1
|
İnanç İ, Bender O, Atalay A, Köse SK, Erdemli E. Alterations in the Hippo Signaling Pathway During Adenogenesis Impairment in Postnatal Mouse Uterus. Reprod Sci 2025; 32:1685-1698. [PMID: 40106220 PMCID: PMC12041100 DOI: 10.1007/s43032-025-01793-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 01/11/2025] [Indexed: 03/22/2025]
Abstract
The mouse uterus, which consists of single-layered epithelium and undifferentiated mesenchyme at birth, begins to differentiate in the postnatal period. The process of adenogenesis, defined as gland development, begins on the Postnatal (PN) Day 5, and this process is very evident on the PN Day 10. Although various signaling pathways effective in the adenogenesis process but the mechanism underlying this progress have not been clarified yet. Hippo signaling pathway have roles in many cellular functions, such as proliferation, differentiation and cell death. But the relationship between the Hippo signaling pathway and uterus adenogenesis is unknown. The objective of this study has been to determine if there is a change in the Hippo signaling pathway in mice with impaired gland development during the adenogenesis process. To that aim, we use mouse uterus with normal gland development (control group) and gland development inhibited by progesterone (experimental group). Animals were sacrificed on the PN Days 5, 10 and 15. YAP and p-YAP by immunohistochemistry and immunoblotting techniques to identify the main components of Hippo Signaling Pathway. YAP, LATS1, LATS 2, MST1, NF2 and TAZ used for the RT-qPCR methods. In conclusion, Hippo signaling pathway components were reduced during the adenogenesis process in mouse with impaired gland development.
Collapse
Affiliation(s)
- İrem İnanç
- Faculty of Medicine, Department of Histology and Embryology, Ankara University, Ankara, Turkey.
| | - Onur Bender
- Biotechnology Institute, Ankara University, Ankara, Turkey
| | - Arzu Atalay
- Biotechnology Institute, Ankara University, Ankara, Turkey
| | - Serdal Kenan Köse
- Faculty of Medicine, Department of Biostatistics, Ankara University, Ankara, Turkey
| | - Esra Erdemli
- Faculty of Medicine, Department of Histology and Embryology, Ankara University, Ankara, Turkey
| |
Collapse
|
2
|
Gonzalez-Fernandez J, Zaragozano S, Monteagudo-Sánchez A, Simon C, Vilella F. Single-cell technology: the key to an improved understanding of the human endometrium in health and disease. Am J Obstet Gynecol 2025; 232:S43-S53. [PMID: 40253082 DOI: 10.1016/j.ajog.2024.08.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 06/14/2024] [Accepted: 08/24/2024] [Indexed: 04/21/2025]
Abstract
Cyclic exposure of the endometrium to ovarian sex steroids during the menstrual cycle induces a transition between proliferative and receptive states involving a different variety of cell types (ie, epithelial, stromal, endothelial, and immune cells) in preparation for embryo implantation during the narrow window of implantation. The study of the female reproductive system cells across these different phases contributes to our understanding of the healthy endometrium at the cellular level, supporting comparisons with pathological conditions, such as endometriosis, endometrial cancer, or Asherman's syndrome. Single-cell RNA sequencing technology represents a powerful tool that can discern the gene expression profiles of each cell within a tissue sample and has recently revealed the complex collaborations taking place between diverse cell types during the distinct endometrial phases. This review aims to summarize those studies that have employed single-cell RNA sequencing to deepen our understanding of the endometrium at single-cell resolution during the menstrual cycle. We discuss the transitions taken by distinct cell populations across the proliferative and secretory phases and the general importance of these transitions to successful embryo implantation. Furthermore, we analyze the use of single-cell RNA sequencing technology to study in vitro models of healthy endometrium and endometrial carcinoma. We believe that future studies using single-cell RNA sequencing will be essential to understanding the behavior of the endometrium as a whole and identifying potential avenues for the improved management of endometrial diseases.
Collapse
Affiliation(s)
| | - Sofía Zaragozano
- Carlos Simon Foundation, INCLIVA Health Research Institute, Paterna, Spain
| | | | - Carlos Simon
- Carlos Simon Foundation, INCLIVA Health Research Institute, Paterna, Spain
| | - Felipe Vilella
- Carlos Simon Foundation, INCLIVA Health Research Institute, Paterna, Spain.
| |
Collapse
|
3
|
Moldovan GE, Massri N, Vegter EL, Pauneto-Delgado IN, Burns GW, Joshi N, Gu B, Arora R, Fazleabas AT. YAP1 and WWTR1 are required for murine pregnancy initiation. Reproduction 2025; 169:e240355. [PMID: 39503541 PMCID: PMC11874952 DOI: 10.1530/rep-24-0355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 11/05/2024] [Indexed: 01/03/2025]
Abstract
In brief The HIPPO signaling effectors YAP1 and WWTR1 are required for murine pregnancy initiation, and mutation of these factors compromises the decidualization response and overall pregnancy success. Abstract Endometrial stromal cell decidualization is required for pregnancy success. Although this process is integral to fertility, many of the intricate molecular mechanisms contributing to decidualization remain undefined. One pathway that has been implicated in endometrial stromal cell decidualization in humans in vitro is the HIPPO signaling pathway. Two previously conducted studies showed that the effectors of the HIPPO signaling pathway YAP1 and WWTR1 are required for decidualization of primary endometrial stromal cells in vitro. To investigate the in vivo role of YAP1 and WWTR1 in decidualization and pregnancy initiation, we generated progesterone receptor Cre-mediated mutation of a combination of Yap1 and Wwtr1 alleles. Female Yap1 and Wwtr1 triple allele mutants exhibited subfertility, a compromised decidualization response, decreased endometrial receptivity, delayed embryonic development and a unique transcriptional profile at 7.5 days post-coitus (dpc). Bulk mRNA sequencing revealed aberrant maternal remodeling evidenced by significant alterations in extracellular matrix-encoding genes at 7.5 dpc in mutant dams and enrichment for terms associated with fertility-compromising diseases such as pre-eclampsia and endometriosis. In addition, differentially expressed genes overlapped directionally with estrogen receptor- and epidermal growth factor receptor-regulated genes as identified by microarray. Our results indicate that Yap1 and Wwtr1 are necessary for successful mammalian pregnancy initiation.
Collapse
|
4
|
Moldovan GE, Massri N, Vegter E, Pauneto-Delgado IL, Burns GW, Joshi N, Gu B, Arora R, Fazleabas AT. Yes Associated Transcriptional Regulator 1 (YAP1) and WW Domain Containing Transcription Regulator (WWTR1) are required for murine pregnancy initiation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.09.592984. [PMID: 38766130 PMCID: PMC11100800 DOI: 10.1101/2024.05.09.592984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Endometrial stromal cell decidualization is required for pregnancy success. Although this process is integral to fertility, many of the intricate molecular mechanisms contributing to decidualization remain undefined. One pathway that has been implicated in endometrial stromal cell decidualization in humans in vitro is the Hippo signaling pathway. Two previously conducted studies showed that the effectors of the Hippo signaling pathway, YAP1 and WWTR1, were required for decidualization of primary stromal cells in culture. To investigate the in vivo role of YAP1 and WWTR1 in decidualization and pregnancy initiation, we generated a Progesterone Cre mediated partial double knockout (pdKO) of Yap1 and Wwtr1. Female pdKOs exhibited subfertility, a compromised decidualization response, partial interruption in embryo transport, blunted endometrial receptivity, delayed implantation and subsequent embryonic development, and a unique transcriptional profile. Bulk mRNA sequencing revealed aberrant maternal remodeling evidenced by significant alterations in extracellular matrix proteins at 7.5 days post-coitus in pdKO dams and enrichment for terms associated with fertility-compromising diseases like pre-eclampsia and endometriosis. Our results indicate a required role for YAP1 and WWTR1 for successful mammalian uterine function and pregnancy success.
Collapse
Affiliation(s)
- Genna E Moldovan
- Department of Obstetrics, Gynecology & Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503
- Cell and Molecular Biology Program, College of Natural Sciences, Michigan State University, East Lansing, MI 48824
| | - Noura Massri
- Department of Obstetrics, Gynecology & Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503
- Cell and Molecular Biology Program, College of Natural Sciences, Michigan State University, East Lansing, MI 48824
| | - Erin Vegter
- Department of Obstetrics, Gynecology & Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503
| | | | - Gregory W Burns
- Cell and Molecular Biology Program, College of Natural Sciences, Michigan State University, East Lansing, MI 48824
| | - Niraj Joshi
- Charles River Laboratories, Mattawan, MI 49071
| | - Bin Gu
- Department of Obstetrics, Gynecology & Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI 48824
| | - Ripla Arora
- Department of Obstetrics, Gynecology & Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI 48824
| | - Asgerally T Fazleabas
- Department of Obstetrics, Gynecology & Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503
| |
Collapse
|
5
|
TAZ as a novel regulator of oxidative damage in decidualization via Nrf2/ARE/Foxo1 pathway. Exp Mol Med 2021; 53:1307-1318. [PMID: 34497345 PMCID: PMC8492733 DOI: 10.1038/s12276-021-00655-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 05/24/2021] [Accepted: 06/15/2021] [Indexed: 11/13/2022] Open
Abstract
TAZ, as a crucial effector of Hippo pathway, is required for spermatogenesis and fertilization, but little is known regarding its physiological function in uterine decidualization. In this study, we showed that TAZ was localized in the decidua, where it promoted stromal cell proliferation followed by accelerated G1/S phase transition via Ccnd3 and Cdk4 and induced the expression or activity of stromal differentiation markers Prl8a2, Prl3c1 and ALP, indicating the importance of TAZ in decidualization. Knockdown of TAZ impeded HB-EGF induction of stromal cell proliferation and differentiation. Under oxidative stress, TAZ protected stromal differentiation against oxidative damage by reducing intracellular ROS and enhancing cellular antioxidant capacity dependent on the Nrf2/ARE/Foxo1 pathway. TAZ strengthened the transcriptional activity of Nrf2 which directly bound to the antioxidant response element (ARE) of Foxo1 promoter region. Additionally, silencing TAZ caused accumulation of intracellular ROS through heightening NOX activity whose blockade by APO reversed the disruption in stromal differentiation. Further analysis revealed that TAZ might restore mitochondrial function, as indicated by the increase in ATP level, mtDNA copy number and mitochondrial membrane potential with the reduction in mitochondrial superoxide. Additionally, TAZ modulated the activities of mitochondrial respiratory chain complexes I and III whose suppression by ROT and AA resulted in the inability of TAZ to defend against oxidative damage to stromal differentiation. Moreover, TAZ prevented stromal cell apoptosis by upregulating Bcl2 expression and inhibiting Casp3 activity and Bax expression. In summary, TAZ might mediate HB-EGF function in uterine decidualization through Ccnd3 and ameliorate oxidative damage to stromal cell differentiation via Nrf2/ARE/Foxo1 pathway. A protein known to regulate cell proliferation plays a key role in preparing a woman’s uterus for pregnancy, a finding that could inform future treatments for female infertility. A team led by Zhan-Peng Yue and Bin Guo from Jilin University, Changchun, China, examined the role of a co-activator protein called TAZ in decidualization, the process in which the uterine lining changes hormonally and biochemically following ovulation. The researchers showed that TAZ levels build up in the mucosal lining of the uterus, where the protein works with various regulators of the cell cycle to promote the proliferation of connective tissue cells known as stromal cells, which support early embryonic development. The researchers demonstrated that in the face of oxidative stress TAZ helps orchestrate molecular detoxification mechanisms that protect these stromal cells from damage.
Collapse
|
6
|
Sternberg AK, Buck VU, Classen-Linke I, Leube RE. How Mechanical Forces Change the Human Endometrium during the Menstrual Cycle in Preparation for Embryo Implantation. Cells 2021; 10:2008. [PMID: 34440776 PMCID: PMC8391722 DOI: 10.3390/cells10082008] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/30/2021] [Accepted: 08/03/2021] [Indexed: 12/12/2022] Open
Abstract
The human endometrium is characterized by exceptional plasticity, as evidenced by rapid growth and differentiation during the menstrual cycle and fast tissue remodeling during early pregnancy. Past work has rarely addressed the role of cellular mechanics in these processes. It is becoming increasingly clear that sensing and responding to mechanical forces are as significant for cell behavior as biochemical signaling. Here, we provide an overview of experimental evidence and concepts that illustrate how mechanical forces influence endometrial cell behavior during the hormone-driven menstrual cycle and prepare the endometrium for embryo implantation. Given the fundamental species differences during implantation, we restrict the review to the human situation. Novel technologies and devices such as 3D multifrequency magnetic resonance elastography, atomic force microscopy, organ-on-a-chip microfluidic systems, stem-cell-derived organoid formation, and complex 3D co-culture systems have propelled the understanding how endometrial receptivity and blastocyst implantation are regulated in the human uterus. Accumulating evidence has shown that junctional adhesion, cytoskeletal rearrangement, and extracellular matrix stiffness affect the local force balance that regulates endometrial differentiation and blastocyst invasion. A focus of this review is on the hormonal regulation of endometrial epithelial cell mechanics. We discuss potential implications for embryo implantation.
Collapse
Affiliation(s)
| | | | | | - Rudolf E. Leube
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Wendlingweg 2, 52074 Aachen, Germany; (A.K.S.); (V.U.B.); (I.C.-L.)
| |
Collapse
|
7
|
Zang X, Zhou C, Wang W, Gan J, Li Y, Liu D, Liu G, Hong L. Differential MicroRNA Expression Involved in Endometrial Receptivity of Goats. Biomolecules 2021; 11:biom11030472. [PMID: 33810054 PMCID: PMC8004627 DOI: 10.3390/biom11030472] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/08/2021] [Accepted: 03/18/2021] [Indexed: 12/13/2022] Open
Abstract
Endometrial receptivity represents one of the leading factors affecting the successful implantation of embryos during early pregnancy. However, the mechanism of microRNAs (miRNAs) to establish goat endometrial receptivity remains unclear. This study was intended to identify potential miRNAs and regulatory mechanisms associated with establishing endometrial receptivity through integrating bioinformatics analysis and experimental verification. MiRNA expression profiles were obtained by high-throughput sequencing, resulting in the detection of 33 differentially expressed miRNAs (DEMs), followed by their validation through quantitative RT-PCR. Furthermore, 10 potential transcription factors (TFs) and 1316 target genes of these DEMs were obtained, and the TF–miRNA and miRNA–mRNA interaction networks were constructed. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses indicated that these miRNAs were significantly linked to establishing endometrial receptivity. Moreover, the fluorescence in situ hybridization (FISH) analysis, dual-luciferase report assay, and immunohistochemistry (IHC) analysis corroborated that chi-miR-483 could directly bind to deltex E3 ubiquitin ligase 3L (DTX3L) to reduce its expression level. In conclusion, our findings contribute to a better understanding of molecular mechanisms regulating the endometrial receptivity of goats, and they provide a reference for improving embryo implantation efficiency.
Collapse
Affiliation(s)
- Xupeng Zang
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (X.Z.); (C.Z.); (W.W.); (J.G.); (Y.L.); (D.L.)
- Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou 510642, China
| | - Chen Zhou
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (X.Z.); (C.Z.); (W.W.); (J.G.); (Y.L.); (D.L.)
- Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou 510642, China
| | - Wenjing Wang
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (X.Z.); (C.Z.); (W.W.); (J.G.); (Y.L.); (D.L.)
- Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou 510642, China
| | - Jianyu Gan
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (X.Z.); (C.Z.); (W.W.); (J.G.); (Y.L.); (D.L.)
- Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou 510642, China
| | - Yaokun Li
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (X.Z.); (C.Z.); (W.W.); (J.G.); (Y.L.); (D.L.)
- Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou 510642, China
| | - Dewu Liu
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (X.Z.); (C.Z.); (W.W.); (J.G.); (Y.L.); (D.L.)
- Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou 510642, China
| | - Guangbin Liu
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (X.Z.); (C.Z.); (W.W.); (J.G.); (Y.L.); (D.L.)
- Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou 510642, China
- Correspondence: (G.L.); (L.H.); Tel.: +86-02085281859 (L.H.)
| | - Linjun Hong
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (X.Z.); (C.Z.); (W.W.); (J.G.); (Y.L.); (D.L.)
- Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou 510642, China
- Correspondence: (G.L.); (L.H.); Tel.: +86-02085281859 (L.H.)
| |
Collapse
|
8
|
Song Y, Fazleabas AT. Endometrial Organoids: A Rising Star for Research on Endometrial Development and Associated Diseases. Reprod Sci 2021; 28:1626-1636. [PMID: 33533008 DOI: 10.1007/s43032-021-00471-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/19/2021] [Indexed: 12/19/2022]
Abstract
The endometrium is one of the most dynamic organs in the human body. Until now, cell lines have furthered the understanding of endometrial biology and associated diseases, but they failed to recapitulate the key physiological aspects of the endometrium, especially as it relates to its complex architecture and functions. Organoid culture systems have become an alternative approach to reproduce biological functions of tissues in vitro. Endometrial organoids have now been established from stem/progenitor cells and/or differentiated cells by several methods, which represents a promising tool to gain a deeper understanding of this dynamic organ. In this review, we will discuss the establishment, characteristics, applications, and potential challenges and directions of endometrial organoids.
Collapse
Affiliation(s)
- Yong Song
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, Grand Rapids, Michigan, 49503, USA
| | - Asgerally T Fazleabas
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, Grand Rapids, Michigan, 49503, USA.
| |
Collapse
|
9
|
Recent Advances in Understandings Towards Pathogenesis and Treatment for Intrauterine Adhesion and Disruptive Insights from Single-Cell Analysis. Reprod Sci 2020; 28:1812-1826. [PMID: 33125685 PMCID: PMC8189970 DOI: 10.1007/s43032-020-00343-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 10/01/2020] [Indexed: 12/22/2022]
Abstract
Intrauterine adhesion is a major cause of menstrual irregularities, infertility, and recurrent pregnancy losses and the progress towards its amelioration and therapy is slow and unsatisfactory. We aim to summarize and evaluate the current treatment progress and research methods for intrauterine adhesion. We conducted literature review in January 2020 by searching articles at PubMed on prevention and treatment, pathogenesis, the repair of other tissues/organs, cell plasticity, and the stem cell–related therapies for intrauterine adhesion. A total of 110 articles were selected for review. Uterine cell heterogeneity, expression profile, and cell-cell interaction were investigated based on scRNA-seq of uterus provided by Human Cell Landscape (HCL) project. Previous knowledge on intrauterine adhesion (IUA) pathogenesis was mostly derived from correlation studies by differentially expressed genes between endometrial tissue of intrauterine adhesion patients/animal models and normal endometrial tissue. Although the TGF-β1/SMAD pathway was suggested as the key driver for IUA pathogenesis, uterine cell heterogeneity and distinct expression profile among different cell types highlighted the importance of single-cell investigations. Cell-cell interaction in the uterus revealed the central hub of endothelial cells interacting with other cells, with endothelial cells in endothelial to mesenchymal transition and fibroblasts as the strongest interaction partners. The potential of stem cell–related therapies appeared promising, yet suffers from largely animal studies and nonstandard study design. The need to dissect the roles of endometrial cells, endothelial cells, and fibroblasts and their interaction is evident in order to elucidate the molecular and cellular mechanisms in both intrauterine adhesion pathogenesis and treatment.
Collapse
|
10
|
Huang Z, Zhou J, Leung WT, Gober HJ, Pan X, Li C, Li L, Wang L. The novel role of Hippo-YAP/TAZ in immunity at the mammalian maternal-fetal interface: Opportunities, challenges. Biomed Pharmacother 2020; 126:110061. [PMID: 32145593 DOI: 10.1016/j.biopha.2020.110061] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/27/2020] [Accepted: 02/27/2020] [Indexed: 01/05/2023] Open
Abstract
The Hippo-Yes-associated protein (YAP)/transcriptional co-activator with PDZ-binding motif (TAZ), originally identified as a regulator of tissue generation and tumorigenesis, has been proven to have a pivotal position in immunity. Its multi-faceted roles in regulating immunity cover both intrinsic mechanism of immune cells and the crosstalk with non-immune cells. Survival of the allogeneic embryo in the maternal uterine environment depends on immune tolerance, supported by the highly orchestrated cooperation between decidual immune cells, decidual stromal cells and trophoblasts at the maternal-fetal interface. The abnormal maternal-fetal dialogue is believed to be associated with adverse pregnancy outcomes such as spontaneous pregnancy loss. Recent breakthroughs shed light on the how the Hippo-YAP/TAZ manipulate the decidualization and trophoblast invasion, while further research is needed to integrate and reconcile existing findings of the Hippo-YAP/TAZ in immunity and to extend them at the context of pregnancy. In this review, we summarized the Hippo-YAP/TAZ pathways, detailed the effects of YAP/TAZ on immune cells, and discussed the role of YAP/TAZ at the maternal-fetal interface and the potential of YAP/TAZ on immunity regulation at the context of pregnancy. Given the remarkable effect of therapeutic intervention of YAP/TAZ in cancer and autoimmune diseases, it is worthy to explore the response to YAP/TAZ inhibition in the maternal-fetal immunity. This may provide a new valuable target for therapy of pregnancy loss, or potentially other pregnancy complications.
Collapse
Affiliation(s)
- Zengshu Huang
- Laboratory for Reproductive Immunology, Hospital & Institute of Obstetrics and Gynecology, Shanghai Medical College, Fudan University, Shanghai, China; The Academy of Integrative Medicine, Fudan University, Shanghai, China; Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai, China
| | - Jing Zhou
- Laboratory for Reproductive Immunology, Hospital & Institute of Obstetrics and Gynecology, Shanghai Medical College, Fudan University, Shanghai, China; The Academy of Integrative Medicine, Fudan University, Shanghai, China; Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai, China
| | - Wing Ting Leung
- Laboratory for Reproductive Immunology, Hospital & Institute of Obstetrics and Gynecology, Shanghai Medical College, Fudan University, Shanghai, China; The Academy of Integrative Medicine, Fudan University, Shanghai, China; Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai, China
| | - Hans Jürgen Gober
- Pharmaceutical Outcomes Programme, British Columbia Children's Hospital, 938 West 28th Avenue, Vancouver BC, Canada
| | - Xinyao Pan
- Laboratory for Reproductive Immunology, Hospital & Institute of Obstetrics and Gynecology, Shanghai Medical College, Fudan University, Shanghai, China; The Academy of Integrative Medicine, Fudan University, Shanghai, China; Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai, China
| | - Chuyu Li
- Laboratory for Reproductive Immunology, Hospital & Institute of Obstetrics and Gynecology, Shanghai Medical College, Fudan University, Shanghai, China; The Academy of Integrative Medicine, Fudan University, Shanghai, China; Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai, China
| | - Lisha Li
- Laboratory for Reproductive Immunology, Hospital & Institute of Obstetrics and Gynecology, Shanghai Medical College, Fudan University, Shanghai, China; The Academy of Integrative Medicine, Fudan University, Shanghai, China; Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai, China.
| | - Ling Wang
- Laboratory for Reproductive Immunology, Hospital & Institute of Obstetrics and Gynecology, Shanghai Medical College, Fudan University, Shanghai, China; The Academy of Integrative Medicine, Fudan University, Shanghai, China; Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai, China.
| |
Collapse
|
11
|
Moon S, Lee OH, Lee S, Lee J, Park H, Park M, Chang EM, Park KH, Choi Y. STK3/4 Expression Is Regulated in Uterine Endometrial Cells during the Estrous Cycle. Cells 2019; 8:cells8121643. [PMID: 31847471 PMCID: PMC6952811 DOI: 10.3390/cells8121643] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/11/2019] [Accepted: 12/12/2019] [Indexed: 12/11/2022] Open
Abstract
The uterus is dynamically regulated in response to various signaling triggered by hormones during the estrous cycle. The Hippo signaling pathway is known as an important signaling for regulating cellular processes during development by balancing between cell growth and apoptosis. Serine/threonine protein kinase 3/4 (STK3/4) is a key component of the Hippo signaling network. However, the regulation of STK3/4-Hippo signaling in the uterus is little known. In this study, we investigated the regulation and expression of STK3/4 in the uterine endometrium during the estrous cycle. STK3/4 expression was dynamically regulated in the uterus during the estrous cycle. STK3/4 protein expression was gradually increased from the diestrus stage and reached the highest in the estrus stage. STK3/4 was exclusively localized in the luminal and glandular epithelial cells of the uterus, and phosphorylated STK3/4 was also increased at the estrus stage. Moreover, the increase of STK3/4 expression in uteri was induced by administration of estradiol, but not by progesterone injection in ovariectomized mice. Pretreatment with an estrogen receptor antagonist ICI 182,780 reduced estrogen-induced STK3/4 expression and its phosphorylation. The estrogen-induced STK3/4 expression was related to the increase in phosphorylation of downstream targets including LATS1/2 and YAP. These findings suggest that STK3/4-Hippo signaling acts a novel signaling pathway in the uterine epithelium and STK3/4-Hippo is one of key molecules for connecting between the estrogen downstream signaling pathway and the Hippo signaling pathway leading to regulate dynamic uterine epithelium during the estrous cycle.
Collapse
Affiliation(s)
- Sohyeon Moon
- Department of Stem Cell and Regenerative Biotechnology, Humanized Pig Research Center, Konkuk University, Seoul 05029, Korea; (S.M.); (J.L.); (H.P.)
| | - Ok-Hee Lee
- Department of Biomedical Science, CHA University, Gyeonggi-do 13488, Korea; (O.-H.L.); (S.L.); (K.-H.P.)
| | - Sujin Lee
- Department of Biomedical Science, CHA University, Gyeonggi-do 13488, Korea; (O.-H.L.); (S.L.); (K.-H.P.)
| | - Jihyun Lee
- Department of Stem Cell and Regenerative Biotechnology, Humanized Pig Research Center, Konkuk University, Seoul 05029, Korea; (S.M.); (J.L.); (H.P.)
| | - Haeun Park
- Department of Stem Cell and Regenerative Biotechnology, Humanized Pig Research Center, Konkuk University, Seoul 05029, Korea; (S.M.); (J.L.); (H.P.)
| | - Miseon Park
- Fertility Center of CHA Gangnam Medical Center, CHA University, Seoul 06135, Korea; (M.P.); (E.M.C.)
| | - Eun Mi Chang
- Fertility Center of CHA Gangnam Medical Center, CHA University, Seoul 06135, Korea; (M.P.); (E.M.C.)
| | - Keun-Hong Park
- Department of Biomedical Science, CHA University, Gyeonggi-do 13488, Korea; (O.-H.L.); (S.L.); (K.-H.P.)
| | - Youngsok Choi
- Department of Stem Cell and Regenerative Biotechnology, Humanized Pig Research Center, Konkuk University, Seoul 05029, Korea; (S.M.); (J.L.); (H.P.)
- Correspondence: ; Tel.: +82-2-450-3969
| |
Collapse
|
12
|
Liu R, Wei C, Ma Q, Wang W. Hippo-YAP1 signaling pathway and severe preeclampsia (sPE) in the Chinese population. Pregnancy Hypertens 2019; 19:1-10. [PMID: 31841877 DOI: 10.1016/j.preghy.2019.11.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 10/20/2019] [Accepted: 11/05/2019] [Indexed: 01/28/2023]
Abstract
BACKGROUND The present study aims to explore the possible mechanisms of Hippo-YAP1 signaling pathway in the development of severe preeclampsia (sPE). METHODS A total of 14 pregnancies complicated with severe preeclampsia as well as 14 healthy pregnancies were involved in this research from Department of Obstetrics, the First Affiliated Hospital of Xi'An Jiaotong University, from 15th March 2016 to 15th March 2018. The mRNA levels of YAP1, TAZ, MST1 and MST2 were tested via the RT-qPCR in the placentas between the two groups. Also, the protein expression degrees of YAP1, TAZ, MST 1 and MST 2 were detected using the technology of Western blotting. At the same time, immune-histochemistry method was performed to localize the expression of YAP1, TAZ, MST 1 and MST 2 proteins in the placentas between the two groups. Yes-associated protein expression was also detected in BeWo and HTR-8/SVneo. Overexpressed plasmid and YAP1 si-RNA were transfered into HTR-8/SVneo trophoblast cells. Transwell invasion assay was used to examine the role of YAP1 in the invasion of HTR-8/SVneo trophoblast cells. RESULTS In comparison with the normal pregnancy placentas, the mRNA levels of YAP (0.659 ± 0.169 vs. 1.758 ± 0.587, P < 0.001) and TAZ (1.148 ± 0.313 vs. 2.894 ± 0.470, P < 0.001) were decreased in the placentas of severe preeclampsia group while the mRNA levels of MST 1 (1.433 ± 0.306 vs. 0.663 ± 0.162, P < 0.001) and MST 2 (1.497 ± 0.378 vs. 0.554 ± 0.130, P < 0.001) were increased. The Western blotting shown that the expression degrees of YAP1 and TAZ proteins were significantly decreased in the placentas of severe preeclampsia, while the expression level of MST 1 and MST 2 was obviously increased. Furthermore, the staining intensity of YAP1 and TAZ were weaker in the placentas of the severe PE group while the staining intensity of MST 1 and MST 2 was significantly stronger in the placentas of the severe PE group. The invasion ability of the HTR-8/SVneo cells in the YAP1-overexpressed group was significantly higher than the corresponding control group ((313.7 ± 5.86) vs.(194.0 ± 4.00), P < 0.05) while the si-YAP1 group was significantly lower than that of the corresponding control group ((81.33 ± 2.52) vs. (204.67 ± 11.02), P < 0.05). CONCLUSIONS Hippo-YAP1 signaling pathway may play an essential role in the pathogenesis of sPE by regulating the invasion and proliferation of trophoblast.
Collapse
Affiliation(s)
- Rui Liu
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Department of Gynecology, Maternity and Children's Healthcare Hospital of Foshan, Foshan, Guangdong 528000,China
| | - Chan Wei
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Qiang Ma
- Department of Peripheral Vessels, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Weimin Wang
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.
| |
Collapse
|
13
|
St-Jean G, Tsoi M, Abedini A, Levasseur A, Rico C, Morin M, Djordjevic B, Miinalainen I, Kaarteenaho R, Paquet M, Gévry N, Boyer A, Vanderhyden B, Boerboom D. Lats1 and Lats2 are required for the maintenance of multipotency in the Müllerian duct mesenchyme. Development 2019; 146:dev.180430. [PMID: 31575647 DOI: 10.1242/dev.180430] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 09/18/2019] [Indexed: 12/13/2022]
Abstract
WNT signaling plays essential roles in the development and function of the female reproductive tract. Although crosstalk with the Hippo pathway is a key regulator of WNT signaling, whether Hippo itself plays a role in female reproductive biology remains largely unknown. Here, we show that conditional deletion of the key Hippo kinases Lats1 and Lats2 in mouse Müllerian duct mesenchyme cells caused them to adopt the myofibroblast cell fate, resulting in profound reproductive tract developmental defects and sterility. Myofibroblast differentiation was attributed to increased YAP and TAZ expression (but not to altered WNT signaling), leading to the direct transcriptional upregulation of Ctgf and the activation of the myofibroblast genetic program. Müllerian duct mesenchyme cells also became myofibroblasts in male mutant embryos, which impeded the development of the male reproductive tract and resulted in cryptorchidism. The inactivation of Lats1/2 in differentiated uterine stromal cells in vitro did not compromise their ability to decidualize, suggesting that Hippo is dispensable during implantation. We conclude that Hippo signaling is required to suppress the myofibroblast genetic program and maintain multipotency in Müllerian mesenchyme cells.
Collapse
Affiliation(s)
- Guillaume St-Jean
- Département de Biomédecine Vétérinaire, Faculté de Médecine Vétérinaire, Université de Montréal, St-Hyacinthe, Québec, J2S 7C6, Canada
| | - Mayra Tsoi
- Département de Biomédecine Vétérinaire, Faculté de Médecine Vétérinaire, Université de Montréal, St-Hyacinthe, Québec, J2S 7C6, Canada
| | - Atefeh Abedini
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, K1H 8M5, Canada
| | - Adrien Levasseur
- Département de Biomédecine Vétérinaire, Faculté de Médecine Vétérinaire, Université de Montréal, St-Hyacinthe, Québec, J2S 7C6, Canada
| | - Charlène Rico
- Département de Biomédecine Vétérinaire, Faculté de Médecine Vétérinaire, Université de Montréal, St-Hyacinthe, Québec, J2S 7C6, Canada
| | - Martin Morin
- Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, Québec, J1K 2R1, Canada
| | - Bojana Djordjevic
- Department of Anatomic Pathology, Sunnybrook Health Sciences Centre, Toronto, Ontario, M4N 3M5, Canada
| | | | - Riitta Kaarteenaho
- Research Unit of Internal Medicine, University of Oulu and Medical Research Center Oulu, Oulu University Hospital, 90029, Oulu, Finland
| | - Marilène Paquet
- Département de Pathologie et de Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, St-Hyacinthe, Québec, J2S 7C6, Canada
| | - Nicolas Gévry
- Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, Québec, J1K 2R1, Canada
| | - Alexandre Boyer
- Département de Biomédecine Vétérinaire, Faculté de Médecine Vétérinaire, Université de Montréal, St-Hyacinthe, Québec, J2S 7C6, Canada
| | - Barbara Vanderhyden
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, K1H 8M5, Canada
| | - Derek Boerboom
- Département de Biomédecine Vétérinaire, Faculté de Médecine Vétérinaire, Université de Montréal, St-Hyacinthe, Québec, J2S 7C6, Canada
| |
Collapse
|
14
|
Zhu HY, Ge TX, Pan YB, Zhang SY. Advanced Role of Hippo Signaling in Endometrial Fibrosis: Implications for Intrauterine Adhesion. Chin Med J (Engl) 2018; 130:2732-2737. [PMID: 29133764 PMCID: PMC5695061 DOI: 10.4103/0366-6999.218013] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Objective: Intrauterine adhesion (IUA) is a major health problem that causes infertility, menstrual irregularities, and recurrent pregnancy losses in women. Unfortunately, treatments for IUA are limited, and there are currently no effective strategies for preventing IUA recurrence. In this review, we introduced the role of Hippo signaling in the normal endometrium and IUA and described the mechanisms by which the Hippo pathway integrates with the Wnt and transforming growth factor-β (TGF-β) signaling pathways to form an intricate network governing the development of fibrosis. Data Sources: Original research articles in English that were published until July 2017 were collected from the PubMed database. Study Selection: Literature search was conducted using the search terms “endometrial fibrosis OR fibrosis AND or OR intrauterine adhesion OR Asherman syndrome OR IUA,” “Hippo AND or OR Hippo/TAZ,” “TGF-β,” and “Wnt.” Related original research articles were included in the comprehensive analysis. Results: Endometrial fibrosis is recognized as a key pathological event in the development of IUA, which is characterized by epithelial/fibroblast–myofibroblast transition. Myofibroblasts play crucial roles in the pathogenesis of fibrous scarring, and myofibroblast differentiation can be triggered by multiple signaling pathways. Hippo signaling is a critical regulator of the epithelial/fibroblast–myofibroblast transition and α-smooth muscle actin, which exhibits a specific spatiotemporal expression in the endometrium. Conclusions: Hippo signaling plays a critical role in fibrous diseases and participates in cross talks with Wnt and TGF-β signaling. Our findings not only contributed to knowledge on the pathogenesis of endometrial fibrosis, but can also serve as a useful resource for developing specific molecular inhibitors for IUA treatment and prevention.
Collapse
Affiliation(s)
- Hai-Yan Zhu
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, China
| | - Tian-Xiang Ge
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, China
| | - Yi-Bin Pan
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, China
| | - Song-Ying Zhang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, China
| |
Collapse
|
15
|
Development and validation of a liquid chromatography-tandem mass spectrometry method for pharmacokinetic study of TM-53, a novel transcriptional coactivator with PDZ-binding motif (TAZ) modulator. J Pharm Biomed Anal 2017; 146:195-200. [PMID: 28886519 DOI: 10.1016/j.jpba.2017.08.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 08/17/2017] [Accepted: 08/18/2017] [Indexed: 11/20/2022]
Abstract
Transcriptional coactivator with PDZ-binding motif (TAZ) is considered an attractive target for osteoporosis, obesity, and muscle regeneration. TM-53, a promising TAZ modulator, was recently introduced, and here, we developed a rapid, precise, and reliable analytical method for TM-53 and characterized its pharmacokinetic properties in rat plasma. The hybrid triple quadrupole/linear ion trap coupled to liquid chromatography method was developed and validated to quantify TM-53. Additionally, TM-53 concentrations in plasma were analyzed, and its pharmacokinetic parameters were calculated by non-compartmental analysis. Multiple reaction monitoring at m/z 569.4→207.1 showed the most sensitive signals for TM-53, and the linear scope of the standard curve was between 1.5ng/mL and 500ng/mL. The intra- and inter-day precisions of the quality control samples were <15%, and their accuracies were ranged from 86.2% to 111.0%. Furthermore, the matrix effects, extraction recoveries, and process efficiencies of this analytical method for evaluating TM-53 in rat plasma were 99.1%, 99.9%, and 99.1% respectively. In short- and long-term stability studies, TM-53 showed good stability under frozen conditions, but TM-53 hydrolysis in the plasma matrix was observed following storage at room temperature. This analytical method was successfully applied for pharmacokinetic analysis of TM-53 in rat plasma and demonstrated excellent sensitivity, selectivity, precision, and accuracy. These data indicated that this method can be applied for further preclinical studies of TM-53.
Collapse
|
16
|
Choi MK, Kwon M, Ahn JH, Kim NJ, Bae MA, Song IS. Transport characteristics and transporter-based drug-drug interactions of TM-25659, a novel TAZ modulator. Biopharm Drug Dispos 2013; 35:183-94. [PMID: 24285344 DOI: 10.1002/bdd.1883] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 11/13/2013] [Accepted: 11/19/2013] [Indexed: 01/03/2023]
Abstract
The in vitro metabolic stability and transport mechanism of TM-25659, a novel TAZ modulator, was investigated in human hepatocytes and human liver microsomes (HLMs) based on the preferred hepatobiliary elimination in rats. In addition, the in vitro transport mechanism and transporter-mediated drug-drug interactions were evaluated using oocytes and MDCKII cells overexpressing clinically important drug transporters. After a 1 h incubation in HLMs, 92.9 ± 9.5% and 95.5 ± 11.6% of the initial TM-25659 remained in the presence of NADPH and UDPGA, respectively. Uptake of TM-25659 readily accumulated in human hepatocytes at 37 ºC (i.e. 6.7-fold greater than that at 4 ºC), in which drug transporters such as OATP1B1 and OATP1B3 were involved. TM-25659 had a significantly greater basal to apical transport rate (5.9-fold) than apical to basal transport rate in the Caco-2 cell monolayer, suggesting the involvement of an efflux transport system. Further studies using inhibitors of efflux transporters and overexpressing cells revealed that MRP2 was involved in the transport of TM-25659. These results, taken together, suggested that TM-25659 can be actively influxed into hepatocytes and undergo biliary excretion without substantial metabolism. Additionally, TM-25659 inhibited the transport activities of OATP1B1 and OATP1B3 with IC50 values of 36.3 and 25.9 μm, respectively. TM-25659 (100 μm) increased the accumulation of the probe substrate by 160% and 213%, respectively, through the inhibition of efflux function of P-gp and MRP2. In conclusion, OATP1B1, OATP1B3, P-gp and MRP2 might be major transporters responsible for the pharmacokinetics and drug-drug interaction of TM-25659, although their contribution to in vivo pharmacokinetics needs to be further investigated.
Collapse
Affiliation(s)
- Min-Koo Choi
- College of Pharmacy, Dankook University, Cheonan, Korea
| | | | | | | | | | | |
Collapse
|
17
|
Determination of a novel TAZ modulator, 2-butyl-5-methyl-6-(pyridine-3-yl)-3-[2'-(1H-tetrazole-5-yl)-biphenyl-4-ylmethyl]-3H imidazo[4,5-b]pyridine] (TM-25659) in rat plasma by liquid chromatography-tandem mass spectrometry. J Pharm Biomed Anal 2012; 63:47-52. [PMID: 22357285 DOI: 10.1016/j.jpba.2012.01.036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Revised: 01/02/2012] [Accepted: 01/28/2012] [Indexed: 11/20/2022]
Abstract
TM-25659 compound, a novel TAZ modulator, is developed for the control of bone loss and obesity. TAZ is known to bind to a variety of transcription factors to control cell differentiation and organ development. A selective and sensitive method was developed for the determination of TM-25659 concentrations in rat plasma. The drug was measured by liquid chromatography-tandem mass spectrometry after liquid-liquid extraction with ethyl acetate. TM-25659 and the internal standard imipramine were separated on a Hypersil GOLD C18 column with a mixture of acetonitrile-ammonium formate (10 mM) (90:10, v/v) as the mobile phase. The ions m/z 501.2→207.2 for TM-25659 and m/z 281.0→86.0 for imipramine in multiple reaction monitoring mode were used for the quantitation. The calibration range was 0.1-100 μg/ml with a correlation coefficient greater than 0.99. The lower limit of quantitation of TM-25659 in rat plasma was 0.1 μg/ml. The percent recoveries of TM-25659 and imipramine were 98.6% and 95.7% from rat plasma, respectively. The intra- and inter-batch precisions were 3.17-15.95% and the relative error was 0.38-10.82%. The developed assay was successfully applied to a pharmacokinetic study of TM-25659 administered intravenously (10 mg/kg) to rats.
Collapse
|
18
|
Suh JS, Kim KS, Lee JY, Choi YJ, Chung CP, Park YJ. A cell-permeable fusion protein for the mineralization of human dental pulp stem cells. J Dent Res 2011; 91:90-6. [PMID: 21990606 DOI: 10.1177/0022034511424746] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Human dental pulp stem cells (hDPSCs) are the only mesenchymal stem cells in pulp tissue that can differentiate into osteoblasts, odontoblasts, and adipose cells. The transcriptional co-activator with PDZ-binding motif (TAZ) protein has been reported to modulate osteogenic differentiation in mouse MSCs. Therefore, we examined whether the TAZ protein plays the same role in human pulp stem cells. In this study, TAZ was applied to cells directly with low-molecular-weight protamine (LMWP) as a cell-penetrating peptide (CPP). The LMWP-TAZ fusion proteins were expressed in an E. coli system with a pET-21b vector and efficiently transferred into hDPSCs without producing toxicity in the cells. The efficient uptake of TAZ was shown by Western blot with an anti-TAZ antibody, fluorescence-activated cell sorting, and confocal microscopy in live cells. The delivered TAZ protein increased osteogenic differentiation, as confirmed by alkaline phosphatase (ALP) staining, RT-PCR, and Western blotting. In addition, TAZ also inhibited adipogenic differentiation, regulating peroxisome proliferator-activated receptor-γ (PPAR-γ), lipoprotein lipase (LPL), and adipocyte fatty acid-binding protein (aP2) mRNA levels. These in vitro studies suggest that cell-permeable TAZ may be used as a specific regulator of hard-tissue differentiation.
Collapse
Affiliation(s)
- J S Suh
- Dental Regenerative Biotechnology, Seoul National University College of Dentistry, Seoul, Korea
| | | | | | | | | | | |
Collapse
|
19
|
Morris K, Ihnatovych I, Ionetz E, Reed J, Braundmeier A, Strakova Z. Cofilin and slingshot localization in the epithelium of uterine endometrium changes during the menstrual cycle and in endometriosis. Reprod Sci 2011; 18:1014-24. [PMID: 21693774 DOI: 10.1177/1933719111401663] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Regulation of the actin cytoskeleton is essential for epithelial cell polarity and protein trafficking within human uterine epithelium. The actin-binding protein cofilin is involved in regulation of actin dynamics by promoting actin branching and cytoskeleton reorganization. Dual immunohistochemical staining of cofilin and G-actin (represented by DNAse I staining) revealed cofilin-G-actin colocalization in the apical side of luminal epithelial cells of human uterine endometrium during the proliferative phase of the menstrual cycle. Interestingly, during the secretory phase of the menstrual cycle, cofilin was only present on the basolateral side. To determine whether the disease endometriosis causes a different pattern of actin remodeling, we investigated an established baboon model of induced endometriosis. The cofilin pattern in the secretory phase of baboons with endometriosis was similar to the proliferative phase in normal animals; cofilin was observed in the apical parts of luminal and glandular epithelium. A phosphatase regulating the activity of cofilin, slingshot (SSH1), revealed a similar staining pattern within these tissues. These patterns were confirmed through quantitative image analysis. Quantification of messenger RNA (mRNA) detected upregulated SSH1 and suggested a progesterone resistance-related pattern of nuclear steroid hormone receptors, but no change in membrane progesterone receptors (mPR alpha or mPR beta) was observed in endometriosis. Our data indicate that the severe dyssynchrony during menstrual cycle phases in endometriosis is connected with improper cytoskeleton rearrangements. We suggest that cofilin-mediated actin reorganization in uterine epithelial cells might be important in preparation for blastocyst implantation; dysregulation of this reorganization may lead to decreased fertility in endometriosis.
Collapse
Affiliation(s)
- Kirsten Morris
- Department of Obstetrics and Gynecology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | | | | | | | | | | |
Collapse
|
20
|
Tapia A, Vilos C, Marín JC, Croxatto HB, Devoto L. Bioinformatic detection of E47, E2F1 and SREBP1 transcription factors as potential regulators of genes associated to acquisition of endometrial receptivity. Reprod Biol Endocrinol 2011; 9:14. [PMID: 21272326 PMCID: PMC3040129 DOI: 10.1186/1477-7827-9-14] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Accepted: 01/27/2011] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The endometrium is a dynamic tissue whose changes are driven by the ovarian steroidal hormones. Its main function is to provide an adequate substrate for embryo implantation. Using microarray technology, several reports have provided the gene expression patterns of human endometrial tissue during the window of implantation. However it is required that biological connections be made across these genomic datasets to take full advantage of them. The objective of this work was to perform a research synthesis of available gene expression profiles related to acquisition of endometrial receptivity for embryo implantation, in order to gain insights into its molecular basis and regulation. METHODS Gene expression datasets were intersected to determine a consensus endometrial receptivity transcript list (CERTL). For this cluster of genes we determined their functional annotations using available web-based databases. In addition, promoter sequences were analyzed to identify putative transcription factor binding sites using bioinformatics tools and determined over-represented features. RESULTS We found 40 up- and 21 down-regulated transcripts in the CERTL. Those more consistently increased were C4BPA, SPP1, APOD, CD55, CFD, CLDN4, DKK1, ID4, IL15 and MAP3K5 whereas the more consistently decreased were OLFM1, CCNB1, CRABP2, EDN3, FGFR1, MSX1 and MSX2. Functional annotation of CERTL showed it was enriched with transcripts related to the immune response, complement activation and cell cycle regulation. Promoter sequence analysis of genes revealed that DNA binding sites for E47, E2F1 and SREBP1 transcription factors were the most consistently over-represented and in both up- and down-regulated genes during the window of implantation. CONCLUSIONS Our research synthesis allowed organizing and mining high throughput data to explore endometrial receptivity and focus future research efforts on specific genes and pathways. The discovery of possible new transcription factors orchestrating the CERTL opens new alternatives for understanding gene expression regulation in uterine function.
Collapse
Affiliation(s)
- Alejandro Tapia
- Instituto de Investigaciones Materno Infantil (IDIMI), Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Cristian Vilos
- Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | | | - Horacio B Croxatto
- Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
- Centro para el Desarrollo de la Nanociencia y la Nanotecnología (CEDENNA), Santiago, Chile
| | - Luigi Devoto
- Instituto de Investigaciones Materno Infantil (IDIMI), Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Centro FONDAP de Estudios Moleculares de la Célula (CEMC), Santiago, Chile
| |
Collapse
|