1
|
Zhe X, Ma H, Zhang W, Ding R, Hao F, Gao Y, Uri G, Jiri G, Jiri G, Liu D. Scriptaid Improves Cashmere Goat Embryo Reprogramming by Affecting Donor Cell Pluripotency Molecule NANOG Expression. Animals (Basel) 2025; 15:1022. [PMID: 40218415 PMCID: PMC11988105 DOI: 10.3390/ani15071022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/19/2025] [Accepted: 03/28/2025] [Indexed: 04/14/2025] Open
Abstract
Currently, the efficiency of somatic cell nuclear transfer (SCNT) technology is relatively low, primarily owing to reprogramming abnormalities in donor cells or reconstructed embryos. Using histone deacetylase inhibitor (HDACi) to artificially alter the epigenetic modifications of donor cells and improve the reprogramming ability of reconstructed embryos is effective in improving nuclear transfer efficiency. In this study, we used Albas cashmere goat cells as donor cells, treated them with Scriptaid, and constructed embryos using SCNT. The results suggest that donor cell treatment with Scriptaid significantly increased the cellular histone acetylation modification level, perturbed the expression of the pluripotency molecule NANOG, altered the reprogramming ability of embryos, and increased the developmental rate of SCNT-reconstructed embryos. Scriptaid inhibited donor cell proliferation, induced apoptosis, and blocked the G0/G1 phase of the cell cycle. These results provide a new research direction for improving SCNT efficiency and a new perspective in the fields of regenerative medicine, agriculture, and animal husbandry.
Collapse
Affiliation(s)
- Xiaoshu Zhe
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; (X.Z.); (H.M.); (W.Z.); (R.D.); (F.H.); (Y.G.)
| | - Hairui Ma
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; (X.Z.); (H.M.); (W.Z.); (R.D.); (F.H.); (Y.G.)
| | - Wenqi Zhang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; (X.Z.); (H.M.); (W.Z.); (R.D.); (F.H.); (Y.G.)
| | - Rui Ding
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; (X.Z.); (H.M.); (W.Z.); (R.D.); (F.H.); (Y.G.)
| | - Fei Hao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; (X.Z.); (H.M.); (W.Z.); (R.D.); (F.H.); (Y.G.)
| | - Yuan Gao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; (X.Z.); (H.M.); (W.Z.); (R.D.); (F.H.); (Y.G.)
- Alxa League Animal Quarantine Technology Service Center, Inner Mongolia, Alxa 750300, China
| | - Gumara Uri
- Etoqqi Agricultural and Animal Husbandry Technology Extension Center, Inner Mongolia, Ordos 016100, China; (G.U.); (G.J.); (G.J.)
| | - Gellegen Jiri
- Etoqqi Agricultural and Animal Husbandry Technology Extension Center, Inner Mongolia, Ordos 016100, China; (G.U.); (G.J.); (G.J.)
| | - Garangtu Jiri
- Etoqqi Agricultural and Animal Husbandry Technology Extension Center, Inner Mongolia, Ordos 016100, China; (G.U.); (G.J.); (G.J.)
| | - Dongjun Liu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; (X.Z.); (H.M.); (W.Z.); (R.D.); (F.H.); (Y.G.)
| |
Collapse
|
2
|
Niu K, Yang L, Song W, Liu Z, Yuan J, Zhang H, Zhang W, Wang J, Tao K. A COMPARATIVE ANALYSIS TO DETERMINE THE OPTIMUM HISTONE DEACETYLASE INHIBITORS AND ADMINISTRATION ROUTE FOR IMPROVING SURVIVAL AND ORGAN INJURY IN RATS AFTER HEMORRHAGIC SHOCK. Shock 2023; 60:75-83. [PMID: 37141162 PMCID: PMC10417212 DOI: 10.1097/shk.0000000000002136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 04/20/2023] [Indexed: 05/05/2023]
Abstract
ABSTRACT Objective: Histone deacetylase inhibitors (HDACIs) have been reported to improve survival in rats with hemorrhagic shock (HS). However, no consensus exists on the most effective HDACIs and their administration routes. We herein aimed to determine the optimal HDACIs and administration route in rats with HS. Methods: Survival analysis: In experiment I, male Sprague-Dawley rats were subjected to HS (mean arterial pressure [MAP] was maintained at 30-40 mm Hg for 20 min), and intravenously injected with the following agents (n = 8 per group): (1) no treatment, (2) vehicle (VEH), (3) entinostat (MS-275), (4) [ N -((6-(Hydroxyamino)-6-oxohexyl)oxy)-3,5-dimethylbenzamide] (LMK-235), (5) tubastatin A, (6) trichostatin A (TSA), and (7) sirtinol. In experiment II, rats were intraperitoneally injected with TSA. Mechanism research: In experiments I and II, rats were observed for 3 h, after which blood samples and liver, heart, and lung tissues were harvested. Results: In experiment I, 75% rats in the VEH group but only 25% rats in the LMK-235 and sirtinol groups died within ≤5 h of treatment, whereas the survival of rats in the MS-275, tubastatin A, and TSA groups was significantly prolonged. MS-275, LMK-235, tubastatin A, and TSA significantly reduced histopathological scores, apoptosis cell numbers, and inflammatory cytokine levels. In experiment II, the survival was longer after i.v. TSA treatment than after i.p. TSA treatment, and the IL-6 levels in the heart were significantly lower in rat who received i.p. TSA treatment than in those who received i.v. TSA treatment. Conclusions: The i.v. effect was superior to the i.p. effect, while nonselective and isoform-specific classes I and IIb HDACIs had similar effects.
Collapse
|
3
|
Wakayama S, Terashita Y, Tanabe Y, Hirose N, Wakayama T. Mouse Cloning Using Outbred Oocyte Donors and Nontoxic Reagents. Methods Mol Biol 2023; 2647:151-168. [PMID: 37041333 DOI: 10.1007/978-1-0716-3064-8_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
Somatic cell nuclear transfer (SCNT) technology has become a useful tool for animal cloning, gene manipulation, and genomic reprogramming research. However, the standard mouse SCNT protocol remains expensive, labor-intensive, and requires hard work for many hours. Therefore, we have been trying to reduce the cost and simplify the mouse SCNT protocol. This chapter describes the methods to use low-cost mouse strains and steps from the mouse cloning procedure. Although this modified SCNT protocol will not improve the success rate of mouse cloning, it is a cheaper, simpler, and less tiring method that allows us to perform more experiments and obtain more offspring with the same working time as the standard SCNT protocol.
Collapse
Affiliation(s)
- Sayaka Wakayama
- Advanced Biotechnology Center, University of Yamanashi, Yamanashi, Japan
| | - Yukari Terashita
- Integrated Clinical Education Center, Kyoto University Hospital, Kyoto, Japan
- Department of Cardiovascular Surgery, Takamatsu Red Cross Hospital, Takamatsu, Japan
| | | | - Naoki Hirose
- Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi, Japan
| | - Teruhiko Wakayama
- Advanced Biotechnology Center, University of Yamanashi, Yamanashi, Japan.
- Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi, Japan.
| |
Collapse
|
4
|
Yu T, Meng R, Song W, Sun H, An Q, Zhang C, Zhang Y, Su J. ZFP57 regulates DNA methylation of imprinted genes to facilitate embryonic development of somatic cell nuclear transfer embryos in Holstein cows. J Dairy Sci 2022; 106:769-782. [DOI: 10.3168/jds.2022-22427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 08/17/2022] [Indexed: 11/17/2022]
|
5
|
Effect of ACY-1215 on cytoskeletal remodeling and histone acetylation in bovine somatic cell nuclear transfer embryos. Theriogenology 2022; 183:98-107. [DOI: 10.1016/j.theriogenology.2022.02.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 01/10/2022] [Accepted: 02/18/2022] [Indexed: 11/23/2022]
|
6
|
Strategies to Improve the Efficiency of Somatic Cell Nuclear Transfer. Int J Mol Sci 2022; 23:ijms23041969. [PMID: 35216087 PMCID: PMC8879641 DOI: 10.3390/ijms23041969] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 01/04/2023] Open
Abstract
Mammalian oocytes can reprogram differentiated somatic cells into a totipotent state through somatic cell nuclear transfer (SCNT), which is known as cloning. Although many mammalian species have been successfully cloned, the majority of cloned embryos failed to develop to term, resulting in the overall cloning efficiency being still low. There are many factors contributing to the cloning success. Aberrant epigenetic reprogramming is a major cause for the developmental failure of cloned embryos and abnormalities in the cloned offspring. Numerous research groups attempted multiple strategies to technically improve each step of the SCNT procedure and rescue abnormal epigenetic reprogramming by modulating DNA methylation and histone modifications, overexpression or repression of embryonic-related genes, etc. Here, we review the recent approaches for technical SCNT improvement and ameliorating epigenetic modifications in donor cells, oocytes, and cloned embryos in order to enhance cloning efficiency.
Collapse
|
7
|
Wakayama S, Ito D, Kamada Y, Shimazu T, Suzuki T, Nagamatsu A, Araki R, Ishikawa T, Kamimura S, Hirose N, Kazama K, Yang L, Inoue R, Kikuchi Y, Hayashi E, Emura R, Watanabe R, Nagatomo H, Suzuki H, Yamamori T, Tada MN, Osada I, Umehara M, Sano H, Kasahara H, Higashibata A, Yano S, Abe M, Kishigami S, Kohda T, Ooga M, Wakayama T. Evaluating the long-term effect of space radiation on the reproductive normality of mammalian sperm preserved on the International Space Station. SCIENCE ADVANCES 2021; 7:7/24/eabg5554. [PMID: 34117068 PMCID: PMC8195474 DOI: 10.1126/sciadv.abg5554] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 04/23/2021] [Indexed: 06/12/2023]
Abstract
Space radiation may cause DNA damage to cells and concern for the inheritance of mutations in offspring after deep space exploration. However, there is no way to study the long-term effects of space radiation using biological materials. Here, we developed a method to evaluate the biological effect of space radiation and examined the reproductive potential of mouse freeze-dried spermatozoa stored on the International Space Station (ISS) for the longest period in biological research. The space radiation did not affect sperm DNA or fertility after preservation on ISS, and many genetically normal offspring were obtained without reducing the success rate compared to the ground-preserved control. The results of ground x-ray experiments showed that sperm can be stored for more than 200 years in space. These results suggest that the effect of deep space radiation on mammalian reproduction can be evaluated using spermatozoa, even without being monitored by astronauts in Gateway.
Collapse
Affiliation(s)
- Sayaka Wakayama
- Advanced Biotechnology Center, University of Yamanashi, Yamanashi 400-8510, Japan.
| | - Daiyu Ito
- Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi 400-8510, Japan
| | - Yuko Kamada
- Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi 400-8510, Japan
| | - Toru Shimazu
- Space Utilization Promotion Department, Japan Space Forum, Tokyo 101-0062, Japan
| | - Tomomi Suzuki
- Japan Aerospace Exploration Agency, Tsukuba 305-8505, Japan
| | - Aiko Nagamatsu
- Japan Aerospace Exploration Agency, Tsukuba 305-8505, Japan
| | - Ryoko Araki
- Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Takahiro Ishikawa
- Department of Accelerator and Medical Physics, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Satoshi Kamimura
- Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Naoki Hirose
- Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi 400-8510, Japan
| | - Kousuke Kazama
- Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi 400-8510, Japan
| | - Li Yang
- Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi 400-8510, Japan
| | - Rei Inoue
- Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi 400-8510, Japan
| | - Yasuyuki Kikuchi
- Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi 400-8510, Japan
| | - Erika Hayashi
- Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi 400-8510, Japan
| | - Rina Emura
- Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi 400-8510, Japan
| | - Ren Watanabe
- Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi 400-8510, Japan
| | - Hiroaki Nagatomo
- Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi 400-8510, Japan
| | - Hiromi Suzuki
- Space Utilization Promotion Department, Japan Space Forum, Tokyo 101-0062, Japan
| | - Tohru Yamamori
- Space Utilization Promotion Department, Japan Space Forum, Tokyo 101-0062, Japan
| | - Motoki N Tada
- Japan Manned Space Systems Corporation, Tokyo 100-0004, Japan
| | - Ikuko Osada
- Japan Manned Space Systems Corporation, Tokyo 100-0004, Japan
| | - Masumi Umehara
- Advanced Engineering Services Co. Ltd, Tsukuba, Ibaraki 305-0032, Japan
| | - Hiromi Sano
- Japan Manned Space Systems Corporation, Tokyo 100-0004, Japan
| | - Haruo Kasahara
- Japan Manned Space Systems Corporation, Tokyo 100-0004, Japan
| | | | - Sachiko Yano
- Japan Aerospace Exploration Agency, Tsukuba 305-8505, Japan
| | - Masumi Abe
- Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Satoshi Kishigami
- Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi 400-8510, Japan
| | - Takashi Kohda
- Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi 400-8510, Japan
| | - Masatoshi Ooga
- Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi 400-8510, Japan
| | - Teruhiko Wakayama
- Advanced Biotechnology Center, University of Yamanashi, Yamanashi 400-8510, Japan.
- Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi 400-8510, Japan
| |
Collapse
|
8
|
Kamimura S, Inoue K, Mizutani E, Kim JM, Inoue H, Ogonuki N, Miyamoto K, Ihashi S, Itami N, Wakayama T, Ito A, Nishino N, Yoshida M, Ogura A. Improved development of mouse somatic cell nuclear transfer embryos by chlamydocin analogues, class I and IIa histone deacetylase inhibitors†. Biol Reprod 2021; 105:543-553. [PMID: 33982061 PMCID: PMC8335354 DOI: 10.1093/biolre/ioab096] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 03/29/2021] [Accepted: 05/07/2021] [Indexed: 12/13/2022] Open
Abstract
In mammalian cloning by somatic cell nuclear transfer (SCNT), the treatment of reconstructed embryos with histone deacetylase (HDAC) inhibitors improves efficiency. So far, most of those used for SCNT are hydroxamic acid derivatives-such as trichostatin A-characterized by their broad inhibitory spectrum. Here, we examined whether mouse SCNT efficiency could be improved using chlamydocin analogues, a family of newly designed agents that specifically inhibit class I and IIa HDACs. Development of SCNT-derived embryos in vitro and in vivo revealed that four out of five chlamydocin analogues tested could promote the development of cloned embryos. The highest pup rates (7.1-7.2%) were obtained with Ky-9, similar to those achieved with trichostatin A (7.2-7.3%). Thus, inhibition of class I and/or IIa HDACs in SCNT-derived embryos is enough for significant improvements in full-term development. In mouse SCNT, the exposure of reconstructed oocytes to HDAC inhibitors is limited to 8-10 h because longer inhibition with class I inhibitors causes a two-cell developmental block. Therefore, we used Ky-29, with higher selectivity for class IIa than class I HDACs for longer treatment of SCNT-derived embryos. As expected, 24-h treatment with Ky-29 up to the two-cell stage did not induce a developmental block, but the pup rate was not improved. This suggests that the one-cell stage is a critical period for improving SCNT cloning using HDAC inhibitors. Thus, chlamydocin analogues appear promising for understanding and improving the epigenetic status of mammalian SCNT-derived embryos through their specific inhibitory effects on HDACs.
Collapse
Affiliation(s)
- Satoshi Kamimura
- RIKEN BioResource Research Center, Tsukuba, Ibaraki, Japan.,Faculty of Life and Environmental Sciences, University of Yamanashi, Kofu, Yamanashi, Japan.,Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Kimiko Inoue
- RIKEN BioResource Research Center, Tsukuba, Ibaraki, Japan.,Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Eiji Mizutani
- RIKEN BioResource Research Center, Tsukuba, Ibaraki, Japan.,Faculty of Life and Environmental Sciences, University of Yamanashi, Kofu, Yamanashi, Japan.,Laboratory of Stem Cell Therapy, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan.,Division of Stem Cell Therapy, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Jin-Moon Kim
- RIKEN BioResource Research Center, Tsukuba, Ibaraki, Japan
| | - Hiroki Inoue
- RIKEN BioResource Research Center, Tsukuba, Ibaraki, Japan
| | - Narumi Ogonuki
- RIKEN BioResource Research Center, Tsukuba, Ibaraki, Japan
| | - Kei Miyamoto
- Faculty of Biology-Oriented Science and Technology, Kindai University, Kinokawa-shi, Wakayama-ken, Japan
| | - Shunya Ihashi
- Faculty of Biology-Oriented Science and Technology, Kindai University, Kinokawa-shi, Wakayama-ken, Japan
| | - Nobuhiko Itami
- RIKEN BioResource Research Center, Tsukuba, Ibaraki, Japan
| | - Teruhiko Wakayama
- Faculty of Life and Environmental Sciences, University of Yamanashi, Kofu, Yamanashi, Japan
| | - Akihiro Ito
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan.,RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
| | - Norikazu Nishino
- RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan.,Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Kitakyushu, Japan
| | - Minoru Yoshida
- RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan.,Department of Biotechnology, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Atsuo Ogura
- RIKEN BioResource Research Center, Tsukuba, Ibaraki, Japan.,Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan.,RIKEN Cluster for Pioneering Research, Wako, Saitama, Japan
| |
Collapse
|
9
|
Manipulating the Epigenome in Nuclear Transfer Cloning: Where, When and How. Int J Mol Sci 2020; 22:ijms22010236. [PMID: 33379395 PMCID: PMC7794987 DOI: 10.3390/ijms22010236] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 12/24/2020] [Accepted: 12/25/2020] [Indexed: 12/20/2022] Open
Abstract
The nucleus of a differentiated cell can be reprogrammed to a totipotent state by exposure to the cytoplasm of an enucleated oocyte, and the reconstructed nuclear transfer embryo can give rise to an entire organism. Somatic cell nuclear transfer (SCNT) has important implications in animal biotechnology and provides a unique model for studying epigenetic barriers to successful nuclear reprogramming and for testing novel concepts to overcome them. While initial strategies aimed at modulating the global DNA methylation level and states of various histone protein modifications, recent studies use evidence-based approaches to influence specific epigenetic mechanisms in a targeted manner. In this review, we describe-based on the growing number of reports published during recent decades-in detail where, when, and how manipulations of the epigenome of donor cells and reconstructed SCNT embryos can be performed to optimize the process of molecular reprogramming and the outcome of nuclear transfer cloning.
Collapse
|
10
|
Konno S, Wakayama S, Ito D, Kazama K, Hirose N, Ooga M, Wakayama T. Removal of remodeling/reprogramming factors from oocytes and the impact on the full-term development of cloned embryos. Development 2020; 147:dev.190777. [PMID: 32665239 DOI: 10.1242/dev.190777] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 06/25/2020] [Indexed: 12/19/2022]
Abstract
The reason for the poor development of cloned embryos is not yet clear. Several reports have suggested that some nuclear remodeling/reprogramming factors (RRFs) are removed from oocytes at the time of enucleation, which might cause the low success rate of animal cloning. However, there is currently no method to manipulate the amount of RRFs in oocytes. Here, we describe techniques we have developed to gradually reduce RRFs in mouse oocytes by injecting somatic cell nuclei into oocytes. These injected nuclei were remodeled and reprogrammed using RRFs, and then RRFs were removed by subsequent deletion of somatic nuclei from oocytes. The size of the metaphase II spindle reduced immediately, but did recover when transferred into fresh oocytes. Though affected, the full-term developmental potential of these RRF-reduced oocytes with MII-spindle shrinkage was not lost after fertilization. When somatic cell nuclear transfer was performed, the successful generation of cloned mice was somewhat improved and abnormalities were reduced when oocytes with slightly reduced RRF levels were used. These results suggest that a change in RRFs in oocytes, as achieved by the method described in this paper or by enucleation, is important but not the main reason for the incomplete reprogramming of somatic cell nuclei.
Collapse
Affiliation(s)
- Shunsuke Konno
- Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi, 400-8510, Japan
| | - Sayaka Wakayama
- Advanced Biotechnology Center, University of Yamanashi, Yamanashi, 400-8510, Japan
| | - Daiyu Ito
- Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi, 400-8510, Japan
| | - Kousuke Kazama
- Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi, 400-8510, Japan
| | - Naoki Hirose
- Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi, 400-8510, Japan
| | - Masatoshi Ooga
- Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi, 400-8510, Japan
| | - Teruhiko Wakayama
- Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi, 400-8510, Japan .,Advanced Biotechnology Center, University of Yamanashi, Yamanashi, 400-8510, Japan
| |
Collapse
|
11
|
Gouveia C, Huyser C, Egli D, Pepper MS. Lessons Learned from Somatic Cell Nuclear Transfer. Int J Mol Sci 2020; 21:E2314. [PMID: 32230814 PMCID: PMC7177533 DOI: 10.3390/ijms21072314] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/16/2020] [Accepted: 03/19/2020] [Indexed: 02/06/2023] Open
Abstract
Somatic cell nuclear transfer (SCNT) has been an area of interest in the field of stem cell research and regenerative medicine for the past 20 years. The main biological goal of SCNT is to reverse the differentiated state of a somatic cell, for the purpose of creating blastocysts from which embryonic stem cells (ESCs) can be derived for therapeutic cloning, or for the purpose of reproductive cloning. However, the consensus is that the low efficiency in creating normal viable offspring in animals by SCNT (1-5%) and the high number of abnormalities seen in these cloned animals is due to epigenetic reprogramming failure. In this review we provide an overview of the current literature on SCNT, focusing on protocol development, which includes early SCNT protocol deficiencies and optimizations along with donor cell type and cell cycle synchrony; epigenetic reprogramming in SCNT; current protocol optimizations such as nuclear reprogramming strategies that can be applied to improve epigenetic reprogramming by SCNT; applications of SCNT; the ethical and legal implications of SCNT in humans; and specific lessons learned for establishing an optimized SCNT protocol using a mouse model.
Collapse
Affiliation(s)
- Chantel Gouveia
- Institute for Cellular and Molecular Medicine, Department of Immunology and South African Medical Research Council (SAMRC) Extramural Unit for Stem Cell Research and Therapy, Faculty of Health Sciences, University of Pretoria, Pretoria 0002, South Africa;
- Department of Obstetrics and Gynaecology, Reproductive Biology Laboratory, University of Pretoria, Steve Biko Academic Hospital, Pretoria 0002, South Africa;
| | - Carin Huyser
- Department of Obstetrics and Gynaecology, Reproductive Biology Laboratory, University of Pretoria, Steve Biko Academic Hospital, Pretoria 0002, South Africa;
| | - Dieter Egli
- Department of Obstetrics and Gynecology, Columbia University Medical Center, New York, NY 10027, USA;
| | - Michael S. Pepper
- Institute for Cellular and Molecular Medicine, Department of Immunology and South African Medical Research Council (SAMRC) Extramural Unit for Stem Cell Research and Therapy, Faculty of Health Sciences, University of Pretoria, Pretoria 0002, South Africa;
| |
Collapse
|
12
|
Sun J, Cui K, Li Z, Gao B, Jiang J, Liu Q, Huang B, Shi D. Histone hyperacetylation may improve the preimplantation development and epigenetic status of cloned embryos. Reprod Biol 2020; 20:237-246. [PMID: 32089505 DOI: 10.1016/j.repbio.2020.02.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 02/12/2020] [Accepted: 02/14/2020] [Indexed: 01/02/2023]
Abstract
The current study investigated the mechanism of mini pig fetal fibroblasts in improving the epigenetic modification and preimplantation development of cloned embryos. The results showed that the increased AcH3K14 level was dose- and time-dependent. Histone hyperacetylation had no significant effect on cell morphology, cell viability, cell cycle, and relative gene (HDAC1, HAT1, DNMT3A, and BAX) expression. The treated cloned embryos had significantly higher development rates and the total nuclei number than the control (27.62 ± 6.94 % vs. 16.14 ± 10.55 %; 43.90 ± 18.39 vs. 33.06 ± 15.87; P < 0.05). The AcH3K14 level in the treated cloned blastocysts was close to that of IVF blastocysts (5.17 ± 0.93 vs. 5.45 ± 1.91, P > 0.05). The gene transcription (CDX2 and OCT4) of the treated cloned blastocysts was significantly up-regulated than the control (3.32 ± 0.51 vs. 2.05 ± 0.30; 1.21 ± 0.18 vs. 0.81 ± 0.09; P < 0.05). The improvement in the cloned embryo development and the partial correction of abnormal acetylation modification were not necessarily related to the cellular characteristics. This could be caused by histone hyperacetylation of mini pig fetal fibroblasts.
Collapse
Affiliation(s)
- JunMing Sun
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi, 530004, China; Laboratory Animal Center, Guangxi Medical University, Nanning, Guangxi, 530021, China.
| | - KuiQing Cui
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi, 530004, China
| | - ZhiPeng Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi, 530004, China
| | - BangJun Gao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi, 530004, China
| | - JianRong Jiang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi, 530004, China
| | - QingYou Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi, 530004, China
| | - Ben Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi, 530004, China
| | - DeShun Shi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi, 530004, China.
| |
Collapse
|
13
|
Qiu X, Xiao X, Ren A, Xiao M, Tian H, Ling W, Wang M, Li Y, Zhao Y. Effects of PXD101 and Embryo Aggregation on the In Vitro Development of Mouse Parthenogenetic Embryos. Cell Reprogram 2020; 22:14-21. [PMID: 32011921 DOI: 10.1089/cell.2019.0038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
To improve the isolation efficiency of parthenogenetic embryonic stem cells (pESCs) in mice, it is necessary to optimize the method to increase in vitro developmental competence of mice parthenogenetic blastocysts. Therefore, this study aims to investigate an optimal method for the production of mouse parthenogenetic blastocysts and isolation of pESC colonies by comparing the effects of two methods: (1) the treatment of histone deacetylase inhibitor PXD101 before, during, or after parthenogenetic activation; (2) parthenogenetic embryo aggregation; and (3) their combination treatment. The results suggest that application of PXD101 treatment and embryo aggregation could both improve the development of mouse parthenogenetic blastocysts (50 nM PXD101 treated 4 hours during activation and further 4 hours after activation: 40.0% vs. 20.0%; p < 0.05; two-cell embryo aggregation: 38.3% vs. 20.0%; p < 0.05) and also enhance the isolation rate of pESC colonies (PXD101: 33.3% vs. 11.8%; p < 0.05; two-cell embryo aggregation: 36.4% vs. 11.8%; p < 0.05). The combination of their treatments had the higher rate of parthenogenetic blastocyst development (41.7%) and significantly higher rate of pESC colony isolation from parthenogenetic blastocysts (45.0%); therefore, we concluded that the combination of these two methods (50 nM PXD101 treated for 8 hours and then aggregated at two-cell stage with 0.25% pronase for 10 minutes in our self-made concave) is considered the optimal way for the in vitro development of parthenogenetic blastocysts and subsequent pESC colony isolation in mice, opening new opportunities for application of this combination method to improve the parthenogenetic embryo development in other species.
Collapse
Affiliation(s)
- Xiaoyan Qiu
- College of Animal Science & Technology, Southwest University, Chongqing, P. R. China
| | - Xiong Xiao
- College of Animal Science & Technology, Southwest University, Chongqing, P. R. China
| | - Aoru Ren
- College of Animal Science & Technology, Southwest University, Chongqing, P. R. China
| | - Min Xiao
- College of Animal Science & Technology, Southwest University, Chongqing, P. R. China
| | - Haoyu Tian
- College of Animal Science & Technology, Southwest University, Chongqing, P. R. China
| | - Wenhui Ling
- College of Animal Science & Technology, Southwest University, Chongqing, P. R. China
| | - Mingyu Wang
- College of Animal Science & Technology, Southwest University, Chongqing, P. R. China
| | - Yuemin Li
- College of Animal Science & Technology, Southwest University, Chongqing, P. R. China
| | - Yongju Zhao
- College of Animal Science & Technology, Southwest University, Chongqing, P. R. China
| |
Collapse
|
14
|
Abstract
The mouse is the most extensively used mammalian laboratory species in biology and medicine because of the ready availability of a wide variety of defined genetic and gene-modified strains and abundant genetic information. Its small size and rapid generation turnover are also advantages compared with other experimental animals. Using these advantages, somatic cell nuclear transfer (SCNT) in mice has provided invaluable information on epigenetics related to SCNT technology and cloning, playing a leading role in relevant technical improvements. These improvements include treatment with histone deacetylase inhibitors, correction of Xist gene expression (controlling X chromosome inactivation), and removal of methylated histones from SCNT-generated embryos, which have proven to be effective for SCNT cloning of other species. However, even with the best combination of these treatments, the birth rate in cloned offspring is still lower than intracytoplasmic sperm injection (ICSI) or in vitro fertilization (IVF). One remaining issue associated with SCNT is placental enlargement (hyperplasia) found in late pregnancy, but this abnormality might not be a major cause for the low efficiency of SCNT because many SCNT-derived embryos die before their placentas start to enlarge at midgestation (early postimplantation stage). It is known that, at this stage, undifferentiated trophoblast cells in the extraembryonic tissue of SCNT-derived embryos fail to proliferate. Understanding the molecular mechanisms is essential for further technical improvements of mouse SCNT, which might also provide clues for technical breakthroughs in mammalian SCNT and cloning in general.
Collapse
Affiliation(s)
- Atsuo Ogura
- RIKEN BioResource Research Center, Ibaraki, 305-0074, Japan; Faculty of Life and Environmental Sciences, University of Tsukuba, Ibaraki, 305-8572, Japan; RIKEN Cluster for Pioneering Research, Saitama, 351-0198, Japan.
| |
Collapse
|
15
|
GUO ZHENHUA, LV LEI, LIU DI, LIANGWANG LIANGWANG. Meta-analysis of trichostatin A treatment effects on mouse somatic cell nuclear transfer. THE INDIAN JOURNAL OF ANIMAL SCIENCES 2019. [DOI: 10.56093/ijans.v89i5.90015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Improving somatic cell nuclear transfer (SCNT) efficiency is challenging, and trichostatin A (TSA) has been implemented to improve this technique, but it does not work for porcine and monkey SCNT. Thus, a meta-analysis was done to understand the relationship between TSA and mouse SCNT. Published articles were collected using PubMed and ScienceDirect from 2000 to 2018. Total 15 studies were included that suggest TSA can improve SCNT mouse blastocyst formation and live birth. Most TSA effects studied were on histone deacetylase (HDACs), hence the impacts of TSA on the cytoplasm, specifically cancer signaling pathways, endoplasmic reticulum, and HDACs localization were investigated. It is likely that TSA benefits mouse SCNT because the nucleus is easy to remove. Using fluorescent labeling to remove nuclei and TSA incorporation, SNCT may be improved for pig and monkey studies.
Collapse
|
16
|
Wang H, Cui W, Meng C, Zhang J, Li Y, Qian Y, Xing G, Zhao D, Cao S. MC1568 Enhances Histone Acetylation During Oocyte Meiosis and Improves Development of Somatic Cell Nuclear Transfer Embryos in Pig. Cell Reprogram 2019; 20:55-65. [PMID: 29412739 DOI: 10.1089/cell.2017.0023] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
An increasing number of studies have revealed that histone deacetylase (HDAC) mediated histone deacetylation is important for mammalian oocyte development. However, nonselective HDAC inhibitors (HDACi) were applied in most studies; the precise functions of specific HDAC classes during meiosis are poorly defined. In this study, the class IIa-specific HDACi MC1568 was used to reveal a crucial role of class IIa HDACs in the regulation of histone deacetylation during porcine oocyte meiosis. Besides, the functions of HDACs and histone acetyltransferases in regulating the balance of histone acetylation/deacetylation were also confirmed during oocyte maturation. After the validation of nontoxicity of MC1568 in maturation rate, spindle morphology, and chromosome alignment, effects of MC1568 on developmental competence of porcine somatic cell nuclear transfer (SCNT) embryos were evaluated, and data indicated that treatment with 10 μM MC1568 for 12 hours following electrical activation significantly enhanced the blastocyst rate and cell numbers. Moreover, results showed that optimal MC1568 treatment increased the H4K12 acetylation level in SCNT one cells and two cells. In addition, MC1568 treatment stimulated expression of the development-related genes OCT4, CDX2, SOX2, and NANOG in SCNT blastocysts. Collectively, our investigation uncovered a critical role of class IIa HDACs in the regulation of histone deacetylation during oocyte meiosis. Furthermore, for the first time, we showed that MC1568 can improve the in vitro development of porcine SCNT embryos. These findings provide an alternative HDACi for improving animal cloning efficiency and may shed more light on nuclear reprogramming.
Collapse
Affiliation(s)
- Huili Wang
- 1 Institute of Animal Science , Jiangsu Academy of Agricultural Sciences, Nanjing, P.R. China
| | - Wei Cui
- 2 Department of Veterinary and Animal Sciences, University of Massachusetts Amherst , Amherst, Massachusetts
| | - Chunhua Meng
- 1 Institute of Animal Science , Jiangsu Academy of Agricultural Sciences, Nanjing, P.R. China
| | - Jun Zhang
- 1 Institute of Animal Science , Jiangsu Academy of Agricultural Sciences, Nanjing, P.R. China
| | - Yinxia Li
- 1 Institute of Animal Science , Jiangsu Academy of Agricultural Sciences, Nanjing, P.R. China
| | - Yong Qian
- 1 Institute of Animal Science , Jiangsu Academy of Agricultural Sciences, Nanjing, P.R. China
| | - Guangdong Xing
- 1 Institute of Animal Science , Jiangsu Academy of Agricultural Sciences, Nanjing, P.R. China
| | - Dongmin Zhao
- 3 Institute of Veterinary Medicine , Jiangsu Academy of Agricultural Sciences, Nanjing, P.R. China
| | - Shaoxian Cao
- 1 Institute of Animal Science , Jiangsu Academy of Agricultural Sciences, Nanjing, P.R. China
| |
Collapse
|
17
|
An Q, Peng W, Cheng Y, Lu Z, Zhou C, Zhang Y, Su J. Melatonin supplementation during in vitro maturation of oocyte enhances subsequent development of bovine cloned embryos. J Cell Physiol 2019; 234:17370-17381. [DOI: 10.1002/jcp.28357] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 01/27/2019] [Accepted: 01/30/2019] [Indexed: 01/02/2023]
Affiliation(s)
- Quanli An
- Department of Basic Veterinary Sciences Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Ministry of Agriculture Yangling Shaanxi China
| | - Wei Peng
- Department of Basic Veterinary Sciences Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Ministry of Agriculture Yangling Shaanxi China
| | - Yuyao Cheng
- Department of Basic Veterinary Sciences Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Ministry of Agriculture Yangling Shaanxi China
| | - Zhenzhen Lu
- Department of Basic Veterinary Sciences Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Ministry of Agriculture Yangling Shaanxi China
| | - Chuan Zhou
- Department of Basic Veterinary Sciences Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Ministry of Agriculture Yangling Shaanxi China
| | - Yong Zhang
- Department of Basic Veterinary Sciences Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Ministry of Agriculture Yangling Shaanxi China
| | - Jianmin Su
- Department of Basic Veterinary Sciences Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Ministry of Agriculture Yangling Shaanxi China
| |
Collapse
|
18
|
Qiu X, Xiao X, Martin GB, Li N, Ling W, Wang M, Li Y. Strategies for improvement of cloning by somatic cell nuclear transfer. ANIMAL PRODUCTION SCIENCE 2019. [DOI: 10.1071/an17621] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Somatic cell nuclear transfer (SCNT) is a powerful tool that is being applied in a variety of fields as diverse as the cloning and production of transgenic animals, rescue of endangered species and regenerative medicine. However, cloning efficiency is still very low and SCNT embryos generally show poor developmental competency and many abnormalities. The low efficiency is probably due to incomplete reprogramming of the donor nucleus and most of the developmental problems are thought to be caused by epigenetic defects. Applications of SCNT will, therefore, depend on improvements in the efficiency of production of healthy clones. This review has summarised the progress and strategies that have been used to make improvements in various animal species, especially over the period 2010–2017, including strategies based on histone modification, embryo aggregation and mitochondrial function. There has been considerable investiagation into the mechanisms that underpin each strategy, helping us better understand the nature of genomic reprogramming and nucleus–cytoplasm interactions.
Collapse
|
19
|
Abstract
Somatic cell nuclear transfer (SCNT) technology has become a useful tool for animal cloning, gene manipulation, and genomic reprograming research. The original SCNT was performed using cell fusion between the donor cell and oocyte. This method remains very popular, but we have recently developed an alternative method that relies on nuclear injection rather than cell fusion. The advantages of nuclear injection include a shortened experimental procedure and reduced contamination of donor cytoplasm in the oocyte. In particular, only this method allows us to perform SCNT using dead cells or naked nuclei such as those from cadavers or body wastes. This chapter describes a basic protocol for the production of cloned mice by the nuclear injection method using a piezo-actuated micromanipulator as well as our recent advances in SCNT using noninvasively collected donor cells such as urine-derived somatic cells. This technique will greatly help not only SCNT but also other forms of micromanipulation, including sperm microinjection into oocytes and embryonic stem cell injection into blastocysts.
Collapse
|
20
|
The effect of cell penetrating peptide-conjugated coactivator-associated arginine methyltransferase 1 (CPP-CARM1) on the cloned mouse embryonic development. Sci Rep 2018; 8:16721. [PMID: 30425285 PMCID: PMC6233168 DOI: 10.1038/s41598-018-35077-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 10/28/2018] [Indexed: 11/16/2022] Open
Abstract
Abnormalities in gene expression that negatively affect embryonic development are frequently observed in cloned embryos generated by somatic cell nuclear transfer (SCNT). In the present study, we successfully produced a cell-penetrating peptide (CPP)-conjugated with coactivator-associated arginine methyltransferase 1 (CARM1) protein from mammalian cells and confirmed introduction into donor somatic cells and cloned 8-cell embryos within 3 hours after addition to culture medium. In addition, H3R17 dimethylation and embryonic development up to the blastocyst stage were increased in the group treated with exogenous CPP-CARM1 protein compared with the untreated group (control). Interestingly, the number of total cells and trophectoderm in blastocysts as well as implantation rate were significantly increased in the CPP-CARM1 protein-treated group. However, the cell number of inner cell mass (ICM) was not changed compared with the control group; similarly, expression of pluripotency-related genes Oct4 and Nanog (ICM markers) was not significantly different between groups. On the other hand, expression of the implantation-related gene Cdx2 (trophectoderm marker) was transiently increased after treatment with CPP-CARM1 protein. On the basis of these results, we conclude that supplementation with exogenous CPP-CARM1 protein improves embryonic development of cloned embryos through regulation of histone methylation and gene expression. In addition, our results suggest that CPP-CARM1 protein may be a useful tool for strengthening implantation of mammalian embryos.
Collapse
|
21
|
Siriboon C, Li TS, Yu CW, Chern JW, Ju JC. Novel histone deacetylase inhibitors and embryo aggregation enhance cloned embryo development and ES cell derivation in pigs. PLoS One 2018; 13:e0204588. [PMID: 30261020 PMCID: PMC6160101 DOI: 10.1371/journal.pone.0204588] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Accepted: 09/11/2018] [Indexed: 11/26/2022] Open
Abstract
The histone deacetylase inhibitor (HDACi) has been investigated for treating cancers and many other diseases as well as enhancing the reprogramming efficiency in cloned embryos for decades. In the present study, we investigated the effects of two novel HDAC inhibitors, i.e., HDACi-14 and -79, at the concentrations of 0, 1, 2, or 4 μM on the development of embryos cloned by the oocyte bisection cloning technique (OBCT). Blastocyst rates for the reconstructed embryos reached 60% in the 2 μM HDACi-14-treated groups, which was higher (P < 0.05) compared to the untreated group (36.9%). Similarly, HDACi-79 treatment at 2 and 4 μM also conferred higher (P < 0.05) blastocyst rates than that of the untreated group (79.4, 74.2, and 50.0%, respectively). Both HDACi-14 and -79 treatments had no beneficial effect on total cell numbers and apoptotic indices of cloned embryos (P > 0.05). Histone acetylation profile by both HDACi-14 (2 μM) and -79 (2 μM) treatments demonstrated a drastic increase (P < 0.05) mainly in two-cell stage embryos when compared to the control group. After seeding on the feeder cells, the aggregated cloned blastocysts produced by the HDACi-79 treatment showed a significant increase of primary outgrowths compared to the control group (60.0% vs. 42.9%; P < 0.05). Finally, the cloned embryo-derived ES cell lines from aggregated cloned embryos produced from the HDACi-79-treated, HDACi-14-treated and control groups were established (5, 3, and 2 lines, respectively). In conclusion, the novel histone deacetylation inhibitors improve blastocyst formation and potentially increase the derivation efficiency of ES cell lines from the cloned porcine embryos produced in vitro. Depending on the purposes, some fine-tuning may be required to maximize its beneficial effects of these newly synthesized chemicals.
Collapse
Affiliation(s)
- Chawalit Siriboon
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Department of Animal Science, Faculty of Agriculture, Ubon Ratchathani University, Ubon Ratchathani, Thailand
| | - Tzai-Shiuan Li
- Translational Medicine Research Center, China Medical University Hospital, Taichung, Taiwan
| | - Chao-Wu Yu
- School of Pharmacy, National Taiwan University, Taipei, Taiwan
| | - Ji-Wang Chern
- School of Pharmacy, National Taiwan University, Taipei, Taiwan
| | - Jyh-Cherng Ju
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Translational Medicine Research Center, China Medical University Hospital, Taichung, Taiwan
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan
- Department of Animal Science, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
22
|
Gonzalez-Munoz E, Cibelli JB. Somatic Cell Reprogramming Informed by the Oocyte. Stem Cells Dev 2018; 27:871-887. [DOI: 10.1089/scd.2018.0066] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Elena Gonzalez-Munoz
- LARCEL, Andalusian Laboratory of Cell Reprogramming (LARCel), Andalusian Center for Nanomedicine and Biotechnology-BIONAND, Málaga, Spain
- Department of Cell Biology, Genetics and Physiology, University of Málaga, Málaga, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, (CIBER-BBN), Málaga, Spain
| | - Jose B. Cibelli
- LARCEL, Andalusian Laboratory of Cell Reprogramming (LARCel), Andalusian Center for Nanomedicine and Biotechnology-BIONAND, Málaga, Spain
- Department of Animal Science, Michigan State University, East Lansing, MI
- Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, MI
| |
Collapse
|
23
|
Agrawal H, Selokar NL, Saini M, Singh MK, Chauhan MS, Palta P, Singla SK, Manik RS. m-carboxycinnamic acid bishydroxamide improves developmental competence, reduces apoptosis and alters epigenetic status and gene expression pattern in cloned buffalo (Bubalus bubalis
) embryos. Reprod Domest Anim 2018; 53:986-996. [DOI: 10.1111/rda.13198] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 03/17/2018] [Indexed: 01/01/2023]
Affiliation(s)
- H Agrawal
- Embryo Biotechnology Lab, Animal Biotechnology Centre; ICAR- National Dairy Research Institute; Karnal Haryana India
- School of Bioengineering and Biosciences; Lovely Professional University; Phagwara Punjab India
| | - NL Selokar
- Embryo Biotechnology Lab, Animal Biotechnology Centre; ICAR- National Dairy Research Institute; Karnal Haryana India
- Division of Animal Physiology and Reproduction; ICAR- Central Institute for Research on Buffaloes; Hisar Haryana India
| | - M Saini
- Embryo Biotechnology Lab, Animal Biotechnology Centre; ICAR- National Dairy Research Institute; Karnal Haryana India
- Division of Animal Physiology and Reproduction; ICAR- Central Institute for Research on Buffaloes; Hisar Haryana India
| | - MK Singh
- Embryo Biotechnology Lab, Animal Biotechnology Centre; ICAR- National Dairy Research Institute; Karnal Haryana India
| | - MS Chauhan
- Embryo Biotechnology Lab, Animal Biotechnology Centre; ICAR- National Dairy Research Institute; Karnal Haryana India
- ICAR-Central Institute for Research on Goats; Mathura Uttar Pradesh India
| | - P Palta
- Embryo Biotechnology Lab, Animal Biotechnology Centre; ICAR- National Dairy Research Institute; Karnal Haryana India
| | - SK Singla
- Embryo Biotechnology Lab, Animal Biotechnology Centre; ICAR- National Dairy Research Institute; Karnal Haryana India
| | - RS Manik
- Embryo Biotechnology Lab, Animal Biotechnology Centre; ICAR- National Dairy Research Institute; Karnal Haryana India
| |
Collapse
|
24
|
Kim MJ, Oh HJ, Choi YB, Lee S, Setyawan EMN, Lee SH, Lee SH, Hur TY, Lee BC. Suberoylanilide hydroxamic acid during in vitro culture improves development of dog-pig interspecies cloned embryos but not dog cloned embryos. J Reprod Dev 2018; 64:277-282. [PMID: 29695650 PMCID: PMC6021613 DOI: 10.1262/jrd.2017-112] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
This study was conducted to investigate whether the treatment of dog to pig interspecies somatic cell nuclear transfer (iSCNT) embryos with a histone deacetylase inhibitor, to improve nuclear reprogramming, can be applied to dog SCNT embryos. The dog to pig iSCNT embryos were cultured in fresh porcine zygote medium-5 (PZM-5) with 0, 1, or 10 µM suberoylanilide hydroxamic acid (SAHA) for 6 h, then transferred to PZM-5 without SAHA. Although there were no significant differences in cleavage rates, the rates of 5-8-cell stage embryo development were significantly higher in the 10 µM group (19.5 ± 0.8%) compared to the 0 µM groups (13.4 ± 0.8%). Acetylation of H3K9 was also significantly higher in embryos beyond the 4-cell stage in the 10 µM group compared to the 0 or 1 µM groups. Treatment with 10 µM SAHA for 6 h was chosen for application to dog SCNT. Dog cloned embryos with 0 or 10 µM SAHA were transferred to recipients. However, there were no significant differences in pregnancy and delivery rates between the two groups. Therefore, it can be concluded that although porcine oocytes support nuclear reprogramming of dog fibroblasts, treatment with a histone deacetylase inhibitor that supports nuclear reprogramming in dog to pig iSCNT embryos was not sufficient for reprogramming in dog SCNT embryos.
Collapse
Affiliation(s)
- Min Jung Kim
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyun Ju Oh
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Yoo Bin Choi
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Sanghoon Lee
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Erif Maha Nugraha Setyawan
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Seok Hee Lee
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Seung Hoon Lee
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Jeollabuk-do 54875, Republic of Korea
| | - Tai Young Hur
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Jeollabuk-do 54875, Republic of Korea
| | - Byeong Chun Lee
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
25
|
Sharma P, Yadav A, Selokar N, Kumar D, Dhaka S, Yadav P. Epigenetic status of buffalo fibroblasts treated with sodium butyrate a chromatin remodeling agent. Tissue Cell 2018; 50:51-58. [DOI: 10.1016/j.tice.2017.12.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 12/05/2017] [Accepted: 12/13/2017] [Indexed: 01/07/2023]
|
26
|
Miyoshi K, Kawaguchi H, Maeda K, Sato M, Akioka K, Noguchi M, Horiuchi M, Tanimoto A. Birth of Cloned Microminipigs Derived from Somatic Cell Nuclear Transfer Embryos That Have Been Transiently Treated with Valproic Acid. Cell Reprogram 2017; 18:390-400. [PMID: 27906585 DOI: 10.1089/cell.2016.0025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
In our previous study, we found that treatment of miniature pig somatic cell nuclear transfer (SCNT) embryos with 4 mM valproic acid (VPA), a histone deacetylase inhibitor, for 48 hours after activation enhanced blastocyst formation rate and octamer-binding transcription factor-3/4 (Oct-3/4) gene expression at the late blastocyst stage; however, the production of viable cloned pups failed, when those VPA-treated SCNT embryos were transferred to recipients. This failure suggests that the present VPA treatment is suboptimal. In the present study, we explored the optimal conditions for VPA to have beneficial effects on the development of SCNT embryos. When miniature pig SCNT embryos were treated with 8 mM VPA for 24 hours after activation, both the rates of blastocyst formation and blastocysts expressing the Oct-3/4 gene were significantly (p < 0.05) improved. A similar increase in blastocyst formation was also observed when microminipig-derived cells were used as SCNT donors. Five cloned piglets were obtained after the transfer of 152 microminipig SCNT embryos that had been treated with 8 mM VPA for 24 hours. The results indicated that a short duration of treatment with VPA improves the development of both miniature pig and microminipig SCNT embryos, possibly via an enhanced reprogramming mechanism.
Collapse
Affiliation(s)
- Kazuchika Miyoshi
- 1 Laboratory of Animal Reproduction, Faculty of Agriculture, Kagoshima University , Kagoshima, Japan
| | - Hiroaki Kawaguchi
- 2 Department of Hygiene and Health Promotion Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University , Kagoshima, Japan
| | - Kosuke Maeda
- 1 Laboratory of Animal Reproduction, Faculty of Agriculture, Kagoshima University , Kagoshima, Japan
| | - Masahiro Sato
- 3 Section of Gene Expression Regulation, Center for Advanced Biomedical Science and Swine Research, Kagoshima University , Kagoshima, Japan
| | - Kohei Akioka
- 4 Department of Veterinary Histopathology, Joint Faculty of Veterinary Medicine, Kagoshima University , Kagoshima, Japan
| | - Michiko Noguchi
- 5 Laboratory of Theriogenology, Faculty of Veterinary Medicine, Azabu University , Kanagawa, Japan
| | - Masahisa Horiuchi
- 2 Department of Hygiene and Health Promotion Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University , Kagoshima, Japan
| | - Akihide Tanimoto
- 6 Department of Pathology, Graduate School of Medical and Dental Sciences, Kagoshima University , Kagoshima, Japan
| |
Collapse
|
27
|
No JG, Hur TY, Zhao M, Lee S, Choi MK, Nam YS, Yeom DH, Im GS, Kim DH. Scriptaid improves the reprogramming of donor cells and enhances canine-porcine interspecies embryo development. Reprod Biol 2017; 18:18-26. [PMID: 29162325 DOI: 10.1016/j.repbio.2017.11.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 10/26/2017] [Accepted: 11/12/2017] [Indexed: 02/07/2023]
Abstract
Histone methylation, histone acetylation, and DNA methylation are the important factors for somatic cell nuclear transfer (SCNT). Histone deacetylase inhibitors (HDACi) and DNA methyltransferase inhibitors (DNMTi) have been used to improve cloning efficiency. In particular, scriptaid, an HDACi, has been shown to improve SCNT efficiency. However, no studies have been performed on canines. Here, we evaluated the effects of scriptaid on histone modification in canine ear fibroblasts (cEFs) and cloned canine embryos derived from cEFs. The early development of cloned canine-porcine interspecies SCNT (iSCNT) embryos was also examined. cEFs were treated with scriptaid (0, 100, 250, 500, 750, and 1000nM) in a medium for 24h. Scriptaid treatment (all concentrations) did not significantly affect cell apoptosis. Treatment with 500nM scriptaid caused a significant increase in the acetylation of H3K9, H3K14, and H4K5. cEFs treated with 500nM scriptaid showed significantly decreased Gcn5, Hat1, Hdac6, and Bcl2 and increased Oct4 and Sox2 expression levels. After SCNT with canine oocytes, H3K14 acetylation was significantly increased in the one- and two-cell cloned embryos from scriptaid-treated cEFs. In iSCNT, the percentage of embryos in the 16-cell stage was significantly higher in the scriptaid-treated group (21.6±2.44%) than in the control (7.5±2.09%). The expression levels of Oct4, Sox2, and Bcl2 were significantly increased in 16-cell iSCNT embryos, whereas that of Hdac6 was decreased. These results demonstrated that scriptaid affected the reprogramming of canine donor and cloned embryos, as well as early embryo development in canine-porcine iSCNT, by regulating reprogramming and apoptotic genes.
Collapse
Affiliation(s)
- Jin-Gu No
- Department of Animal Biotechnology, National Institute of Animal Science, Wanju 55365, Republic of Korea; Department of Biological Science, University of Sungkyunkwan, Suwon 16419, Republic of Korea
| | - Tai-Young Hur
- Department of Animal Biotechnology, National Institute of Animal Science, Wanju 55365, Republic of Korea
| | - Minghui Zhao
- Department of Animal Biotechnology, National Institute of Animal Science, Wanju 55365, Republic of Korea
| | - Seunghoon Lee
- Department of Animal Biotechnology, National Institute of Animal Science, Wanju 55365, Republic of Korea
| | - Mi-Kyung Choi
- Department of Animal Biotechnology, National Institute of Animal Science, Wanju 55365, Republic of Korea
| | - Yoon-Seok Nam
- Department of Animal Biotechnology, National Institute of Animal Science, Wanju 55365, Republic of Korea
| | - Dong-Hyun Yeom
- Department of Animal Biotechnology, National Institute of Animal Science, Wanju 55365, Republic of Korea
| | - Gi-Sun Im
- Department of Animal Biotechnology, National Institute of Animal Science, Wanju 55365, Republic of Korea
| | - Dong-Hoon Kim
- Department of Animal Biotechnology, National Institute of Animal Science, Wanju 55365, Republic of Korea.
| |
Collapse
|
28
|
Tanabe Y, Kuwayama H, Wakayama S, Nagatomo H, Ooga M, Kamimura S, Kishigami S, Wakayama T. Production of cloned mice using oocytes derived from ICR-outbred strain. Reproduction 2017; 154:859-866. [PMID: 28971892 DOI: 10.1530/rep-17-0372] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 09/26/2017] [Accepted: 09/29/2017] [Indexed: 01/08/2023]
Abstract
Recently, it has become possible to generate cloned mice using a somatic cell nucleus derived from not only F1 strains but also inbred strains. However, to date, all cloned mice have been generated using F1 mouse oocytes as the recipient cytoplasm. Here, we attempted to generate cloned mice from oocytes derived from the ICR-outbred mouse strain. Cumulus cell nuclei derived from BDF1 and ICR mouse strains were injected into enucleated oocytes of both strains to create four groups. Subsequently, the quality and developmental potential of the cloned embryos were examined. ICR oocytes were more susceptible to damage associated with nuclear injection than BDF1 oocytes, but their activation rate and several epigenetic markers of reconstructed cloned oocytes/embryos were similar to those of BDF1 oocytes. When cloned embryos were cultured for up to 4 days, those derived from ICR oocytes demonstrated a significantly decreased rate of development to the blastocyst stage, irrespective of the nuclear donor mouse strain. However, when cloned embryos derived from ICR oocytes were transferred to female recipients at the two-cell stage, healthy cloned offspring were obtained at a success rate similar to that using BDF1 oocytes. The ICR mouse strain is very popular for biological research and less expensive to establish than most other strains. Thus, the results of this study should promote the study of nuclear reprogramming not only by reducing the cost of experiments but also by allowing us to study the effect of oocyte cytoplasm by comparing it between strains.
Collapse
Affiliation(s)
- Yoshiaki Tanabe
- Faculty of Life and Environmental SciencesUniversity of Yamanashi, Yamanashi, Japan
| | - Hiroki Kuwayama
- Faculty of Life and Environmental SciencesUniversity of Yamanashi, Yamanashi, Japan
| | - Sayaka Wakayama
- Advanced Biotechnology CenterUniversity of Yamanashi, Yamanashi, Japan
| | | | - Masatoshi Ooga
- Faculty of Life and Environmental SciencesUniversity of Yamanashi, Yamanashi, Japan
| | - Satoshi Kamimura
- Faculty of Life and Environmental SciencesUniversity of Yamanashi, Yamanashi, Japan
| | - Satoshi Kishigami
- Faculty of Life and Environmental SciencesUniversity of Yamanashi, Yamanashi, Japan.,Advanced Biotechnology CenterUniversity of Yamanashi, Yamanashi, Japan
| | - Teruhiko Wakayama
- Faculty of Life and Environmental SciencesUniversity of Yamanashi, Yamanashi, Japan .,Advanced Biotechnology CenterUniversity of Yamanashi, Yamanashi, Japan
| |
Collapse
|
29
|
Zhang J, Qu P, Zhou C, Liu X, Ma X, Wang M, Wang Y, Su J, Liu J, Zhang Y. MicroRNA-125b is a key epigenetic regulatory factor that promotes nuclear transfer reprogramming. J Biol Chem 2017; 292:15916-15926. [PMID: 28794155 PMCID: PMC5612121 DOI: 10.1074/jbc.m117.796771] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 07/14/2017] [Indexed: 12/21/2022] Open
Abstract
Somatic cell nuclear transfer (SCNT)-mediated reprogramming is a rapid, efficient, and sophisticated process that reprograms differentiated somatic cells to a pluripotent state. However, many factors in this elaborate reprogramming process remain largely unknown. Here, we report that the microRNA (miR) miR-125b is an important component of SCNT-mediated reprogramming. Luciferase reporter assay, quantitative PCR, and Western blotting demonstrated that miR-125b directly binds the 3'-untranslated region of SUV39H1, encoding the histone-lysine N-methyltransferase SUV39H1, to down-regulate histone H3 lysine-9 tri-methylation (H3K9me3) in SCNT embryos. Furthermore, the miR-125b/SUV39H1 interaction induced loss of SUV39H1-mediated H3K9me3, caused heterochromatin relaxation, and promoted the development of SCNT embryos. Transcriptome analyses of SCNT blastomeres indicated that HNF1 homeobox B (HNF1B), a gene encoding a transcription factor downstream of and controlled by the miR-125b/SUV39H1 axis, is important for conferring developmental competence on preimplantation embryos. We conclude that miR-125b promotes SCNT-mediated nuclear reprogramming by targeting SUV39H1 to decrease the deposition of repressive H3K9me3 modifications.
Collapse
Affiliation(s)
- Jingcheng Zhang
- From the Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Pengxiang Qu
- From the Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Chuan Zhou
- From the Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xin Liu
- From the Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xiaonan Ma
- From the Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Mengyun Wang
- From the Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yongsheng Wang
- From the Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jianmin Su
- From the Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jun Liu
- From the Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yong Zhang
- From the Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
30
|
Sun JM, Cui KQ, Li ZP, Lu XR, Xu ZF, Liu QY, Huang B, Shi DS. Suberoylanilide hydroxamic acid, a novel histone deacetylase inhibitor, improves the development and acetylation level of miniature porcine handmade cloning embryos. Reprod Domest Anim 2017; 52:763-774. [DOI: 10.1111/rda.12977] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 01/07/2017] [Indexed: 01/23/2023]
Affiliation(s)
- JM Sun
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources; Guangxi University; Nanning Guangxi China
- Guangxi High Education Laboratory for Animal Reproduction and Biotechnology; Guangxi University; Nanning Guangxi China
| | - KQ Cui
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources; Guangxi University; Nanning Guangxi China
| | - ZP Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources; Guangxi University; Nanning Guangxi China
- Guangxi High Education Laboratory for Animal Reproduction and Biotechnology; Guangxi University; Nanning Guangxi China
| | - XR Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources; Guangxi University; Nanning Guangxi China
| | - ZF Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources; Guangxi University; Nanning Guangxi China
- Guangxi High Education Laboratory for Animal Reproduction and Biotechnology; Guangxi University; Nanning Guangxi China
| | - QY Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources; Guangxi University; Nanning Guangxi China
- Guangxi High Education Laboratory for Animal Reproduction and Biotechnology; Guangxi University; Nanning Guangxi China
| | - B Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources; Guangxi University; Nanning Guangxi China
- Guangxi High Education Laboratory for Animal Reproduction and Biotechnology; Guangxi University; Nanning Guangxi China
| | - DS Shi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources; Guangxi University; Nanning Guangxi China
- Guangxi High Education Laboratory for Animal Reproduction and Biotechnology; Guangxi University; Nanning Guangxi China
| |
Collapse
|
31
|
Miyamoto K, Tajima Y, Yoshida K, Oikawa M, Azuma R, Allen GE, Tsujikawa T, Tsukaguchi T, Bradshaw CR, Jullien J, Yamagata K, Matsumoto K, Anzai M, Imai H, Gurdon JB, Yamada M. Reprogramming towards totipotency is greatly facilitated by synergistic effects of small molecules. Biol Open 2017; 6:415-424. [PMID: 28412714 PMCID: PMC5399555 DOI: 10.1242/bio.023473] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Animal cloning has been achieved in many species by transplanting differentiated cell nuclei to unfertilized oocytes. However, the low efficiencies of cloning have remained an unresolved issue. Here we find that the combination of two small molecules, trichostatin A (TSA) and vitamin C (VC), under culture condition with bovine serum albumin deionized by ion-exchange resins, dramatically improves the cloning efficiency in mice and 15% of cloned embryos develop to term by means of somatic cell nuclear transfer (SCNT). The improvement was not observed by adding the non-treated, rather than deionized, bovine serum. RNA-seq analyses of SCNT embryos at the two-cell stage revealed that the treatment with TSA and VC resulted in the upregulated expression of previously identified reprogramming-resistant genes. Moreover, the expression of early-embryo-specific retroelements was upregulated by the TSA and VC treatment. The enhanced gene expression was relevant to the VC-mediated reduction of histone H3 lysine 9 methylation in SCNT embryos. Our study thus shows a simply applicable method to greatly improve mouse cloning efficiency, and furthers our understanding of how somatic nuclei acquire totipotency. Summary: The optimized culture condition with small molecules is sufficient to allow highly efficient mouse cloning by removing epigenetic barriers to reprogramming.
Collapse
Affiliation(s)
- Kei Miyamoto
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK .,Laboratory of Molecular Developmental Biology, Graduate School of Biology-Oriented Science and Technology, Kindai University, Wakayama 649-6493, Japan
| | - Yosuke Tajima
- Laboratory of Reproductive Biology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Koki Yoshida
- Laboratory of Reproductive Biology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Mami Oikawa
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK.,Laboratory of Molecular Developmental Biology, Graduate School of Biology-Oriented Science and Technology, Kindai University, Wakayama 649-6493, Japan
| | - Rika Azuma
- Laboratory of Molecular Developmental Biology, Graduate School of Biology-Oriented Science and Technology, Kindai University, Wakayama 649-6493, Japan.,Institute of Advanced Technology, Kindai University, Wakayama 642-0017, Japan
| | - George E Allen
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Tomomi Tsujikawa
- Laboratory of Reproductive Biology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Tomomasa Tsukaguchi
- Laboratory of Molecular Developmental Biology, Graduate School of Biology-Oriented Science and Technology, Kindai University, Wakayama 649-6493, Japan
| | - Charles R Bradshaw
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Jerome Jullien
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Kazuo Yamagata
- Laboratory of Molecular Developmental Biology, Graduate School of Biology-Oriented Science and Technology, Kindai University, Wakayama 649-6493, Japan
| | - Kazuya Matsumoto
- Laboratory of Molecular Developmental Biology, Graduate School of Biology-Oriented Science and Technology, Kindai University, Wakayama 649-6493, Japan
| | - Masayuki Anzai
- Institute of Advanced Technology, Kindai University, Wakayama 642-0017, Japan
| | - Hiroshi Imai
- Laboratory of Reproductive Biology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - John B Gurdon
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Masayasu Yamada
- Laboratory of Reproductive Biology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
32
|
Jin L, Guo Q, Zhu HY, Xing XX, Zhang GL, Xuan MF, Luo QR, Luo ZB, Wang JX, Choe HM, Paek HJ, Yin XJ, Kang JD. Histone deacetylase inhibitor M344 significantly improves nuclear reprogramming, blastocyst quality, and in vitro developmental capacity of cloned pig embryos1. J Anim Sci 2017; 95:1388-1395. [DOI: 10.2527/jas.2016.1240] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|
33
|
Qiu X, You H, Xiao X, Li N, Li Y. Effects of Trichostatin A and PXD101 on the In Vitro Development of Mouse Somatic Cell Nuclear Transfer Embryos. Cell Reprogram 2017; 19:1-9. [DOI: 10.1089/cell.2016.0030] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Affiliation(s)
- Xiaoyan Qiu
- Embryo Engineering Laboratory, School of Animal Science and Technology, Southwest University, Chong Qing, P.R. China
| | - Haihong You
- Embryo Engineering Laboratory, School of Animal Science and Technology, Southwest University, Chong Qing, P.R. China
| | - Xiong Xiao
- Embryo Engineering Laboratory, School of Animal Science and Technology, Southwest University, Chong Qing, P.R. China
| | - Nan Li
- Embryo Engineering Laboratory, School of Animal Science and Technology, Southwest University, Chong Qing, P.R. China
| | - Yuemin Li
- Embryo Engineering Laboratory, School of Animal Science and Technology, Southwest University, Chong Qing, P.R. China
| |
Collapse
|
34
|
Qiu X, Xiao X, Li N, Li Y. Histone deacetylases inhibitors (HDACis) as novel therapeutic application in various clinical diseases. Prog Neuropsychopharmacol Biol Psychiatry 2017; 72:60-72. [PMID: 27614213 DOI: 10.1016/j.pnpbp.2016.09.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 08/31/2016] [Accepted: 09/05/2016] [Indexed: 12/18/2022]
Abstract
Accumulating evidence suggests that histone hypoacetylation which is partly mediated by histone deacetylase (HDAC), plays a causative role in the etiology of various clinical disorders such as cancer and central nervous diseases. HDAC inhibitors (HDACis) are natural or synthetic small molecules that can inhibit the activities of HDACs and restore or increase the level of histone acetylation, thus may represent the potential approach to treating a number of clinical disorders. This manuscript reviewed the progress of the most recent experimental application of HDACis as novel potential drugs or agents in a large number of clinical disorders including various brain disorders including neurodegenerative and neurodevelopmental cognitive disorders and psychiatric diseases like depression, anxiety, fear and schizophrenia, and cancer, endometriosis and cell reprogramming in somatic cell nuclear transfer in human and animal models of disease, and concluded that HDACis as potential novel therapeutic agents could be used alone or in adjunct to other pharmacological agents in various clinical diseases.
Collapse
Affiliation(s)
- Xiaoyan Qiu
- School of Animal Science & Technology, Southwest University, Chong Qing 400715, PR China
| | - Xiong Xiao
- School of Animal Science & Technology, Southwest University, Chong Qing 400715, PR China
| | - Nan Li
- School of Animal Science & Technology, Southwest University, Chong Qing 400715, PR China
| | - Yuemin Li
- School of Animal Science & Technology, Southwest University, Chong Qing 400715, PR China.
| |
Collapse
|
35
|
Schiffmann I, Greve G, Jung M, Lübbert M. Epigenetic therapy approaches in non-small cell lung cancer: Update and perspectives. Epigenetics 2016; 11:858-870. [PMID: 27846368 PMCID: PMC5193491 DOI: 10.1080/15592294.2016.1237345] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 08/30/2016] [Accepted: 09/12/2016] [Indexed: 10/20/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) still constitutes the most common cancer-related cause of death worldwide. All efforts to introduce suitable treatment options using chemotherapeutics or targeted therapies have, up to this point, failed to exhibit a substantial effect on the 5-year-survival rate. The involvement of epigenetic alterations in the evolution of different cancers has led to the development of epigenetics-based therapies, mainly targeting DNA methyltransferases (DNMTs) and histone-modifying enzymes. So far, their greatest success stories have been registered in hematologic neoplasias. As the effects of epigenetic single agent treatment of solid tumors have been limited, the investigative focus now lies on combination therapies of epigenetically active agents with conventional chemotherapy, immunotherapy, or kinase inhibitors. This review includes a short overview of the most important preclinical approaches as well as an extensive discussion of clinical trials using epigenetic combination therapies in NSCLC, including ongoing trials. Thus, we are providing an overview of what lies ahead in the field of epigenetic combinatory therapies of NSCLC in the coming years.
Collapse
Affiliation(s)
- Insa Schiffmann
- Division of Hematology, Oncology and Stem Cell Transplantation, University of Freiburg, Medical Center, Freiburg, Germany
- University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Gabriele Greve
- Division of Hematology, Oncology and Stem Cell Transplantation, University of Freiburg, Medical Center, Freiburg, Germany
- University of Freiburg, Faculty of Biology, Freiburg, Germany
| | - Manfred Jung
- University of Freiburg, Institute of Pharmaceutical Sciences, Freiburg, Germany
- German Cancer Consortium (DKTK), Freiburg, Germany
| | - Michael Lübbert
- Division of Hematology, Oncology and Stem Cell Transplantation, University of Freiburg, Medical Center, Freiburg, Germany
- University of Freiburg, Faculty of Medicine, Freiburg, Germany
- German Cancer Consortium (DKTK), Freiburg, Germany
| |
Collapse
|
36
|
Wakayama S, Tanabe Y, Nagatomo H, Mizutani E, Kishigami S, Wakayama T. Effect of Long-Term Exposure of Donor Nuclei to the Oocyte Cytoplasm on Production of Cloned Mice Using Serial Nuclear Transfer. Cell Reprogram 2016; 18:382-389. [PMID: 27622855 DOI: 10.1089/cell.2016.0026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Although animal cloning is becoming increasingly practicable, cloned embryos possess many abnormalities and so there has been a low success rate for producing live animals. This is most likely due to incomplete reprogramming of somatic cell nuclei before they start to develop as the donor nuclei are usually only exposed to the oocyte cytoplasm for 1-2 hours before reconstructed oocytes are activated to avoid oocyte aging. Therefore, in this study, we attempted to extend the exposure period of somatic cell nuclei to the oocyte cytoplasm to determine whether this could enhance reprogramming of donor nuclei. Donor nuclei were transferred into oocytes, following which pseudo-MII spindles (pMIIs) derived from these were extracted and injected into newly collected enucleated oocytes 24 hours after the first nuclear transfer (NT). These serial NT oocytes were then activated and their developmental potential was examined to full term. There was no obvious difference in the pMIIs of reconstructed oocytes at 6 and 24 hours after donor nucleus injection; however, in both of these, the chromosomes were more widely spread inside the spindle than in fresh intact oocytes. Furthermore, a few chromosomes remained in 25% and 47% of these enucleated oocytes at 6 and 24 hours after donor nucleus injection, respectively. When these pMIIs were injected into fresh enucleated oocytes, the developmental rate to blastocyst was significantly lower, but we could still obtain several healthy cloned offspring. Thus, serial NT at intervals of 24 hours using fresh oocytes is possible, but the success rate could not be improved due to loss of chromosomes during the second NT.
Collapse
Affiliation(s)
- Sayaka Wakayama
- 1 Advanced Biotechnology Center, University of Yamanashi , Kofu-shi, Yamanashi, Japan
| | - Yoshiaki Tanabe
- 2 Faculty of Life and Environmental Sciences, University of Yamanashi , Kofu-shi, Yamanashi, Japan
| | - Hiroaki Nagatomo
- 3 COC Promotion Center, University of Yamanashi , Kofu-shi, Yamanashi, Japan
| | - Eiji Mizutani
- 1 Advanced Biotechnology Center, University of Yamanashi , Kofu-shi, Yamanashi, Japan .,2 Faculty of Life and Environmental Sciences, University of Yamanashi , Kofu-shi, Yamanashi, Japan
| | - Satoshi Kishigami
- 2 Faculty of Life and Environmental Sciences, University of Yamanashi , Kofu-shi, Yamanashi, Japan
| | - Teruhiko Wakayama
- 1 Advanced Biotechnology Center, University of Yamanashi , Kofu-shi, Yamanashi, Japan .,2 Faculty of Life and Environmental Sciences, University of Yamanashi , Kofu-shi, Yamanashi, Japan
| |
Collapse
|
37
|
Whitworth KM, Mao J, Lee K, Spollen WG, Samuel MS, Walters EM, Spate LD, Prather RS. Transcriptome Analysis of Pig In Vivo, In Vitro-Fertilized, and Nuclear Transfer Blastocyst-Stage Embryos Treated with Histone Deacetylase Inhibitors Postfusion and Activation Reveals Changes in the Lysosomal Pathway. Cell Reprogram 2016; 17:243-58. [PMID: 26731590 DOI: 10.1089/cell.2015.0022] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Genetically modified pigs are commonly created via somatic cell nuclear transfer (SCNT). Treatment of reconstructed embryos with histone deacetylase inhibitors (HDACi) immediately after activation improves cloning efficiency. The objective of this experiment was to evaluate the transcriptome of SCNT embryos treated with suberoylanilide hydroxamic acid (SAHA), 4-iodo-SAHA (ISAHA), or Scriptaid as compared to untreated SCNT, in vitro-fertilized (IVF), and in vivo (IVV) blastocyst-stage embryos. SAHA (10 μM) had the highest level of blastocyst development at 43.9%, and all treatments except 10 μM ISAHA had the same percentage of blastocyst development as Scriptaid (p<0.05). Two treatments, 1.0 μM ISAHA and 1.0 μM SAHA, had higher mean cell number than No HDACi treatment (p<0.021). Embryo transfers performed with 10 μM SAHA- and 1 μM ISAHA-treated embryos resulted in the birth of healthy piglets. GenBank accession numbers from up- and downregulated transcripts were loaded into the Database for Annotation, Visualization and Integrated Discovery to identify enriched biological themes. HDACi treatment yielded the highest enrichment for transcripts within the Kyoto Encyclopedia of Genes and Genomes (KEGG) Pathway, lysosome. The mean intensity of LysoTracker was lower in IVV embryos compared to IVF and SCNT embryos (p<0.0001). SAHA and ISAHA can successfully be used to create healthy piglets from SCNT.
Collapse
Affiliation(s)
- Kristin M Whitworth
- 1 Division of Animal Sciences, National Swine Research and Resource Center, University of Missouri , Columbia, MO, 65211
| | - Jiude Mao
- 1 Division of Animal Sciences, National Swine Research and Resource Center, University of Missouri , Columbia, MO, 65211
| | - Kiho Lee
- 2 Department of Animal and Poultry Science, Virginia Tech , Blacksburg, VA, 24061
| | - William G Spollen
- 3 Informatics Research Core Facility, University of Missouri , Columbia, MO, 65211
| | - Melissa S Samuel
- 1 Division of Animal Sciences, National Swine Research and Resource Center, University of Missouri , Columbia, MO, 65211
| | - Eric M Walters
- 1 Division of Animal Sciences, National Swine Research and Resource Center, University of Missouri , Columbia, MO, 65211
| | - Lee D Spate
- 1 Division of Animal Sciences, National Swine Research and Resource Center, University of Missouri , Columbia, MO, 65211
| | - Randall S Prather
- 1 Division of Animal Sciences, National Swine Research and Resource Center, University of Missouri , Columbia, MO, 65211
| |
Collapse
|
38
|
Sepulveda-Rincon LP, Solanas EDL, Serrano-Revuelta E, Ruddick L, Maalouf WE, Beaujean N. Early epigenetic reprogramming in fertilized, cloned, and parthenogenetic embryos. Theriogenology 2016; 86:91-8. [DOI: 10.1016/j.theriogenology.2016.04.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 02/25/2016] [Accepted: 03/14/2016] [Indexed: 12/17/2022]
|
39
|
Mizutani E, Torikai K, Wakayama S, Nagatomo H, Ohinata Y, Kishigami S, Wakayama T. Generation of cloned mice and nuclear transfer embryonic stem cell lines from urine-derived cells. Sci Rep 2016; 6:23808. [PMID: 27033801 PMCID: PMC4817122 DOI: 10.1038/srep23808] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 03/15/2016] [Indexed: 11/24/2022] Open
Abstract
Cloning animals by nuclear transfer provides the opportunity to preserve endangered mammalian species. However, there are risks associated with the collection of donor cells from the body such as accidental injury to or death of the animal. Here, we report the production of cloned mice from urine-derived cells collected noninvasively. Most of the urine-derived cells survived and were available as donors for nuclear transfer without any pretreatment. After nuclear transfer, 38–77% of the reconstructed embryos developed to the morula/blastocyst, in which the cell numbers in the inner cell mass and trophectoderm were similar to those of controls. Male and female cloned mice were delivered from cloned embryos transferred to recipient females, and these cloned animals grew to adulthood and delivered pups naturally when mated with each other. The results suggest that these cloned mice had normal fertility. In additional experiments, 26 nuclear transfer embryonic stem cell lines were established from 108 cloned blastocysts derived from four mouse strains including inbreds and F1 hybrids with relatively high success rates. Thus, cells derived from urine, which can be collected noninvasively, may be used in the rescue of endangered mammalian species by using nuclear transfer without causing injury to the animal.
Collapse
Affiliation(s)
- Eiji Mizutani
- Faculty of Life and Environmental Sciences, University of Yamanashi, 4-4-37 Takeda, Kofu-shi, Yamanashi, Japan.,Advanced Biotechnology Center, University of Yamanashi, 4-4-37 Takeda, Kofu-shi, Yamanashi, Japan
| | - Kohei Torikai
- Faculty of Life and Environmental Sciences, University of Yamanashi, 4-4-37 Takeda, Kofu-shi, Yamanashi, Japan
| | - Sayaka Wakayama
- Advanced Biotechnology Center, University of Yamanashi, 4-4-37 Takeda, Kofu-shi, Yamanashi, Japan
| | - Hiroaki Nagatomo
- COC Promotion Center, University of Yamanashi, 4-4-37 Takeda, Kofu-shi, Yamanashi, Japan
| | - Yasuhide Ohinata
- Faculty of Life and Environmental Sciences, University of Yamanashi, 4-4-37 Takeda, Kofu-shi, Yamanashi, Japan
| | - Satoshi Kishigami
- Faculty of Life and Environmental Sciences, University of Yamanashi, 4-4-37 Takeda, Kofu-shi, Yamanashi, Japan
| | - Teruhiko Wakayama
- Faculty of Life and Environmental Sciences, University of Yamanashi, 4-4-37 Takeda, Kofu-shi, Yamanashi, Japan.,Advanced Biotechnology Center, University of Yamanashi, 4-4-37 Takeda, Kofu-shi, Yamanashi, Japan
| |
Collapse
|
40
|
Su J, Wang Y, Xing X, Zhang L, Sun H, Zhang Y. Melatonin significantly improves the developmental competence of bovine somatic cell nuclear transfer embryos. J Pineal Res 2015; 59:455-68. [PMID: 26331949 DOI: 10.1111/jpi.12275] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 08/28/2015] [Indexed: 01/08/2023]
Abstract
Somatic cell nuclear transfer (SCNT) is a promising technology, but its application is hampered by its low efficiency. Hence, the majority of SCNT embryos fail to develop to term. In this study, the antioxidant melatonin reduced apoptosis and reactive oxygen species (ROS) in bovine SCNT embryos. It also increased cell number, inner cell mass (ICM) cell numbers, and the ratio of ICM to total cells while improving the development of bovine SCNT embryos in vitro and in vivo. Gene expression analysis showed that melatonin suppressed the expression of the pro-apoptotic genes p53 and Bax and stimulated the expression of the antioxidant genes SOD1 and Gpx4, the anti-apoptotic gene BCL2L1, and the pluripotency-related gene SOX2 in SCNT blastocysts. We also analyzed the epigenetic modifications in bovine in vitro fertilization, melatonin-treated, and untreated SCNT embryos. The global H3K9ac levels of melatonin-treated SCNT embryos at the four-cell stage were higher than those of the untreated SCNT embryos. We conclude that exogenous melatonin affects the expression of genes related to apoptosis, antioxidant function, and development. Moreover, melatonin reduced apoptosis and ROS in bovine SCNT embryos and enhanced blastocyst quality, thereby ultimately improving bovine cloning efficiency.
Collapse
Affiliation(s)
- Jianmin Su
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, Shaanxi Province, China
| | - Yongsheng Wang
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, Shaanxi Province, China
| | - Xupeng Xing
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, Shaanxi Province, China
| | - Lei Zhang
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, Shaanxi Province, China
| | - Hongzheng Sun
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, Shaanxi Province, China
| | - Yong Zhang
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, Shaanxi Province, China
| |
Collapse
|
41
|
Altering histone acetylation status in donor cells with suberoylanilide hydroxamic acid does not affect dog cloning efficiency. Theriogenology 2015; 84:1256-61. [PMID: 26259535 DOI: 10.1016/j.theriogenology.2015.07.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 07/03/2015] [Accepted: 07/03/2015] [Indexed: 11/24/2022]
Abstract
Although dog cloning technology has been applied to conservation of endangered canids, propagation of elite dogs, and production of transgenic dogs, the efficiency of cloning is still very low. To help overcome this problem, we evaluated the effect of treating donor cells with suberoylanilide hydroxamic acid (SAHA), a histone deacetylase inhibitor, on dog cloning efficiency. Relative messenger RNA expressions of the bax1/bcl2 ratio and Dnmt1 in fibroblasts treated with different concentrations (0, 1, 10, 50 μM) of SAHA and durations (0, 20, 44 hours) were compared. Treatment with 1 μM for 20 hours showed significantly lower bax1/bcl2 and Dnmt1 transcript abundance. Acetylation of H3K9 was significantly increased after SAHA treatment, but H4K5, H4K8 and H4K16 were not changed. After SCNT using control or donor cells treated with SAHA, a total of 76 and 64 cloned embryos were transferred to seven and five recipients, respectively. Three fetuses were diagnosed in both control and SAHA-treated groups by ultrasonography 29 days after the embryo transfer, but there was no significant difference in the pregnancy rate (4.2% vs. 4.3%). In conclusion, although SAHA treatment as used in this study significantly decreased bax1/bcl2 and Dnmt1 transcripts of donor nuclei, as well as increased H3 acetylation, it was not enough to increase in vivo developmental competence of cloned dog embryos.
Collapse
|
42
|
Choi I, Dasari A, Kim NH, Campbell KHS. Effects of prolonged exposure of mouse embryos to elevated temperatures on embryonic developmental competence. Reprod Biomed Online 2015; 31:171-9. [PMID: 26093856 DOI: 10.1016/j.rbmo.2015.04.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 04/30/2015] [Accepted: 04/30/2015] [Indexed: 01/15/2023]
Abstract
To investigate effects of heat stress on developmental competence, in-vitro fertilized zygotes were incubated at different temperatures until 96 h post human chorionic gonadotrophin (HCG). Under severe and moderate conditions (41°C and 40°C), most embryos did not overcome the 2-cell block. In long-term mild heat stress (39°C until 96 h post HCG), cleavage and blastocyst formation were comparable to non-heat-stress control, but the number of live pups per transferred embryo and mean litter size were significantly affected (P < 0.05) in the mild-heat-stress group (19.4%, and 5.1 ± 0.4, respectively), compared with control (41.7% and 8.3 ± 0.3, respectively). To elucidate the different competence, gene expression was examined and the numbers of inner cell mass (ICM) and trophectoderm (TE) cells were counted. Aberrant expression of genes for embryonic viability and trophoblast differentiation in the mild-heat-stressed blastocysts was found. Moreover, the expanded blastocysts in the heat-stressed group and the control had a ICM:TE ratio of 1:2.47 and 1:2.96 with average total cell numbers of 59.21 ± 2.38 and 72.79 ± 2.40, respectively (P < 0.05), indicating lower cell numbers in TE. These findings underscore that prevention of heat stress in early embryos is important for maintaining embryo viability embryos during pregnancy.
Collapse
Affiliation(s)
- Inchul Choi
- Animal Development and Biotechnology Group, School of Biosciences, The University of Nottingham, Sutton Bonington Campus, Loughborough, UK; Department of Animal Biosystem Sciences, College of Agriculture and Life Sciences, Chungnam National University 305-764, Republic of Korea.
| | - Amarnath Dasari
- Animal Development and Biotechnology Group, School of Biosciences, The University of Nottingham, Sutton Bonington Campus, Loughborough, UK; Taconic Farms Inc., Five University Place Rensselaer, NY 12144-3439, USA
| | - Nam-Hyung Kim
- Department of Animal Sciences, Chungbuk National University, Gaesin-dong, Cheongju, Chungbuk. 361-763, Republic of Korea
| | - Keith H S Campbell
- Animal Development and Biotechnology Group, School of Biosciences, The University of Nottingham, Sutton Bonington Campus, Loughborough, UK
| |
Collapse
|
43
|
Sun H, Lu F, Liu X, Tian M, Ruan Z, Zhu P, Ruan Q, Jiang J, Shi D. Effects of scriptaid on the histone acetylation of buffalo oocytes and their ability to support the development of somatic cell nuclear transfer embryos. Theriogenology 2015; 83:1219-25. [DOI: 10.1016/j.theriogenology.2015.01.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 12/15/2014] [Accepted: 01/01/2015] [Indexed: 10/24/2022]
|
44
|
Ogawa H, Watanabe H, Fukuda A, Kono T. Deficiency of genomic reprogramming in trophoblast stem cells following nuclear transfer. Cell Reprogram 2015; 17:115-23. [PMID: 25826724 DOI: 10.1089/cell.2014.0073] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
To examine the genomic reprogrammability of trophoblast stem (TS) cells using a nuclear transfer technique, we produced TS cloned embryos using five TS cell lines from three strains of mice (ICR, B6D2F1, and B6CBF1) as donors and observed developmental ability during preimplantation development. The developmental rates of the TS cloned embryos that developed to the two-cell, four- to eight-cell, morula, and blastocyst stages were 58-83%, 0-38.6%, 0-21.3%, and 0-15.9%, respectively, indicating that more than 50% of TS cloned embryos arrested at the two-cell stage. These TS cloned two-cell embryos were expressed low level of Dappa3 (also known as PGC7/Stella), indicating that zygotic gene activation (ZGA) was disrupted in these embryos. However, a small portion of the TS cloned embryos (0-15.9%) reached the blastocyst stage. In these TS cloned blastocysts, the numbers of trophectoderm (TE) and inner cell mass (ICM) cells were 31.9 ± 4.6 and 12.1 ± 3.0, respectively, which were not significantly different from those in the fertilized embryos. In addition, the gene expression analysis showed that Oct3/4, and Cdx2, which are ICM- and TE-specific marker genes, respectively, and Dppa3, and Hdac1, which are zygotic gene activation-related genes, were expressed in TS cloned blastocysts at the same levels as in the fertilized blastocysts. These results indicate that although TS cloned embryos are able to differentiate into ICM cells, the genomic reprogrammability of TS cells is very low following nuclear transfer.
Collapse
Affiliation(s)
- Hidehiko Ogawa
- Department of Bioscience, Tokyo University of Agriculture , Tokyo, 156-8502, Japan
| | | | | | | |
Collapse
|
45
|
Mallol A, Santaló J, Ibáñez E. Improved development of somatic cell cloned mouse embryos by vitamin C and latrunculin A. PLoS One 2015; 10:e0120033. [PMID: 25749170 PMCID: PMC4352067 DOI: 10.1371/journal.pone.0120033] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 01/20/2015] [Indexed: 11/18/2022] Open
Abstract
Impaired development of embryos produced by somatic cell nuclear transfer (SCNT) is mostly associated with faulty reprogramming of the somatic nucleus to a totipotent state and can be improved by treatment with epigenetic modifiers. Here we report that addition of 100 μM vitamin C (VitC) to embryo culture medium for at least 16 h post-activation significantly increases mouse blastocyst formation and, when combined with the use of latrunculin A (LatA) during micromanipulation and activation procedures, also development to term. In spite of this, no significant effects on pluripotency (OCT4 and NANOG) or nuclear reprogramming markers (H3K14 acetylation, H3K9 methylation and DNA methylation and hydroxymethylation) could be detected. The use of LatA alone significantly improved in vitro development, but not full-term development. On the other hand, the simultaneous treatment of cloned embryos with VitC and the histone deacetylase inhibitor psammaplin A (PsA), in combination with the use of LatA, resulted in cloning efficiencies equivalent to those of VitC or PsA treatments alone, and the effects on pluripotency and nuclear reprogramming markers were less evident than when only the PsA treatment was applied. These results suggest that although both epigenetic modifiers improve cloning efficiencies, possibly through different mechanisms, they do not show an additive effect when combined. Improvement of SCNT efficiency is essential for its applications in reproductive and therapeutic cloning, and identification of molecules which increase this efficiency should facilitate studies on the mechanism of nuclear reprogramming and acquisition of totipotency.
Collapse
Affiliation(s)
- Anna Mallol
- Departament de Biologia Cellular, Fisiologia i Immunologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Josep Santaló
- Departament de Biologia Cellular, Fisiologia i Immunologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Elena Ibáñez
- Departament de Biologia Cellular, Fisiologia i Immunologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, Spain
- * E-mail:
| |
Collapse
|
46
|
Mizutani E, Oikawa M, Kassai H, Inoue K, Shiura H, Hirasawa R, Kamimura S, Matoba S, Ogonuki N, Nagatomo H, Abe K, Wakayama T, Aiba A, Ogura A. Generation of Cloned Mice from Adult Neurons by Direct Nuclear Transfer1. Biol Reprod 2015; 92:81. [DOI: 10.1095/biolreprod.114.123455] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
47
|
Song BS, Yoon SB, Sim BW, Kim YH, Cha JJ, Choi SA, Jeong KJ, Kim JS, Huh JW, Lee SR, Kim SH, Kim SU, Chang KT. Valproic acid enhances early development of bovine somatic cell nuclear transfer embryos by alleviating endoplasmic reticulum stress. Reprod Fertil Dev 2015; 26:432-40. [PMID: 23506644 DOI: 10.1071/rd12336] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 02/23/2013] [Indexed: 11/23/2022] Open
Abstract
Despite the positive roles of histone deacetylase inhibitors in somatic cell nuclear transfer (SCNT), few studies have evaluated valproic acid (VPA) and its associated developmental events. Thus, the present study was conducted to elucidate the effect of VPA on the early development of bovine SCNT embryos and the underlying mechanisms of action. The histone acetylation level of SCNT embryos was successfully restored by VPA, with optimal results obtained by treatment with 3mM VPA for 24h. Importantly, the increases in blastocyst formation rate and inner cell mass and trophectoderm cell numbers were not different between the VPA and trichostatin A treatment groups, whereas cell survival was notably improved by VPA, indicating the improvement of developmental competence of SCNT embryos by VPA. Interestingly, VPA markedly reduced the transcript levels of endoplasmic reticulum (ER) stress markers, including sXBP-1 and CHOP. In contrast, the levels of GRP78/BiP, an ER stress-alleviating transcript, were significantly increased by VPA. Furthermore, VPA greatly reduced cell apoptosis in SCNT blastocysts, which was further evidenced by the increased levels of the anti-apoptotic transcript Bcl-xL and decreased level of the pro-apoptotic transcript Bax. Collectively, these results suggest that VPA enhances the developmental competence of bovine SCNT embryos by alleviating ER stress and its associated developmental damage.
Collapse
Affiliation(s)
- Bong-Seok Song
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do 363-883, Republic of Korea
| | - Seung-Bin Yoon
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do 363-883, Republic of Korea
| | - Bo-Woong Sim
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do 363-883, Republic of Korea
| | - Young-Hyun Kim
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do 363-883, Republic of Korea
| | - Jae-Jin Cha
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do 363-883, Republic of Korea
| | - Seon-A Choi
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do 363-883, Republic of Korea
| | - Kang-Jin Jeong
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do 363-883, Republic of Korea
| | - Ji-Su Kim
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do 363-883, Republic of Korea
| | - Jae-Won Huh
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do 363-883, Republic of Korea
| | - Sang-Rae Lee
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do 363-883, Republic of Korea
| | - Sang-Hyun Kim
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do 363-883, Republic of Korea
| | - Sun-Uk Kim
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do 363-883, Republic of Korea
| | - Kyu-Tae Chang
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do 363-883, Republic of Korea
| |
Collapse
|
48
|
No JG, Choi MK, Kwon DJ, Yoo JG, Yang BC, Park JK, Kim DH. Cell-free extract from porcine induced pluripotent stem cells can affect porcine somatic cell nuclear reprogramming. J Reprod Dev 2015; 61:90-8. [PMID: 25736622 PMCID: PMC4410095 DOI: 10.1262/jrd.2014-078] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Pretreatment of somatic cells with undifferentiated cell extracts, such as embryonic stem cells and mammalian oocytes, is an attractive alternative method for reprogramming control. The properties of induced pluripotent stem cells (iPSCs) are similar to those of embryonic stem cells; however, no studies have reported somatic cell nuclear reprogramming using iPSC extracts. Therefore, this study aimed to evaluate the effects of porcine iPSC extracts treatment on porcine ear fibroblasts and early development of porcine cloned embryos produced from porcine ear skin fibroblasts pretreated with the porcine iPSC extracts. The Chariot(TM) reagent system was used to deliver the iPSC extracts into cultured porcine ear skin fibroblasts. The iPSC extracts-treated cells (iPSC-treated cells) were cultured for 3 days and used for analyzing histone modification and somatic cell nuclear transfer. Compared to the results for nontreated cells, the trimethylation status of histone H3 lysine residue 9 (H3K9) in the iPSC-treated cells significantly decreased. The expression of Jmjd2b, the H3K9 trimethylation-specific demethylase gene, significantly increased in the iPSC-treated cells; conversely, the expression of the proapoptotic genes, Bax and p53, significantly decreased. When the iPSC-treated cells were transferred into enucleated porcine oocytes, no differences were observed in blastocyst development and total cell number in blastocysts compared with the results for control cells. However, H3K9 trimethylation of pronuclear-stage-cloned embryos significantly decreased in the iPSC-treated cells. Additionally, Bax and p53 gene expression in the blastocysts was significantly lower in iPSC-treated cells than in control cells. To our knowledge, this study is the first to show that an extracts of porcine iPSCs can affect histone modification and gene expression in porcine ear skin fibroblasts and cloned embryos.
Collapse
Affiliation(s)
- Jin-Gu No
- Animal Biotechnology Division; Department of Biological Science, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
49
|
PXD101 significantly improves nuclear reprogramming and the in vitro developmental competence of porcine SCNT embryos. Biochem Biophys Res Commun 2015; 456:156-61. [DOI: 10.1016/j.bbrc.2014.11.051] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 11/13/2014] [Indexed: 01/06/2023]
|
50
|
Mizutani E, Wakayama S, Wakayama T. Treatment of donor cell/embryo with different approaches to improve development after nuclear transfer. Methods Mol Biol 2015; 1222:101-11. [PMID: 25287341 DOI: 10.1007/978-1-4939-1594-1_8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The successful production of cloned animals by somatic cell nuclear transfer (SCNT) is a promising technology with many potential applications in basic research, medicine, and agriculture. However, the low efficiency and the difficulty of cloning are major obstacles to the widespread use of this technology. Since the first mammal cloned from an adult donor cell was born, many attempts have been made to improve animal cloning techniques, and some approaches have successfully improved its efficiency. Nuclear transfer itself is still difficult because it requires an accomplished operator with a practiced technique. Thus, it is very important to find simple and reproducible methods for improving the success rate of SCNT. In this chapter, we will review our recent protocols, which seem to be the simplest and most reliable method to date to improve development of SCNT embryos.
Collapse
Affiliation(s)
- Eiji Mizutani
- University of Yamanashi, Kofu Campus, 4-4-37 Takeda, Kofu, Yamanashi, 400-8510, Japan,
| | | | | |
Collapse
|