1
|
Camlin NJ. Protein-targeting reverse genetic approaches: the future of oocyte and preimplantation embryo research. Mol Hum Reprod 2025; 31:gaaf008. [PMID: 40100642 PMCID: PMC12000532 DOI: 10.1093/molehr/gaaf008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 02/10/2025] [Indexed: 03/20/2025] Open
Abstract
Reverse genetic approaches are the standard in molecular biology to determine a protein's function. Traditionally, nucleic acid targeting via gene knockout (DNA) and knockdown (RNA) has been the method of choice to remove proteins-of-interest. However, the nature of mammalian oocyte maturation and preimplantation embryo development can make nucleic acid-targeting approaches difficult. Gene knockout allows time for compensatory mechanisms and secondary phenotypes to develop which can make interpretation of a protein's function difficult. Furthermore, genes can be essential for animal and/or oocyte survival, and therefore, gene knockout is not always a viable approach to investigate oocyte maturation and preimplantation embryo development. Conversely, RNA-targeting approaches, i.e. RNA interference (RNAi) and morpholinos, rely on protein half-life and therefore are unable to knockdown every protein-of-interest. An increasing number of reverse genetic approaches that directly target proteins have been developed to overcome the limitations of nucleic acid-based approaches, including Trim-Away and auxin-inducible degradation. These protein-targeting approaches give researchers exquisite and fast control of protein loss. This review will discuss how Trim-Away and auxin-inducible degradation can overcome many of the challenges of nucleic acid-based reverse genetic approaches. Furthermore, it highlights the unique research opportunities these approaches afford, such as targeting post-translationally modified proteins.
Collapse
Affiliation(s)
- Nicole J Camlin
- Cell and Molecular Biology, School of Biological, Environmental and Earth Sciences, The University of Southern Mississippi, Hattiesburg, MS, USA
| |
Collapse
|
2
|
Ma C, Xu F, Hu C, Cui C, Du X, Chen J, Zhu L, Yu S, He X, Yu W, Wang Y, Xu X. MPF Regulates Oocyte and Embryo Development During Parthenogenesis Induction in Silkworm, Bombyx mori. INSECTS 2025; 16:361. [PMID: 40332857 PMCID: PMC12027660 DOI: 10.3390/insects16040361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 03/25/2025] [Accepted: 03/27/2025] [Indexed: 05/08/2025]
Abstract
In most species, oocytes are arrested at the prophase or metaphase of meiosis I and require sperm-derived or external stimuli to resume meiosis. Maturation-promoting factor (MPF) is an oocyte maturation factor composing the catalytic subunit Cdc2 and the regulatory subunit CycB that can restart stalled meiosis. In this study, we demonstrated that MPF activity affected parthenogenesis induction in the model lepidopteran insect Bombyx mori using activator and inhibitor interference. We found that the upregulation of MPF activity significantly increased the parthenogenesis induction rate, whereas downregulation significantly reduced it. Furthermore, the inhibition of MPF activity also led to a delay in embryonic development. Given its evolutionary conservation, MPF emerges as a potential universal target for manipulating reproductive outcomes, offering broad applications in genetics and selective breeding.
Collapse
Affiliation(s)
- Chenkai Ma
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China (W.Y.)
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Fang Xu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China (W.Y.)
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Chengjie Hu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China (W.Y.)
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Chunguang Cui
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xin Du
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jine Chen
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Linbao Zhu
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Shaofang Yu
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xingjian He
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Wei Yu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China (W.Y.)
| | - Yongqiang Wang
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xia Xu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China (W.Y.)
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| |
Collapse
|
3
|
Liu Z, Zhu L, He H, Hou M, Jia W, Jin L, Xi Q, Zhang X. Novel splicing mutations in PATL2 and WEE2 cause oocyte degradation and fertilization failure. J Assist Reprod Genet 2024; 41:3337-3345. [PMID: 39476306 PMCID: PMC11707231 DOI: 10.1007/s10815-024-03260-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 09/11/2024] [Indexed: 01/11/2025] Open
Abstract
PURPOSE To determine the genetic cause of infertility in two unrelated families of female patients suffering from oocyte degeneration and fertilization failure. METHODS Whole exome sequencing and Sanger sequencing were performed to identify the disease-causing genes of infertility in two unrelated female patients. Minigene experiments were conducted to confirm the effect of splice site mutations on mRNA splicing. RESULTS In two unrelated female infertility patients, a novel compound heterozygous splicing mutation (c.516-1G > T and c.877-1G > A) in PATL2 gene and a novel homozygous splicing mutation (c.1222-1G > A) in WEE2 gene were identified. Minigene splicing assays revealed that the c.516-1G > T mutation in PATL2 resulted in a deletion of 8 bases in mRNA that causes a frameshift (c.516-523delTCCCCCAG, p.P173Q fs*13). The c.877-1G > A mutation led to the skipping of exons 10 and 11 and retention of introns 8-9 in PATL2 mRNA. The c.1222-1G > A mutation resulted in the deletion of exon 9 in WEE2 mRNA, leading to an in-frame deletion of 57 amino acids in the WEE2 protein (p.408-464del). CONCLUSION Our study discovered novel splicing mutations in PATL2 and WEE2, further expanding the mutation spectrum of these two genes and providing guidance for genetic counseling and diagnosis of female infertility.
Collapse
Affiliation(s)
- Zhenxing Liu
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Lixia Zhu
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hui He
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Meiqi Hou
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Weimin Jia
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Lei Jin
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qingsong Xi
- Oncology Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Xianqin Zhang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China.
| |
Collapse
|
4
|
Clark KL, Shukla M, George JW, Gustin S, Rowley MJ, Davis JS. An environmentally relevant mixture of per- and polyfluoroalkyl substances (PFAS) impacts proliferation, steroid hormone synthesis, and gene transcription in primary human granulosa cells. Toxicol Sci 2024; 200:57-69. [PMID: 38603627 PMCID: PMC11199914 DOI: 10.1093/toxsci/kfae049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024] Open
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a group of synthetic chemicals that are resistant to biodegradation and are environmentally persistent. PFAS are found in many consumer products and are a major source of water and soil contamination. This study investigated the effects of an environmentally relevant PFAS mixture (perfluorooctanoic acid [PFOA], perfluorooctanesulfonic acid [PFOS], perfluorohexanesulfonic acid [PFHxS]) on the transcriptome and function of human granulosa cells (hGCs). Primary hGCs were harvested from follicular aspirates of healthy, reproductive-age women who were undergoing oocyte retrieval for in vitro fertilization. Liquid Chromatography with tandem mass spectrometry (LC/MS-MS) was performed to identify PFAS compounds in pure follicular fluid. Cells were cultured with vehicle control or a PFAS mixture (2 nM PFHxS, 7 nM PFOA, 10 nM PFOS) for 96 h. Analyses of cell proliferation/apoptosis, steroidogenesis, and gene expression were measured via 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays/immunofluorescence, ELISA/western blotting, and RNA sequencing/bioinformatics, respectively. PFOA, PFOS, and PFHxS were detected in 100% of follicle fluid samples. Increased cell proliferation was observed in hGCs treated with the PFAS mixture with no impacts on cellular apoptosis. The PFAS mixture also altered steroid hormone synthesis, increasing both follicle-stimulating hormone-stimulated and basal progesterone secretion and concomitant upregulation of STAR protein. RNA sequencing revealed inherent differences in transcriptomic profiles in hGCs after PFAS exposure. This study demonstrates functional and transcriptomic changes in hGCs after exposure to a PFAS mixture, improving our knowledge about the impacts of PFAS exposures and female reproductive health. These findings suggest that PFAS compounds can disrupt normal granulosa cell function with possible long-term consequences on overall reproductive health.
Collapse
Affiliation(s)
- Kendra L Clark
- Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA
- Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, Nebraska 68105, USA
| | - Mamta Shukla
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA
| | - Jitu W George
- Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA
- Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, Nebraska 68105, USA
| | - Stephanie Gustin
- Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA
- Heartland Center for Reproductive Medicine, Omaha, Nebraska 68138, USA
| | - M Jordan Rowley
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA
| | - John S Davis
- Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA
- Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, Nebraska 68105, USA
| |
Collapse
|
5
|
Nozawa K, Liao Z, Satouh Y, Geng T, Ikawa M, Monsivais D, Matzuk MM. Oocyte-specific Wee1-like protein kinase 2 is dispensable for fertility in mice. PLoS One 2023; 18:e0289083. [PMID: 37527245 PMCID: PMC10393137 DOI: 10.1371/journal.pone.0289083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 07/10/2023] [Indexed: 08/03/2023] Open
Abstract
Wee1-like protein kinase 2 (WEE2) is an oocyte-specific protein tyrosine kinase involved in the regulation of oocyte meiotic arrest in humans. As such, it has been proposed as a candidate for non-hormonal female contraception although pre-clinical models have not been reported. Therefore, we developed two novel knockout mouse models using CRISPR/Cas9 to test loss-of-function of Wee2 on female fertility. A frameshift mutation at the Wee2 translation start codon in exon 2 had no effect on litter size, litter production, or the ability of oocytes to maintain prophase I arrest. Because of the lack of a reproductive phenotype, we additionally generated a Wee2 allele with a large deletion by removing all coding exons. While there was no difference in the total number of litters produced, homozygous Wee2 female knockout mice with the larger deletion produced fewer pups than heterozygous littermates. Furthermore, there was no difference for key reproductive parameters measured in the mouse models, including ovarian weight, number of ovulated oocytes, or oocytes that underwent in vitro maturation. Therefore, as loss of Wee2 in mice shows only minor effects on overall fecundity, contraceptive development with WEE2 should consider exploiting alternative properties such as gain-of-function or protein-protein interactions, as Wee2 loss-of-function is likely complicated by biological redundancies with other proteins co-expressed in oocytes.
Collapse
Affiliation(s)
- Kaori Nozawa
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, United States of America
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, United States of America
| | - Zian Liao
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, United States of America
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, United States of America
| | - Yuhkoh Satouh
- Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
- Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, Japan
| | - Ting Geng
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, United States of America
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, United States of America
| | - Masahito Ikawa
- Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
- The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
| | - Diana Monsivais
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, United States of America
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, United States of America
| | - Martin M. Matzuk
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, United States of America
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, United States of America
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States of America
- Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX, United States of America
| |
Collapse
|
6
|
Alli VJ, Yadav P, Suresh V, Jadav SS. Synthetic and Medicinal Chemistry Approaches Toward WEE1 Kinase Inhibitors and Its Degraders. ACS OMEGA 2023; 8:20196-20233. [PMID: 37323408 PMCID: PMC10268025 DOI: 10.1021/acsomega.3c01558] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 05/22/2023] [Indexed: 06/17/2023]
Abstract
WEE1 is a checkpoint kinase critical for mitotic events, especially in cell maturation and DNA repair. Most cancer cells' progression and survival are linked with elevated levels of WEE1 kinase. Thus, WEE1 kinase has become a new promising druggable target. A few classes of WEE1 inhibitors are designed by rationale or structure-based techniques and optimization approaches to identify selective acting anticancer agents. The discovery of the WEE1 inhibitor AZD1775 further emphasized WEE1 as a promising anticancer target. Therefore, the current review provides a comprehensive data on medicinal chemistry, synthetic approaches, optimization methods, and the interaction profile of WEE1 kinase inhibitors. In addition, WEE1 PROTAC degraders and their synthetic procedures, including a list of noncoding RNAs necessary for regulation of WEE1, are also highlighted. From the standpoint of medicinal chemistry, the contents of this compilation serve as an exemplar for the further design, synthesis, and optimization of promising WEE1-targeted anticancer agents.
Collapse
Affiliation(s)
- Vidya Jyothi Alli
- Department
of Natural Products and Medicinal Chemistry, CSIR-Indian Institute of Chemical Technology Tarnaka, Uppal Road, Hyderabad 500037, India
| | - Pawan Yadav
- Department
of Natural Products and Medicinal Chemistry, CSIR-Indian Institute of Chemical Technology Tarnaka, Uppal Road, Hyderabad 500037, India
| | - Vavilapalli Suresh
- Department
of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology Tarnaka, Uppal Road, Hyderabad 500037, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Surender Singh Jadav
- Department
of Natural Products and Medicinal Chemistry, CSIR-Indian Institute of Chemical Technology Tarnaka, Uppal Road, Hyderabad 500037, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
7
|
Martino NA, Picardi E, Ciani E, D’Erchia AM, Bogliolo L, Ariu F, Mastrorocco A, Temerario L, Mansi L, Palumbo V, Pesole G, Dell’Aquila ME. Cumulus Cell Transcriptome after Cumulus-Oocyte Complex Exposure to Nanomolar Cadmium in an In Vitro Animal Model of Prepubertal and Adult Age. BIOLOGY 2023; 12:biology12020249. [PMID: 36829526 PMCID: PMC9953098 DOI: 10.3390/biology12020249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/25/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023]
Abstract
Cadmium (Cd), a highly toxic pollutant, impairs oocyte fertilization, through oxidative damage on cumulus cells (CCs). This study analysed the transcriptomic profile of CCs of cumulus-oocyte complexes (COCs) from adult and prepubertal sheep, exposed to Cd nanomolar concentration during in vitro maturation. In both age-groups, CCs of matured oocytes underwent RNA-seq, data analysis and validation. Differentially expressed genes (DEGs) were identified in adult (n = 99 DEGs) and prepubertal (n = 18 DEGs) CCs upon Cd exposure. Transcriptomes of adult CCs clustered separately between Cd-exposed and control samples, whereas prepubertal ones did not as observed by Principal Component Analysis. The transcriptomic signature of Cd-induced CC toxicity was identified by gene annotation and literature search. Genes associated with previous studies on ovarian functions and/or Cd effects were confirmed and new genes were identified, thus implementing the knowledge on their involvement in such processes. Enrichment and validation analysis showed that, in adult CCs, Cd acted as endocrine disruptor on DEGs involved in hormone biosynthesis, cumulus expansion, regulation of cell signalling, growth and differentiation and oocyte maturation, whereas in prepubertal CCs, Cd affected DEGs involved in CC development and viability and CC-oocyte communications. In conclusion, these DEGs could be used as valuable non-invasive biomarkers for oocyte competence.
Collapse
Affiliation(s)
- Nicola Antonio Martino
- Department of Biosciences, Biotechnologies & Environment, University of Bari Aldo Moro, Via Edoardo Orabona, 70125 Bari, Italy
- Correspondence: ; Tel.: +39-0805443888
| | - Ernesto Picardi
- Department of Biosciences, Biotechnologies & Environment, University of Bari Aldo Moro, Via Edoardo Orabona, 70125 Bari, Italy
| | - Elena Ciani
- Department of Biosciences, Biotechnologies & Environment, University of Bari Aldo Moro, Via Edoardo Orabona, 70125 Bari, Italy
| | - Anna Maria D’Erchia
- Department of Biosciences, Biotechnologies & Environment, University of Bari Aldo Moro, Via Edoardo Orabona, 70125 Bari, Italy
| | - Luisa Bogliolo
- Department of Veterinary Medicine, University of Sassari, Via Vienna n. 2, 07100 Sassari, Italy
| | - Federica Ariu
- Department of Veterinary Medicine, University of Sassari, Via Vienna n. 2, 07100 Sassari, Italy
| | - Antonella Mastrorocco
- Department of Biosciences, Biotechnologies & Environment, University of Bari Aldo Moro, Via Edoardo Orabona, 70125 Bari, Italy
| | - Letizia Temerario
- Department of Biosciences, Biotechnologies & Environment, University of Bari Aldo Moro, Via Edoardo Orabona, 70125 Bari, Italy
| | - Luigi Mansi
- Department of Biosciences, Biotechnologies & Environment, University of Bari Aldo Moro, Via Edoardo Orabona, 70125 Bari, Italy
| | - Valeria Palumbo
- Department of Biosciences, Biotechnologies & Environment, University of Bari Aldo Moro, Via Edoardo Orabona, 70125 Bari, Italy
| | - Graziano Pesole
- Department of Biosciences, Biotechnologies & Environment, University of Bari Aldo Moro, Via Edoardo Orabona, 70125 Bari, Italy
| | - Maria Elena Dell’Aquila
- Department of Biosciences, Biotechnologies & Environment, University of Bari Aldo Moro, Via Edoardo Orabona, 70125 Bari, Italy
| |
Collapse
|
8
|
Zhang FL, Zhang SE, Sun YJ, Wang JJ, Shen W. Comparative Transcriptomics Uncover the Uniqueness of Oocyte Development in the Donkey. Front Genet 2022; 13:839207. [PMID: 35154289 PMCID: PMC8832878 DOI: 10.3389/fgene.2022.839207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 01/11/2022] [Indexed: 11/13/2022] Open
Abstract
The donkey is an important domestic animal, however the number of donkeys world-wide is currently declining. It is therefore important to protect their genetic resources and to elaborate the regulatory mechanisms of donkey reproduction, particularly, oocyte development. Here, we adopted comparative transcriptomic analysis and weighted gene co-expression network analysis (WGCNA) to uncover the uniqueness of donkey oocyte development compared to cattle, sheep, pigs, and mice, during the period from germinal vesicle (GV) to metaphase II (MII). Significantly, we selected 36 hub genes related to donkey oocyte development, including wee1-like protein kinase 2 (WEE2). Gene Ontology (GO) analysis suggested that these genes are involved in the negative regulation of cell development. Interestingly, we found that donkey specific differentially expressed genes (DEGs) were involved in RNA metabolism and apoptosis. Moreover, the results of WGCNA showed species-specific gene expression patterns. We conclude that, compared to other species, donkey oocytes express a large number of genes related to RNA metabolism to maintain normal oocyte development during the period from GV to MII.
Collapse
Affiliation(s)
- Fa-Li Zhang
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao, China
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an, China
| | - Shu-Er Zhang
- Animal Husbandry General Station of Shandong Province, Jinan, China
| | - Yu-Jiang Sun
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao, China
- Dongying Vocational Institute, Dongying, China
| | - Jun-Jie Wang
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao, China
- *Correspondence: Wei Shen, , ; Jun-Jie Wang,
| | - Wei Shen
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao, China
- *Correspondence: Wei Shen, , ; Jun-Jie Wang,
| |
Collapse
|
9
|
Xue Y, Cheng X, Xiong Y, Li K. Gene mutations associated with fertilization failure after in vitro fertilization/intracytoplasmic sperm injection. Front Endocrinol (Lausanne) 2022; 13:1086883. [PMID: 36589837 PMCID: PMC9800785 DOI: 10.3389/fendo.2022.1086883] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022] Open
Abstract
Fertilization failure during assisted reproductive technologies (ART) is often unpredictable, as this failure is encountered only after in vitro fertilization (IVF) and intracytoplasmic sperm injection (ICSI) have been performed. The etiology of fertilization failure remains elusive. More and more mutations of genes are found to be involved in human fertilization failure in infertile patients as high throughput sequencing techniques are becoming widely applied. In this review, the mutations of nine important genes expressed in sperm or oocytes, PLCZ1, ACTL7A, ACTL9, DNAH17, WEE2, TUBB8, NLRP5, ZP2, and TLE6, were summarized and discussed. These abnormalities mainly have shown Mendelian patterns of inheritance, including dominant and recessive inheritance, although de novo mutations were present in some cases. The review revealed the crucial roles of each reported gene in the fertilization process and summarized all known mutations and their corresponding phenotypes. The review suggested the mutations might become promising targets for precision treatments in reproductive medicine. Moreover, our work will provide some helpful clues for genetic counseling, risk prediction, and optimizing clinical treatments for human infertility by supplying the useful and timely information on the genetic causes leading to fertilization failure.
Collapse
Affiliation(s)
- Yamei Xue
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaohong Cheng
- Institute for Reproductive Health, School of Pharmacy, Hangzhou Medical College, Hangzhou, China
| | - Yuping Xiong
- Institute for Reproductive Health, School of Pharmacy, Hangzhou Medical College, Hangzhou, China
| | - Kun Li
- Institute for Reproductive Health, School of Pharmacy, Hangzhou Medical College, Hangzhou, China
- Zhejiang Provincial Laboratory of Experimental Animal’s & Nonclinical Laboratory Studies, Hangzhou Medical College, Hangzhou, China
- *Correspondence: Kun Li,
| |
Collapse
|
10
|
Kaitetzidou E, Gilfillan GD, Antonopoulou E, Sarropoulou E. Sex-biased dynamics of three-spined stickleback (Gasterosteus aculeatus) gene expression patterns. Genomics 2021; 114:266-277. [PMID: 34933072 DOI: 10.1016/j.ygeno.2021.12.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 11/17/2021] [Accepted: 12/05/2021] [Indexed: 11/28/2022]
Abstract
The study of the differences between sexes presents an excellent model to unravel how phenotypic variation is achieved from a similar genetic background. Sticklebacks are of particular interest since evidence of a heteromorphic chromosome pair has not always been detected. The present study investigated sex-biased mRNA and small non-coding RNA (sncRNA) expression patterns in the brain, adipose tissues, and gonads of the three-spined stickleback. The sncRNA analysis indicated that regulatory functions occurred mainly in the gonads. Alleged miRNA-mRNA interactions were established and a mapping bias of differential expressed transcripts towards chromosome 19 was observed. Key players previously shown to control sex determination and differentiation in other fish species but also genes like gapdh were among the transcripts identified. This is the first report in the three-spined stickleback demonstrating tissue-specific expression comprising both mRNA and sncRNA between sexes, emphasizing the importance of mRNA-miRNA interactions as well as new presumed genes not yet identified to have gender-specific roles.
Collapse
Affiliation(s)
- Elisavet Kaitetzidou
- Institute for Marine Biology, Biotechnology, and Aquaculture, Hellenic Centre for Marine Research, Greece
| | - Gregor D Gilfillan
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Efthimia Antonopoulou
- Department of Zoology, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, Greece
| | - Elena Sarropoulou
- Institute for Marine Biology, Biotechnology, and Aquaculture, Hellenic Centre for Marine Research, Greece.
| |
Collapse
|
11
|
Mei Q, Li H, Liu Y, Wang X, Xiang W. Advances in the study of CDC42 in the female reproductive system. J Cell Mol Med 2021; 26:16-24. [PMID: 34859585 PMCID: PMC8742232 DOI: 10.1111/jcmm.17088] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 11/08/2021] [Accepted: 11/12/2021] [Indexed: 12/19/2022] Open
Abstract
CDC42 is a member of the Rho‐GTPase family and is involved in a variety of cellular functions including regulation of cell cycle progression, constitution of the actin backbone and membrane transport. In particular, CDC42 plays a key role in the establishment of polarity in female vertebrate oocytes, and essential to this major regulatory role is its local occupation of specific regions of the cell to ensure that the contractile ring is assembled at the right time and place to ensure proper gametogenesis. The multifactor controlled ‘inactivation‐activation’ process of CDC42 also allows it to play an important role in the multilevel signalling network, and the synergistic regulation of multiple genes ensures maximum precision during gametogenesis. The purpose of this paper is to review the role of CDC42 in the control of gametogenesis and to explore its related mechanisms, with the aim of further understanding the great research potential of CDC42 in female vertebrate germ cells and its future clinical translation.
Collapse
Affiliation(s)
- Qiaojuan Mei
- Institute of Reproductive Health and Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huiying Li
- Institute of Reproductive Health and Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Liu
- Institute of Reproductive Health and Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaofei Wang
- Institute of Reproductive Health and Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenpei Xiang
- Institute of Reproductive Health and Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
12
|
Sitruk-Ware R. [New frontiers in contraception research]. Med Sci (Paris) 2021; 37:1014-1020. [PMID: 34851278 DOI: 10.1051/medsci/2021163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Improving current contraceptives and discover novel methods easy to use with added health benefits would meet the needs of couples who seek alternatives to current methods. New delivery systems target user-controlled, longer-acting options to provide choice, user's autonomy and improve compliance. Self-injections, microarray patches, pod rings able to deliver several molecules aim to prevent both pregnancies and sexually transmitted infections. Improved intrauterine systems and non-surgical permanent methods are also on the research agenda. The search for novel methods must continue, to curb maternal mortality led by multiple pregnancies and unsafe abortion, still a burden in many countries.
Collapse
Affiliation(s)
- Régine Sitruk-Ware
- The Population Council, Center for Biomedical Research, 1230 York Avenue, New York, NY 10065, États-Unis
| |
Collapse
|
13
|
Johnston DS, Goldberg E. Preclinical contraceptive development for men and women. Biol Reprod 2021; 103:147-156. [PMID: 32561907 DOI: 10.1093/biolre/ioaa076] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 05/07/2020] [Accepted: 05/09/2020] [Indexed: 12/16/2022] Open
Abstract
This manuscript endeavors to present research considerations for the preclinical development of non-hormonal contraceptives. Topics include (1) how advances in genomics and bioinformatics impact the identification of novel targets for non-hormonal contraception, (2) the importance of target validation prior to investment in a contraceptive development campaign, (3) considerations on targeting gametogenesis vs gamete maturation/function, (4) how targets from the male reproductive system are expanding women's options for 'on demand' contraception, and (5) some emerging non-hormonal methods that are not based on a specific molecular target. Also presented are ideas for developing a pipeline of non-hypothalamic-pituitary-gonadal-acting contraceptives for men and women while balancing risk and innovation, and our perspective on the pros and cons of industry and academic environments on contraceptive development. Three product development programs are highlighted that are biologically interesting, innovative, and likely to influence the field of contraceptive development in years to come.
Collapse
Affiliation(s)
- Daniel S Johnston
- Contraception Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Erwin Goldberg
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| |
Collapse
|
14
|
Biswas L, Tyc K, Yakoubi WE, Morgan K, Xing J, Schindler K. Meiosis interrupted: the genetics of female infertility via meiotic failure. Reproduction 2021; 161:R13-R35. [PMID: 33170803 PMCID: PMC7855740 DOI: 10.1530/rep-20-0422] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 11/10/2020] [Indexed: 12/14/2022]
Abstract
Idiopathic or 'unexplained' infertility represents as many as 30% of infertility cases worldwide. Conception, implantation, and term delivery of developmentally healthy infants require chromosomally normal (euploid) eggs and sperm. The crux of euploid egg production is error-free meiosis. Pathologic genetic variants dysregulate meiotic processes that occur during prophase I, meiotic resumption, chromosome segregation, and in cell cycle regulation. This dysregulation can result in chromosomally abnormal (aneuploid) eggs. In turn, egg aneuploidy leads to a broad range of clinical infertility phenotypes, including primary ovarian insufficiency and early menopause, egg fertilization failure and embryonic developmental arrest, or recurrent pregnancy loss. Therefore, maternal genetic variants are emerging as infertility biomarkers, which could allow informed reproductive decision-making. Here, we select and deeply examine human genetic variants that likely cause dysregulation of critical meiotic processes in 14 female infertility-associated genes: SYCP3, SYCE1, TRIP13, PSMC3IP, DMC1, MCM8, MCM9, STAG3, PATL2, TUBB8, CEP120, AURKB, AURKC, andWEE2. We discuss the function of each gene in meiosis, explore genotype-phenotype relationships, and delineate the frequencies of infertility-associated variants.
Collapse
Affiliation(s)
- Leelabati Biswas
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Katarzyna Tyc
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Warif El Yakoubi
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Katie Morgan
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Jinchuan Xing
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Karen Schindler
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| |
Collapse
|
15
|
Jiang B, Wang R, Lin Z, Ma J, Cui J, Wang M, Liu R, Wu W, Zhang C, Li W, Wang S. Antisense long non‑coding RNA WEE2‑AS1 regulates human vascular endothelial cell viability via cell cycle G2/M transition in arteriosclerosis obliterans. Mol Med Rep 2020; 22:5069-5082. [PMID: 33174040 PMCID: PMC7646961 DOI: 10.3892/mmr.2020.11625] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 07/03/2020] [Indexed: 12/19/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) affect atherosclerosis by regulating the physiological and pathological processes of endothelial cells; however, the role of lncRNA WEE2 antisense RNA 1 (WEE2-AS1) in arteriosclerosis obliterans (ASO) is not completely understood. The present study aimed to explore the function of lncRNA WEE2-AS1 in human vascular endothelial cells. The results indicated that lncRNA WEE2-AS1 was significantly elevated in plasma and artery tissue samples of patients with ASO compared with healthy controls. The fluorescence in situ hybridization results suggested that lncRNA WEE2-AS1 was expressed in the cytoplasm and nuclei of primary human umbilical vein endothelial cells (HUVECs). The Cell Counting Kit-8 assay results suggested that lncRNA WEE2-AS1 knockdown significantly promoted HUVEC viability, whereas lncRNA WEE2-AS1 overexpression inhibited HUVEC viability compared with the negative control groups. Furthermore, analysis of the cell cycle by flow cytometry indicated that lncRNA WEE2-AS1 knockdown significantly decreased the proportion of cells in the G0/G1 phase and significantly increased the proportion of cells in the G2/M phase compared with the negative control group. However, lncRNA WEE2-AS1 overexpression had no significant effect on cell cycle distribution compared with the negative control group. The western blotting results indicated that lncRNA WEE2-AS1 knockdown significantly reduced the expression levels of phosphorylated cyclin dependent kinase 1, WEE1 homolog 2 and myelin transcription factor 1, but increased the expression level of cell division cycle 25B compared with the negative control group. lncRNA WEE2-AS1 overexpression displayed the opposite effect on protein expression. Collectively, the present study suggested that lncRNA WEE2-AS1 was significantly upregulated in ASO and may serve a role in regulating human vascular endothelial cell viability. Further investigation into lncRNA WEE2-AS1 may broaden the current understanding of the molecular mechanism underlying ASO, and aid with the identification of specific probes and precise targeted drugs for the diagnosis and treatment of ASO.
Collapse
Affiliation(s)
- Baohong Jiang
- Division of Vascular Surgery, The First Affiliated Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Rui Wang
- Division of Vascular Surgery, The First Affiliated Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Zefei Lin
- Laboratory of General Surgery, The First Affiliated Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Jieyi Ma
- Laboratory of General Surgery, The First Affiliated Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Jin Cui
- Division of Vascular Surgery, The First Affiliated Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Mian Wang
- Division of Vascular Surgery, The First Affiliated Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Ruiming Liu
- National‑Local Joint Engineering Laboratory of Vascular Disease Diagnosis and Treatment, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Weibin Wu
- Division of Vascular Surgery, The First Affiliated Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Chunxiang Zhang
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Wen Li
- National‑Local Joint Engineering Laboratory of Vascular Disease Diagnosis and Treatment, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Shenming Wang
- Division of Vascular Surgery, The First Affiliated Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| |
Collapse
|
16
|
Puttabyatappa M, Guo X, Dou J, Dumesic D, Bakulski KM, Padmanabhan V. Developmental Programming: Sheep Granulosa and Theca Cell-Specific Transcriptional Regulation by Prenatal Testosterone. Endocrinology 2020; 161:bqaa094. [PMID: 32516392 PMCID: PMC7417881 DOI: 10.1210/endocr/bqaa094] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 06/04/2020] [Indexed: 12/21/2022]
Abstract
Prenatal testosterone (T)-treated sheep, similar to polycystic ovarian syndrome women, manifest reduced cyclicity, functional hyperandrogenism, and polycystic ovary (PCO) morphology. The PCO morphology results from increased follicular recruitment and persistence of antral follicles, a consequence of reduced follicular growth and atresia, and is driven by cell-specific gene expression changes that are poorly understood. Therefore, using RNA sequencing, cell-specific transcriptional changes were assessed in laser capture microdissection isolated antral follicular granulosa and theca cells from age 21 months control and prenatal T-treated (100 mg intramuscular twice weekly from gestational day 30 to 90; term: 147 days) sheep. In controls, 3494 genes were differentially expressed between cell types with cell signaling, proliferation, extracellular matrix, immune, and tissue development genes enriched in theca; and mitochondrial, chromosomal, RNA, fatty acid, and cell cycle process genes enriched in granulosa cells. Prenatal T treatment 1) increased gene expression of transforming growth factor β receptor 1 and exosome component 9, and decreased BCL6 corepressor like 1, BCL9 like, and MAPK interacting serine/threonine kinase 2 in both cells, 2) induced differential expression of 92 genes that included increased mitochondrial, ribosome biogenesis, ribonucleoprotein, and ubiquitin, and decreased cell development and extracellular matrix-related pathways in granulosa cells, and 3) induced differential expression of 56 genes that included increased noncoding RNA processing, ribosome biogenesis, and mitochondrial matrix, and decreased transcription factor pathways in theca cells. These data indicate that follicular function is affected by genes involved in transforming growth factor signaling, extracellular matrix, mitochondria, epigenetics, and apoptosis both in a common as well as a cell-specific manner and suggest possible mechanistic pathways for prenatal T treatment-induced PCO morphology in sheep.
Collapse
Affiliation(s)
| | - Xingzi Guo
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan
| | - John Dou
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan
| | - Daniel Dumesic
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Kelly M Bakulski
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan
| | | |
Collapse
|
17
|
Hanna CB, Mudaliar D, John K, Allen CL, Sun L, Hawkinson JE, Schönbrunn E, Georg GI, Jensen JT. Development of WEE2 kinase inhibitors as novel non-hormonal female contraceptives that target meiosis†. Biol Reprod 2020; 103:368-377. [PMID: 32667031 PMCID: PMC7401407 DOI: 10.1093/biolre/ioaa097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 05/26/2020] [Indexed: 11/24/2022] Open
Abstract
WEE2 oocyte meiosis inhibiting kinase is a well-conserved oocyte specific kinase with a dual regulatory role during meiosis. Active WEE2 maintains immature, germinal vesicle stage oocytes in prophase I arrest prior to the luteinizing hormone surge and facilitates exit from metaphase II arrest at fertilization. Spontaneous mutations at the WEE2 gene locus in women have been linked to total fertilization failure indicating that selective inhibitors to this kinase could function as non-hormonal contraceptives. Employing co-crystallization with WEE1 G2 checkpoint kinase inhibitors, we revealed the structural basis of action across WEE kinases and determined type I inhibitors were not selective to WEE2 over WEE1. In response, we performed in silico screening by FTMap/FTSite and Schrodinger SiteMap analysis to identify potential allosteric sites, then used an allosterically biased activity assay to conduct high-throughput screening of a 26 000 compound library containing scaffolds of known allosteric inhibitors. Resulting hits were validated and a selective inhibitor that binds full-length WEE2 was identified, designated GPHR-00336382, along with a fragment-like inhibitor that binds the kinase domain, GPHR-00355672. Additionally, we present an in vitro testing workflow to evaluate biological activity of candidate WEE2 inhibitors including; (1) enzyme-linked immunosorbent assays measuring WEE2 phosphorylation activity of cyclin dependent kinase 1 (CDK1; also known as cell division cycle 2 kinase, CDC2), (2) in vitro fertilization of bovine ova to determine inhibition of metaphase II exit, and (3) cell-proliferation assays to look for off-target effects against WEE1 in somatic (mitotic) cells.
Collapse
Affiliation(s)
- Carol B Hanna
- Oregon National Primate Research Center, Beaverton, Division of Reproductive & Developmental Sciences OR, USA
- Correspondence: Oregon Health & Science University, 505 NW 185th Ave, Beaverton, OR 97006, USA. Tel: +1-503-346-5000; Fax: +1-503-346-5585; E-mail:
| | - Deepti Mudaliar
- University of Minnesota, Department of Obstetrics & Gynecology, Minneapolis, MN, USA
| | - Kristen John
- University of Minnesota, Department of Obstetrics & Gynecology, Minneapolis, MN, USA
| | - C Leigh Allen
- University of Minnesota, Department of Obstetrics & Gynecology, Minneapolis, MN, USA
| | - Luxin Sun
- Moffitt Cancer Center, Drug Discovery Department, Tampa, FL, USA
| | - Jon E Hawkinson
- University of Minnesota, Department of Obstetrics & Gynecology, Minneapolis, MN, USA
| | - Ernst Schönbrunn
- Moffitt Cancer Center, Drug Discovery Department, Tampa, FL, USA
| | - Gunda I Georg
- University of Minnesota, Department of Obstetrics & Gynecology, Minneapolis, MN, USA
| | - Jeffrey T Jensen
- Oregon National Primate Research Center, Beaverton, Division of Reproductive & Developmental Sciences OR, USA
- Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
18
|
Peng H, Chen J, Gao Y, Huo J, Wang C, Zhang Y, Xiao T. Valosin-containing protein is associated with maintenance of meiotic arrest in mouse oocytes†. Biol Reprod 2020; 100:963-970. [PMID: 30476006 DOI: 10.1093/biolre/ioy244] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 10/06/2018] [Accepted: 11/19/2018] [Indexed: 11/15/2022] Open
Abstract
Valosin-containing protein (VCP) is a member of the highly conserved AAA (ATPase associated with a variety of cellular activities) superfamily. A previous study has shown that targeted deletion of Vcp in mice results in early embryonic lethality. The aim of the present study was to analyze the expression and localization of VCP and its function in meiotic arrest of mouse oocytes. Vcp mRNA and protein were expressed in multiple mouse tissues. In the ovary, VCP protein was mainly expressed in oocytes and granulosa cells. After ovulation and fertilization, Vcp mRNA and protein were detected in oocytes and preimplantation embryos. Furthermore, VCP protein was localized in both the cytoplasm and nucleus of germinal vesicle (GV)-stage oocytes and preimplantation embryos. Moreover, knockdown of Vcp in GV-stage oocytes led to a significantly increased rate of germinal vesicle breakdown (GVBD). In addition, inhibition of VCP protein improved the GVBD rate in mouse GV-stage oocytes. When VCP inhibition was reversed, the final GVBD rate returned to normal. These results provide the first evidence for a novel function of VCP in meiotic arrest of mouse oocytes.
Collapse
Affiliation(s)
- Hui Peng
- College of Animal Science, Fujian Agriculture and Forestry University, Fujian, Fuzhou, P. R. China
- University Key Lab for Integrated Chinese Traditional and Western Veterinary Medicine and Animal Healthcare in Fujian Province, Fujian Agriculture and Forestry University, Fujian, Fuzhou, P. R. China
| | - Jing Chen
- College of Animal Science, Fujian Agriculture and Forestry University, Fujian, Fuzhou, P. R. China
| | - Yuyun Gao
- College of Animal Science, Fujian Agriculture and Forestry University, Fujian, Fuzhou, P. R. China
| | - Jianchao Huo
- College of Animal Science, Fujian Agriculture and Forestry University, Fujian, Fuzhou, P. R. China
| | - Chongchong Wang
- College of Animal Science, Fujian Agriculture and Forestry University, Fujian, Fuzhou, P. R. China
| | - Yanyan Zhang
- College of Animal Science, Fujian Agriculture and Forestry University, Fujian, Fuzhou, P. R. China
| | - Tianfang Xiao
- College of Animal Science, Fujian Agriculture and Forestry University, Fujian, Fuzhou, P. R. China
| |
Collapse
|
19
|
Hanna CB, Yao S, Martin M, Schönbrunn E, Georg GI, Jensen JT, Cuellar RAD. Identification and Screening of Selective WEE2 Inhibitors to Develop Non-Hormonal Contraceptives that Specifically Target Meiosis. ChemistrySelect 2019; 4:13363-13369. [PMID: 32190728 PMCID: PMC7079731 DOI: 10.1002/slct.201903696] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 11/22/2019] [Indexed: 12/17/2022]
Abstract
We used a progressive elimination strategy to identify oocyte-specific WEE2 kinase inhibitors for potential non-hormonal contraceptives that target meiosis. Beginning with an in-house library of over 300,000 compounds, virtual high throughput screening identified 57 WEE2 inhibitors with preferential predicted binding over the somatic variant WEE1. Seven compounds were further evaluated in vitro by enzyme-linked immunosorbent assay to measure biochemical inhibition on WEE1 and WEE2 phosphorylation of CDK1. To assess specificity, we evaluated WEE2-mediated inhibition of meiosis using in vitro oocyte fertilization, and WEE1-mediated inhibition of mitosis using a somatic cell proliferation assay. Our results from these assays identified three candidates for further development: 6-(2,6-dichlorophenyl)-2-((4-(2-(diethylamino)ethoxy) phenyl)amino)-8-methylpyrido[2,3-d]pyrimidin-7(8H)-one (2), 6-(2,6-dichlorophenyl)-8-methyl-2-((4-morpholinophenyl) amino)pyrido[2,3-d]pyrimidin-7(8H)-one (12), and 3-((6-(2,6-dichlorophenyl)-8-methyl-7-oxo-7,8-dihydropyrido[2,3-d]pyrimidin-2-yl)amino)benzoic acid (16).
Collapse
Affiliation(s)
- Carol B Hanna
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, 505 Northwest 185 Avenue, Beaverton, OR 97006 (USA)
| | - Shan Yao
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, 505 Northwest 185 Avenue, Beaverton, OR 97006 (USA)
| | - Mat Martin
- Drug Discovery Department, H. Lee Moffitt Cancer Center & Research Institute, 12902 USF Magnolia Drive, Tampa, FL 33612 (USA)
| | - Ernst Schönbrunn
- Drug Discovery Department, H. Lee Moffitt Cancer Center & Research Institute, 12902 USF Magnolia Drive, Tampa, FL 33612 (USA)
| | - Gunda I Georg
- Department of Medicinal Chemistry and Institute for Therapeutics Discovery and Development, University of Minnesota, 717 Delaware Street Southeast, Minneapolis, MN 55414 (USA)
| | - Jeffrey T Jensen
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, 505 Northwest 185 Avenue, Beaverton, OR 97006 (USA)
- Department of Obstetrics & Gynecology, Oregon Health & Science University, 3181 Southwest Sam Jackson Park Road, Portland, OR 97239 (USA)
| | - Rebecca A D Cuellar
- Department of Medicinal Chemistry and Institute for Therapeutics Discovery and Development, University of Minnesota, 717 Delaware Street Southeast, Minneapolis, MN 55414 (USA)
| |
Collapse
|
20
|
Cao Z, Gao D, Xu T, Zhang L, Tong X, Zhang D, Wang Y, Ning W, Qi X, Ma Y, Ji K, Yu T, Li Y, Zhang Y. Circular RNA profiling in the oocyte and cumulus cells reveals that circARMC4 is essential for porcine oocyte maturation. Aging (Albany NY) 2019; 11:8015-8034. [PMID: 31562810 PMCID: PMC6781969 DOI: 10.18632/aging.102315] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 09/21/2019] [Indexed: 12/13/2022]
Abstract
Thousands of circular RNAs (circRNAs) have been recently discovered in cumulus cells and oocytes from several species. However, the expression and function of circRNA during porcine oocyte meiotic maturation have been never examined. Here, we separately identified 7,067 and 637 circRNAs in both cumulus cells and oocytes via deep sequencing and bioinformatic analysis. Further analysis revealed that a faction of circRNAs is differentially expressed (DE) in a developmental stage-specific manner. The host genes of DE circRNAs are markedly enriched to multiple signaling pathways associated with cumulus cell function and oocyte maturation. Additionally, most DE circRNAs harbor several miRNA targets, suggesting that these DE circRNAs potentially act as miRNA sponge. Importantly, we found that maternal circARMC4 knockdown by siRNA microinjection caused a severely impaired chromosome alignment, and significantly inhibited first polar body extrusion and early embryo development. Taken together, these results demonstrate for the first time that circRNAs are abundantly and dynamically expressed in a developmental stage-specific manner in cumulus cells and oocytes, and maternally expressed circARMC4 is essential for porcine oocyte meiotic maturation and early embryo development.
Collapse
Affiliation(s)
- Zubing Cao
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Di Gao
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Tengteng Xu
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Ling Zhang
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Xu Tong
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Dandan Zhang
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Yiqing Wang
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Wei Ning
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Xin Qi
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Yangyang Ma
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Kaiyuan Ji
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Tong Yu
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Yunsheng Li
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Yunhai Zhang
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
21
|
Dai J, Zheng W, Dai C, Guo J, Lu C, Gong F, Li Y, Zhou Q, Lu G, Lin G. New biallelic mutations in WEE2: expanding the spectrum of mutations that cause fertilization failure or poor fertilization. Fertil Steril 2019; 111:510-518. [PMID: 30827523 DOI: 10.1016/j.fertnstert.2018.11.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 10/24/2018] [Accepted: 11/12/2018] [Indexed: 10/27/2022]
Abstract
OBJECTIVE To investigate the genetic cause of fertilization failure or poor fertilization. DESIGN Genetic analysis. SETTING University-affiliated center. PATIENT(S) Twenty-four Chinese women who underwent assisted reproductive technology (ART) and had repeated fertilization failure or poor fertilization. INTERVENTION(S) None. MAIN OUTCOME MEASURE(S) Twenty-four affected patients were subjected to whole-exome sequencing and candidate mutations were validated by Sanger sequencing. Single-cell reverse transcription was used to analyze the functional characterization of the splice-site mutation in vivo. Evolutionary conservation and molecular modeling analyses were used to predict the impact of missense mutations on secondary protein structure. Immunofluorescence was used to analyze the protein levels of WEE2 and phosphorylated CDC2. RESULT(S) Biallelic mutations in WEE2 were identified in 5 of 24 (20.8%) Chinese patients with fertilization failure or poor fertilization. Among these individuals we found a novel splice-site mutation, two novel missense mutations, and a previously reported frame-shift mutation. Splicing mutation c.1136-2A>G of WEE2 caused an alteration of the reading frame and introduced a premature stop codon (p.Gly379Glufs*6/p.Asp380Leufs*39). The missense mutations c.585G>C (p.Lys195Asn) and c.1228C>T (p.Arg410Trp) produced obvious changes in secondary protein structures. Immunostaining indicated that mutated WEE2 resulted in the loss of phosphorylated CDC2. The phenotypes of women carrying WEE2 mutations exhibited slight variability, from total fertilization failure to poor fertilization. CONCLUSION(S) Novel mutations in the known causative gene WEE2 were identified in 5 of 24 women with fertilization failure or poor fertilization, indicating a high prevalence of WEE2 mutations in Chinese women experiencing fertilization failure or poor fertilization.
Collapse
Affiliation(s)
- Jing Dai
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, ChangSha, People's Republic of China; Reproductive and Genetic Hospital of CITIC-XIANGYA, ChangSha, People's Republic of China; Laboratory of Reproductive and Stem Cell Engineering, National Health and Family Planning Commission, ChangSha, People's Republic of China
| | - Wei Zheng
- Reproductive and Genetic Hospital of CITIC-XIANGYA, ChangSha, People's Republic of China; Laboratory of Reproductive and Stem Cell Engineering, National Health and Family Planning Commission, ChangSha, People's Republic of China
| | - Can Dai
- Reproductive and Genetic Hospital of CITIC-XIANGYA, ChangSha, People's Republic of China; Laboratory of Reproductive and Stem Cell Engineering, National Health and Family Planning Commission, ChangSha, People's Republic of China
| | - Jing Guo
- Reproductive and Genetic Hospital of CITIC-XIANGYA, ChangSha, People's Republic of China; Laboratory of Reproductive and Stem Cell Engineering, National Health and Family Planning Commission, ChangSha, People's Republic of China
| | - Changfu Lu
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, ChangSha, People's Republic of China; Reproductive and Genetic Hospital of CITIC-XIANGYA, ChangSha, People's Republic of China; Laboratory of Reproductive and Stem Cell Engineering, National Health and Family Planning Commission, ChangSha, People's Republic of China
| | - Fei Gong
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, ChangSha, People's Republic of China; Reproductive and Genetic Hospital of CITIC-XIANGYA, ChangSha, People's Republic of China; Laboratory of Reproductive and Stem Cell Engineering, National Health and Family Planning Commission, ChangSha, People's Republic of China
| | - Yan Li
- Reproductive and Genetic Hospital of CITIC-XIANGYA, ChangSha, People's Republic of China; Laboratory of Reproductive and Stem Cell Engineering, National Health and Family Planning Commission, ChangSha, People's Republic of China
| | - Qinwei Zhou
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, ChangSha, People's Republic of China; Laboratory of Reproductive and Stem Cell Engineering, National Health and Family Planning Commission, ChangSha, People's Republic of China
| | - Guangxiu Lu
- Reproductive and Genetic Hospital of CITIC-XIANGYA, ChangSha, People's Republic of China; Laboratory of Reproductive and Stem Cell Engineering, National Health and Family Planning Commission, ChangSha, People's Republic of China
| | - Ge Lin
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, ChangSha, People's Republic of China; Reproductive and Genetic Hospital of CITIC-XIANGYA, ChangSha, People's Republic of China; Laboratory of Reproductive and Stem Cell Engineering, National Health and Family Planning Commission, ChangSha, People's Republic of China.
| |
Collapse
|
22
|
Zhao S, Chen T, Yu M, Bian Y, Cao Y, Ning Y, Su S, Zhang J, Zhao S. Novel WEE2 gene variants identified in patients with fertilization failure and female infertility. Fertil Steril 2019; 111:519-526. [DOI: 10.1016/j.fertnstert.2018.11.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 10/30/2018] [Accepted: 11/14/2018] [Indexed: 12/12/2022]
|
23
|
Zhang Z, Mu J, Zhao J, Zhou Z, Chen B, Wu L, Yan Z, Wang W, Zhao L, Dong J, Sun X, Kuang Y, Li B, Wang L, Sang Q. Novel mutations in WEE2
: Expanding the spectrum of mutations responsible for human fertilization failure. Clin Genet 2019; 95:520-524. [PMID: 30628060 DOI: 10.1111/cge.13505] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 12/24/2018] [Accepted: 01/07/2019] [Indexed: 01/31/2023]
Affiliation(s)
- Zhihua Zhang
- State Key Laboratory of Medical Neurobiology, Institutes of Biomedical Sciences; Zhongshan Hospital, Fudan University; Shanghai China
| | - Jian Mu
- State Key Laboratory of Medical Neurobiology, Institutes of Biomedical Sciences; Zhongshan Hospital, Fudan University; Shanghai China
| | - Junli Zhao
- Center for Reproductive Medicine, General Hospital of Ningxia Medical University; Yinchuan China
| | - Zhou Zhou
- State Key Laboratory of Medical Neurobiology, Institutes of Biomedical Sciences; Zhongshan Hospital, Fudan University; Shanghai China
| | - Biaobang Chen
- State Key Laboratory of Medical Neurobiology, Institutes of Biomedical Sciences; Zhongshan Hospital, Fudan University; Shanghai China
| | - Ling Wu
- Department of Assisted Reproduction; Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine; Shanghai China
| | - Zheng Yan
- Department of Assisted Reproduction; Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine; Shanghai China
| | - Wenjing Wang
- State Key Laboratory of Medical Neurobiology, Institutes of Biomedical Sciences; Zhongshan Hospital, Fudan University; Shanghai China
| | - Lin Zhao
- State Key Laboratory of Medical Neurobiology, Institutes of Biomedical Sciences; Zhongshan Hospital, Fudan University; Shanghai China
| | - Jie Dong
- State Key Laboratory of Medical Neurobiology, Institutes of Biomedical Sciences; Zhongshan Hospital, Fudan University; Shanghai China
| | - Xiaoxi Sun
- Shanghai Ji Ai Genetics and IVF Institute; Obstetrics and Gynecology Hospital, Fudan University; Shanghai China
| | - Yanping Kuang
- Department of Assisted Reproduction; Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine; Shanghai China
| | - Bin Li
- Department of Assisted Reproduction; Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine; Shanghai China
| | - Lei Wang
- State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences; Zhongshan Hospital, Fudan University; Shanghai China
| | - Qing Sang
- State Key Laboratory of Medical Neurobiology, Institutes of Biomedical Sciences; Zhongshan Hospital, Fudan University; Shanghai China
| |
Collapse
|
24
|
Molecular Mechanisms of Prophase I Meiotic Arrest Maintenance and Meiotic Resumption in Mammalian Oocytes. Reprod Sci 2018; 26:1519-1537. [DOI: 10.1177/1933719118765974] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Mechanisms of meiotic prophase I arrest maintenance (germinal vesicle [GV] stage) and meiotic resumption (germinal vesicle breakdown [GVBD] stage) in mammalian oocytes seem to be very complicated. These processes are regulated via multiple molecular cascades at transcriptional, translational, and posttranslational levels, and many of them are interrelated. There are many molecular cascades of meiosis maintaining and meiotic resumption in oocyte which are orchestrated by multiple molecules produced by pituitary gland and follicular cells. Furthermore, many of these molecular cascades are duplicated, thus ensuring the stability of the entire system. Understanding mechanisms of oocyte maturation is essential to assess the oocyte status, develop effective protocols of oocyte in vitro maturation, and design novel contraceptive drugs. Mechanisms of meiotic arrest maintenance at prophase I and meiotic resumption in mammalian oocytes are covered in the present article.
Collapse
|
25
|
Peng H, Huo J, Gao Y, Chen J, Yu X, Xiao T. Fas-associated protein factor 1 is involved in meiotic resumption in mouse oocytes. J Reprod Dev 2018; 64:173-177. [PMID: 29434078 PMCID: PMC5902905 DOI: 10.1262/jrd.2017-081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Fas-associated protein factor 1 (FAF1) is a Fas-associated protein that functions in multiple cellular processes. Previous research showed that mutations in Faf1 led to
the lethality of cleavage stage embryos in a mouse model. The aim of the present study was to analyze the expression pattern, localization, and function of FAF1 in meiotic resumption of
mouse oocytes. FAF1 was exclusively expressed in oocytes at various follicular stages within the ovary and was predominantly localized in the cytoplasm of growing oocytes. Furthermore,
Faf1 mRNA and protein were persistently present during oocyte maturation and Faf1 mRNA levels were similar in the germinal vesicle (GV), GV breakdown
(GVBD), and metaphase II (MII) stages of oocytes. Moreover, knockdown of Faf1 in GV-stage oocytes led to a significantly decreased rate of GVBD. To our knowledge, these
results provide the first evidence regarding a novel function of FAF1 in meiotic resumption in mouse oocytes.
Collapse
Affiliation(s)
- Hui Peng
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, P. R. China
| | - Jianchao Huo
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, P. R. China
| | - Yuyun Gao
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, P. R. China
| | - Jing Chen
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, P. R. China
| | - Xiang Yu
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, P. R. China
| | - Tianfang Xiao
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, P. R. China
| |
Collapse
|
26
|
Differential long non-coding RNA expression profiles in human oocytes and cumulus cells. Sci Rep 2018; 8:2202. [PMID: 29396444 PMCID: PMC5797088 DOI: 10.1038/s41598-018-20727-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 01/22/2018] [Indexed: 12/19/2022] Open
Abstract
Progress in assisted reproductive technologies strongly relies on understanding the regulation of the dialogue between oocyte and cumulus cells (CCs). Little is known about the role of long non-coding RNAs (lncRNAs) in the human cumulus-oocyte complex (COC). To this aim, publicly available RNA-sequencing data were analyzed to identify lncRNAs that were abundant in metaphase II (MII) oocytes (BCAR4, C3orf56, TUNAR, OOEP-AS1, CASC18, and LINC01118) and CCs (NEAT1, MALAT1, ANXA2P2, MEG3, IL6STP1, and VIM-AS1). These data were validated by RT-qPCR analysis using independent oocytes and CC samples. The functions of the identified lncRNAs were then predicted by constructing lncRNA-mRNA co-expression networks. This analysis suggested that MII oocyte lncRNAs could be involved in chromatin remodeling, cell pluripotency and in driving early embryonic development. CC lncRNAs were co-expressed with genes involved in apoptosis and extracellular matrix-related functions. A bioinformatic analysis of RNA-sequencing data to identify CC lncRNAs that are affected by maternal age showed that lncRNAs with age-related altered expression in CCs are essential for oocyte growth. This comprehensive analysis of lncRNAs expressed in human MII oocytes and CCs could provide biomarkers of oocyte quality for the development of non-invasive tests to identify embryos with high developmental potential.
Collapse
|
27
|
Zhu JY, Cuellar RA, Berndt N, Lee HE, Olesen SH, Martin MP, Jensen JT, Georg GI, Schönbrunn E. Structural Basis of Wee Kinases Functionality and Inactivation by Diverse Small Molecule Inhibitors. J Med Chem 2017; 60:7863-7875. [PMID: 28792760 PMCID: PMC6200136 DOI: 10.1021/acs.jmedchem.7b00996] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Members of the Wee family of kinases negatively regulate the cell cycle via phosphorylation of CDK1 and are considered potential drug targets. Herein, we investigated the structure-function relationship of human Wee1, Wee2, and Myt1 (PKMYT1). Purified recombinant full-length proteins and kinase domain constructs differed substantially in phosphorylation states and catalytic competency, suggesting complex mechanisms of activation. A series of crystal structures reveal unique features that distinguish Wee1 and Wee2 from Myt1 and establish the structural basis of differential inhibition by the widely used Wee1 inhibitor MK-1775. Kinome profiling and cellular studies demonstrate that, in addition to Wee1 and Wee2, MK-1775 is an equally potent inhibitor of the polo-like kinase PLK1. Several previously unrecognized inhibitors of Wee kinases were discovered and characterized. Combined, the data provide a comprehensive view on the catalytic and structural properties of Wee kinases and a framework for the rational design of novel inhibitors thereof.
Collapse
Affiliation(s)
- Jin-Yi Zhu
- Drug Discovery Department, Moffitt Cancer Center, Tampa, Florida 33612, United States
| | - Rebecca A. Cuellar
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55414, United States
| | - Norbert Berndt
- Drug Discovery Department, Moffitt Cancer Center, Tampa, Florida 33612, United States
| | - Hee Eun Lee
- Drug Discovery Department, Moffitt Cancer Center, Tampa, Florida 33612, United States
| | - Sanne H. Olesen
- Drug Discovery Department, Moffitt Cancer Center, Tampa, Florida 33612, United States
| | - Mathew P. Martin
- Drug Discovery Department, Moffitt Cancer Center, Tampa, Florida 33612, United States
| | - Jeffrey T. Jensen
- Division of Reproductive and Developmental Science, Oregon National Primate Research Center, Beaverton, Oregon 97006, United States
| | - Gunda I. Georg
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55414, United States
| | - Ernst Schönbrunn
- Drug Discovery Department, Moffitt Cancer Center, Tampa, Florida 33612, United States
| |
Collapse
|
28
|
Cadoret V, Frapsauce C, Jarrier P, Maillard V, Bonnet A, Locatelli Y, Royère D, Monniaux D, Guérif F, Monget P. Molecular evidence that follicle development is accelerated in vitro compared to in vivo. Reproduction 2017; 153:493-508. [DOI: 10.1530/rep-16-0627] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 01/27/2017] [Accepted: 02/02/2017] [Indexed: 12/18/2022]
Abstract
In this study, we systematically compared the morphological, functional and molecular characteristics of granulosa cells and oocytes obtained by a three-dimensional in vitro model of ovine ovarian follicular growth with those of follicles recovered in vivo. Preantral follicles of 200 µm diameter were recovered and cultured up to 950 µm over a 20-day period. Compared with in vivo follicles, the in vitro culture conditions maintained follicle survival, with no difference in the rate of atresia. However, the in vitro conditions induced a slight decrease in oocyte growth rate, delayed antrum formation and increased granulosa cell proliferation rate, accompanied by an increase and decrease in CCND2 and CDKN1A mRNA expression respectively. These changes were associated with advanced granulosa cell differentiation in early antral follicles larger than 400 µm diameter, regardless of the presence or absence of FSH, as indicated by an increase in estradiol secretion, together with decreased AMH secretion and expression, as well as increased expression of GJA1, CYP19A1, ESR1, ESR2, FSHR, INHA, INHBA, INHBB and FST. There was a decrease in the expression of oocyte-specific molecular markers GJA4, KIT, ZP3, WEE2 and BMP15 in vitro compared to that in vivo. Moreover, a higher percentage of the oocytes recovered from cultured follicles 550 to 950 µm in diameter was able to reach the metaphase II meiosis stage. Overall, this in vitro model of ovarian follicle development is characterized by accelerated follicular maturation, associated with improved developmental competence of the oocyte, compared to follicles recovered in vivo.
Collapse
|
29
|
Wang X, Liu D, He D, Suo S, Xia X, He X, Han JDJ, Zheng P. Transcriptome analyses of rhesus monkey preimplantation embryos reveal a reduced capacity for DNA double-strand break repair in primate oocytes and early embryos. Genome Res 2017; 27:567-579. [PMID: 28223401 PMCID: PMC5378175 DOI: 10.1101/gr.198044.115] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Accepted: 02/10/2017] [Indexed: 12/31/2022]
Abstract
Preimplantation embryogenesis encompasses several critical events including genome reprogramming, zygotic genome activation (ZGA), and cell-fate commitment. The molecular basis of these processes remains obscure in primates in which there is a high rate of embryo wastage. Thus, understanding the factors involved in genome reprogramming and ZGA might help reproductive success during this susceptible period of early development and generate induced pluripotent stem cells with greater efficiency. Moreover, explaining the molecular basis responsible for embryo wastage in primates will greatly expand our knowledge of species evolution. By using RNA-seq in single and pooled oocytes and embryos, we defined the transcriptome throughout preimplantation development in rhesus monkey. In comparison to archival human and mouse data, we found that the transcriptome dynamics of monkey oocytes and embryos were very similar to those of human but very different from those of mouse. We identified several classes of maternal and zygotic genes, whose expression peaks were highly correlated with the time frames of genome reprogramming, ZGA, and cell-fate commitment, respectively. Importantly, comparison of the ZGA-related network modules among the three species revealed less robust surveillance of genomic instability in primate oocytes and embryos than in rodents, particularly in the pathways of DNA damage signaling and homology-directed DNA double-strand break repair. This study highlights the utility of monkey models to better understand the molecular basis for genome reprogramming, ZGA, and genomic stability surveillance in human early embryogenesis and may provide insights for improved homologous recombination-mediated gene editing in monkey.
Collapse
Affiliation(s)
- Xinyi Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.,University of Chinese Academy of Sciences, Beijing, 100049, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China.,Yunnan Key Laboratory of Animal Reproduction, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Denghui Liu
- Key Laboratory of Computational Biology, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center for Genetics and Developmental Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dajian He
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.,University of Chinese Academy of Sciences, Beijing, 100049, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China.,Yunnan Key Laboratory of Animal Reproduction, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Shengbao Suo
- Key Laboratory of Computational Biology, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center for Genetics and Developmental Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xian Xia
- Key Laboratory of Computational Biology, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center for Genetics and Developmental Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiechao He
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.,Yunnan Key Laboratory of Animal Reproduction, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.,Primate Research Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Jing-Dong J Han
- Key Laboratory of Computational Biology, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center for Genetics and Developmental Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ping Zheng
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.,Yunnan Key Laboratory of Animal Reproduction, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.,Primate Research Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| |
Collapse
|
30
|
Blithe DL. Pipeline for contraceptive development. Fertil Steril 2016; 106:1295-1302. [PMID: 27523300 PMCID: PMC5159203 DOI: 10.1016/j.fertnstert.2016.07.1115] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 07/14/2016] [Accepted: 07/21/2016] [Indexed: 11/16/2022]
Abstract
The high rates of unplanned pregnancy reflect an unmet need for effective contraceptive methods for women, especially for individuals with health risks such as obesity, diabetes, hypertension, and other conditions that may contraindicate use of an estrogen-containing product. Improvements in safety, user convenience, acceptability, and availability of products remain important goals of the contraceptive development program. Another important goal is to minimize the impact of the products on the environment. Development of new methods for male contraception has the potential to address many of these issues of safety for women who have contraindications to effective contraceptive methods but want to protect against pregnancy. It would also address a huge unmet need for men who want to control their fertility. Products under development for men would not introduce ecotoxic hormones into the water system.
Collapse
Affiliation(s)
- Diana L Blithe
- Contraception Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
31
|
Presslauer C, Bizuayehu TT, Razmi K, Fernandes JMO, Babiak I. See-Thru-Gonad zebrafish line: developmental and functional validation. Reproduction 2016; 152:507-17. [DOI: 10.1530/rep-16-0328] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 08/30/2016] [Indexed: 12/22/2022]
Abstract
Zebrafish are an important model species in developmental biology. However, their potential in reproductive biology research has yet to be realized. In this study, we established See-Thru-Gonad zebrafish, a transparent line with fluorescently labeled germ cells visible throughout the life cycle, validated its gonadal development features, and demonstrated its applicability by performing a targeted gene knockdown experiment using vivo-morpholinos (VMOs). To establish the line, we crossed the zf45Tg and mitfaw2/w2; mpv17b18/b18 zebrafish lines. We documented the in vivo visibility of the germline-specific fluorescent signal throughout development, from gametes through embryonic and juvenile stages up to sexual maturity, and validated gonadal development with histology. We performed targeted gene knockdown of the microRNA (miRNA) miR-92a-3p through injection of VMOs directly to maturing ovaries. After the treatment, zebrafish were bred naturally. Embryos from miR-92a-3p knockdown ovaries had a significant reduction in relative miR-92a-3p expression and a higher percentage of developmental arrest at the 1-cell stage as compared with 5-base mismatch-treated controls. The experiment demonstrates that See-Thru-Gonad line can be successfully used for vertical transmission of the effects of targeted gene knockdown in ovaries into their offspring.
Collapse
|
32
|
Bonnet A, Servin B, Mulsant P, Mandon-Pepin B. Spatio-Temporal Gene Expression Profiling during In Vivo Early Ovarian Folliculogenesis: Integrated Transcriptomic Study and Molecular Signature of Early Follicular Growth. PLoS One 2015; 10:e0141482. [PMID: 26540452 PMCID: PMC4634757 DOI: 10.1371/journal.pone.0141482] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 10/08/2015] [Indexed: 11/19/2022] Open
Abstract
Background The successful achievement of early ovarian folliculogenesis is important for fertility and reproductive life span. This complex biological process requires the appropriate expression of numerous genes at each developmental stage, in each follicular compartment. Relatively little is known at present about the molecular mechanisms that drive this process, and most gene expression studies have been performed in rodents and without considering the different follicular compartments. Results We used RNA-seq technology to explore the sheep transcriptome during early ovarian follicular development in the two main compartments: oocytes and granulosa cells. We documented the differential expression of 3,015 genes during this phase and described the gene expression dynamic specific to these compartments. We showed that important steps occurred during primary/secondary transition in sheep. We also described the in vivo molecular course of a number of pathways. In oocytes, these pathways documented the chronology of the acquisition of meiotic competence, migration and cellular organization, while in granulosa cells they concerned adhesion, the formation of cytoplasmic projections and steroid synthesis. This study proposes the involvement in this process of several members of the integrin and BMP families. The expression of genes such as Kruppel-like factor 9 (KLF9) and BMP binding endothelial regulator (BMPER) was highlighted for the first time during early follicular development, and their proteins were also predicted to be involved in gene regulation. Finally, we selected a data set of 24 biomarkers that enabled the discrimination of early follicular stages and thus offer a molecular signature of early follicular growth. This set of biomarkers includes known genes such as SPO11 meiotic protein covalently bound to DSB (SPO11), bone morphogenetic protein 15 (BMP15) and WEE1 homolog 2 (S. pombe)(WEE2) which play critical roles in follicular development but other biomarkers are also likely to play significant roles in this process. Conclusions To our knowledge, this is the first in vivo spatio-temporal exploration of transcriptomes derived from early follicles in sheep.
Collapse
Affiliation(s)
- Agnes Bonnet
- INRA, UMR 1388 GenPhySE (Génétique, Physiologie et Systèmes d’Elevage), F-31326 Castanet-Tolosan, France
- Université de Toulouse, INP, ENSAT, GenPhySE (Génétique, Physiologie et Systèmes d’Elevage), F-31326 Castanet-Tolosan, France
- Université de Toulouse, INP, ENVT, GenPhySE (Génétique, Physiologie et Systèmes d’Elevage), F-31076 Toulouse, France
- * E-mail:
| | - Bertrand Servin
- INRA, UMR 1388 GenPhySE (Génétique, Physiologie et Systèmes d’Elevage), F-31326 Castanet-Tolosan, France
- Université de Toulouse, INP, ENSAT, GenPhySE (Génétique, Physiologie et Systèmes d’Elevage), F-31326 Castanet-Tolosan, France
- Université de Toulouse, INP, ENVT, GenPhySE (Génétique, Physiologie et Systèmes d’Elevage), F-31076 Toulouse, France
| | - Philippe Mulsant
- INRA, UMR 1388 GenPhySE (Génétique, Physiologie et Systèmes d’Elevage), F-31326 Castanet-Tolosan, France
- Université de Toulouse, INP, ENSAT, GenPhySE (Génétique, Physiologie et Systèmes d’Elevage), F-31326 Castanet-Tolosan, France
- Université de Toulouse, INP, ENVT, GenPhySE (Génétique, Physiologie et Systèmes d’Elevage), F-31076 Toulouse, France
| | - Beatrice Mandon-Pepin
- INRA, UMR1198 Biologie du Développement et de la Reproduction, F-78350 Jouy-en-Josas, France
| |
Collapse
|
33
|
Wee1B depletion promotes nuclear maturation of canine oocytes. Theriogenology 2015; 83:546-52. [DOI: 10.1016/j.theriogenology.2014.10.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 10/13/2014] [Accepted: 10/18/2014] [Indexed: 11/17/2022]
|
34
|
Deutsch DR, Fröhlich T, Otte KA, Beck A, Habermann FA, Wolf E, Arnold GJ. Stage-Specific Proteome Signatures in Early Bovine Embryo Development. J Proteome Res 2014; 13:4363-76. [DOI: 10.1021/pr500550t] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Daniela R. Deutsch
- Laboratory for Functional Genome Analysis LAFUGA, Gene Center, ‡Molecular Animal Breeding
and Biotechnology, Department of Veterinary Sciences and Gene Center, and §Institute of Anatomy,
Histology and Embryology, Department of Veterinary Sciences, Ludwig-Maximilians-Universität München, Munich 81377, Germany
| | - Thomas Fröhlich
- Laboratory for Functional Genome Analysis LAFUGA, Gene Center, ‡Molecular Animal Breeding
and Biotechnology, Department of Veterinary Sciences and Gene Center, and §Institute of Anatomy,
Histology and Embryology, Department of Veterinary Sciences, Ludwig-Maximilians-Universität München, Munich 81377, Germany
| | - Kathrin A. Otte
- Laboratory for Functional Genome Analysis LAFUGA, Gene Center, ‡Molecular Animal Breeding
and Biotechnology, Department of Veterinary Sciences and Gene Center, and §Institute of Anatomy,
Histology and Embryology, Department of Veterinary Sciences, Ludwig-Maximilians-Universität München, Munich 81377, Germany
| | - Andrea Beck
- Laboratory for Functional Genome Analysis LAFUGA, Gene Center, ‡Molecular Animal Breeding
and Biotechnology, Department of Veterinary Sciences and Gene Center, and §Institute of Anatomy,
Histology and Embryology, Department of Veterinary Sciences, Ludwig-Maximilians-Universität München, Munich 81377, Germany
| | - Felix A. Habermann
- Laboratory for Functional Genome Analysis LAFUGA, Gene Center, ‡Molecular Animal Breeding
and Biotechnology, Department of Veterinary Sciences and Gene Center, and §Institute of Anatomy,
Histology and Embryology, Department of Veterinary Sciences, Ludwig-Maximilians-Universität München, Munich 81377, Germany
| | - Eckhard Wolf
- Laboratory for Functional Genome Analysis LAFUGA, Gene Center, ‡Molecular Animal Breeding
and Biotechnology, Department of Veterinary Sciences and Gene Center, and §Institute of Anatomy,
Histology and Embryology, Department of Veterinary Sciences, Ludwig-Maximilians-Universität München, Munich 81377, Germany
| | - Georg J. Arnold
- Laboratory for Functional Genome Analysis LAFUGA, Gene Center, ‡Molecular Animal Breeding
and Biotechnology, Department of Veterinary Sciences and Gene Center, and §Institute of Anatomy,
Histology and Embryology, Department of Veterinary Sciences, Ludwig-Maximilians-Universität München, Munich 81377, Germany
| |
Collapse
|
35
|
Xu T, Zhao J, Hu P, Dong Z, Li J, Zhang H, Yin D, Zhao Q. Pentachlorophenol exposure causes Warburg-like effects in zebrafish embryos at gastrulation stage. Toxicol Appl Pharmacol 2014; 277:183-91. [PMID: 24642059 DOI: 10.1016/j.taap.2014.03.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 02/21/2014] [Accepted: 03/04/2014] [Indexed: 12/31/2022]
Abstract
Pentachlorophenol (PCP) is a prevalent pollutant in the environment and has been demonstrated to be a serious toxicant to humans and animals. However, little is known regarding the molecular mechanism underlying its toxic effects on vertebrate early development. To explore the impacts and underlying mechanisms of PCP on early development, zebrafish (Danio rerio) embryos were exposed to PCP at concentrations of 0, 20 and 50 μg/L, and microscopic observation and cDNA microarray analysis were subsequently conducted at gastrulation stage. The morphological observations revealed that PCP caused a developmental delay of zebrafish embryos in a concentration-dependent manner. Transcriptomic data showed that 50 μg/L PCP treatment resulted in significant changes in gene expression level, and the genes involved in energy metabolism and cell behavior were identified based on gene functional enrichment analysis. The energy production of embryos was influenced by PCP via the activation of glycolysis along with the inhibition of oxidative phosphorylation (OXPHOS). The results suggested that PCP acts as an inhibitor of OXPHOS at 8 hpf (hours postfertilization). Consistent with the activated glycolysis, the cell cycle activity of PCP-treated embryos was higher than the controls. These characteristics are similar to the Warburg effect, which occurs in human tumors. The microinjection of exogenous ATP confirmed that an additional energy supply could rescue PCP-treated embryos from the developmental delay due to the energy deficit. Taken together, our results demonstrated that PCP causes a Warburg-like effect on zebrafish embryos during gastrulation, and the affected embryos had the phenotype of developmental delay.
Collapse
Affiliation(s)
- Ting Xu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Technology, Tongji University, Shanghai 200092, China
| | - Jing Zhao
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Technology, Tongji University, Shanghai 200092, China
| | - Ping Hu
- Key Laboratory of Model Animal for Disease Study, Ministry of Education, Model Animal Research Center, Nanjing University, Nanjing 210061, China; State Key Laboratory of Reproductive Medicine, Department of Prenatal Diagnosis, Nanjing Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, Nanjing 210029, China
| | - Zhangji Dong
- Key Laboratory of Model Animal for Disease Study, Ministry of Education, Model Animal Research Center, Nanjing University, Nanjing 210061, China
| | - Jingyun Li
- Key Laboratory of Model Animal for Disease Study, Ministry of Education, Model Animal Research Center, Nanjing University, Nanjing 210061, China
| | - Hongchang Zhang
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Technology, Tongji University, Shanghai 200092, China
| | - Daqiang Yin
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Technology, Tongji University, Shanghai 200092, China.
| | - Qingshun Zhao
- Key Laboratory of Model Animal for Disease Study, Ministry of Education, Model Animal Research Center, Nanjing University, Nanjing 210061, China.
| |
Collapse
|
36
|
Toms D, Tsoi S, Dobrinsky J, Dyck MK, Li J. The effects of glial cell line-derived neurotrophic factor on the in vitro matured porcine oocyte transcriptome. Mol Reprod Dev 2014; 81:217-29. [DOI: 10.1002/mrd.22288] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2013] [Accepted: 11/26/2013] [Indexed: 12/21/2022]
Affiliation(s)
- Derek Toms
- Department of Animal and Poultry Science; University of Guelph; Guelph Canada
| | - Stephen Tsoi
- Department of Agricultural; Food and Nutritional Science; University of Alberta; Edmonton Canada
| | - John Dobrinsky
- International Center of Biotechnology; Minitube of America; Mt. Horeb Wisconsin
| | - Michael K. Dyck
- Department of Agricultural; Food and Nutritional Science; University of Alberta; Edmonton Canada
| | - Julang Li
- Department of Animal and Poultry Science; University of Guelph; Guelph Canada
| |
Collapse
|
37
|
Ser 15 of WEE1B is a potential PKA phosphorylation target in G2/M transition in one-cell stage mouse embryos. Mol Med Rep 2013; 7:1929-37. [DOI: 10.3892/mmr.2013.1437] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 03/28/2013] [Indexed: 11/05/2022] Open
|
38
|
Sitruk-Ware R, Nath A, Mishell DR. Contraception technology: past, present and future. Contraception 2013; 87:319-30. [PMID: 22995540 PMCID: PMC3530627 DOI: 10.1016/j.contraception.2012.08.002] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 08/06/2012] [Indexed: 11/22/2022]
Abstract
Steady progress in contraception research has been achieved over the past 50 years. Hormonal and nonhormonal modern contraceptives have improved women's lives by reducing different health conditions that contributed to considerable morbidity. However, the contraceptives available today are not suitable to all users, and the need to expand contraceptive choices still exists. Novel products such as new implants, contraceptive vaginal rings, transdermal patches and newer combinations of oral contraceptives have recently been introduced in family planning programs, and hormonal contraception is widely used for spacing and limiting births. Concerns over the adverse effects of hormonal contraceptives have led to research and development of new combinations with improved metabolic profile. Recent developments include use of natural compounds such as estradiol and estradiol valerate with the hope to decrease thrombotic risk, in combination with newer progestins derived from the progesterone structure or from spirolactone, in order to avoid the androgenic effects. Progesterone antagonists and progesterone receptor modulators are highly effective in blocking ovulation and preventing follicular rupture and are undergoing investigations in the form of oral pills and in semi-long-acting delivery systems. Future developments also include the combination of a contraceptive with an antiretroviral agent for dual contraception and protection against sexually transmitted diseases, to be used before intercourse or on demand, as well as for continuous use in dual-protection rings. Although clinical trials of male contraception have reflected promising results, limited involvement of industry in that area of research has decreased the likelihood of having a male method available in the current decade. Development of nonhormonal methods is still at an early stage of research, with the identification of specific targets within the reproductive system in ovaries and testes, as well as interactions between spermatozoa and ova. It is hoped that the introduction of new methods with additional health benefits would help women and couples with unmet needs to obtain access to a wider range of contraceptives with improved acceptability.
Collapse
|
39
|
SHIMAOKA T, NISHIMURA T, KANO K, NAITO K. Analyses of the Regulatory Mechanism of Porcine WEE1B: The Phosphorylation Sites of Porcine WEE1B and Mouse WEE1B Are Different. J Reprod Dev 2011; 57:223-8. [DOI: 10.1262/jrd.10-122h] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Takuma SHIMAOKA
- Laboratory of Applied Genetics, Graduate School of Agricultural and Life Sciences, The University of Tokyo
| | - Takanori NISHIMURA
- Laboratory of Applied Genetics, Graduate School of Agricultural and Life Sciences, The University of Tokyo
| | - Kiyoshi KANO
- Laboratory of Applied Genetics, Graduate School of Agricultural and Life Sciences, The University of Tokyo
| | - Kunihiko NAITO
- Laboratory of Applied Genetics, Graduate School of Agricultural and Life Sciences, The University of Tokyo
| |
Collapse
|
40
|
Schindler K. Protein kinases and protein phosphatases that regulate meiotic maturation in mouse oocytes. Results Probl Cell Differ 2011; 53:309-341. [PMID: 21630151 DOI: 10.1007/978-3-642-19065-0_14] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Oocytes arrest at prophase of meiosis I (MI) and in vivo do not resume meiosis until they receive ovulatory cues. Meiotic resumption entails two rounds of chromosome segregation without an intervening round of DNA replication and an arrest at metaphase of meiosis II (MII); fertilization triggers exit from MII and entry into interphase. During meiotic resumption, there is a burst of protein phosphorylation and dephosphorylation that dramatically changes during the course of oocyte meiotic maturation. Many of these phosphorylation and dephosphorylation events are key to regulating meiotic cell cycle arrest and/or progression, chromosome dynamics, and meiotic spindle assembly and disassembly. This review, which is subdivided into sections based upon meiotic cell cycle stages, focuses on the major protein kinases and phosphatases that have defined requirements during meiosis in mouse oocytes and, when possible, connects these regulatory pathways.
Collapse
Affiliation(s)
- Karen Schindler
- Department of Biology, University of Pennsylvania, 433 S. University Avenue, Philadelphia, PA 19104, USA.
| |
Collapse
|