia, PA, USA,Department of Obstetrics and Gynecology, Perelman School of Medicine, University of PennsylvaniaPhiladelphia, PA, USA
| |
Collapse
|
25
|
Ijiri TW, Vadnais ML, Huang AP, Lin AM, Levin LR, Buck J, Gerton GL. Thiol changes during epididymal maturation: a link to flagellar angulation in mouse spermatozoa? Andrology 2013; 2:65-75. [PMID: 24254994 DOI: 10.1111/j.2047-2927.2013.00147.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 09/18/2013] [Accepted: 09/20/2013] [Indexed: 12/12/2022]
Abstract
Caput epididymal wild-type spermatozoa and cauda epididymal spermatozoa from mice null for the adenylyl cyclase Adcy10 gene are immotile unless stimulated by a membrane-permeant cyclic AMP analogue. Both types of spermatozoa exhibit flagellar angulation where the head folds back under these conditions. As sperm proteins undergo oxidation of sulfhydryl groups and the flagellum becomes more stable to external forces during epididymal transit, we hypothesized that ADCY10 is involved in a mechanism regulating flagellar stabilization. Although no differences were observed in global sulfhydryl status between caput and cauda epididymal spermatozoa from wild-type or Adcy10-null mice, two-dimensional fluorescence difference gel electrophoresis was performed to identify specific mouse sperm proteins containing sulfhydryl groups that became oxidized during epididymal maturation. A-kinase anchor protein 4, fatty acid-binding protein 9 (FABP9), glutathione S-transferase mu 5 and voltage-dependent anion channel 2 exhibited changes in thiol status between caput and cauda epididymal spermatozoa. The level and thiol status of each of these proteins were quantified in wild-type and Adcy10-null cauda epididymal spermatozoa. No differences in the abundance of any protein were observed; however, FABP9 in Adcy10-null cauda epididymal spermatozoa contained fewer disulfide bonds than wild-type sperm cells. In caput epididymal spermatozoa, FABP9 was detected in the cytoplasmic droplet, principal piece, midpiece, and non-acrosomal area of the head. However, in cauda epididymal spermatozoa, this protein localized to the perforatorium, post-acrosomal region and principal piece. Together, these results suggest that thiol changes during epididymal maturation have a role in the stabilization of the sperm flagellum.
Collapse
Affiliation(s)
- T W Ijiri
- Center for Research on Reproduction and Women's Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Molecular Biosciences, Kyoto Sangyo University, Kyoto, Japan
| | | | | | | | | | | | | |
Collapse
|
26
|
Chapman KM, Powell HM, Chaudhary J, Shelton JM, Richardson JA, Richardson TE, Hamra FK. Linking spermatid ribonucleic acid (RNA) binding protein and retrogene diversity to reproductive success. Mol Cell Proteomics 2013; 12:3221-36. [PMID: 23938467 DOI: 10.1074/mcp.m113.030585] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Spermiogenesis is a postmeiotic process that drives development of round spermatids into fully elongated spermatozoa. Spermatid elongation is largely controlled post-transcriptionally after global silencing of mRNA synthesis from the haploid genome. Here, rats that differentially express EGFP from a lentiviral transgene during early and late steps of spermiogenesis were used to flow sort fractions of round and elongating spermatids. Mass-spectral analysis of 2D gel protein spots enriched >3-fold in each fraction revealed a heterogeneous RNA binding proteome (hnRNPA2/b1, hnRNPA3, hnRPDL, hnRNPK, hnRNPL, hnRNPM, PABPC1, PABPC4, PCBP1, PCBP3, PTBP2, PSIP1, RGSL1, RUVBL2, SARNP2, TDRD6, TDRD7) abundantly expressed in round spermatids prior to their elongation. Notably, each protein within this ontology cluster regulates alternative splicing, sub-cellular transport, degradation and/or translational repression of mRNAs. In contrast, elongating spermatid fractions were enriched with glycolytic enzymes, redox enzymes and protein synthesis factors. Retrogene-encoded proteins were over-represented among the most abundant elongating spermatid factors identified. Consistent with these biochemical activities, plus corresponding histological profiles, the identified RNA processing factors are predicted to collectively drive post-transcriptional expression of an alternative exome that fuels finishing steps of sperm maturation and fitness.
Collapse
|
27
|
Sharma R, Agarwal A, Mohanty G, Hamada AJ, Gopalan B, Willard B, Yadav S, du Plessis S. Proteomic analysis of human spermatozoa proteins with oxidative stress. Reprod Biol Endocrinol 2013; 11:48. [PMID: 23688036 PMCID: PMC3716960 DOI: 10.1186/1477-7827-11-48] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 05/16/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Oxidative stress plays a key role in the etiology of male infertility. Significant alterations in the sperm proteome are associated with poor semen quality. The aim of the present study was to examine if elevated levels of reactive oxygen species cause an alteration in the proteomic profile of spermatozoa. METHODS This prospective study consisted of 52 subjects: 32 infertile men and 20 normal donors. Seminal ejaculates were classified as ROS+ or ROS- and evaluated for their proteomic profile. Samples were pooled and subjected to LC-MS/MS analysis through in-solution digestion of proteins for peptide characterization. The expression profile of proteins present in human spermatozoa was examined using proteomic and bioinformatic analysis to elucidate the regulatory pathways of oxidative stress. RESULTS Of the 74 proteins identified, 10 proteins with a 2-fold difference were overexpressed and 5 were underexpressed in the ROS+ group; energy metabolism and regulation, carbohydrate metabolic processes such as gluconeogenesis and glycolysis, protein modifications and oxidative stress regulation were some of the metabolic processes affected in ROS+ group. CONCLUSIONS We have identified proteins involved in a variety of functions associated with response and management of oxidative stress. In the present study we focused on proteins that showed a high degree of differential expression and thus, have a greater impact on the fertilizing potential of the spermatozoa. While proteomic analyses identified the potential biomarkers, further studies through Western Blot are necessary to validate the biomarker status of the proteins in pathological conditions.
Collapse
Affiliation(s)
- Rakesh Sharma
- Center for Reproductive Medicine, Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Ashok Agarwal
- Center for Reproductive Medicine, Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Gayatri Mohanty
- Center for Reproductive Medicine, Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH, USA
- Permanent address: Ravenshaw University, Cuttack, Odisha, India
| | - Alaa J Hamada
- Center for Reproductive Medicine, Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Banu Gopalan
- Bioinformatics Core Services, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Belinda Willard
- Proteomic Core Lab, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Satya Yadav
- Molecular Biotechnology Core lab, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Stefan du Plessis
- Medical Physiology, Stellenbosch University, Tygerberg, South Africa
| |
Collapse
|
28
|
Nakamura N, Dai Q, Williams J, Goulding EH, Willis WD, Brown PR, Eddy EM. Disruption of a spermatogenic cell-specific mouse enolase 4 (eno4) gene causes sperm structural defects and male infertility. Biol Reprod 2013; 88:90. [PMID: 23446454 DOI: 10.1095/biolreprod.112.107128] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Sperm utilize glycolysis to generate ATP required for motility, and several spermatogenic cell-specific glycolytic isozymes are associated with the fibrous sheath (FS) in the principal piece of the sperm flagellum. We used proteomics and molecular biology approaches to confirm earlier reports that a novel enolase is present in mouse sperm. We then found that a pan-enolase antibody, but not antibodies to ENO2 and ENO3, recognized a protein in the principal piece of the mouse sperm flagellum. Database analyses identified two previously uncharacterized enolase family-like candidate genes, 64306537H0Rik and Gm5506. Northern analysis indicated that 64306537H0Rik (renamed Eno4) was transcribed in testes of mice by Postnatal Day 12. To determine the role of ENO4, we generated mice using embryonic stem cells in which an Eno4 allele was disrupted by a gene trap containing a beta galactosidase (beta-gal) reporter (Eno4(+/Gt)). Expression of beta-gal occurred in the testis, and male mice homozygous for the gene trap allele (Eno4(Gt/Gt)) were infertile. Epididymal sperm numbers were 2-fold lower and sperm motility was reduced substantially in Eno4(Gt/Gt) mice compared to wild-type mice. Sperm from Eno4(Gt/Gt) mice had a coiled flagellum and a disorganized FS. The Gm5506 gene encodes a protein identical to ENO1 and also is transcribed at a low level in testis. We conclude that ENO4 is required for normal assembly of the FS and provides most of the enolase activity in sperm and that Eno1 and/or Gm5506 may encode a minor portion of the enolase activity in sperm.
Collapse
Affiliation(s)
- Noriko Nakamura
- Gamete Biology Group, Laboratory of Reproductive and Developmental Toxicology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Petit FM, Serres C, Bourgeon F, Pineau C, Auer J. Identification of sperm head proteins involved in zona pellucida binding. Hum Reprod 2013; 28:852-65. [DOI: 10.1093/humrep/des452] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
|
30
|
|
31
|
Transcriptome profiling of the developing postnatal mouse testis using next-generation sequencing. SCIENCE CHINA-LIFE SCIENCES 2012; 56:1-12. [PMID: 23269550 DOI: 10.1007/s11427-012-4411-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Accepted: 11/09/2012] [Indexed: 10/27/2022]
Abstract
Mammalian testis development is a complex and highly sophisticated process. To study the dynamic change of normal testis development at the transcriptional level, we investigated mouse testes at three postnatal ages: 6 days postnatal, 4 weeks old, and 10 weeks old, representing infant (PN1), juvenile (PN2), and adult (PN3) stages, respectively. Using ultra high-throughput RNA sequencing (RNA-seq) technology, we obtained 211 million reads with a length of 35 bp. We identified 18837 genes that were expressed in mouse testes, and found that genes expressed at the highest level were involved in spermatogenesis. The gene expression pattern in PN1 was distinct from that in PN2 and PN3, which indicates that spermatogenesis has commenced in PN2. We analyzed a large number of genes related to spermatogenesis and somatic development of the testis, which play important roles at different developmental stages. We also found that the MAPK, Hedgehog, and Wnt signaling pathways were significantly involved at different developmental stages. These findings further our understanding of the molecular mechanisms that regulate testis development. Our study also demonstrates significant advantages of RNA-seq technology for studying transcriptome during development.
Collapse
|
32
|
RAB-like 2 has an essential role in male fertility, sperm intra-flagellar transport, and tail assembly. PLoS Genet 2012; 8:e1002969. [PMID: 23055941 PMCID: PMC3464206 DOI: 10.1371/journal.pgen.1002969] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2012] [Accepted: 08/08/2012] [Indexed: 12/05/2022] Open
Abstract
A significant percentage of young men are infertile and, for the majority, the underlying cause remains unknown. Male infertility is, however, frequently associated with defective sperm motility, wherein the sperm tail is a modified flagella/cilia. Conversely, a greater understanding of essential mechanisms involved in tail formation may offer contraceptive opportunities, or more broadly, therapeutic strategies for global cilia defects. Here we have identified Rab-like 2 (RABL2) as an essential requirement for sperm tail assembly and function. RABL2 is a member of a poorly characterized clade of the RAS GTPase superfamily. RABL2 is highly enriched within developing male germ cells, where it localizes to the mid-piece of the sperm tail. Lesser amounts of Rabl2 mRNA were observed in other tissues containing motile cilia. Using a co-immunoprecipitation approach and RABL2 affinity columns followed by immunochemistry, we demonstrated that within developing haploid germ cells RABL2 interacts with intra-flagella transport (IFT) proteins and delivers a specific set of effector (cargo) proteins, including key members of the glycolytic pathway, to the sperm tail. RABL2 binding to effector proteins is regulated by GTP. Perturbed RABL2 function, as exemplified by the Mot mouse line that contains a mutation in a critical protein–protein interaction domain, results in male sterility characterized by reduced sperm output, and sperm with aberrant motility and short tails. Our data demonstrate a novel function for the RABL protein family, an essential role for RABL2 in male fertility and a previously uncharacterised mechanism for protein delivery to the flagellum. A greater understanding of the mechanism of male fertility is essential in order to address the medical needs of the 1 in 20 men of reproductive age who are infertile. Conversely, there remains a critical need for additional contraceptive options, including those that target male gametes. Towards the aim of filling these knowledge gaps, we have used random mutagenesis to produce the Mot mouse line and to identify RABL2 as an essential regulator of male fertility. Mice carrying a mutant Rabl2 gene are sterile as a consequence of severely compromised sperm motility. Using biochemical approaches we have revealed that RABL2 binds to components of the intraflagellar transport machinery and have identified a number of RABL2 binding (effector) proteins. The presence of the Mot mutation in RABL2 leads to a significantly compromised ability to deliver binding proteins into the sperm tail. RABL2 is predominantly produced in male germ cells; however, lower levels are notably produced in organs that contain motile cilia (hair like structures involved in fluid/cell movement), thus raising the possibility that RABL2 may be involved in a broader set of human diseases collectively known as primary cilia dyskinesia.
Collapse
|
33
|
Okuda H, Tsujimura A, Irie S, Yamamoto K, Fukuhara S, Matsuoka Y, Takao T, Miyagawa Y, Nonomura N, Wada M, Tanaka H. A single nucleotide polymorphism within the novel sex-linked testis-specific retrotransposed PGAM4 gene influences human male fertility. PLoS One 2012; 7:e35195. [PMID: 22590500 PMCID: PMC3348931 DOI: 10.1371/journal.pone.0035195] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 03/13/2012] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The development of novel fertilization treatments, including in vitro fertilization and intracytoplasmic injection, has made pregnancy possible regardless of the level of activity of the spermatozoa; however, the etiology of male-factor infertility is poorly understood. Multiple studies, primarily through the use of transgenic animals, have contributed to a list of candidate genes that may affect male infertility in humans. We examined single nucleotide polymorphisms (SNPs) as a cause of male infertility in an analysis of spermatogenesis-specific genes. METHODS AND FINDING We carried out the prevalence of SNPs in the coding region of phosphoglycerate mutase 4 (PGAM4) on the X chromosome by the direct sequencing of PCR-amplified DNA from male patients. Using RT-PCR and western blot analyses, we identified that PGAM4 is a functional retrogene that is expressed predominantly in the testes and is associated with male infertility. PGAM4 is expressed in post-meiotic stages, including spermatids and spermatozoa in the testes, and the principal piece of the flagellum and acrosome in ejaculated spermatozoa. A case-control study revealed that 4.5% of infertile patients carry the G75C polymorphism, which causes an amino acid substitution in the encoded protein. Furthermore, an assay for enzymatic activity demonstrated that this polymorphism decreases the enzyme's activity both in vitro and in vivo. CONCLUSION These results suggest that PGAM4, an X-linked retrogene, is a fundamental gene in human male reproduction and may escape meiotic sex chromosome inactivation. These findings provide fresh insight into elucidating the mechanisms of male infertility.
Collapse
Affiliation(s)
- Hidenobu Okuda
- Department of Urology, Osaka University Graduate School of Medicine, Yamadaoka, Suita, Osaka, Japan
| | - Akira Tsujimura
- Department of Urology, Osaka University Graduate School of Medicine, Yamadaoka, Suita, Osaka, Japan
| | - Shinji Irie
- Life Science Research Laboratory, Toppan Technical Research Institute, Toppan Printing Co., Ltd., Kanda Izumi-cho, Chiyoda-ku, Tokyo, Japan
| | - Keisuke Yamamoto
- Department of Urology, Osaka University Graduate School of Medicine, Yamadaoka, Suita, Osaka, Japan
| | - Shinichiro Fukuhara
- Department of Urology, Osaka University Graduate School of Medicine, Yamadaoka, Suita, Osaka, Japan
| | - Yasuhiro Matsuoka
- Department of Urology, Osaka University Graduate School of Medicine, Yamadaoka, Suita, Osaka, Japan
| | - Tetsuya Takao
- Department of Urology, Osaka University Graduate School of Medicine, Yamadaoka, Suita, Osaka, Japan
| | - Yasushi Miyagawa
- Department of Urology, Osaka University Graduate School of Medicine, Yamadaoka, Suita, Osaka, Japan
| | - Norio Nonomura
- Department of Urology, Osaka University Graduate School of Medicine, Yamadaoka, Suita, Osaka, Japan
| | - Morimasa Wada
- Molecular Biology Division, Faculty of Pharmaceutical Sciences, Nagasaki International University, Sasebo, Nagasaki, Japan
| | - Hiromitsu Tanaka
- Molecular Biology Division, Faculty of Pharmaceutical Sciences, Nagasaki International University, Sasebo, Nagasaki, Japan
| |
Collapse
|
34
|
Delbes G, Yanagiya A, Sonenberg N, Robaire B. PABP interacting protein 2A (PAIP2A) regulates specific key proteins during spermiogenesis in the mouse. Biol Reprod 2012; 86:95. [PMID: 22190698 DOI: 10.1095/biolreprod.111.092619] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
During spermiogenesis, expression of the specific proteins needed for proper differentiation of male germ cells is under translational control. We have shown that PAIP2A is a major translational regulator involved in the maturation of male germ cells and male fertility. To identify the proteins controlled by PAIP2A during spermiogenesis, we characterized the proteomic profiles of elongated spermatids from wild-type (WT) mice and mice that were Paip2a/Paip2b double-null mutants (DKO). Elongated spermatid populations were obtained and proteins were extracted and separated on gradient polyacrylamide gels. The gels were digested with trypsin and peptides were identified by mass spectrometry. We identified 632 proteins with at least two unique peptides and a confidence level of 95%. Only 209 proteins were consistently detected in WT or DKO replicates with more than five spectra. Twenty-nine proteins were differentially expressed with at least a 1.5-fold change; 10 and 19 proteins were down- and up-regulated, respectively, in DKO compared to WT mice. We confirmed the significantly different expression levels of three proteins, EIF4G1, AKAP4, and HK1, by Western blot analysis. We have characterized novel proteins that have their expression controlled by PAIP2A; of these, 50% are involved in flagellar structure and sperm motility. Although several proteins affected by abrogation of Paip2a have established roles in reproduction, the roles of many others remain to be determined.
Collapse
Affiliation(s)
- Geraldine Delbes
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | | | | | | |
Collapse
|
35
|
Polimanti R, Piacentini S, Fuciarelli M. HapMap-based study of human soluble glutathione S-transferase enzymes. Pharmacogenet Genomics 2011; 21:665-72. [DOI: 10.1097/fpc.0b013e328349da4d] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
36
|
Odet F, Gabel SA, Williams J, London RE, Goldberg E, Eddy EM. Lactate dehydrogenase C and energy metabolism in mouse sperm. Biol Reprod 2011; 85:556-64. [PMID: 21565994 DOI: 10.1095/biolreprod.111.091546] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
We demonstrated previously that disruption of the germ cell-specific lactate dehydrogenase C gene (Ldhc) led to male infertility due to defects in sperm function, including a rapid decline in sperm ATP levels, a decrease in progressive motility, and a failure to develop hyperactivated motility. We hypothesized that lack of LDHC disrupts glycolysis by feedback inhibition, either by causing a defect in renewal of the NAD(+) cofactor essential for activity of glyceraldehyde 3-phosphate dehydrogenase, sperm (GAPDHS), or an accumulation of pyruvate. To test these hypotheses, nuclear magnetic resonance analysis was used to follow the utilization of labeled substrates in real time. We found that in sperm lacking LDHC, glucose consumption was disrupted, but the NAD:NADH ratio and pyruvate levels were unchanged, and pyruvate was rapidly metabolized to lactate. Moreover, the metabolic disorder induced by treatment with the lactate dehydrogenase (LDH) inhibitor sodium oxamate was different from that caused by lack of LDHC. This supported our earlier conclusion that LDHA, an LDH isozyme present in the principal piece of the flagellum, is responsible for the residual LDH activity in sperm lacking LDHC, but suggested that LDHC has an additional role in the maintenance of energy metabolism in sperm. By coimmunoprecipitation coupled with mass spectrometry, we identified 27 proteins associated with LDHC. A majority of these proteins are implicated in ATP synthesis, utilization, transport, and/or sequestration. This led us to hypothesize that in addition to its role in glycolysis, LDHC is part of a complex involved in ATP homeostasis that is disrupted in sperm lacking LDHC.
Collapse
Affiliation(s)
- Fanny Odet
- Laboratories of Reproductive and Developmental Toxicology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709-2233, USA
| | | | | | | | | | | |
Collapse
|
37
|
Choi E, Cho C. Expression of a sperm flagellum component encoded by the Als2cr12 gene. Gene Expr Patterns 2011; 11:327-33. [PMID: 21402173 DOI: 10.1016/j.gep.2011.03.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Revised: 03/07/2011] [Accepted: 03/09/2011] [Indexed: 02/08/2023]
Abstract
Genes exclusively expressed in male germ cells encode proteins that play important roles in spermatogenesis and fertilization. In this study, we investigated the expression of a novel spermatogenic cell-specific gene known as amyotrophic lateral sclerosis 2 chromosome region candidate 12 (Als2cr12). Our in silico and in vitro analyses revealed that the mouse Als2cr12 gene produces two transcript isoforms by alternative splicing and that one of the isoforms is unique to spermatogenic cells. Using an antibody against the ALS2CR12 protein, we found that a protein from the germ cell-specific Als2cr12 transcript is present in mature sperm from the epididymis as well as germ cells in the testis. Further analysis of the ALS2CR12 protein in sperm disclosed the localization of the protein in the sperm tail. Specifically, our data suggest that the ALS2CR12 protein is associated with the fibrous sheath in the sperm flagellum. Thus, our study provides the first information regarding the expression of the Als2cr12 gene at the transcriptional, protein and cellular levels.
Collapse
Affiliation(s)
- Eunyoung Choi
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 500-712, South Korea
| | | |
Collapse
|