1
|
Bertoldo MJ, Listijono DR, Ho WHJ, Riepsamen AH, Goss DM, Richani D, Jin XL, Mahbub S, Campbell JM, Habibalahi A, Loh WGN, Youngson NA, Maniam J, Wong ASA, Selesniemi K, Bustamante S, Li C, Zhao Y, Marinova MB, Kim LJ, Lau L, Wu RM, Mikolaizak AS, Araki T, Le Couteur DG, Turner N, Morris MJ, Walters KA, Goldys E, O'Neill C, Gilchrist RB, Sinclair DA, Homer HA, Wu LE. NAD + Repletion Rescues Female Fertility during Reproductive Aging. Cell Rep 2021; 30:1670-1681.e7. [PMID: 32049001 PMCID: PMC7063679 DOI: 10.1016/j.celrep.2020.01.058] [Citation(s) in RCA: 208] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 11/03/2019] [Accepted: 01/17/2020] [Indexed: 12/31/2022] Open
Abstract
Reproductive aging in female mammals is an irreversible process associated with declining oocyte quality, which is the rate-limiting factor to fertility. Here, we show that this loss of oocyte quality with age accompanies declining levels of the prominent metabolic cofactor nicotinamide adenine dinucleotide (NAD+). Treatment with the NAD+ metabolic precursor nicotinamide mononucleotide (NMN) rejuvenates oocyte quality in aged animals, leading to restoration in fertility, and this can be recapitulated by transgenic overexpression of the NAD+-dependent deacylase SIRT2, though deletion of this enzyme does not impair oocyte quality. These benefits of NMN extend to the developing embryo, where supplementation reverses the adverse effect of maternal age on developmental milestones. These findings suggest that late-life restoration of NAD+ levels represents an opportunity to rescue female reproductive function in mammals. Declining oocyte quality is considered an irreversible feature of aging and is rate limiting for human fertility. Bertoldo et al. show that reversing an age-dependent decline in NAD(P)H restores oocyte quality, embryo development, and functional fertility in aged mice. These findings may be relevant to reproductive medicine.
Collapse
Affiliation(s)
- Michael J Bertoldo
- School of Medical Sciences, UNSW Sydney, Sydney, NSW, Australia; School of Women's and Children's Health, UNSW Sydney, Sydney, NSW, Australia
| | - Dave R Listijono
- School of Medical Sciences, UNSW Sydney, Sydney, NSW, Australia; School of Women's and Children's Health, UNSW Sydney, Sydney, NSW, Australia
| | - Wing-Hong Jonathan Ho
- School of Medical Sciences, UNSW Sydney, Sydney, NSW, Australia; School of Women's and Children's Health, UNSW Sydney, Sydney, NSW, Australia
| | | | - Dale M Goss
- School of Medical Sciences, UNSW Sydney, Sydney, NSW, Australia
| | - Dulama Richani
- School of Women's and Children's Health, UNSW Sydney, Sydney, NSW, Australia
| | - Xing L Jin
- Human Reproduction Unit, Kolling Institute, Sydney Medical School, University of Sydney, St Leonards, NSW, Australia
| | - Saabah Mahbub
- ARC Centre of Excellence in Nanoscale Biophotonics, UNSW Sydney, NSW, Australia
| | - Jared M Campbell
- ARC Centre of Excellence in Nanoscale Biophotonics, UNSW Sydney, NSW, Australia
| | - Abbas Habibalahi
- ARC Centre of Excellence in Nanoscale Biophotonics, UNSW Sydney, NSW, Australia
| | | | - Neil A Youngson
- School of Medical Sciences, UNSW Sydney, Sydney, NSW, Australia
| | - Jayanthi Maniam
- School of Medical Sciences, UNSW Sydney, Sydney, NSW, Australia
| | - Ashley S A Wong
- School of Medical Sciences, UNSW Sydney, Sydney, NSW, Australia
| | - Kaisa Selesniemi
- Paul F. Glenn Laboratories for the Biological Mechanisms of Aging, Harvard Medical School, Boston MA, USA; Jumpstart Fertility Pty Ltd., Sydney, NSW, Australia
| | - Sonia Bustamante
- Bioanalytical Mass Spectrometry Facility, Mark Wainwright Analytical Centre, UNSW Sydney, Sydney, NSW, Australia
| | - Catherine Li
- School of Medical Sciences, UNSW Sydney, Sydney, NSW, Australia
| | - Yiqing Zhao
- School of Women's and Children's Health, UNSW Sydney, Sydney, NSW, Australia
| | - Maria B Marinova
- School of Women's and Children's Health, UNSW Sydney, Sydney, NSW, Australia
| | - Lynn-Jee Kim
- School of Medical Sciences, UNSW Sydney, Sydney, NSW, Australia
| | - Laurin Lau
- School of Women's and Children's Health, UNSW Sydney, Sydney, NSW, Australia
| | - Rachael M Wu
- Graduate Entry Medical School, University of Limerick, Limerick, Republic of Ireland
| | | | - Toshiyuki Araki
- Department of Peripheral Nervous System Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - David G Le Couteur
- ANZAC Medical Research Institute, University of Sydney, Concord, NSW, Australia
| | - Nigel Turner
- School of Medical Sciences, UNSW Sydney, Sydney, NSW, Australia
| | | | - Kirsty A Walters
- School of Women's and Children's Health, UNSW Sydney, Sydney, NSW, Australia
| | - Ewa Goldys
- ARC Centre of Excellence in Nanoscale Biophotonics, UNSW Sydney, NSW, Australia
| | - Christopher O'Neill
- Human Reproduction Unit, Kolling Institute, Sydney Medical School, University of Sydney, St Leonards, NSW, Australia
| | - Robert B Gilchrist
- School of Women's and Children's Health, UNSW Sydney, Sydney, NSW, Australia
| | - David A Sinclair
- School of Medical Sciences, UNSW Sydney, Sydney, NSW, Australia; Paul F. Glenn Laboratories for the Biological Mechanisms of Aging, Harvard Medical School, Boston MA, USA.
| | - Hayden A Homer
- School of Women's and Children's Health, UNSW Sydney, Sydney, NSW, Australia; Christopher Chen Oocyte Biology Laboratory, University of Queensland Centre for Clinical Research, Royal Brisbane & Women's Hospital, Herston, QLD, Australia.
| | - Lindsay E Wu
- School of Medical Sciences, UNSW Sydney, Sydney, NSW, Australia.
| |
Collapse
|
2
|
Wilson Y, Morris ID, Kimber SJ, Brison DR. The role of Trp53 in the mouse embryonic response to DNA damage. Mol Hum Reprod 2020; 25:397-407. [PMID: 31227838 DOI: 10.1093/molehr/gaz029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 05/23/2019] [Accepted: 05/31/2019] [Indexed: 12/23/2022] Open
Abstract
Apoptosis occurs primarily in the blastocyst inner cell mass, cells of which go on to form the foetus. Apoptosis is likely to play a role in ensuring the genetic integrity of the foetus, yet little is known about its regulation. In this study, the role of the mouse gene, transformation-related protein 53 (Trp53) in the response of embryos to in vitro culture and environmentally induced DNA damage was investigated using embryos from a Trp53 knockout mouse model. In vivo-derived blastocysts were compared to control embryos X-irradiated at the two-cell stage and cultured to Day 5. An analysis of DNA by comet assay demonstrated that 1.5 Gy X-irradiation directly induced damage in cultured two-cell mouse embryos; this was correlated with retarded development to blastocyst stage and increased apoptosis at the blastocyst stage but not prior to this. Trp53 null embryos developed to blastocysts at a higher frequency and with higher cell numbers than wild-type embryos. Trp53 also mediates apoptosis in conditions of low levels of DNA damage, in vivo or in vitro in the absence of irradiation. However, following DNA damage induced by X-irradiation, apoptosis is induced by Trp53 independent as well as dependent mechanisms. These data suggest that Trp53 and apoptosis play important roles in normal mouse embryonic development both in vitro and in vivo and in response to DNA damage. Therefore, clinical ART practices that alter apoptosis in human embryos and/or select embryos for transfer, which potentially lack a functional Trp53 gene, need to be carefully considered.
Collapse
Affiliation(s)
- Yvonne Wilson
- Department of Reproductive Medicine, Saint Mary's Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Sciences Centre, Oxford Road, Manchester M13 9WL, UK
| | - Ian D Morris
- Hull York Medical School, University of York, Heslington, York YO10 5DD, UK
| | - Susan J Kimber
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, Manchester, UK
| | - Daniel R Brison
- Department of Reproductive Medicine, Saint Mary's Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Sciences Centre, Oxford Road, Manchester M13 9WL, UK.,Maternal and Fetal Health Research, Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| |
Collapse
|
3
|
Bessonnard S, Vandormael-Pournin S, Coqueran S, Cohen-Tannoudji M, Artus J. PDGF Signaling in Primitive Endoderm Cell Survival Is Mediated by PI3K-mTOR Through p53-Independent Mechanism. Stem Cells 2019; 37:888-898. [PMID: 30913328 DOI: 10.1002/stem.3008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 02/18/2019] [Accepted: 03/12/2019] [Indexed: 12/22/2022]
Abstract
Receptor tyrosine kinase signaling pathways are key regulators for the formation of the primitive endoderm (PrE) and the epiblast (Epi) from the inner cell mass (ICM) of the mouse preimplantation embryo. Among them, FGF signaling is critical for PrE cell specification, whereas PDGF signaling is critical for the survival of committed PrE cells. Here, we investigated possible functional redundancies among FGF, PDGF, and KIT signaling and showed that only PDGF signaling is involved in PrE cell survival. In addition, we analyzed the effectors downstream of PDGFRα. Our results suggest that the role of PDGF signaling in PrE cell survival is mediated through PI3K-mTOR and independently from p53. Lastly, we uncovered a role for PI3K-mTOR signaling in the survival of Epi cells. Taken together, we propose that survival of ICM cell lineages relies on the regulation of PI3K-mTOR signaling through the regulation of multiple signaling pathways. Stem Cells 2019;37:888-898.
Collapse
Affiliation(s)
- Sylvain Bessonnard
- Early Mammalian Development and Stem Cell Biology, Institut Pasteur, CNRS UMR 3738, Paris, France
| | | | - Sabrina Coqueran
- Early Mammalian Development and Stem Cell Biology, Institut Pasteur, CNRS UMR 3738, Paris, France
| | - Michel Cohen-Tannoudji
- Early Mammalian Development and Stem Cell Biology, Institut Pasteur, CNRS UMR 3738, Paris, France
| | - Jérôme Artus
- Early Mammalian Development and Stem Cell Biology, Institut Pasteur, CNRS UMR 3738, Paris, France
| |
Collapse
|
4
|
Şen U, Kuran M. Low incubation temperature successfully supports the in vitro bovine oocyte maturation and subsequent development of embryos. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2017; 31:827-834. [PMID: 29268582 PMCID: PMC5933980 DOI: 10.5713/ajas.17.0569] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 11/19/2017] [Accepted: 11/23/2017] [Indexed: 11/27/2022]
Abstract
OBJECTIVE The aim of this study was to compare the effects of 36.5°C and 38.5°C incubation temperatures on the maturation of bovine oocytes and developmental competence of embryos. METHODS In experiment 1, oocytes were maturated in bicarbonate-buffered TCM-199 for 22 hours in a humidified atmosphere of 5% CO2 in the air at either 36.5°C or 38.5°C and nuclear maturation status were determined. In experiment 2, in vitro fertilized oocytes were allocated randomly into synthetic oviductal fluid medium with or without a mixture of 1 mM L-glutathione reduced and 1,500 IU superoxide dismutase and cultured in a humidified atmosphere of 5% CO2, 5% O2, and 90% N2 in the air at 38.5°C for 8 days. RESULTS There were no significant differences between incubation temperatures in terms of oocyte maturation parameters such as cumulus expansion, first polar body extrusion and nuclear maturation. Incubation temperatures during in vitro maturation had no effects on developmental competence of embryos, but supplementation of antioxidants increased (p< 0.05) developmental competence of the embryos. Blastocysts from oocytes matured at 38.5°C had comparatively higher inner cell mass, but low overall and trophectoderm cell numbers (p<0.05). CONCLUSION The results of present study showed that maturation of bovine oocytes at 36.5°C may provide a suitable thermal environment for nuclear maturation and subsequent embryo development.
Collapse
Affiliation(s)
- Uğur Şen
- Department of Agricultural Biotechnology, Faculty of Agriculture, Ondokuz Mayis University, Samsun TR55139, Turkey
| | - Mehmet Kuran
- Department of Agricultural Biotechnology, Faculty of Agriculture, Ondokuz Mayis University, Samsun TR55139, Turkey
| |
Collapse
|
5
|
Ganeshan L, Jin XL, O'Neill C. The induction of tumour suppressor protein P53 limits the entry of cells into the pluripotent inner cell mass lineage in the mouse embryo. Exp Cell Res 2017; 358:227-233. [PMID: 28663058 DOI: 10.1016/j.yexcr.2017.06.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 06/21/2017] [Accepted: 06/23/2017] [Indexed: 11/28/2022]
Abstract
The early preimplantation embryo is susceptible to a range of exogenous stresses which result in their reduced long-term developmental potential. The P53 tumour suppressor protein is normally held at low levels in the preimplantation embryo and we show that culture stress induces the expression of a range of canonical P53-response genes (Mdm2, Bax and Cdkn1a). Culture stress caused a P53-dependent loss of cells from resulting blastocysts, and this was most evident within the inner cell mass population. Culture stress increased the proportion of cells expressing active caspase-3 and undergoing apoptosis, while inhibition of caspase-3 increased the number of cells within the inner cell mass. The P53-dependent loss of cells from the inner cell mass was accompanied by a loss of NANOG-positive epiblast progenitors. Pharmacological activation of P53 by the MDM2 inhibitor, Nutlin-3, also caused increased P53-dependent transcription and the loss of cells from the inner cell mass. This loss of cells could be ameliorated by simultaneous treatment with the P53 inhibitor, Pifithrin-α. Culture stress causes reduced signalling via the phosphatidylinositol-3-kinase signalling pathway, and blocking this pathway caused P53-dependent loss of cells from the inner cell mass. These results point to P53 acting to limit the accumulation and survival of cells within the pluripotent lineage of the blastocyst and provide a molecular framework for the further investigation of the factors determining the effects of stressors on the embryo's developmental potential.
Collapse
Affiliation(s)
- L Ganeshan
- Human Reproduction Unit, Kolling Institute, Sydney Medical School, University of Sydney, NSW 2065, Australia
| | - X L Jin
- Human Reproduction Unit, Kolling Institute, Sydney Medical School, University of Sydney, NSW 2065, Australia
| | - C O'Neill
- Human Reproduction Unit, Kolling Institute, Sydney Medical School, University of Sydney, NSW 2065, Australia.
| |
Collapse
|
6
|
Bertoldo MJ, Locatelli Y, O'Neill C, Mermillod P. Impacts of and interactions between environmental stress and epigenetic programming during early embryo development. Reprod Fertil Dev 2017; 27:1125-36. [PMID: 24965854 DOI: 10.1071/rd14049] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 03/31/2014] [Indexed: 01/24/2023] Open
Abstract
The processes of assisted reproductive technologies (ART) involve a variety of interventions that impact on the oocyte and embryo. Critically, these interventions cause considerable stress and coincide with important imprinting events throughout gametogenesis, fertilisation and early embryonic development. It is now accepted that the IVM and in vitro development of gametes and embryos can perturb the natural course of development to varying degrees of severity. Altered gene expression and, more recently, imprinting disorders relating to ART have become a focused area of research. Although various hypotheses have been put forward, most research has been observational, with little attempt to discover the mechanisms and periods of sensitivity during embryo development that are influenced by the culture conditions following fertilisation. The embryo possesses innate survival factor signalling pathways, yet when an embryo is placed in culture, this signalling in response to in vitro stress becomes critically important in mitigating the effects of stresses caused by the in vitro environment. It is apparent that not all embryos possess this ability to adequately adapt to the stresses experienced in vitro, most probably due to an inadequate oocyte. It is speculated that it is important that embryos use their survival signalling mechanisms to maintain normal epigenetic programming. The seeming redundancy in the function of various survival signalling pathways would support this notion. Any invasion into the natural, highly orchestrated and dynamic process of sexual reproduction could perturb the normal progression of epigenetic programming. Therefore the source of gametes and the subsequent culture conditions of gametes and embryos are critically important and require careful attention. It is the aim of this review to highlight avenues of research to elucidate the effects of stress and the relationship with epigenetic programming. The short- and long-term health and viability of human and animal embryos derived in vitro will also be discussed.
Collapse
Affiliation(s)
- Michael J Bertoldo
- Institut National de la Recherche Agronomique (INRA), UMR85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
| | - Yann Locatelli
- Institut National de la Recherche Agronomique (INRA), UMR85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
| | - Christopher O'Neill
- Centre for Developmental and Regenerative Medicine, Kolling Institute for Medical Research, Sydney Medical School, University of Sydney, NSW 2065, Australia
| | - Pascal Mermillod
- Institut National de la Recherche Agronomique (INRA), UMR85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
| |
Collapse
|
7
|
Wang L, Zhang H, Wang Y, Wang F, Liu X, Wu Y, Hua S, Quan F, Zhang Y. Peroxiredoxin 5 is essential for in vitro development of bovine SCNT embryos. Theriogenology 2017; 92:156-166. [DOI: 10.1016/j.theriogenology.2016.09.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 09/08/2016] [Accepted: 09/09/2016] [Indexed: 01/13/2023]
|
8
|
O’Neill C, Li Y, Jin X. Survival Signalling in the Preimplantation Embryo. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 843:129-49. [DOI: 10.1007/978-1-4939-2480-6_5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
9
|
Meuter A, Rogmann LM, Winterhoff BJ, Tchkonia T, Kirkland JL, Morbeck DE. Markers of cellular senescence are elevated in murine blastocysts cultured in vitro: molecular consequences of culture in atmospheric oxygen. J Assist Reprod Genet 2014; 31:1259-67. [PMID: 25106938 DOI: 10.1007/s10815-014-0299-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 07/14/2014] [Indexed: 12/19/2022] Open
Abstract
PURPOSE We aimed to determine whether embryo culture induces markers of cellular senescence and whether these effects were dependent on culture conditions. METHODS Murine blastocysts were derived in vitro and in vivo and assessed for 2 primary markers of senescence: senescence-associated β-galactosidase (SA-β-gal) and phosphorylated H2A.X (γ-H2A.X), the latter being a mark of DNA oxidative damage. Expression of senescence-associated genes p21, p16, and interleukin 6 (IL6) were also assessed. RESULTS Compared with in vivo-derived blastocysts, in vitro embryos had high levels of SA-β-gal, nuclear γ-H2A.X, and p21 mRNA expression, indicating that a senescence-like phenotype is induced by in vitro culture. To determine the role of culture conditions, we studied the effect of oxygen (5 % vs 20 %) and protein supplementation on senescence markers. Blastocysts in reduced oxygen (5 %) had low levels of both SA-β-gal and γ-H2A.X compared with blastocysts cultured in ambient oxygen. Senescence markers also were reduced in the presence of protein, suggesting that antioxidant properties of protein reduce oxidative DNA damage in vitro. CONCLUSION Elevated SA-β-gal, γ-H2A.X, and p21 suggest that in vitro stress can induce a senescence-like phenotype. Reduced oxygen during embryo culture minimizes these effects, providing further evidence for potential adverse effects of culturing embryos at ambient oxygen concentrations.
Collapse
Affiliation(s)
- Alexandra Meuter
- Division of Reproductive Endocrinology and Infertility, Mayo Clinic, 200St SW, Rochester, MN, 55905, USA
| | | | | | | | | | | |
Collapse
|
10
|
van Leeuwen J, Berg DK, Smith CS, Wells DN, Pfeffer PL. Specific epiblast loss and hypoblast impairment in cattle embryos sensitized to survival signalling by ubiquitous overexpression of the proapoptotic gene BAD. PLoS One 2014; 9:e96843. [PMID: 24806443 PMCID: PMC4013130 DOI: 10.1371/journal.pone.0096843] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 04/11/2014] [Indexed: 01/16/2023] Open
Abstract
Early embryonic lethality is common, particularly in dairy cattle. We made cattle embryos more sensitive to environmental stressors by raising the threshold of embryo survival signaling required to overcome the deleterious effects of overexpressing the proapoptotic protein BAD. Two primary fibroblast cell lines expressing BAD and exhibiting increased sensitivity to stress-induced apoptosis were used to generate transgenic Day13/14 BAD embryos. Transgenic embryos were normal in terms of retrieval rates, average embryo length or expression levels of the trophectoderm marker ASCL2. However both lines of BAD-tg embryos lost the embryonic disc and thus the entire epiblast lineage at significantly greater frequencies than either co-transferrred IVP controls or LacZ-tg embryos. Embryos without epiblast still contained the second ICM-derived lineage, the hypopblast, albeit frequently in an impaired state, as shown by reduced expression of the hypoblast markers GATA4 and FIBRONECTIN. This indicates a gradient of sensitivity (epiblast > hypoblast > TE) to BAD overexpression. We postulate that the greater sensitivity of specifically the epiblast lineage that we have seen in our transgenic model, reflects an inherent greater susceptibility of this lineage to environmental stress and may underlie the epiblast-specific death seen in phantom pregnancies.
Collapse
Affiliation(s)
- Jessica van Leeuwen
- Animal Productivity, AgResearch, Hamilton, Waikato, New Zealand
- Department of Biological Sciences, University of Waikato, Hamilton, Waikato, New Zealand
| | - Debra K. Berg
- Animal Productivity, AgResearch, Hamilton, Waikato, New Zealand
| | - Craig S. Smith
- Animal Productivity, AgResearch, Hamilton, Waikato, New Zealand
- School of Medicine, University of Notre Dame, Sydney, New South Wales, Australia
| | - David N. Wells
- Animal Productivity, AgResearch, Hamilton, Waikato, New Zealand
| | - Peter L. Pfeffer
- Animal Productivity, AgResearch, Hamilton, Waikato, New Zealand
- * E-mail:
| |
Collapse
|
11
|
Gardner DK, Hamilton R, McCallie B, Schoolcraft WB, Katz-Jaffe MG. Human and mouse embryonic development, metabolism and gene expression are altered by an ammonium gradient in vitro. Reproduction 2013; 146:49-61. [DOI: 10.1530/rep-12-0348] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Ammonium is generated in culture media by the spontaneous deamination of amino acids at 37 °C and through the metabolism of amino acids by human embryos. The appearance of ammonium is a time-dependent phenomenon and can compromise embryo physiology, development and viability. In this study, the effects of a gradient of ammonium on the development, metabolism and transcriptome of human and mouse embryos were investigated. Pronucleate oocytes were cultured in the presence of an ammonium gradient that mimicked the spontaneous deamination of Eagle's amino acids together with 1 mM glutamine. All embryos were cultured in sequential media G1/G2 at 5% O2, 6% CO2 and 89% N2. Human embryo metabolism was assessed through a non-invasive fluorometric analysis of pyruvate consumption. Transcriptome analysis was performed on the resultant blastocysts from both species using a microarray technology. Embryo development prior to compaction was negatively affected by the presence of low levels of ammonium in both species. Human embryo metabolism was significantly inhibited after just 24 and 48 h of culture. Transcriptome analysis of blastocysts from both species revealed significantly altered gene expression profiles, both decreased and increased. Functional annotation of the altered genes revealed the following over represented biological processes: metabolism, cell growth and/or maintenance, transcription, cell communication, transport, development and transcription regulation. These data emphasize the enhanced sensitivity of the cleavage-stage embryo to its environment and highlight the requirement to renew culture media at frequent intervals in order to alleviate the in vitro induced effects of ammonium build-up in the environment surrounding the embryo.
Collapse
|
12
|
Li A, Ganeshan L, O'Neill C. The effect of Trp53 gene-dosage and parent-of-origin of inheritance on mouse gamete and embryo function in vitro. Biol Reprod 2012; 86:175. [PMID: 22441798 DOI: 10.1095/biolreprod.111.097741] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The transformation-related protein 53 (TRP53) has a canonical role as the "guardian of the genome," serving to protect against the propagation of cells with genomic damage. Autocrine trophic signals act to block the accumulation of TRP53 in the normal preimplantation embryo. Culture of the early embryo at limiting dilutions in simple defined media limits autocrine signaling, resulting in the accumulation of TRP53. This TRP53 reduces the rate of development of embryos. In this study we show that deletion of the Trp53 gene improved development in vitro in a dose-dependent manner. Development to morphological blastocysts increased as the dose of Trp53 was reduced, and this was accompanied by a Trp53-dependent increase in the allocation of cells to the inner cell mass. The intermediate developmental response of heterozygous mice provides evidence for haploinsufficiency of this trait. This haploinsufficiency was evident irrespective of the parent-of-origin of the null allele; however, zygotes with paternal inheritance of the Trp53-null allele had better development in vitro than those with maternal inheritance. There was a beneficial effect of the Trp53-null allele on the number of oocytes released by Trp53(+/-) females, and heterozygous males produced higher fertilization rates than controls, although this was independent of the genotype of the fertilizing sperm. The study shows that ovulation induction or culture of embryos in limiting conditions creates conditions that favor the early development of embryos inheriting loss of Trp53 function. This occurs even in the heterozygous state, showing that the conditions provide a potential basis for accelerated accumulation of deleterious mutations within a population.
Collapse
Affiliation(s)
- A Li
- Centre for Developmental and Regenerative Medicine, Kolling Institute for Medical Research, Sydney Medical School, University of Sydney, St Leonards, New South Wales, Australia
| | | | | |
Collapse
|
13
|
Survival signaling in the preimplantation embryo. Theriogenology 2012; 77:773-84. [PMID: 22325248 DOI: 10.1016/j.theriogenology.2011.12.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Revised: 12/12/2011] [Accepted: 01/12/2012] [Indexed: 11/24/2022]
Abstract
The autopoietic development of the preimplantation embryo may in part be explained by the actions of autocrine tropic ligands. The net effect of these mediators is to support the survival of cells within the early embryo. In the mouse, the actions of autocrine ligands are required by the 2-cell stage of development, and they can act in concert with paracrine mediators present within the reproductive tract. These mediators act via 1-o-phosphatidylinositol-3-kinase signaling which has the dual effects of activating calcium/calmodulin-dependent kinase/CREB transcription factor and AKT (protein kinase B)/MDM2 mediated survival pathways. The activated CREB drives transcription of prosurvival effectors, including the proto-oncogenes c-Fos and Bcl2. The AKT induces the phosphorylation and activation of MDM2 which causes the ubiquitination and resultant degradation of P53 resulting in the latency of P53 action. Tropic signals provide coordinated mechanisms for maintaining the survival of the cells of the early embryo. Disturbance of survival signaling has the net effect of reducing the number of cells populating the early embryo, due in part to the P53-mediated reduction in the pluripotent inner cell mass stem cell population within the embryo. The resultant embryos have a markedly reduced capacity for development beyond the implantation stage and those that do implant tend to be anembryonic.
Collapse
|