1
|
Lawson EF, Pickford R, Aitken RJ, Gibb Z, Grupen CG, Swegen A. Mapping the lipidomic secretome of the early equine embryo. Front Vet Sci 2024; 11:1439550. [PMID: 39430383 PMCID: PMC11486720 DOI: 10.3389/fvets.2024.1439550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 09/10/2024] [Indexed: 10/22/2024] Open
Abstract
The lipidomic secretions of embryos provide a unique opportunity to examine the cellular processes of the early conceptus. In this study we profiled lipids released by the early equine conceptus, using high-resolution mass spectrometry to detect individual lipid species. This study examined the lipidomic profile in embryo-conditioned media from in vivo-produced, 8-9 day-old equine embryos (n = 3) cultured in vitro for 36 h, analyzed over 3 timepoints. A total of 1,077 lipid IDs were recorded across all samples, containing predominantly glycerolipids. Seventy-nine of these were significantly altered in embryo conditioned-media versus media only control (p < 0.05, fold-change >2 or < 0.5). Fifty-five lipids were found to be released into the embryo-conditioned media, of which 54.5% were triacylglycerols and 23.6% were ceramides. The sterol lipid, cholesterol, was also identified and secreted in significant amounts as embryos developed. Further, 24 lipids were found to be depleted from the media during culture, of which 70.8% were diacylglycerols, 16.7% were triacylglycerols and 12.5% were ceramides. As lipid-free media contained consistently detectable lipid peaks, a further profile analysis of the various components of non-embryo-conditioned media consistently showed the presence of 137 lipids. Lipid peaks in non-embryo-conditioned media increased in response to incubation under mineral oil, and contained ceramides, diacylglycerols and triacylglycerols. These results emphasize the importance of a defined embryo culture medium and a need to identify the lipid requirements of the embryo precisely. This study sheds light on early embryo lipid metabolism and the transfer of lipids during in vitro culture.
Collapse
Affiliation(s)
- Edwina F. Lawson
- School of Environmental and Life Sciences, College of Engineering, Science and the Environment, University of Newcastle, Callaghan, NSW, Australia
| | - Russell Pickford
- Bioanalytical Mass Spectrometry Facility, University of New South Wales, Sydney, NSW, Australia
| | - Robert John Aitken
- School of Environmental and Life Sciences, College of Engineering, Science and the Environment, University of Newcastle, Callaghan, NSW, Australia
| | - Zamira Gibb
- School of Environmental and Life Sciences, College of Engineering, Science and the Environment, University of Newcastle, Callaghan, NSW, Australia
| | - Christopher G. Grupen
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Camden, NSW, Australia
| | - Aleona Swegen
- School of Environmental and Life Sciences, College of Engineering, Science and the Environment, University of Newcastle, Callaghan, NSW, Australia
| |
Collapse
|
2
|
Sant'Anna Monteiro da Silva E, Sanches Oquendo Júnior P, Gaspari Oquendo FMD, Stout TAE, de Ruijter-Villani M, Rodrigues TS, Beletti ME, Cuervo-Arango J. Effect of duration of estradiol exposure on embryo survival and endometrial gene expression in anestrous embryo recipient mares. Theriogenology 2024; 226:1-9. [PMID: 38820771 DOI: 10.1016/j.theriogenology.2024.05.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/06/2024] [Accepted: 05/25/2024] [Indexed: 06/02/2024]
Abstract
Previous studies indicate a positive correlation between the duration of estrus prior to ovulation and likelihood of pregnancy in embryo recipient mares. However, the mechanisms by which the duration of estrus before may affect fertility remains unclear. This study aimed to determine the effect of different durations of estradiol exposure, prior to progesterone administration, on embryo viability in anestrous recipient mares, and endometrial expression of genes thought to influence embryo survival. Three groups of anestrous recipient mares treated with different duration of estradiol were used: long (LE), short (SE) and no treatment (NE). Day 8 embryos were transferred into recipient mares four days after long-acting progesterone administration and recovered 48h later to examine embryo growth and viability. The endometrial gene expression profile of selected genes was also investigated. The likelihood of recovering an embryo 48h after transfer was 46.1% (6/13), 62.5% (5/8) and 85.7% (6/7) for recipient mares from the NE, SE and LE groups, respectively (P = .09). Embryos recovered from the different groups of recipients did not, however, differ in size, morphology or the proportion of nuclei undergoing mitosis (P > .05). Abundance of mRNA for uterocalin (P19) and insulin-like growth factor 1 (IGF1) were increased in the LE compared to the NE group, while fibroblast growth factor 2 (FGF2), progesterone receptor (PGR) and insulin-like growth factor 1 receptor (IGF1R) transcript abundances were increased (P < 0.05) in the NE group compared to both SE and LE groups. In conclusion, a longer exposure of the endometrium to estradiol before progesterone tended to improve embryo survival within 48h of transfer. However, the grade, growth rate, and proportion of mitotic cells in surviving embryos did not differ among groups. If embryos are destined to fail in a suboptimal endometrial environment, they die and disappear quickly. Moreover, a more adequately estradiol-primed uterus, before the progesterone rise, seems to create a uterine environment, in terms of P19, IGF1, FGF2 and PGR gene expression, more conducive to embryo survival and further development.
Collapse
Affiliation(s)
| | | | | | - Tom A E Stout
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, the Netherlands
| | - Marta de Ruijter-Villani
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, the Netherlands
| | | | | | - Juan Cuervo-Arango
- Equine Fertility Group, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain
| |
Collapse
|
3
|
Bazer FW, Johnson GA. Early Embryonic Development in Agriculturally Important Species. Animals (Basel) 2024; 14:1882. [PMID: 38997994 PMCID: PMC11240814 DOI: 10.3390/ani14131882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/21/2024] [Accepted: 06/21/2024] [Indexed: 07/14/2024] Open
Abstract
The fertilization of oocytes ovulated by pigs, sheep, cows, and horses is not considered a limiting factor in successful establishment of pregnancy. Pig, sheep, and cow embryos undergo cleavage to the blastocyst stage, hatch from the zona pellucida, and undergo central-type implantation. Hatched blastocysts of pigs, sheep, and cows transition from tubular to long filamentous forms to establish surface area for exchange of nutrients and gases with the uterus. The equine blastocyst, surrounded by external membranes, does not elongate but migrates throughout the uterine lumen before attaching to the uterine luminal epithelium (LE) to begin implantation. Pregnancy recognition signaling in pigs requires the trophectoderm to express interleukin 1 beta, estrogens, prostaglandin E2, and interferon gamma. Sheep and cow conceptus trophectoderm expresses interferon tau that induces interferon regulatory factor 2 that inhibits transcription of estrogen and oxytocin receptors by uterine epithelia. This prevents oxytocin-induced luteolytic pulses of prostaglandin F2-alpha from regressing the corpora lutea, as well as ensuring the secretion of progesterone required for maintenance of pregnancy. The pregnancy recognition signal produced by equine blastocysts is not known. Implantation in these species requires interactions between extracellular matrix (ECM) proteins and integrins as the conceptus undergoes apposition and firm attachment to the uterine LE. This review provides details with respect to early embryonic development and the transition from spherical to filamentous conceptuses in pigs, sheep, and cows, as well as pre-implantation development of equine blastocysts and implantation of the conceptuses.
Collapse
Affiliation(s)
- Fuller W. Bazer
- Department of Animal Science, Texas A&M University, College Station, TX 77843-2471, USA
| | - Gregory A. Johnson
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843-2471, USA;
| |
Collapse
|
4
|
Taghizadeh E, Barati F, Fallah AA, Hemmatzadeh-Dastgerdi M, Nejabati MS. Estrogens improve the pregnancy rate in cattle: A review and meta-analysis. Theriogenology 2024; 220:35-42. [PMID: 38471389 DOI: 10.1016/j.theriogenology.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/03/2024] [Accepted: 03/06/2024] [Indexed: 03/14/2024]
Abstract
Estrogens have proven to be effective in bovine estrus induction protocols. Considering the extensive use of these products in large-scale estrus synchronization, the primary objective of the present study was to assess their effects on pregnancy rate (PR) using a meta-analysis approach. A total of 797 papers were screened from three major databases (PubMed, Web of Science, Scopus). Sixty-one studies were eligible for inclusion in the meta-analysis. The pregnancy status (success or failure) at 30 days post-insemination was considered as the effect size data. The odds ratios (OR) of PR were evaluated by considering the effects of estrogens in groups with or without estrogen intervention. The impact of estrogen (including factors such as type, dose, and time of administration) and animal characteristics (such as breed, type, and parity) was taken into account when assessing the effectiveness of estrogen response as PR. The results showed an OR of 1.25 (95% CI: 1.15-1.36; P = 0.000) for PR in animals that received estrogen compared to cattle that did not receive estrogen. Estradiol benzoate (OR = 1.3) and estradiol cypionate (OR = 1.2), with doses ranging from 1 to 3 mg (OR = 1.13-1.7), significantly increased the OR of PR. In terms of PR, beef cattle exhibited a higher odds ratio (OR = 1.4; P = 0.000) compared to dairy cattle (OR = 1.1; P = 0.09). The administration of estrogens in the estrus synchronization protocol significantly improved PR in both artificial insemination (OR = 1.2; P = 0.000) and embryo transfer (OR = 1.3; P = 0.033) programs. In summary, incorporating estrogens into estrus induction protocols led to an enhancement of the OR of PR among cattle.
Collapse
Affiliation(s)
- Ebrahim Taghizadeh
- Department of Clinical Science, Faculty of Veterinary Medicine, Shahrekord University, Shahrekord, Iran
| | - Farid Barati
- Department of Clinical Science, Faculty of Veterinary Medicine, Shahrekord University, Shahrekord, Iran.
| | - Aziz A Fallah
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Shahrekord University, 8818634141, Shahrekord, Iran
| | | | - Mohammad-Saleh Nejabati
- Department of Clinical Science, Faculty of Veterinary Medicine, Shahrekord University, Shahrekord, Iran
| |
Collapse
|
5
|
de Castro T, van Heule M, Domingues RR, Jacob JCF, Daels PF, Meyers SA, Conley AJ, Dini P. Embryo-endometrial interaction associated with the location of the embryo during the mobility phase in mares. Sci Rep 2024; 14:3151. [PMID: 38326534 PMCID: PMC10850102 DOI: 10.1038/s41598-024-53578-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 02/02/2024] [Indexed: 02/09/2024] Open
Abstract
Embryo-maternal crosstalk is essential to establish pregnancy, with the equine embryo moving throughout the uterus on days 9-15 (ovulation = day 0) as part of this interaction. We hypothesized that the presence of a mobile embryo induces local changes in the gene expression of the endometrium. On Day 12, the endometrial transcripts were compared among three groups: uterine horn with an embryo (P+, n = 7), without an embryo (P-, n = 7) in pregnant mares, and both uterine horns of nonbred mares (NB, n = 6). We identified 1,101 differentially expressed genes (DEGs) between P+ vs. NB and 1,229 DEGs between P- vs. NB. The genes upregulated in both P+ and P- relative to NB were involved in growth factor pathway and fatty acid activation, while downregulated genes were associated with oxytocin signaling pathway and estrogen receptor signaling. Comparing the transcriptome of P+ to that of P-, we found 59 DEGs, of which 30 genes had a higher expression in P+. These genes are associated with regulating vascular growth factors and the immune system, all known to be essential in early pregnancy. Overall, this study suggests that the mobile embryo influences the endometrial gene expression locally.
Collapse
Affiliation(s)
- Thadeu de Castro
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA
| | - Machteld van Heule
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA
- Department of Morphology, Imaging, Orthopedics, Rehabilitation and Nutrition, Faculty of Veterinary Medicine, University of Ghent, 9820, Merelbeke, Belgium
| | - Rafael R Domingues
- Department of Animal and Dairy Sciences, The Ohio State University, Columbus, OH, 43210, USA
| | - Julio C F Jacob
- Departmento de Reprodução E Avalição Animal, Universidade Federal Rural Do Rio de Janeiro, Seropédica, Rio de Janiro, 23897-000, Brazil
| | - Peter F Daels
- Department of Morphology, Imaging, Orthopedics, Rehabilitation and Nutrition, Faculty of Veterinary Medicine, University of Ghent, 9820, Merelbeke, Belgium
| | - Stuart A Meyers
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA
| | - Alan J Conley
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA
| | - Pouya Dini
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA.
| |
Collapse
|
6
|
Newcombe JR, Cuervo-Arango J, Wilsher S. The Timing of the Maternal Recognition of Pregnancy Is Specific to Individual Mares. Animals (Basel) 2023; 13:1718. [PMID: 37238148 PMCID: PMC10215440 DOI: 10.3390/ani13101718] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/16/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023] Open
Abstract
The present experiment aimed at determining whether the timing of the maternal recognition of pregnancy (MRP) was specific to individual mares by determining when luteostasis, a failure to return to oestrus, reliably occurred in individuals following embryo reduction. Singleton (n = 150) and synchronous twin pregnancies (n = 9) were reduced in 10 individuals (5-29 reductions/mare) at pre-determined time points within days 10 (n = 20), 11 (n = 65), 12 (n = 47), 13 (n = 12) or 14 (n = 15) of pregnancy. Prior to embryo reduction, the vesicle diameter was measured in 71% (106/150) of the singleton pregnancies. The interovulatory interval (IOI) was recorded on 78 occasions in seven of the mares in either non-pregnant cycles (n = 37) or those in which luteolysis followed embryo reduction (n = 41). The earliest time post-ovulation at which the embryo reduction resulted in luteostasis in an individual was 252 h (mid-Day 10). Consistency in luteostasis following embryo reduction showed individual variation between mares (272-344 h). Binary logistic regression analysis showed an individual mare effect (p < 0.001) and an effect of the interval post-ovulation at which embryo reduction was undertaken (p < 0.001). However, there was no significant effect of vesicle diameter at the time of embryo reduction (p = 0.099), nor a singleton or twin pregnancy (p = 0.993), on the dependent of luteolysis or luteostasis. The median IOI between individual mares varied significantly (p < 0.05) but was not correlated to the timing of MRP. The timing of MRP varied between the mares but was repeatable in each individual. The factors and mechanisms underlying the individuality in the timing of MRP were not determined and warrant further study.
Collapse
Affiliation(s)
- John R. Newcombe
- Warren House Farm, Equine Fertility Clinic, Brownhills WS8 6LU, West Midlands, UK;
| | - Juan Cuervo-Arango
- Departamento de Medicina y Cirugía Animal, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, 46115 Alfara del Patriarca, Spain;
| | - Sandra Wilsher
- Sharjah Equine Hospital, Sharjah 61313, United Arab Emirates
- The Paul Mellon Laboratory of Equine Reproduction, “Brunswick”, Newmarket CB8 9BJ, Suffolk, UK
| |
Collapse
|
7
|
Ahmad SF, Singh A, Gangwar M, Kumar S, Dutt T, Kumar A. Haplotype-based association study of production and reproduction traits in multigenerational Vrindavani population. Gene 2023; 867:147365. [PMID: 36918047 DOI: 10.1016/j.gene.2023.147365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/23/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023]
Abstract
Haplotype-based association analysis promises to reveal important information regarding the effect of genetic variants on economic traits of interest. The present study aimed to evaluate the haplotype structure of Vrindavani cattle and explore the association of haplotypes with (re)production traits of economic interest. Genotyping array data of medium density (Bovine50KSNP BeadChip) on 96 randomly selected Vrindavani cows was used in the present study. Genotypes were called in GenomeStudio program while quality control was undertaken in PLINK using standard thresholds. The phenotypic traits used in the present study included age at first calving, dry days, lactation length, peak yield, total lactation milk yield, inter-calving period and service period. The haplotype structure of Vrindavani population was assessed, using a sliding window of 20 SNP with a shift of 5 SNPs at a time, in terms of the size of haplotype blocks regarding their length (in Kb) and frequency in chromosome-wise fashion. Haplotype blocks were assessed for possible association with important production and reproduction traits across three lactation cycles in Vrindavani cattle population. The first ten principal components were included in the model for haplotype-based association analysis to correct for stratification effects of assessed individuals. Multiple haplotypes were found to be associated with age at first calving, total lactation milk yield, peak yield, dry days, inter-calving period and service period. Various candidate genes were found to overlap haplotypes that were significantly associated with age at first calving (CDH18, MARCHF11, MYO10, FBXL7), total lactation milk yield (TGF, PDE1A, and COL8A1), peak yield (PPARGC1A, RCAN1, KCNE1, SMIM34 and MRPS6), dry days (CPNE4, ACAD11 and MRAS), inter-calving period (ABCG5, ABCG8 and COX7A2L) and service period (FOXL2 and PIK3CB). The putative candidate genes overlapping the significantly associated haplotypes revealed important pathways affecting the production and reproduction performance of animals. The identified genes and pathways may serve as good candidate markers to select animals for improved production and reproduction performance in future generations.
Collapse
Affiliation(s)
- Sheikh Firdous Ahmad
- ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - Akansha Singh
- ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - Munish Gangwar
- ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - Subodh Kumar
- ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - Triveni Dutt
- ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - Amit Kumar
- ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India.
| |
Collapse
|
8
|
Serum progesterone and oxytocinase, and endometrial and luteal gene expression in pregnant, nonpregnant, oxytocin, carbetocin and meclofenamic acid treated mares. Theriogenology 2023; 198:47-60. [PMID: 36549183 DOI: 10.1016/j.theriogenology.2022.10.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/14/2022] [Accepted: 10/15/2022] [Indexed: 12/24/2022]
Abstract
Our objectives were to examine changes in endometrial and luteal gene expression during estrus, diestrus, pregnancy and treatments to induce luteolysis and putatively induce luteostasis. Groups were: Diestrus (DIEST), Estrus (ESTR), Pregnant (PREG), Oxytocin (OXY), Carbetocin (CARB), and Meclofenamic acid (MFA). Blood was obtained from day (D)12 to D15 for measurement of oxytocinase, also referred to as leucyl-cysteinyl aminopeptidase (LNPEP) and progesterone. Luteal biopsies were obtained on D12 and D15 and an endometrial biopsy on D15. Real-time RT-PCR was performed for the following genes: PGR, ESR1, OXTR,OXT, LNPEP, PTGS2, PTGFR, PLA2G2C, PTGES, SLC2A4, and SLC2A1. Regarding serum LNPEP, PREG and OXY (p-value<0.001) had higher concentrations than DIEST mares. Endometrial PTGES expression was higher (p-value <0.04) in DIEST, PREG and OXY than other groups. Endometrium from ESTR had increased expression of OXT (p-value < 0.02) compared to MFA and OXY mares. Carbetocin treatment: decreased serum progesterone and LNPEP; increased endometrial PLA2G2C; decreased endometrial PTGES; and decreased luteal aromatase and PTGES. Treatment with MFA: decreased endometrial PLA2G2C, increased endometrial PTGES; and resulted in less OXTR and OXT luteal abundance on D12 compared to D15. Endometrial and luteal expression of LNPEP is affected by physiologic stage and treatment and is involved in luteal function and pregnancy recognition pathways through effects on oxytocin and prostaglandin synthesis in the horse.
Collapse
|
9
|
Vegas AR, Podico G, Canisso IF, Bollwein H, Fröhlich T, Bauersachs S, Almiñana C. Dynamic regulation of the transcriptome and proteome of the equine embryo during maternal recognition of pregnancy. FASEB Bioadv 2022; 4:775-797. [PMID: 36479207 PMCID: PMC9721094 DOI: 10.1096/fba.2022-00063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/31/2022] [Accepted: 09/15/2022] [Indexed: 06/26/2024] Open
Abstract
During initial maternal recognition of pregnancy (MRP), the equine embryo displays a series of unique events characterized by rapid blastocyst expansion, secretion of a diverse array of molecules, and transuterine migration to interact with the uterine surface. Up to date, the intricate transcriptome and proteome changes of the embryo underlying these events have not been critically studied in horses. Thus, the objective of this study was to perform an integrative transcriptomic (including mRNA, miRNAs, and other small non-coding RNAs) and proteomic analysis of embryos collected from days 10 to 13 of gestation. The results revealed dynamic transcriptome profiles with a total of 1311 differentially expressed genes, including 18 microRNAs (miRNAs). Two main profiles for mRNAs and miRNAs were identified, one with higher expression in embryos ≤5 mm and the second with higher expression in embryos ≥7 mm. At the protein level, similar results were obtained, with 259 differentially abundant proteins between small and large embryos. Overall, the findings demonstrated fine-tuned transcriptomic and proteomic regulations in the developing embryo associated with embryo growth. The identification of specific regulation of mRNAs, proteins, and miRNAs on days 12 and 13 of gestation suggested these molecules as pivotal for embryo development and as involved in MRP, and in establishment of pregnancy in general. In addition, the results revealed new insights into prostaglandin synthesis by the equine embryo, miRNAs and genes potentially involved in modulation of the maternal immune response, regulation of endometrial receptivity and of late implantation in the mare.
Collapse
Affiliation(s)
- Alba Rudolf Vegas
- Functional Genomics GroupInstitute of Veterinary Anatomy, Vetsuisse‐Faculty, University of ZurichLindau(ZH)Switzerland
| | - Giorgia Podico
- Department of Veterinary Clinical Medicine, College of Veterinary MedicineUniversity of Illinois Urbana ChampaignUrbanaIllinoisUSA
| | - Igor F. Canisso
- Department of Veterinary Clinical Medicine, College of Veterinary MedicineUniversity of Illinois Urbana ChampaignUrbanaIllinoisUSA
| | - Heinrich Bollwein
- Clinic of Reproductive Medicine, Department for Farm Animals, Vetsuisse‐FacultyUniversity of ZurichZurichSwitzerland
| | - Thomas Fröhlich
- Gene Center, Laboratory for Functional Genome AnalysisMunichGermany
| | - Stefan Bauersachs
- Functional Genomics GroupInstitute of Veterinary Anatomy, Vetsuisse‐Faculty, University of ZurichLindau(ZH)Switzerland
| | - Carmen Almiñana
- Functional Genomics GroupInstitute of Veterinary Anatomy, Vetsuisse‐Faculty, University of ZurichLindau(ZH)Switzerland
| |
Collapse
|
10
|
Low Plasma Progesterone Concentration During the Early Luteal Phase Delays Endometrial Development and the Beginning of Placentation in Mares. Anim Reprod Sci 2022; 247:107149. [DOI: 10.1016/j.anireprosci.2022.107149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/27/2022] [Accepted: 11/06/2022] [Indexed: 11/09/2022]
|
11
|
Diel de Amorim M, Bramer SA, Rajamanickam GD, Klein C, Card C. Endometrial and luteal gene expression of putative gene regulators of the equine maternal recognition of pregnancy. Anim Reprod Sci 2022; 245:107064. [DOI: 10.1016/j.anireprosci.2022.107064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 08/16/2022] [Accepted: 08/28/2022] [Indexed: 11/16/2022]
|
12
|
Rudolf Vegas A, Hamdi M, Podico G, Bollwein H, Fröhlich T, Canisso IF, Bauersachs S, Almiñana C. Uterine extracellular vesicles as multi-signal messengers during maternal recognition of pregnancy in the mare. Sci Rep 2022; 12:15616. [PMID: 36114358 PMCID: PMC9481549 DOI: 10.1038/s41598-022-19958-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 09/07/2022] [Indexed: 11/09/2022] Open
Abstract
In contrast to other domestic mammals, the embryo-derived signal(s) leading to maternal recognition of pregnancy (MRP) are still unknow in the mare. We hypothesize that these embryonic signals could be packed into uterine extracellular vesicles (uEVs), acting as multi-signal messengers between the conceptus and the maternal tract, and contributing to MRP. To unveil these signals, the RNA and protein cargos of uEVs isolated from uterine lavages collected from pregnant mares (P; day 10, 11, 12 and 13 after ovulation) and cyclic control mares (C; day 10 and 13 after ovulation) were analyzed. Our results showed a fine-tuned regulation of the uEV cargo (RNAs and proteins), by the day of pregnancy, the estrous cycle, and even the size of the embryo. A particular RNA pattern was identified with specific increase on P12 related to immune system and hormonal response. Besides, a set of proteins as well as RNAs was highly enriched in EVs on P12 and P13. Differential abundance of miRNAs was also identified in P13-derived uEVs. Their target genes were linked to down- or upregulated genes in the embryo and the endometrium, exposing their potential origin. Our study identified for first time specific molecules packed in uEVs, which were previously associated to MRP in the mare, and thus bringing added value to the current knowledge. Further integrative and functional analyses will help to confirm the role of these molecules in uEVs during MRP in the mare.
Collapse
Affiliation(s)
- Alba Rudolf Vegas
- Functional Genomics Group, Institute of Veterinary Anatomy, Vetsuisse Faculty Zurich, University of Zurich, 8315, Lindau, ZH, Switzerland
| | - Meriem Hamdi
- Functional Genomics Group, Institute of Veterinary Anatomy, Vetsuisse Faculty Zurich, University of Zurich, 8315, Lindau, ZH, Switzerland
| | - Giorgia Podico
- Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, 61802, USA
| | - Heinrich Bollwein
- Clinic of Reproductive Medicine, Vetsuisse-Faculty, University of Zurich, 8315, Lindau, ZH, Switzerland
| | - Thomas Fröhlich
- Gene Center, Laboratory for Functional Genome Analysis, LMU Munich, 81377, Munich, Germany
| | - Igor F Canisso
- Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, 61802, USA
| | - Stefan Bauersachs
- Functional Genomics Group, Institute of Veterinary Anatomy, Vetsuisse Faculty Zurich, University of Zurich, 8315, Lindau, ZH, Switzerland
| | - Carmen Almiñana
- Functional Genomics Group, Institute of Veterinary Anatomy, Vetsuisse Faculty Zurich, University of Zurich, 8315, Lindau, ZH, Switzerland.
| |
Collapse
|
13
|
Gibson C, de Ruijter-Villani M, Stout TAE. Insulin-like growth factor system components expressed at the conceptus-maternal interface during the establishment of equine pregnancy. Front Vet Sci 2022; 9:912721. [PMID: 36176700 PMCID: PMC9513317 DOI: 10.3389/fvets.2022.912721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 07/28/2022] [Indexed: 11/13/2022] Open
Abstract
In many species, the insulin-like growth factors (IGF1 and IGF2), their receptors and IGF binding proteins play important roles in preparing the endometrium for implantation, and regulating conceptus growth and development. To determine whether the IGF system may contribute to conceptus-maternal interaction during equine pre-implantation development, we evaluated mRNA expression for IGF system components in conceptuses, and endometrium recovered from pregnant and cycling mares, on days 7, 14, 21 and 28 after ovulation. We also investigated expression of IGF1, IGF2 and their receptors 6 and 11 days after transfer of day 8 embryos to synchronous (day 8) or asynchronous (day 3) recipient mares. Expression of IGF1 and IGF2, IGF1R, IGF2R, INSR and IGFBPs 1, 2, 4 and 5 was evident in endometrium and conceptus membranes during days 7–28. Endometrial IGF2, INSR, IGFBP1 and IGFBP2 expression increased between days 7 and 28 of pregnancy. In conceptus membranes, expression of all IGF system components increased with developmental stage. Immunohistochemistry revealed strong expression of IGF1, IGF2 and IGF1R in both endometrium and conceptus membranes, whereas INSR was highly expressed in endometrium but barely detectable in the conceptus. Finally, a negatively asynchronous uterine environment retarded IGF1, IGF2 and INSR expression in the conceptus, whereas in the endometrium only INSR expression was altered by asynchrony. The presence of IGFs, their receptors and IGFBPs in the endometrium and conceptus during early equine pregnancy, and down-regulation in the conceptus following asynchronous embryo transfer, suggest a role in conceptus-maternal communication during the preparation for implantation.
Collapse
|
14
|
Rashid MB, Marey MA, Fukuda K, Haneda S, Kusama K, Shimada M, Imakawa K, Miyamoto A. Intrauterine infusion of low levels of interferon-tau on day-8 post-estrus stimulates the bovine endometrium to secrete apolipoprotein-A1: A possible implication for early embryo tolerance. Am J Reprod Immunol 2022; 88:e13592. [PMID: 35785505 DOI: 10.1111/aji.13592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 05/30/2022] [Accepted: 06/25/2022] [Indexed: 11/30/2022] Open
Abstract
We previously reported that interferon-tau (IFNT), derived from day-7 blastocyst, generates anti-inflammatory responses in bovine endometrial epithelial cells (BEECs) in vitro. However, the real in vivo impact of early embryo-derived IFNT on the uterine proteomic profile is mostly unknown. This study aimed to investigate proteomic changes of uterine flush (UF) when infused with a low physiological level of IFNT without embryo on day-8 post-estrus and its possible impact on the uterine immunological microenvironment. First, a fresh medium was infused into the uterine lumen on day-6, from which UF was obtained 24 h later, and this procedure was repeated on day-7 (control UF). On day-8, this procedure was done with a medium containing recombinant bovine IFNT (100 pg/ml) (IFNT-supplemented UF). Control and IFNT-supplemented UF were tested for immune responses in peripheral blood mononuclear cells (PBMCs). Real-time PCR results revealed that IFNT-supplemented UF downregulated pro-inflammatory cytokines (TNFA, IL1B) and upregulated anti-inflammatory cytokine (TGFB1) and PTGES in PBMCs. Through 2-D PAGE, followed by TOF/TOF mass spectrometer, apolipoprotein-A1 (Apo-A1) protein was identified in the IFNT-supplemented UF, which was confirmed by ELISA analysis. Proteomic analysis revealed again that the in vitro stimulation of BEECs by IFNT upregulated Apo-A1 expression. Further, stimulation of PBMCs with recombinant bovine Apo-A1 downregulated TNFA and NFKB and upregulated TGFB1 and PTGES in PBMCs. Altogether, our results suggest that minute amounts of IFNT alone, normally secreted from bovine blastocyst, stimulate Apo-A1 secretion from the endometrial epithelium in the absence of embryo that initiates an anti-inflammatory environment, which could pave the way for the acceptance of early embryo in the uterus. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Mohammad B Rashid
- Global Agromedicine Research Center (GAMRC), Obihiro University of Agriculture & Veterinary Medicine, Obihiro, Japan.,Department of Physiology and Pharmacology, Hajee Mohammad Danesh Science and Technology University, Dinajpur, Bangladesh
| | - Mohamed A Marey
- Global Agromedicine Research Center (GAMRC), Obihiro University of Agriculture & Veterinary Medicine, Obihiro, Japan.,Department of Theriogenology, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Kenji Fukuda
- Department of Life and Food Sciences, Section of Biomolecular Structure and Function, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Shingo Haneda
- Department of Clinical Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Kazuya Kusama
- Department of Endocrine Pharmacology, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Masayuki Shimada
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | - Kazuhiko Imakawa
- Research Institute of Agriculture, Tokai University, Kumamoto, Japan
| | - Akio Miyamoto
- Global Agromedicine Research Center (GAMRC), Obihiro University of Agriculture & Veterinary Medicine, Obihiro, Japan
| |
Collapse
|
15
|
Diel de Amorim M, Klein C, Foster R, Dong L, Lopez-Rodriguez MF, Card C. Expression of Oxytocin/Neurophysin I and Oxytocinase in the Equine Conceptus from Day 8 to Day 21 Post-Ovulation. Animals (Basel) 2022; 12:799. [PMID: 35405789 PMCID: PMC8996865 DOI: 10.3390/ani12070799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/16/2022] [Accepted: 03/20/2022] [Indexed: 11/17/2022] Open
Abstract
Leucyl and cystinyl aminopeptidase (LNPEP/oxytocinase) is an enzyme that metabolizes oxytocin in serum and tissues. The presence of oxytocin/neurophysin I (OXT), oxytocin and LNPEP and their relationship to other genes is unknown in the equine conceptus. Our objective was to characterize gene expression of LNPEP and OXT on D8, 10, 12, 14, 15, 16 and 21 conceptuses in relationship to other genes. Immunohistochemistry, western blot and liquid chromatography with tandem mass spectrometry (LC-MS/MS) were used for identification of oxytocin and LNPEP in D15, 16 and 18 conceptuses. LNPEP was increased at D15 compared to D10, was immunolocalized in the equine trophectoderm and endoderm, and protein was confirmed by LC-MS/MS. Maximal abundance of OXT was at D21, and lowest on D12 and D14, but no protein was identified. OXTR abundance was highest on D14 and D21. LNPEP was correlated with PTGFR and PTGES on D12 and D14-D15, and high expression of PTGES, PTGS2 was found on D14, D15 and D21; PTGFR was found on D8 and D12-21. LNPEP may have a role in prostaglandin regulation and conceptus fixation by decreasing the availability of oxytocin. Further investigation on the role embryonic LNPEP during pregnancy is warranted.
Collapse
Affiliation(s)
- Mariana Diel de Amorim
- Department of Clinical Sciences, Cornell University, 930 Campus Rd, Ithaca, NY 14853, USA
| | - Claudia Klein
- Department of Veterinary Clinical and Diagnostic Science, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada;
| | - Robert Foster
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, 50 Stone Road E, Guelph, ON N1G 2W1, Canada;
| | - Lynn Dong
- Immunopathology Research and Development Laboratory, Department of Biomedical Sciences, Cornell University, 930 Campus Rd, Ithaca, NY 14853, USA;
| | - Maria Fernanda Lopez-Rodriguez
- Department of Large Animal Clinical Sciences, Western College of Veterinary Medicine, 52 Campus Drive, Saskatoon, SK S7N 5B4, Canada;
| | - Claire Card
- Department of Large Animal Clinical Sciences, Western College of Veterinary Medicine, 52 Campus Drive, Saskatoon, SK S7N 5B4, Canada;
| |
Collapse
|
16
|
Segabinazzi LGTM, Roberts BN, Peterson EW, Ambrosia R, Bergfelt D, Samper J, French H, Gilbert RO. Early Pregnancy in Jennies in the Caribbean: Corpus Luteum Development and Progesterone Production, Uterine and Embryo Dynamics, Conceptus Growth and Maturation. Animals (Basel) 2022; 12:ani12020127. [PMID: 35049751 PMCID: PMC8772573 DOI: 10.3390/ani12020127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/23/2021] [Accepted: 12/28/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary An understanding of the basic mechanisms of reproduction in donkeys is essential, for several reasons. Some donkey breeds are threatened or endangered, and efforts to save these species depend on improved knowledge of reproductive processes. In some parts of the world, donkeys continue to be valued for purposes of work, recreation, or even meat or milk production, as well as the breeding of mules, and reproduction is essential to maintain suitable populations. In others, donkey populations have become feral and represent a nuisance or even a danger to human populations, and improved contraceptive methods are required. Whether for enhancing or inhibiting reproduction, species-specific information is valuable. While the mare has been extensively studied, few studies have explored early pregnancy in jennies. Therefore, this study characterized early embryo development and differences in progesterone profile and changes in the corpus luteum between pregnant and non-pregnant jennies. Abstract We aimed to characterize early embryo development and changes in corpus luteum (CL) development and progesterone profile in pregnant vs. non-pregnant jennies. Eight jennies were enrolled in the study. In the first two cycles, the jennies were monitored by transrectal ultrasonography and had blood harvested for hormone profile assay. In the third cycle, jennies were bred by a jack of proven fertility. Jennies were then monitored and sampled for up to 30 days of pregnancy. Data were evaluated by random-effects multiple linear regression, and correlations were expressed as Pearson’s correlation coefficient. Progesterone concentration rose rapidly from ovulation (D0) until D7, plateaued until D12–14, then precipitously declined between D14 and 15, remaining low until the next ovulation in non-pregnant cycles. In the pregnant jennies, the progesterone concentration rose to maximal concentrations on D7–11, being higher at this stage than in non-pregnant cycles, then declined gradually up to D30. In all cycles, the volume of the CL increased steadily until D6, when it plateaued in pregnant jennies. For non-pregnant jennies, CL volume decreased slowly from D6 to D11 and then had a faster drop. Uterine tone increased following ovulation, becoming turgid around the day of embryo fixation (D15.0 ± 0.9). An embryonic vesicle (EV) was first detected on D9.3 ± 0.5 (2.4 ± 0.5 mm). The EV remained spherical until D18.6 ± 1.4. The embryo proper was first detected ventrally in the vesicle on D20.8 ± 1.1 and the embryonic heartbeat by D22.0 ± 0.9. The allantoic sac was identified at D24.0 ± 0.9, and at D30, the allantoic sac filled the ventral half of the EV. This study provides evidence that higher cumulative concentrations of progesterone are correlated to size of the EV, and there were changes in the luteal dynamics and progesterone profiles in pregnant vs. non-pregnant jennies.
Collapse
|
17
|
Local embryo-mediated changes in endometrial gene expression during embryo mobility in mares. Theriogenology 2022; 182:78-84. [DOI: 10.1016/j.theriogenology.2022.01.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 10/19/2022]
|
18
|
Rudolf Vegas A, Podico G, Canisso IF, Bollwein H, Almiñana C, Bauersachs S. Spatiotemporal endometrial transcriptome analysis revealed the luminal epithelium as key player during initial maternal recognition of pregnancy in the mare. Sci Rep 2021; 11:22293. [PMID: 34785745 PMCID: PMC8595723 DOI: 10.1038/s41598-021-01785-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 11/03/2021] [Indexed: 12/13/2022] Open
Abstract
During the period of maternal recognition of pregnancy (MRP) in the mare, the embryo needs to signal its presence to the endometrium to prevent regression of the corpus luteum and prepare for establishment of pregnancy. This is achieved by mechanical stimuli and release of various signaling molecules by the equine embryo while migrating through the uterus. We hypothesized that embryo's signals induce changes in the endometrial gene expression in a highly cell type-specific manner. A spatiotemporal transcriptomics approach was applied combining laser capture microdissection and low-input-RNA sequencing of luminal and glandular epithelium (LE, GE), and stroma of biopsy samples collected from days 10-13 of pregnancy and the estrous cycle. Two comparisons were performed, samples derived from pregnancies with conceptuses ≥ 8 mm in diameter (comparison 1) and conceptuses ≤ 8 mm (comparison 2) versus samples from cyclic controls. The majority of gene expression changes was identified in LE and much lower numbers of differentially expressed genes (DEGs) in GE and stroma. While 1253 DEGs were found for LE in comparison 1, only 248 were found in comparison 2. Data mining mainly focused on DEGs in LE and revealed regulation of genes related to prostaglandin transport, metabolism, and signaling, as well as transcription factor families that could be involved in MRP. In comparison to other mammalian species, differences in regulation of genes involved in epithelial barrier formation and conceptus attachment and implantation reflected the unique features of equine reproduction at the time of MRP at the molecular level.
Collapse
Affiliation(s)
- Alba Rudolf Vegas
- Institute of Veterinary Anatomy and Clinic of Reproductive Medicine, Department for Farm Animals, Vetsuisse Faculty Zurich, University of Zurich, Lindau, Switzerland
| | - Giorgia Podico
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois Urbana Champaign, Urbana, IL, USA
| | - Igor F Canisso
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois Urbana Champaign, Urbana, IL, USA
| | - Heinrich Bollwein
- Clinic of Reproductive Medicine, Department for Farm Animals, Vetsuisse Faculty Zurich, University of Zurich, Lindau, Switzerland
| | - Carmen Almiñana
- Institute of Veterinary Anatomy, Vetsuisse Faculty, University of Zurich, Lindau, Switzerland
| | - Stefan Bauersachs
- Institute of Veterinary Anatomy, Vetsuisse Faculty, University of Zurich, Lindau, Switzerland.
| |
Collapse
|
19
|
Klein C, Bruce P, Hammermueller J, Hayes T, Lillie B, Betteridge K. Transcriptional profiling of equine endometrium before, during and after capsule disintegration during normal pregnancy and after oxytocin-induced luteostasis in non-pregnant mares. PLoS One 2021; 16:e0257161. [PMID: 34614002 PMCID: PMC8494348 DOI: 10.1371/journal.pone.0257161] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 08/24/2021] [Indexed: 11/17/2022] Open
Abstract
The current study used RNA sequencing to determine transcriptional profiles of equine endometrium collected 14, 22, and 28 days after ovulation from pregnant mares. In addition, the transcriptomes of endometrial samples obtained 20 days after ovulation from pregnant mares, and from non-pregnant mares which displayed and failed to display extended luteal function following the administration of oxytocin, were determined and compared in order to delineate genes whose expressions depend on the presence of the conceptus as opposed to elevated progesterone alone. A mere fifty-five transcripts were differentially expressed between samples collected from mares at Day 22 and Day 28 of pregnancy. This likely reflects the longer-term exposure to a relatively constant, progesterone-dominated environment with little change in factors secreted by the conceptus that would affect endometrial gene expression. The complement system was amongst the canonical pathways significantly enriched in transcripts differentially expressed between Day 14 and Day 22/28 of pregnancy. The expression of complement components 7 and 8 was confirmed using in situ hybridization. The expression of SERPING1, an inhibitor of the complement system, was confirmed by immunohistochemistry. In line with the resumed capacity of the endometrium to produce prostaglandin, prostaglandin G/H synthase 1 was expressed at higher levels at Days 22 and 28 than at Day 14 of pregnancy. Our data suggest that this up-regulation is enhanced by the presence of the conceptus; samples obtained from mares at Day 20 of pregnancy had significantly higher levels of prostaglandin G/H synthase 1 transcript than mares with extended luteal function.
Collapse
Affiliation(s)
- Claudia Klein
- Friedrich-Loeffler-Institute, Institute of Farm Animal Genetics, Mariensee, Germany
| | - Phoebe Bruce
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Jutta Hammermueller
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Tony Hayes
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Brandon Lillie
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Keith Betteridge
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
20
|
The Combination of hCG and GnRH Analog to Hasten Ovulation in Mares Does not Change Luteal Function and Pregnancy Outcome in Embryo Recipient Mares. J Equine Vet Sci 2021; 105:103691. [PMID: 34607691 DOI: 10.1016/j.jevs.2021.103691] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/21/2021] [Accepted: 06/19/2021] [Indexed: 11/21/2022]
Abstract
Equine practitioners often prescribe the combined use of hCG and GnRH to hasten ovulation due to presumed synergistic effects. Therefore, this study aimed to test whether the combination of hCG and deslorelin acetate to hasten ovulation in mares would show any effect in inducing ovulation more efficiently than when either drug is used by itself, and to verify whether this association would affect progesterone concentrations; corpus luteum (CL) diameter and blood flow; and pregnancy outcome in recipient mares after embryo transfer (ET). Seventeen mares had the ovulation hastened (≥35 mm follicle) as follow: Control, 1 mL of 0.9% NaCl solution; GnRH, 1 mg of deslorelin acetate; hCG, 1,500 IU of hCG; hCG+GnRH, 1mg of deslorelin acetate and 1,500 IU of hCG. CL diameter and blood flow, and serum progesterone concentrations were assessed between the day of ovulation induction and sixteen days after ovulation. In addition, data of 194 ET were retrospectively analyzed. Pregnancy rates at five days after ET and pregnancy loss up to 60 days of recipient mares with natural ovulation (Control, n=37), or with ovulation hastened with hCG (n=25), or deslorelin acetate (n=46), or the combination of these hormones (n=86), as described above, were assessed. The control group had a higher progesterone concentration on the day of ovulation than the GnRH group (P < .05). However, there were no differences in CL diameter and blood flow at any time point, as well as in progesterone concentration over time (P > .05). Pregnancy rates and pregnancy loss didn't differ between recipient mares treated or not with hormones. In conclusion, the combination of hCG and deslorelin acetate to hasten ovulation was not able to change luteal development, progesterone concentration, or pregnancy outcome in recipient mares after ET.
Collapse
|
21
|
Boakari YL, El-Sheikh Ali H, Dini P, Loux S, Fernandes CB, Scoggin K, Esteller-Vico A, Lawrence L, Ball B. Elevated blood urea nitrogen alters the transcriptome of equine embryos. Reprod Fertil Dev 2021; 32:1239-1249. [PMID: 33108747 DOI: 10.1071/rd20088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 08/17/2020] [Indexed: 11/23/2022] Open
Abstract
High blood urea nitrogen (BUN) in cows and ewes has a negative effect on embryo development; however, no comparable studies have been published in mares. The aims of the present study were to evaluate the effects of high BUN on blastocoele fluid, systemic progesterone and Day 14 equine embryos. When a follicle with a mean (±s.e.m.) diameter of 25±3mm was detected, mares were administered urea (0.4g kg-1) with sweet feed and molasses (n=9) or sweet feed and molasses alone (control; n=10). Blood samples were collected every other day. Mares were subjected to AI and the day ovulation was detected was designated as Day 0. Embryos were collected on Day 14 (urea-treated, n=5 embryos; control, n=7 embryos). There was an increase in systemic BUN in the urea-treated group compared with control (P<0.05), with no difference in progesterone concentrations. There were no differences between the two groups in embryo recovery or embryo size. Urea concentrations in the blastocoele fluid tended to be higher in the urea-treated mares, with a strong correlation with plasma BUN. However, there was no difference in the osmolality or pH of the blastocoele fluid between the two groups. Differentially expressed genes in Day 14 embryos from urea-treated mares analysed by RNA sequencing were involved in neurological development, urea transport, vascular remodelling and adhesion. In conclusion, oral urea treatment in mares increased BUN and induced transcriptome changes in Day 14 equine embryos of genes important in normal embryo development.
Collapse
Affiliation(s)
- Yatta Linhares Boakari
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, 1400 Nicholasville Road, Lexington, KY 40546, USA; and Department of Clinical Sciences, Auburn University College of Veterinary Medicine, 1010 Wire Road, Auburn, AL 36849, USA
| | - Hossam El-Sheikh Ali
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, 1400 Nicholasville Road, Lexington, KY 40546, USA; and Theriogenology Department, University of Mansoura, 25 El Gomhouria Street, Mansoura, 35516, Egypt
| | - Pouya Dini
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, 1400 Nicholasville Road, Lexington, KY 40546, USA; and Faculty of Veterinary Medicine, Ghent University, Sint-Pietersnieuwstraat 33, Merelbeke, B-9820, Belgium
| | - Shavahn Loux
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, 1400 Nicholasville Road, Lexington, KY 40546, USA
| | - Claudia Barbosa Fernandes
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, 1400 Nicholasville Road, Lexington, KY 40546, USA; and Department of Animal Reproduction, Rua da Reitoria, 374, University of São Paulo, São Paulo, 05508-270, Brazil
| | - Kirsten Scoggin
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, 1400 Nicholasville Road, Lexington, KY 40546, USA
| | - Alejandro Esteller-Vico
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, 1400 Nicholasville Road, Lexington, KY 40546, USA; and Department of Biomedical and Diagnostic Sciences, University of Tennessee, 2407 River Drive, Knoxville, TN 37996, USA
| | - Laurie Lawrence
- Department of Animal Science, University of Kentucky, 1400 Nicholasville Road, Lexington, KY 40546, USA
| | - Barry Ball
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, 1400 Nicholasville Road, Lexington, KY 40546, USA; and Corresponding author.
| |
Collapse
|
22
|
Grant DM, Macedo A, Toms D, Klein C. Fibrinogen in equine pregnancy as a mediator of cell adhesion, an epigenetic and functional investigation. Biol Reprod 2021; 102:170-184. [PMID: 31403677 DOI: 10.1093/biolre/ioz157] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/09/2019] [Accepted: 07/31/2019] [Indexed: 11/12/2022] Open
Abstract
Preimplantation equine embryos synthesize and secrete fibrinogen, which is a peculiar finding as fibrinogen synthesis almost exclusively occurs in the liver. This study investigated the hypothesis that conceptus-derived fibrinogen mediates cell adhesion during fixation. On day 21 of pregnancy, five integrin subunits, including ITGA5, ITGB1, ITGAV, and ITGB1, displayed significantly higher transcript abundance than on day 16 of pregnancy. Endometrial epithelial cells adhered to fibrinogen in an integrin-dependent manner in an in vitro cell adhesion assay. Bilaminar trophoblast and allantochorion expressed fibrinogen transcript, indicating that fibrinogen expression persists past fixation. Preimplantation-phase endometrium, conceptuses, and microcotyledonary tissue expressed components of the clotting cascade regulating fibrin homeostasis, leaving open the possibility that fibrinogen is converted to fibrin. Fibrinogen is likely to have functions beyond mediating cell adhesion, such trapping growth factors and triggering signaling cascades, and has remarkable parallels to the expression of fibrinogen by some tumors. The deposition of fibrinogen within tumor stroma is characteristic of breast carcinoma, and tumor-derived fibrinogen has been implicated in the metastatic potential of circulating tumor cells. DNA methylation of the fibrinogen locus in equine conceptuses was examined in comparison to liver and endometrium, and across the full gene cluster, was significantly higher for endometrium than liver and conceptus. DNA methylation of regulatory regions did not differ between liver and conceptus, and was significantly lower than in endometrium. These results, therefore, support the hypothesis of DNA methylation being a regulator of fibrinogen expression in the conceptus.
Collapse
Affiliation(s)
- Danielle M Grant
- Department of Veterinary and Clinical Diagnostic Sciences, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Alysson Macedo
- Department of Veterinary and Clinical Diagnostic Sciences, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Derek Toms
- Department of Veterinary and Clinical Diagnostic Sciences, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Claudia Klein
- Department of Veterinary and Clinical Diagnostic Sciences, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
23
|
A comparative analysis of the intrauterine transcriptome in fertile and subfertile mares using cytobrush sampling. BMC Genomics 2021; 22:377. [PMID: 34022808 PMCID: PMC8141133 DOI: 10.1186/s12864-021-07701-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 05/11/2021] [Indexed: 12/13/2022] Open
Abstract
Background Subfertility is a major problem in modern horse breeding. Especially, mares without clinical signs of reproductive diseases, without known uterine pathogens and no evidence of inflammation but not becoming pregnant after several breeding attempts are challenging for veterinarians. To obtain new insights into the cause of these fertility problems and aiming at improving diagnosis of subfertile mares, a comparative analysis of the intrauterine transcriptome in subfertile and fertile mares was performed. Uterine cytobrush samples were collected during estrus from 57 mares without clinical signs of uterine diseases. RNA was extracted from the cytobrush samples and samples from 11 selected subfertile and 11 fertile mares were used for Illumina RNA-sequencing. Results The cytobrush sampling was a suitable technique to isolate enough RNA of high quality for transcriptome analysis. Comparing subfertile and fertile mares, 114 differentially expressed genes (FDR = 10%) were identified. Metascape enrichment analysis revealed that genes with lower mRNA levels in subfertile mares were related to ‘extracellular matrix (ECM)’, ‘ECM-receptor interaction’, ‘focal adhesion’, ‘immune response’ and ‘cytosolic calcium ion concentration’, while DEGs with higher levels in subfertile mares were enriched for ‘monocarboxyl acid transmembrane transport activity’ and ‘protein targeting’. Conclusion Our study revealed significant differences in the uterine transcriptome between fertile and subfertile mares and provides leads for potential uterine molecular biomarkers of subfertility in the mare. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07701-3.
Collapse
|
24
|
Swegen A. Maternal recognition of pregnancy in the mare: does it exist and why do we care? Reproduction 2021; 161:R139-R155. [PMID: 33957605 PMCID: PMC8183633 DOI: 10.1530/rep-20-0437] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 04/09/2021] [Indexed: 12/27/2022]
Abstract
Maternal recognition of pregnancy (MRP) is a process by which an early conceptus signals its presence to the maternal system and prevents the lysis of the corpus luteum, thus ensuring a maternal milieu supportive of pregnancy continuation. It is a fundamental aspect of reproductive biology, yet in the horse, the mechanism underlying MRP remains unknown. This review seeks to address some of the controversies surrounding the evidence and theories of MRP in the equine species, such as the idea that the horse does not conform to the MRP paradigm established in other species or that equine MRP involves a mechanical, rather than chemical, signal. The review examines the challenges of studying this particularly clandestine phenomenon along with the new tools in scientific research that will drive this quest forward in coming years, and discusses the value of knowledge gleaned along this path in the context of clinical applications for improving breeding outcomes in the horse industry.
Collapse
Affiliation(s)
- Aleona Swegen
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, UK.,Priority Research Centre for Reproductive Science, University of Newcastle, Callaghan, New South Wales, Australia
| |
Collapse
|
25
|
Diel de Amorim M, Khan FA, Chenier TS, Scholtz EL, Hayes MA. Analysis of the uterine flush fluid proteome of healthy mares and mares with endometritis or fibrotic endometrial degeneration. Reprod Fertil Dev 2021; 32:572-581. [PMID: 31987068 DOI: 10.1071/rd19085] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 09/18/2019] [Indexed: 12/13/2022] Open
Abstract
The objective of this study was to evaluate the differences in the uterine flush fluid proteome between healthy mares and mares with endometritis or fibrotic endometrial degeneration (FED). Uterine flush fluid samples were collected from healthy mares (n=8; oestrus n=5 and dioestrus n=3) and mares with endometritis (n=23; oestrus n=14 and dioestrus n=9) or FED (n=7; oestrus n=6 and dioestrus n=1). Proteomic analysis was performed using label-free liquid chromatography-tandem mass spectrometry. Of 216 proteins identified during oestrus, 127 were common to all three groups, one protein was exclusively detected in healthy mares, 47 proteins were exclusively detected in mares with endometritis and four proteins were exclusively detected in mares with FED. Of 188 proteins identified during dioestrus, 113 proteins were common between healthy mares and mares with endometritis, eight proteins were exclusively detected in healthy mares and 67 proteins were exclusively detected in mares with endometritis. Quantitative analysis revealed a subset of proteins differing in abundance between the three groups during oestrus and between healthy mares and mares with endometritis during dioestrus. These results provide a springboard for evaluation of specific proteins as biomarkers of uterine health and disease and for investigation of their roles in the establishment and maintenance of pregnancy.
Collapse
Affiliation(s)
- Mariana Diel de Amorim
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, 50 Stone Road East, Guelph, ON, N1G2W1, Canada; and Present address: Department of Clinical Sciences, Cornell University College of Veterinary Medicine, Ithaca, NY 14853, USA; and Corresponding authors. Emails: ;
| | - Firdous A Khan
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, 50 Stone Road East, Guelph, ON, N1G2W1, Canada; and Department of Large Animal Medicine and Surgery, School of Veterinary Medicine, St. George's University, True Blue, St. George's, Grenada; and Present address: Department of Large Animal Medicine and Surgery, School of Veterinary Medicine, St. George's University, True Blue, St. George's, Grenada; and Corresponding authors. Emails: ;
| | - Tracey S Chenier
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, 50 Stone Road East, Guelph, ON, N1G2W1, Canada
| | - Elizabeth L Scholtz
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, 50 Stone Road East, Guelph, ON, N1G2W1, Canada
| | - M Anthony Hayes
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, 50 Stone Road East, Guelph, ON, N1G2W1, Canada
| |
Collapse
|
26
|
Camacho CA, Santos GDO, Caballeros JE, Cazales N, Ramirez CJ, Vidigal PMP, Ramos HJDO, Barros E, Mattos RC. Uterine infusion of conceptus fragments changes the protein profile from cyclic mares. Anim Reprod 2020; 17:e20200552. [PMID: 33791032 PMCID: PMC7995263 DOI: 10.1590/1984-3143-ar2020-0552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 09/14/2020] [Indexed: 11/22/2022] Open
Abstract
This experiment aimed to compare at day seven after ovulation, the protein profile of uterine fluid in cyclic mares with mares infused two days before with Day 13 conceptus fragments. Experimental animals were ten healthy cyclic mares, examined daily to detect ovulation (Day 0) as soon as estrus was confirmed. On day seven, after ovulation, uterine fluid was collected, constituting the Cyclic group (n = 10). The same mares were examined in the second cycle until ovulation was detected. On day five, after ovulation, fragments from a previously collected concepti were infused into each mare's uterus. Two days after infusion, uterine fluid was collected, constituting the Fragment group (n = 10). Two-dimensional electrophoresis technique processed uterine fluid samples. A total of 373 spots were detected. MALDI-TOF/TOF and NanoUHPLC-QTOF mass spectrometry identified twenty spots with differences in abundance between the Cyclic and Fragment group. Thirteen proteins were identified, with different abundance between groups. Identified proteins may be related to embryo-maternal communication, which involves adhesion, nutrition, endothelial cell proliferation, transport, and immunological tolerance. In conclusion, conceptus fragments signalized changes in the protein profile of uterine fluid seven days after ovulation in comparison to the observed at Day 7 in the same cyclic mares.
Collapse
Affiliation(s)
- Cesar Augusto Camacho
- Laboratório de Reprodução Animal, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - Gabriel de Oliveira Santos
- Laboratório de Reprodução Animal, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - Jorge Emilio Caballeros
- Laboratório de Reprodução Animal, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - Nicolas Cazales
- Laboratório de Reprodução Animal, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
- Facultad de Veterinária, Universidad de la República - UDELAR, Montevideo, Uruguay
| | - Camilo José Ramirez
- Núcleo de Análise de Biomoléculas, Universidade Federal de Viçosa, Viçosa, MG, Brasil
| | | | | | - Edvaldo Barros
- Núcleo de Análise de Biomoléculas, Universidade Federal de Viçosa, Viçosa, MG, Brasil
| | - Rodrigo Costa Mattos
- Laboratório de Reprodução Animal, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| |
Collapse
|
27
|
Thompson RE, Premanandan C, Pukazhenthi BS, Whitlock BK. A review of in vivo and in vitro studies of the mare endometrium. Anim Reprod Sci 2020; 222:106605. [PMID: 32987223 DOI: 10.1016/j.anireprosci.2020.106605] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 09/09/2020] [Accepted: 09/10/2020] [Indexed: 11/29/2022]
Abstract
The inner layer of the uterus, the endometrium, is responsible and necessary for many reproductive functions. Normal reproductive cyclicity, maternal recognition of pregnancy, maternal interaction with the embryo, and interaction of the reproductive tract with pathogens are dependent on the endometrium. Although most studies have been conducted in vivo using live animals, recent advances in in vitro approaches could facilitate future research in a laboratory setting with minimal effect on animals. Many reproductive studies have been performed in vivo and in vitro in equids, but new in vitro methods to study the endometrium of mares remain unexplored. In this review, there is a description of the normal anatomy and physiology of the mare endometrium in vivo, in vitro endometrial cell culture techniques that have been previously described for the mare, and opportunities for future reproductive research using in vitro methods.
Collapse
Affiliation(s)
- Riley E Thompson
- Department of Large Animal Clinical Sciences, University of Tennessee, Knoxville, TN, USA; Center for Species Survival, Smithsonian Conservation Biology Institute, Front Royal, VA, USA
| | | | - Budhan S Pukazhenthi
- Center for Species Survival, Smithsonian Conservation Biology Institute, Front Royal, VA, USA.
| | - Brian K Whitlock
- Department of Large Animal Clinical Sciences, University of Tennessee, Knoxville, TN, USA.
| |
Collapse
|
28
|
Bauersachs S, Almiñana C. Embryo-Maternal Interactions Underlying Reproduction in Mammals. Int J Mol Sci 2020; 21:ijms21144872. [PMID: 32664189 PMCID: PMC7402305 DOI: 10.3390/ijms21144872] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 07/06/2020] [Indexed: 02/07/2023] Open
Abstract
This Special Issue, “Embryo-Maternal Interactions Underlying Reproduction in Mammals”, gathers a collection of 23 articles, 16 original research articles and 7 up-to-date reviews, providing new findings or summarizing current knowledge on embryo–maternal interactions in seven different mammalian species including humans. Considering the different players involved in these embryo-maternal interactions, articles are mainly focused on one of these different players: the oviduct, the uterus, the embryo or the emergent extracellular vesicles. Additionally, a few articles bring up the impact of reproductive, but also non-reproductive, diseases, as well as stress factors, on the establishment of pregnancy. We hope the readers enjoy this collection of articles and that the knowledge assembled here will support and inspire current and future research investigations. We would like to thank all authors for their contributions to this Special Issue.
Collapse
Affiliation(s)
- Stefan Bauersachs
- Functional Genomics, Institute of Veterinary Anatomy, Vetsuisse Faculty, University of Zurich, 8315 Lindau (ZH), Switzerland
- Correspondence: (S.B.); (C.A.)
| | - Carmen Almiñana
- Functional Genomics, Institute of Veterinary Anatomy, Vetsuisse Faculty, University of Zurich, 8315 Lindau (ZH), Switzerland
- UMR85 PRC, INRAE, CNRS 7247, Université de Tours, IFCE, 37380 Nouzilly, France
- Correspondence: (S.B.); (C.A.)
| |
Collapse
|
29
|
Linhares Boakari Y, El-Sheikh Ali H, Dini P, Loux S, Barbosa Fernandes C, Esteller-Vico A, Scoggin K, Lawrence L, Ball B. Effect of oral urea supplementation on the endometrial transcriptome of mares. Anim Reprod Sci 2020; 216:106464. [PMID: 32414463 DOI: 10.1016/j.anireprosci.2020.106464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 04/08/2020] [Accepted: 04/09/2020] [Indexed: 10/24/2022]
Abstract
An intravenous large dose of protein led to an increased blood urea nitrogen (BUN), resulting in a lesser uterine pH and altered uterine gene expression in mares. The objective of the present study was to evaluate effects of a more physiological methodology to increase BUN on the endometrium of mares. Mares were fed hay and a treatment or control diet (n = 11 mares/treatment) in a crossover design starting at time of ovulation detection (D0) and continuing until D7. Mares of the treated group were fed urea (0.4 g/kg BW) with sweet feed and molasses, and those of the control group were fed sweet feed and molasses. Blood samples were collected daily, 1 hour after feeding, for BUN determination. Uterine and vaginal pH were determined after the last feeding on D7, and endometrial biopsies were performed. The RNA sequencing of the endometrium of a subset of mares (n = 6/treatment) was conducted. Differentially expressed genes (DEGs) between treatments were calculated (FDR-adjusted P-value<0.1). Urea-treated mares had greater BUN (P < 0.05), with no differences in uterine and vaginal pH compared to control mares. A total of 60 DEGs were characterized, those with largest fold change were SIK1, ATF3, SPINK7, NR4A1 and EGR3. Processes related to necrosis and cellular movement were predicted with the DEGs. Dietary administration of urea resulted in transcriptomic changes in the endometrium of mares related to necrosis, tissue remodeling and concentration of lipids. The observed changes in gene expression after an increased BUN might result in a disruption to the endometrium.
Collapse
Affiliation(s)
- Yatta Linhares Boakari
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, Kentucky, 40546, USA; Department of Clinical Sciences, Auburn University College of Veterinary Medicine, Auburn, Alabama, 36849, USA.
| | - Hossam El-Sheikh Ali
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, Kentucky, 40546, USA; Theriogenology Department, University of Mansoura, 35516, Egypt.
| | - Pouya Dini
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, Kentucky, 40546, USA; Faculty of Veterinary Medicine, Ghent University, Merelbeke, B-9820, Belgium.
| | - Shavahn Loux
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, Kentucky, 40546, USA.
| | | | | | - Kirsten Scoggin
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, Kentucky, 40546, USA.
| | - Laurie Lawrence
- Department of Animal Science, University of Kentucky, Lexington, KY, 40546, USA.
| | - Barry Ball
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, Kentucky, 40546, USA.
| |
Collapse
|
30
|
Gibson C, de Ruijter-Villani M, Bauersachs S, Stout TA. Asynchronous Embryo Transfer Followed by Comparative Transcriptomic Analysis of Conceptus Membranes and Endometrium Identifies Processes Important to the Establishment of Equine Pregnancy. Int J Mol Sci 2020; 21:E2562. [PMID: 32272720 PMCID: PMC7177982 DOI: 10.3390/ijms21072562] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/01/2020] [Accepted: 04/03/2020] [Indexed: 12/27/2022] Open
Abstract
Preimplantation horse conceptuses require nutrients and signals from histotroph, the composition of which is regulated by luteal progesterone and conceptus-secreted factors. To distinguish progesterone and conceptus effects we shortened the period of endometrial progesterone-priming by asynchronous embryo transfer. Day 8 embryos were transferred to synchronous (day 8) or asynchronous (day 3) recipients, and RNA sequencing was performed on endometrium and conceptuses recovered 6 and 11 days later (embryo days 14 and 19). Asynchrony resulted in many more differentially expressed genes (DEGs) in conceptus membranes (3473) than endometrium (715). Gene ontology analysis identified upregulation in biological processes related to organogenesis and preventing apoptosis in synchronous conceptuses on day 14, and in cell adhesion and migration on day 19. Asynchrony also resulted in large numbers of DEGs related to 'extracellular exosome'. In endometrium, genes involved in immunity, the inflammatory response, and apoptosis regulation were upregulated during synchronous pregnancy and, again, many genes related to extracellular exosome were differentially expressed. Interestingly, only 14 genes were differentially expressed in endometrium recovered 6 days after synchronous versus 11 days after asynchronous transfer (day 14 recipient in both). Among these, KNG1 and IGFBP3 were consistently upregulated in synchronous endometrium. Furthermore bradykinin, an active peptide cleaved from KNG1, stimulated prostaglandin release by cultured trophectoderm cells. The horse conceptus thus responds to a negatively asynchronous uterus by extensively adjusting its transcriptome, whereas the endometrial transcriptome is modified only subtly by a more advanced conceptus.
Collapse
Affiliation(s)
- Charlotte Gibson
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584CM Utrecht, The Netherlands; (C.G.); (M.d.R.-V.)
| | - Marta de Ruijter-Villani
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584CM Utrecht, The Netherlands; (C.G.); (M.d.R.-V.)
| | - Stefan Bauersachs
- Institute of Veterinary Anatomy, Vetsuisse Faculty Zurich, University of Zurich, 8315 Lindau (ZH), Switzerland;
| | - Tom A.E. Stout
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584CM Utrecht, The Netherlands; (C.G.); (M.d.R.-V.)
| |
Collapse
|
31
|
Pinto CRF. Impact of the corpus luteum on survival of the developing embryo and early pregnancy in mares. Theriogenology 2020; 150:374-381. [PMID: 32093963 DOI: 10.1016/j.theriogenology.2020.02.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 02/07/2020] [Indexed: 12/30/2022]
Abstract
It has been more than a hundred years that studies aiming to elucidate the processes involved in cyclicity and pregnancy pointed out the requirement of ovaries and corpora lutea for embryo survival and pregnancy establishment. For horses, luteal progesterone is essential for pregnancy only during the first trimester. This progestational support is complex among domestic animals as ovarian luteal function is further enhanced by the LH-action role of equine chorionic gonadotropin (eCG) starting ∼ on Day 35 of pregnancy. Increased eCG secretion leads to the formation of supplementary corpora lutea resulting from follicles that luteinize (accessory corpora lutea) or ovulate (secondary corpora lutea), thus increasing concentrations of blood progesterone. Physiological details of progesterone-driven embryo-maternal interactions continue to be elucidated. In recent years, researchers studying the transcriptomes and secretomes of uterine tubes, endometrium and early embryo provided insight into the composition of molecular and cellular events that enable embryo survival and remodeling of the endometrium before a functional placenta is formed. Aluteal pregnancy models have also shown that while fertilization and early embryo development until the early blastocyst stage can occur under a progesterone-deprived environment, dysregulation of important pregnancy-related genes occur; embryo development is compromised unless progestin supplementation is provided once the embryo arrives into the uterus. As the body of knowledge on embryo-maternal interactions in the horse continues to grow, a fact remains true: luteal support is essential for embryo survival mainly at the uterine stage, driving directly or indirectly gene expression that promotes adequate embryo-maternal physiological interactions until a full competent placenta is formed, resulting in optimal chances of delivering a live foal at term.
Collapse
Affiliation(s)
- Carlos R F Pinto
- Department of Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, 70803, USA.
| |
Collapse
|
32
|
Johnson C, Dance A, Kovalchuk I, Kastelic J, Thundathil J. Enhanced pre-pubertal nutrition upregulates mitochondrial function in testes and sperm of post-pubertal Holstein bulls. Sci Rep 2020; 10:2235. [PMID: 32042017 PMCID: PMC7010748 DOI: 10.1038/s41598-020-59067-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 01/19/2020] [Indexed: 01/19/2023] Open
Abstract
Supplemental energy and protein during calf-hood (2–30 wk) in dairy bulls hastened puberty (~1 mo), upregulated steroid biosynthesis, concentrations of reproductive hormones and Sertoli cell maturation, with larger testes and greater sperm production (~25%) in mature bulls. The objective was to evaluate effects of feeding high (20.0% crude protein [CP], 67.9% total digestible nutrients [TDN]), control/medium (17.0% CP, 66.0% TDN) and low (12.2% CP, 62.9% TDN) diets from 2 to 30 wk on post-pubertal testes of Holstein bulls. Based on RNA sequencing, 497 and 2961 genes were differentially expressed (P < 0.1) in high- vs low- and high- vs medium-diet groups, respectively. According to KEGG analysis, oxidative phosphorylation and ribosome pathways were upregulated in high- vs medium- and low-diet groups, with majority of upregulated genes encoding for essential subunits of complex I, III, IV and V of OXYPHOS pathway. In addition, mitochondrial translation, mitotic nuclear division and cell division were enriched in high- vs medium-diet groups. Consistent with these results, a greater percentage of sperm from high-diet bulls were progressively motile and had normal mitochondrial function compared to medium-diet sperm (P < 0.1). Thus, enhanced early life nutrition upregulated mitochondrial function in testes and sperm of post-pubertal Holstein bulls.
Collapse
Affiliation(s)
- Chinju Johnson
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Alysha Dance
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Igor Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, TIK 3M4, Canada
| | - John Kastelic
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Jacob Thundathil
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada.
| |
Collapse
|
33
|
Smits K, Gansemans Y, Tilleman L, Van Nieuwerburgh F, Van De Velde M, Gerits I, Ververs C, Roels K, Govaere J, Peelman L, Deforce D, Van Soom A. Maternal Recognition of Pregnancy in the Horse: Are MicroRNAs the Secret Messengers? Int J Mol Sci 2020; 21:ijms21020419. [PMID: 31936511 PMCID: PMC7014256 DOI: 10.3390/ijms21020419] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/26/2019] [Accepted: 01/07/2020] [Indexed: 01/22/2023] Open
Abstract
The signal for maternal recognition of pregnancy (MRP) has still not been identified in the horse. High-throughput molecular biology at the embryo-maternal interface has substantially contributed to the knowledge on pathways affected during MRP, but an integrated study in which proteomics, transcriptomics and miRNA expression can be linked directly is currently lacking. The aim of this study was to provide such analysis. Endometrial biopsies, uterine fluid, embryonic tissues, and yolk sac fluid were collected 13 days after ovulation during pregnant and control cycles from the same mares. Micro-RNA-Sequencing was performed on all collected samples, mRNA-Sequencing on the same tissue samples and mass spectrometry was conducted previously on the same fluid samples. Differential expression of miRNA, mRNA and proteins showed high conformity with literature and confirmed involvement in pregnancy establishment, embryo quality, steroid synthesis and prostaglandin regulation, but the link between differential miRNAs and their targets was limited and did not indicate the identity of an unequivocal signal for MRP in the horse. Differential expression at the embryo-maternal interface was prominent, highlighting a potential role of miRNAs in embryo-maternal communication during early pregnancy in the horse. These data provide a strong basis for future targeted studies.
Collapse
Affiliation(s)
- Katrien Smits
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
- Correspondence:
| | - Yannick Gansemans
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Gent, Belgium
| | - Laurentijn Tilleman
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Gent, Belgium
| | - Filip Van Nieuwerburgh
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Gent, Belgium
| | - Margot Van De Velde
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Ilse Gerits
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Cyrillus Ververs
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Kim Roels
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Jan Govaere
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Luc Peelman
- Animal Genetics Lab, Faculty of Veterinary Medicine, Ghent University, Heidestraat 19, 9820 Merelbeke, Belgium
| | - Dieter Deforce
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Gent, Belgium
| | - Ann Van Soom
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| |
Collapse
|
34
|
Johnson C, Fitzsimmons C, Kovalchuk I, Kastelic J, Thundathil J. Testis-specific changes in gene expression of post-pubertal beef bulls divergent for residual feed intake and exposure to different pre-natal diets. ANIMAL PRODUCTION SCIENCE 2020. [DOI: 10.1071/an19524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Context
Selection for residual feed intake (RFI) and its impact on male reproductive development has had mixed reviews in the past. Our previous studies demonstrated earlier puberty, larger testes and greater percentage of progressively motile sperm in high-RFI bulls. However, the molecular mechanisms within testes of bulls with varying RFI remain unclear.
Aims
To determine the effect of RFI and pre-natal diet on the expression patterns of testicular genes and use this information to explain differences observed across RFI.
Methods
The study included 25 purebred-Angus bulls with a genetic background of either high or low RFI and fed either normal or low pre-natal nutrition from 30 to 150 days post conception. After slaughter (17 months), testicular tissue was recovered, and RNA was extracted and sequenced.
Key results
Of 19218 expressed genes, 17 were differentially expressed for RFI (including PLCD1, INPP4B), with no differences being observed for pre-natal diet or diet × RFI interaction (false discovery rate) < 0.1%). KEGG pathway analysis indicated that differentially expressed genes were associated with inositol phosphate metabolism, and phosphatidylinositol signalling. On the basis of a candidate gene-expression study, IGF1R was upregulated in high-RFI bulls (P < 0.1).
Conclusions
Increased expression of IGF1R and lowered PLCD1 and INPP4B expression could activate PI3K–Akt signalling responsible for cell growth, proliferation and steroid metabolism in high-RFI bulls.
Implications
Selecting bulls for feed efficiency might affect molecular networks associated with reproduction and fertility.
Collapse
|
35
|
Scaravaggi I, Borel N, Romer R, Imboden I, Ulbrich SE, Zeng S, Bollwein H, Bauersachs S. Cell type-specific endometrial transcriptome changes during initial recognition of pregnancy in the mare. Reprod Fertil Dev 2019; 31:496-508. [PMID: 30253121 DOI: 10.1071/rd18144] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 08/27/2018] [Indexed: 12/11/2022] Open
Abstract
Previous endometrial gene expression studies during the time of conceptus migration did not provide final conclusions on the mechanisms of maternal recognition of pregnancy (MRP) in the mare. This called for a cell type-specific endometrial gene expression analysis in response to embryo signals to improve the understanding of gene expression regulation in the context of MRP. Laser capture microdissection was used to collect luminal epithelium (LE), glandular epithelium and stroma from endometrial biopsies from Day 12 of pregnancy and Day 12 of the oestrous cycle. RNA sequencing (RNA-Seq) showed greater expression differences between cell types than between pregnant and cyclic states; differences between the pregnant and cyclic states were mainly found in LE. Comparison with a previous RNA-Seq dataset for whole biopsy samples revealed the specific origin of gene expression differences. Furthermore, genes specifically differentially expressed (DE) in one cell type were found that were not detectable as DE in biopsies. Overall, this study revealed spatial information about endometrial gene expression during the phase of initial MRP. The conceptus induced changes in the expression of genes involved in blood vessel development, specific spatial regulation of the immune system, growth factors, regulation of prostaglandin synthesis, transport prostaglandin receptors, specifically prostaglandin F receptor (PTGFR) in the context of prevention of luteolysis.
Collapse
Affiliation(s)
- Iside Scaravaggi
- Clinic of Reproductive Medicine, Department for Farm Animals, University of Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland
| | - Nicole Borel
- Institute of Veterinary Pathology, University of Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland
| | - Rebekka Romer
- Clinic of Reproductive Medicine, Department for Farm Animals, University of Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland
| | - Isabel Imboden
- Clinic of Reproductive Medicine, Department for Farm Animals, University of Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland
| | - Susanne E Ulbrich
- Animal Physiology, Institute of Agricultural Sciences, ETH Zurich, Universitätstrasse 2, 8092 Zurich, Switzerland
| | - Shuqin Zeng
- Clinic of Reproductive Medicine, Department for Farm Animals, University of Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland
| | - Heinrich Bollwein
- Clinic of Reproductive Medicine, Department for Farm Animals, University of Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland
| | - Stefan Bauersachs
- Clinic of Reproductive Medicine, Department for Farm Animals, University of Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland
| |
Collapse
|
36
|
Non-Coding RNA Sequencing of Equine Endometrium During Maternal Recognition of Pregnancy. Genes (Basel) 2019; 10:genes10100821. [PMID: 31635328 PMCID: PMC6826835 DOI: 10.3390/genes10100821] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 10/04/2019] [Accepted: 10/10/2019] [Indexed: 12/13/2022] Open
Abstract
Maternal recognition of pregnancy (MRP) in the mare is not well defined. In a non-pregnant mare, prostaglandin F2α (PGF) is released on day 14 post-ovulation (PO) to cause luteal regression, resulting in loss of progesterone production. Equine MRP occurs prior to day 14 to halt PGF production. Studies have failed to identify a gene candidate for MRP, so attention has turned to small, non-coding RNAs. The objective of this study was to evaluate small RNA (<200 nucleotides) content in endometrium during MRP. Mares were used in a cross-over design with each having a pregnant and non-mated cycle. Each mare was randomly assigned to collection day 11 or 13 PO (n = 3/day) and endometrial biopsies were obtained. Total RNA was isolated and sequencing libraries were prepared using a small RNA library preparation kit and sequenced on a HiSeq 2000. EquCab3 was used as the reference genome and DESeq2 was used for statistical analysis. On day 11, 419 ncRNAs, representing miRNA, snRNA, snoRNA, scaRNA, and vaultRNA, were different between pregnancy statuses, but none on day 13. Equine endometrial ncRNAs with unknown structure and function were also identified. This study is the first to describe ncRNA transcriptome in equine endometrium. Identifying targets of these ncRNAs could lead to determining MRP.
Collapse
|
37
|
Coding RNA Sequencing of Equine Endometrium during Maternal Recognition of Pregnancy. Genes (Basel) 2019; 10:genes10100749. [PMID: 31557877 PMCID: PMC6826732 DOI: 10.3390/genes10100749] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 09/05/2019] [Accepted: 09/21/2019] [Indexed: 11/30/2022] Open
Abstract
Equine maternal recognition of pregnancy (MRP) is a process whose signal remains unknown. During MRP the conceptus and endometrium communicate to attenuate prostaglandin F2α (PGF) secretion, sparing the corpus luteum and maintaining progesterone production. Recognition of a mobile conceptus by the endometrium is critical by days 14–16 post-ovulation (PO), when endometrium produces PGF, initiating luteolysis. The objective of this study was to evaluate endometrial gene expression changes based upon pregnancy status via RNA sequencing. This experiment utilized a cross-over design with each mare serving as both a pregnant and non-mated control on days nine, 11, and 13 PO (n = 3/status/day). Mares were randomly assigned to collection day and pregnancy confirmed by terminal uterine lavage at the time of endometrial biopsy. Total RNA was isolated and libraries prepared using Illumina TruSeq RNA sample preparation kit. Reads were mapped and annotated using HISAT2 and Stringtie. Expression values were evaluated with DESEQ2 (P ≤ 0.05 indicated significance). On day nine, 11, and 13 there were 1435, 1435 and 916 significant transcripts, respectively. Multiple genes with splice variants had different expression patterns within the same day. These are the first data to evaluate the endometrial transcriptome during MRP on days nine, 11, and 13.
Collapse
|
38
|
A High Protein Model Alters the Endometrial Transcriptome of Mares. Genes (Basel) 2019; 10:genes10080576. [PMID: 31366166 PMCID: PMC6723232 DOI: 10.3390/genes10080576] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 06/26/2019] [Accepted: 07/22/2019] [Indexed: 01/11/2023] Open
Abstract
High blood urea nitrogen (BUN) decreases fertility of several mammals; however, the mechanisms have not been investigated in mares. We developed an experimental model to elevate BUN, with urea and control treatments (7 mares/treatment), in a crossover design. Urea-treatment consisted of a loading dose of urea (0.03 g/kg of body weight (BW)) and urea injections over 6 hours (0.03 g/kg of BW/h). Control mares received the same volume of saline solution. Blood samples were collected to measure BUN. Uterine and vaginal pH were evaluated after the last intravenous infusion, then endometrial biopsies were collected for RNA-sequencing with a HiSeq 4000. Cuffdiff (2.2.1) was used to identify the differentially expressed genes (DEG) between urea and control groups (false discovery rate-adjusted p-value < 0.1). There was a significant increase in BUN and a decrease of uterine pH in the urea group compared to the control group. A total of 193 genes were DEG between the urea and control groups, with five genes identified as upstream regulators (ETV4, EGF, EHF, IRS2, and SGK1). The DEG were predicted to be related to cell pH, ion homeostasis, changes in epithelial tissue, and solute carriers. Changes in gene expression reveal alterations in endometrial function that could be associated with adverse effects on fertility of mares.
Collapse
|
39
|
Cockrum R, Speidel S, Crawford N, Zeng X, Blackburn H, Holt T, Enns R, Thomas M. Genotypes identified by genome-wide association analyses influence yearling pulmonary arterial pressure and growth traits in Angus heifers from a high-altitude beef production system. Livest Sci 2019. [DOI: 10.1016/j.livsci.2019.04.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
40
|
Enhanced early-life nutrition upregulates cholesterol biosynthetic gene expression and Sertoli cell maturation in testes of pre-pubertal Holstein bulls. Sci Rep 2019; 9:6448. [PMID: 31015481 PMCID: PMC6478835 DOI: 10.1038/s41598-019-42686-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 04/02/2019] [Indexed: 01/13/2023] Open
Abstract
Well-fed prepuberal Holstein bulls had larger testes, earlier puberty, higher LH, testosterone and IGF-1, earlier and more proliferating and differentiating Sertoli cells, and greater sperm production potential. The objective was to determine effects of pre-pubertal nutrition on mRNA expression of testicular genes. Holstein bull calves were fed high or low diets (20 or 12% crude protein, respectively and 71.6 or 64.4% Total Digestible Nutrients) from 2 wk, castrated at 8, 16, 24 and 32 wk and testicular mRNA extracted and sequenced. Differential expression of genes mainly occurred at 16 and 24 wk. At 16 wk, functional analysis (DAVID) of DE mRNA revealed common biological processes including "cholesterol" and "fatty acid biosynthesis," with most genes (including HMGCR, HMGCS1, HSD17) upregulated in high-diet bulls (P < 0.05). Major pathways enriched at 16 wk were "cholesterol biosynthesis", "steroid metabolism" and "activation of gene expression by Sterol regulatory element binding protein (SREBP)" (P < 0.05). In high-diet bulls, mature Sertoli cell marker Connexin 43, was upregulated at 16 wk and immature Sertoli cell marker (AMH) downregulated at 24 wk. There was an indirect interaction between insulin family receptor and most upregulated cholesterol biosynthesis genes. Pre-pubertal nutrition enhanced testicular cholesterol/steroid biosynthesis and Sertoli cell maturation.
Collapse
|
41
|
Silva ESM, Cuervo-Arango J, de Ruijter-Villani M, Klose K, Oquendo PS, Stout TAE. Effect of the duration of estradiol priming prior to progesterone administration on endometrial gene expression in anestrous mares. Theriogenology 2019; 131:96-105. [PMID: 30959441 DOI: 10.1016/j.theriogenology.2019.03.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 03/25/2019] [Accepted: 03/27/2019] [Indexed: 10/27/2022]
Abstract
Field data indicate that a longer period of estrus prior to ovulation correlates positively with fertility. To test the hypothesis that the duration of exposure to estrogens prior to progesterone dominance influences endometrial function, we used anestrous mares to simulate varying durations of estrus (3 groups of 5 mares): long (LE), short (SE), and no estrus (NE), as determined by the duration of estradiol priming prior to progesterone treatment: 7, 2 and 0 days for the LE, SE and NE, respectively. Endometrial biopsies were recovered 4 days after progesterone administration in all groups for real time quantitative reverse transcription PCR (RT-qPCR) and immunohistochemical analyses. A total of 17 genes believed to contribute to a "receptive endometrium" for embryo development and viability were evaluated by RT-qPCR. Of the genes evaluated, the expression of FGF-2 (fibroblast growth factor-2) decreased with increased length of preceding estrus, whereas P19 (uterocalin) expression was higher in the LE than in the SE or NE groups. In conclusion, a lower abundance of FGF-2 and higher abundance of uterocalin, a lipocalin protein known to play an important role in providing lipids to the embryo, could contribute to a more receptive endometrium in mares following a long estrus.
Collapse
Affiliation(s)
| | - Juan Cuervo-Arango
- Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584CM Utrecht, the Netherlands.
| | - Marta de Ruijter-Villani
- Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584CM Utrecht, the Netherlands
| | - Kristin Klose
- Institute of Pathology, Faculty of Veterinary Medicine, University of Leipzig, An den Tierkliniken 33, 04103 Leipzig, Germany
| | | | - Tom A E Stout
- Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584CM Utrecht, the Netherlands
| |
Collapse
|
42
|
Shukla V, Kaushal JB, Sankhwar P, Manohar M, Dwivedi A. Inhibition of TPPP3 attenuates β-catenin/NF-κB/COX-2 signaling in endometrial stromal cells and impairs decidualization. J Endocrinol 2019; 240:417-429. [PMID: 30667362 DOI: 10.1530/joe-18-0459] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 01/03/2019] [Indexed: 12/13/2022]
Abstract
Embryo implantation and decidualization are critical events that occur during early pregnancy. Decidualization is synchronized by the crosstalk of progesterone and the cAMP signaling pathway. Previously, we confirmed the role of TPPP3 during embryo implantation in mice, but the underlying role and mechanism of TPPP3 in decidualization has not yet been understood. The current study was aimed to investigate the role of TPPP3 in decidualization in vivo and in vitro. For in vivo experiments, decidual reaction was artificially induced in the uteri of BALB/c mice. TPPP3 was found to be highly expressed during decidualization, whereas in the uteri receiving TPPP3 siRNA, decidualization was suppressed and the expression of β-catenin and decidual marker prolactin was reduced. In human endometrium, TPPP3 protein was found to be predominantly expressed in the mid-secretory phase (LH+7). In the primary culture of human endometrial stromal cells (hESCs), TPPP3 siRNA knockdown inhibited stromal-to-decidual cell transition and decreased the expression of the decidualization markers prolactin and IGFBP-1. Immunofluorescence and immunoblotting experiments revealed that TPPP3 siRNA knockdown suppressed the expression of β-catenin, NF-κB and COX-2 in hESCs during decidualization. TPPP3 inhibition also decreased NF-kB nuclear accumulation in hESCs and suppressed NF-κB transcriptional promoter activity. COX-2 expression was significantly decreased in the presence of a selective NF-kB inhibitor (QNZ) implicating that NF-kB is involved in COX-2 expression in hESCs undergoing decidualization. TUNEL assay and FACS analysis revealed that TPPP3 knockdown induced apoptosis and caused loss of mitochondrial membrane potential in hESCs. The study suggested that TPPP3 plays a significant role in decidualization and its inhibition leads to the suppression of β-catenin/NF-κB/COX-2 signaling along with the induction of mitochondria-dependent apoptosis.
Collapse
Affiliation(s)
- Vinay Shukla
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-CDRI Campus, Lucknow, India
| | - Jyoti Bala Kaushal
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-CDRI Campus, Lucknow, India
| | - Pushplata Sankhwar
- Department of Obstetrics and Gynecology, King George's Medical University, Lucknow, India
| | - Murli Manohar
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, India
| | - Anila Dwivedi
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-CDRI Campus, Lucknow, India
| |
Collapse
|
43
|
Proteomic profile of histotroph during early embryo development in mares. Theriogenology 2019; 125:224-235. [DOI: 10.1016/j.theriogenology.2018.11.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 10/31/2018] [Accepted: 11/04/2018] [Indexed: 01/16/2023]
|
44
|
Early luteal phase progestin concentration influences endometrial function in pregnant mares. Theriogenology 2019; 125:236-241. [DOI: 10.1016/j.theriogenology.2018.11.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 11/06/2018] [Accepted: 11/18/2018] [Indexed: 12/21/2022]
|
45
|
Okada C, Andrade V, Freitas-Dell’Aqua C, Nichi M, Fernandes C, Papa F, Alvarenga M. The effect of flunixin meglumine, firocoxib and meloxicam on the uterine mobility of equine embryos. Theriogenology 2019; 123:132-138. [DOI: 10.1016/j.theriogenology.2018.09.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 09/13/2018] [Accepted: 09/24/2018] [Indexed: 02/06/2023]
|
46
|
Camozzato GC, Martinez MN, Bastos HBA, Fiala-Rechsteiner S, Meikle A, Jobim MIM, Gregory RM, Mattos RC. Ultrastructural and histological characteristics of the endometrium during early embryo development in mares. Theriogenology 2018; 123:1-10. [PMID: 30253251 DOI: 10.1016/j.theriogenology.2018.09.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 09/12/2018] [Accepted: 09/14/2018] [Indexed: 11/27/2022]
Abstract
The aim of this study was to evaluate ultrastructural and histological changes in the endometrium on days 7, 10 and 13 post-ovulation in pregnant and cyclic mares. Mares were routinely examined by transrectal palpation and ultrasonographic examination of the reproductive tract until estrus was detected. In the first cycle, endometrial biopsies from 30 cyclic mares (Cyclic group) were collected on days 7, 10 and 13 post-ovulation. In the second cycle, the same mares were bred by a fertile stallion. At days 7, 10 and 13 post-ovulation intrauterine biopsies were collected. Immediately after sample collection, the mare's uteri were flushed, and those mares with embryo recovery were assigned to the Pregnant group. From ovulation detection until day of uterine biopsy, blood samples to measure Progesterone concentrations were collected daily in cyclic and pregnant mares. A larger blood vessel caliber was observed in pregnant mares than in cyclic from day 7-13. On the 7th day of pregnancy a large loss of ciliated cells was evident in the group of pregnant mares in comparison with the Cyclic group and the superficial cells of the endometrium were more protruded, and a small amount of histotrophic material between the folds was observed. On the 10th day of pregnancy, the glandular histotrophic secretion and the secretion of luminal epithelium became more intense than the secretion of cyclic mares. On the 13th day of pregnancy, a very large amount of histotroph was observed within large glandular openings surrounded by ciliated cells. The concentrations of P4 were affected by day (P < 0.001), but were not affected by group. Changes occurred in the uterine environment thereupon the entry of the embryo into the uterus. In the stroma and in the lumen, these modifications may aid to provide the necessary nutrition for the initial development of the embryo and to promote changes at cellular structures that will interact in the embryonic signaling and future fixation, implantation and placentation.
Collapse
Affiliation(s)
- G C Camozzato
- REPROLAB, Faculdade de Veterinária, UFRGS, Porto Alegre, RS, Brazil.
| | - M N Martinez
- Facultad de Veterinaria, UDELAR, Montevideo, Uruguay
| | - H B A Bastos
- REPROLAB, Faculdade de Veterinária, UFRGS, Porto Alegre, RS, Brazil
| | | | - A Meikle
- Facultad de Veterinaria, UDELAR, Montevideo, Uruguay
| | - M I M Jobim
- REPROLAB, Faculdade de Veterinária, UFRGS, Porto Alegre, RS, Brazil
| | - R M Gregory
- REPROLAB, Faculdade de Veterinária, UFRGS, Porto Alegre, RS, Brazil
| | - R C Mattos
- REPROLAB, Faculdade de Veterinária, UFRGS, Porto Alegre, RS, Brazil
| |
Collapse
|
47
|
Shukla V, Popli P, Kaushal JB, Gupta K, Dwivedi A. Uterine TPPP3 plays important role in embryo implantation via modulation of β-catenin†. Biol Reprod 2018; 99:982-999. [DOI: 10.1093/biolre/ioy136] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 06/11/2018] [Indexed: 12/22/2022] Open
Affiliation(s)
- Vinay Shukla
- Division of Endocrinology, CSIR- Central Drug Research Institute, Lucknow-226031, UP, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-CDRI Campus, Lucknow, India
| | - Pooja Popli
- Division of Endocrinology, CSIR- Central Drug Research Institute, Lucknow-226031, UP, India
| | - Jyoti Bala Kaushal
- Division of Endocrinology, CSIR- Central Drug Research Institute, Lucknow-226031, UP, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-CDRI Campus, Lucknow, India
| | - Kanchan Gupta
- Division of Endocrinology, CSIR- Central Drug Research Institute, Lucknow-226031, UP, India
| | - Anila Dwivedi
- Division of Endocrinology, CSIR- Central Drug Research Institute, Lucknow-226031, UP, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-CDRI Campus, Lucknow, India
| |
Collapse
|
48
|
Hartmann C, Gerner W, Walter I, Saalmüller A, Aurich C. Influences of intrauterine semen administration on regulatory T lymphocytes in the oestrous mare (Equus caballus). Theriogenology 2018; 118:119-125. [PMID: 29890428 DOI: 10.1016/j.theriogenology.2018.05.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 05/12/2018] [Accepted: 05/25/2018] [Indexed: 01/20/2023]
Abstract
In the mare, early pregnancy loss is common, but involvement of the maternal immune system in the pathogenesis of this condition has not been investigated in detail so far. In the present study, we assessed effects of exposure of the endometrium to semen or seminal plasma in oestrous mares on the response of regulatory T lymphocytes (Tregs) in the peripheral circulation as well as in the endometrium. Raw semen, seminal plasma or PBS (control) were introduced into the uterus of oestrous mares (n = 12). Blood was collected immediately before insemination or PBS infusion (time 0), and 12, 24 and 48 h thereafter. Endometrial biopsies were collected at 24 h. In peripheral blood, Treg (CD4+Foxp3+) cells were determined by flow cytometry. In endometrial biopsies, Tregs were assessed as cells staining positive for Foxp3 by immunohistochemistry. The percentage of Tregs in blood decreased (p < 0.05) at 12 h after exposure to seminal plasma, tended to decrease in response to raw semen (p = 0.095) but not to PBS. Leukocyte and PMN counts were not affected. In the endometrium, numbers of Foxp3 positive cells at 24 h after insemination or PBS infusion were not changed by treatment. Results of the present study provide only little evidence that maternal tolerance of pregnancy in the horse is modulated already by exposure of the oestrous endometrium to seminal plasma at mating.
Collapse
Affiliation(s)
- Constanze Hartmann
- Platform Artificial Insemination and Embryo Transfer, Department for Small Animals and Horses, Vetmeduni Vienna, Veterinärplatz 1, 1210, Vienna, Austria
| | - Wilhelm Gerner
- Institute of Immunology, Department of Pathobiology, Vetmeduni Vienna, Veterinärplatz 1, 1210, Vienna, Austria
| | - Ingrid Walter
- Institute of Pathology and Forensic Medicine, Department of Pathobiology, Vetmeduni Vienna, Vetmeduni Vienna, Veterinärplatz 1, 1210, Vienna, Austria
| | - Armin Saalmüller
- Institute of Immunology, Department of Pathobiology, Vetmeduni Vienna, Veterinärplatz 1, 1210, Vienna, Austria
| | - Christine Aurich
- Platform Artificial Insemination and Embryo Transfer, Department for Small Animals and Horses, Vetmeduni Vienna, Veterinärplatz 1, 1210, Vienna, Austria.
| |
Collapse
|
49
|
Proteins involved in embryo-maternal interaction around the signalling of maternal recognition of pregnancy in the horse. Sci Rep 2018; 8:5249. [PMID: 29588480 PMCID: PMC5869742 DOI: 10.1038/s41598-018-23537-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 03/14/2018] [Indexed: 02/08/2023] Open
Abstract
During maternal recognition of pregnancy (MRP), a conceptus-derived signal leads to the persistence of the corpus luteum and the maintenance of gestation. In the horse, the nature of this signal remains to be elucidated. Several studies have focused on the changes in gene expression during MRP, but little information exists at the protein level. The aim of this study was to identify the proteins at the embryo-maternal interface around signalling of MRP in the horse (day 13) by means of mass spectrometry. A distinct influence of pregnancy was established, with 119 proteins differentially expressed in the uterine fluid of pregnant mares compared to cyclic mares and with upregulation of several inhibitors of the prostaglandin synthesis during pregnancy. By creating an overview of the proteins at the embryo-maternal interface in the horse, this study provides a solid foundation for further targeted studies of proteins potentially involved in embryo-maternal interactions, MRP and pregnancy loss in the horse.
Collapse
|
50
|
Effect of side of the corpus luteum and pregnancy on estrogen and progesterone receptor expression and localization in the endometrium of mares. Theriogenology 2017; 114:221-228. [PMID: 29655155 DOI: 10.1016/j.theriogenology.2017.12.034] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 12/15/2017] [Accepted: 12/15/2017] [Indexed: 02/06/2023]
Abstract
The effect of side of corpus luteum on uterine gene expression and protein localization of estrogen receptor α (ERα) and progesterone receptor (PR) in healthy cyclic and pregnant mares 13 days after ovulation (day 0) was investigated. Transcervical biopsies were performed to collect endometrium ipsilateral and contralateral regarding the side of corpus luteum on day 13 post-ovulation in cyclic (n = 6) and pregnant (n = 6) mares. Blood samples were collected daily from day 0 until the day of biopsy for 17β-estradiol (E2) and progesterone (P4) determinations. Receptor expression was determined by immunohistochemistry and transcript expression by real time RT-PCR. Serum E2 and P4 concentrations were not affected by reproductive status. The contralateral horn presented higher percentage of positive cells for ERα than the ipsilateral horn (P < .05), but side did not affect PR. ERα showed low staining and no main effect of pregnancy was found, but pregnant mares had lower protein expression of PR (19.8 vs. 40.4 ± 5.3%, P < .01). The contralateral horn tended to present higher expression of ERα mRNA (1.33 vs. 0.97 ± 0.17, P < .10) and PR mRNA (1.96 vs. 1.57 ± 0.52, P < .09). ERα mRNA relative expression was lower in the pregnant group (0.88 vs. 1.44 ± 0.19, P < .05). The interaction of reproductive status and side of corpus luteum tended to affect PR mRNA expression as pregnant mares had a lower PR mRNA content in the ipsilateral horn than cyclic mares. To our knowledge, this is the first study that describes the behavior of steroid receptors in the endometrium of mares regarding side of corpus luteum.
Collapse
|