1
|
Amato CM, Yao HHC. New uses for an old technique: live imaging on the slice organ culture to study reproductive processes†. Biol Reprod 2024; 110:1055-1064. [PMID: 38315794 PMCID: PMC11180704 DOI: 10.1093/biolre/ioae023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 02/07/2024] Open
Abstract
Reproductive processes are dynamic and involve extensive morphological remodeling and cell-cell interactions. Live imaging of organs enhances our understanding of how biological processes occur in real time. Slice culture is a type of organ culture where thick slices are collected from an organ and cultured for several days. Slice culture is a useful and easy-to-implement technique for live imaging of reproductive events at cellular resolution. Here we describe a pipeline of live imaging on slice culture to visualize the process of urethra closure in mouse embryonic penis as a proof of principle. In combination with genetic reporter mice, nuclear stains, and exposure experiments, we demonstrate the feasibility of slice culture on a reproductive organ. We also provide a step-by-step protocol and troubleshooting guide to facilitate the adoption of slice culture with live imaging in other reproductive organs. Lastly, we discuss potential utilities and experiments that could be implemented with slice culture in reproductive sciences.
Collapse
Affiliation(s)
- Ciro Maurizio Amato
- Reproductive Developmental Biology Group, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Humphrey Hung-Chang Yao
- Reproductive Developmental Biology Group, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| |
Collapse
|
2
|
Qu M, Lu P, Bellve K, Lifshitz LM, ZhuGe R. Mode Switch of Ca 2 + Oscillation-Mediated Uterine Peristalsis and Associated Embryo Implantation Impairments in Mouse Adenomyosis. Front Physiol 2021; 12:744745. [PMID: 34803733 PMCID: PMC8599363 DOI: 10.3389/fphys.2021.744745] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 10/12/2021] [Indexed: 11/13/2022] Open
Abstract
Adenomyosis is a debilitating gynecological disease of the uterus with no medicinal cure. The tissue injury and repair hypothesis for adenomyosis suggests that uterine hyperperistalsis or dysperistalsis plays a pivotal role in establishing adenomyotic lesions. However, specific impairments in uterine peristalsis and the underlying cellular signals for these changes in adenomyosis remain elusive. Here, we report a precision-cut uterine slice preparation that preserves in vivo uterine architecture and generates peristalsis similar to that seen in the whole uterus. We found that uterine peristalsis in neonatal mice at day 14 and adult mice at day 55 presents as bursts with multiple peaks induced by intracellular Ca2+ oscillations. Using a mouse model of adenomyosis induced by tamoxifen, a selective estrogen receptor modulator, we discovered that uterine peristalsis and Ca2+ oscillations from adenomyotic uteri on days 14 and 55 become spikes (single peaks) with smaller amplitudes. The peak frequency of Ca2+ oscillations or peristalsis does not show a difference between control and adenomyotic mice. However, both the estimated force generated by uterine peristalsis and the total Ca2+ raised by Ca2+ oscillations are smaller in uteri from adenomyotic mice. Uteri from adenomyotic mice on day 14, but not on day 55, exhibit hyperresponsiveness to oxytocin. Embryo implantations are decreased in adenomyotic adult mice. Our results reveal a mode switch from bursts to spikes (rather than an increased peak frequency) of uterine Ca2+ oscillations and peristalsis and concurrent hyperresponsiveness to oxytocin in the neonatal stage are two characteristics of adenomyosis. These characteristics may contribute to embryo implantation impairments and decreased fertility in adenomyosis.
Collapse
Affiliation(s)
- Mingzi Qu
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, United States
| | - Ping Lu
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, United States
| | - Karl Bellve
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, United States
| | - Lawrence M Lifshitz
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, United States
| | - Ronghua ZhuGe
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, United States
| |
Collapse
|
3
|
Mata-Martínez E, Sánchez-Cárdenas C, Chávez JC, Guerrero A, Treviño CL, Corkidi G, Montoya F, Hernandez-Herrera P, Buffone MG, Balestrini PA, Darszon A. Role of calcium oscillations in sperm physiology. Biosystems 2021; 209:104524. [PMID: 34453988 DOI: 10.1016/j.biosystems.2021.104524] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 08/23/2021] [Accepted: 08/24/2021] [Indexed: 10/20/2022]
Abstract
Intracellular Ca2+ is a key regulator of cell signaling and sperm are not the exception. Cells often use cytoplasmic Ca2+ concentration ([Ca2+]i) oscillations as a means to decodify external and internal information. [Ca2+]i oscillations faster than those usually found in other cells and correlated with flagellar beat were the first to be described in sperm in 1993 by Susan Suarez, in the boar. More than 20 years passed before similar [Ca2+]i oscillations were documented in human sperm, simultaneously examining their flagellar beat in three dimensions by Corkidi et al. 2017. On the other hand, 10 years after the discovery of the fast boar [Ca2+]i oscillations, slower ones triggered by compounds from the egg external envelope were found to regulate cell motility and chemotaxis in sperm from marine organisms. Today it is known that sperm display fast and slow spontaneous and agonist triggered [Ca2+]i oscillations. In mammalian sperm these Ca2+ transients may act like a multifaceted tool that regulates fundamental functions such as motility and acrosome reaction. This review covers the main sperm species and experimental conditions where [Ca2+]i oscillations have been described and discusses what is known about the transporters involved, their regulation and the physiological purpose of these oscillations. There is a lot to be learned regarding the origin, regulation and physiological relevance of these Ca2+ oscillations.
Collapse
Affiliation(s)
- Esperanza Mata-Martínez
- Laboratorio de Fusión de Membranas y Exocitosis Acrosomal, Instituto de Histología y Embriología Dr. Mario H. Burgos (IHEM) Universidad Nacional de Cuyo, CONICET, Mendoza, Argentina.
| | - Claudia Sánchez-Cárdenas
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología (IBT), Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, Mexico.
| | - Julio C Chávez
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología (IBT), Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, Mexico.
| | - Adán Guerrero
- Laboratorio Nacional de Microscopía Avanzada, IBT, UNAM, Mexico.
| | - Claudia L Treviño
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología (IBT), Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, Mexico.
| | - Gabriel Corkidi
- Departamento de Ingeniería Celular y Biocatálisis, Laboratorio de Imágenes y Visión por Computadora, IBT, UNAM, Mexico.
| | - Fernando Montoya
- Departamento de Ingeniería Celular y Biocatálisis, Laboratorio de Imágenes y Visión por Computadora, IBT, UNAM, Mexico.
| | - Paul Hernandez-Herrera
- Departamento de Ingeniería Celular y Biocatálisis, Laboratorio de Imágenes y Visión por Computadora, IBT, UNAM, Mexico.
| | - Mariano G Buffone
- Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| | - Paula A Balestrini
- Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| | - Alberto Darszon
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología (IBT), Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, Mexico.
| |
Collapse
|
4
|
Bondarenko O, Corzo G, Santana FL, Río‐Portilla F, Darszon A, López‐González I. Nonenzymatically oxidized arachidonic acid regulates T‐type Ca
2+
currents in mouse spermatogenic cells. FEBS Lett 2019; 593:1735-1750. [DOI: 10.1002/1873-3468.13448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 05/14/2019] [Accepted: 05/16/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Olga Bondarenko
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología Universidad Nacional Autónoma de México México México
| | - Gerardo Corzo
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología Universidad Nacional Autónoma de México México México
| | - Félix L. Santana
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología Universidad Nacional Autónoma de México México México
| | - Federico Río‐Portilla
- Departamento de Biomacromoléculas. Instituto de Química Universidad Nacional Autónoma de México México México
| | - Alberto Darszon
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología Universidad Nacional Autónoma de México México México
| | - Ignacio López‐González
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología Universidad Nacional Autónoma de México México México
| |
Collapse
|
5
|
Almasry SM, Hassan ZA, Elsaed WM, Elbastawisy YM. Structural evaluation of the peritubular sheath of rat's testes after administration of ribavirin: A possible impact on the testicular function. Int J Immunopathol Pharmacol 2017; 30:282-296. [PMID: 28799438 PMCID: PMC5815259 DOI: 10.1177/0394632017726261] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Effects of ribavirin on the structure of peritubular sheath (PS) of seminiferous tubules and on testicular functions were studied. We found that ribavirin at a dose of 4 mg/kg/day for 4 weeks produced a significant reduction in testosterone level (6.3 ± 0.2; P < 0.001) and in spermatogenic score count (3.8 ± 0.2; P < 0.001) compared to control values. The thickness of PS (17.8 ± 1.13) and tubular lumen perimeter (1024.7 ± 67) was significantly increased compared to controls (10.7 ± 0.70; P < 0.001 and 808 ± 25; P = 0.004, respectively). The length of germinal epithelium (411.8 ± 39) and tubular external diameters (1661.8 ± 115) was significantly reduced compared to control values (708.4 ± 40; P < 0.001 and 2358.8 ± 169; P < 0.001, respectively). The basement membranes (BMs) were thickened with great deposition of collagen. Myoid cells showed altered structure and extracellular matrix revealed disorganization by excessive collagen I and IV accumulation. Testicular damage was established histologically. Evidence of apoptosis was detected in germ cells. There was a significant increase in integrated density of Casp-3 expression (38,121,743 ± 1,763,420; P < 0.001) in seminiferous tubules compared to control (24,788,409 ± 1,900,140). It is concluded that ribavirin can cause alterations of the testicular function and structure with increased apoptosis in the tissues after 4 weeks of administration. The damaging effect could be persuaded by destruction of the peritubular sheath.
Collapse
Affiliation(s)
- Shaima M Almasry
- 1 Department of Anatomy and Embryology, Taibah University, Medina, Saudi Arabia.,2 Department of Anatomy and Embryology, Mansoura University, Mansoura, Egypt
| | - Zeinab A Hassan
- 1 Department of Anatomy and Embryology, Taibah University, Medina, Saudi Arabia.,3 Department of Histology and Cell Biology, Zagazig University, Zagazig, Egypt
| | - Wael M Elsaed
- 1 Department of Anatomy and Embryology, Taibah University, Medina, Saudi Arabia.,2 Department of Anatomy and Embryology, Mansoura University, Mansoura, Egypt
| | - Yasser M Elbastawisy
- 1 Department of Anatomy and Embryology, Taibah University, Medina, Saudi Arabia.,2 Department of Anatomy and Embryology, Mansoura University, Mansoura, Egypt
| |
Collapse
|
6
|
Fleck D, Mundt N, Bruentgens F, Geilenkirchen P, Machado PA, Veitinger T, Veitinger S, Lipartowski SM, Engelhardt CH, Oldiges M, Spehr J, Spehr M. Distinct purinergic signaling pathways in prepubescent mouse spermatogonia. J Gen Physiol 2016; 148:253-71. [PMID: 27574293 PMCID: PMC5004339 DOI: 10.1085/jgp.201611636] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 07/22/2016] [Indexed: 01/24/2023] Open
Abstract
Spermatogenesis ranks among the most complex, yet least understood, developmental processes. The physiological principles that control male germ cell development in mammals are notoriously difficult to unravel, given the intricate anatomy and complex endo- and paracrinology of the testis. Accordingly, we lack a conceptual understanding of the basic signaling mechanisms within the testis, which control the seminiferous epithelial cycle and thus govern spermatogenesis. Here, we address paracrine signal transduction in undifferentiated male germ cells from an electrophysiological perspective. We identify distinct purinergic signaling pathways in prepubescent mouse spermatogonia, both in vitro and in situ. ATP-a dynamic, widespread, and evolutionary conserved mediator of cell to cell communication in various developmental contexts-activates at least two different spermatogonial purinoceptor isoforms. Both receptors operate within nonoverlapping stimulus concentration ranges, display distinct response kinetics and, in the juvenile seminiferous cord, are uniquely expressed in spermatogonia. We further find that spermatogonia express Ca(2+)-activated large-conductance K(+) channels that appear to function as a safeguard against prolonged ATP-dependent depolarization. Quantitative purine measurements additionally suggest testicular ATP-induced ATP release, a mechanism that could increase the paracrine radius of initially localized signaling events. Moreover, we establish a novel seminiferous tubule slice preparation that allows targeted electrophysiological recordings from identified testicular cell types in an intact epithelial environment. This unique approach not only confirms our in vitro findings, but also supports the notion of purinergic signaling during the early stages of spermatogenesis.
Collapse
Affiliation(s)
- David Fleck
- Department of Chemosensation, Institute for Biology II, RWTH Aachen University, D-52074 Aachen, Germany
| | - Nadine Mundt
- Department of Chemosensation, Institute for Biology II, RWTH Aachen University, D-52074 Aachen, Germany
| | - Felicitas Bruentgens
- Department of Chemosensation, Institute for Biology II, RWTH Aachen University, D-52074 Aachen, Germany
| | - Petra Geilenkirchen
- Institute of Bio- and Geosciences (IBG), IBG-1: Biotechnology, Research Center Jülich, D-52425 Jülich, Germany
| | - Patricia A Machado
- Department of Chemosensation, Institute for Biology II, RWTH Aachen University, D-52074 Aachen, Germany
| | - Thomas Veitinger
- Department of Chemosensation, Institute for Biology II, RWTH Aachen University, D-52074 Aachen, Germany
| | - Sophie Veitinger
- Department of Chemosensation, Institute for Biology II, RWTH Aachen University, D-52074 Aachen, Germany
| | - Susanne M Lipartowski
- Department of Chemosensation, Institute for Biology II, RWTH Aachen University, D-52074 Aachen, Germany
| | - Corinna H Engelhardt
- Department of Chemosensation, Institute for Biology II, RWTH Aachen University, D-52074 Aachen, Germany
| | - Marco Oldiges
- Institute of Bio- and Geosciences (IBG), IBG-1: Biotechnology, Research Center Jülich, D-52425 Jülich, Germany
| | - Jennifer Spehr
- Department of Chemosensation, Institute for Biology II, RWTH Aachen University, D-52074 Aachen, Germany
| | - Marc Spehr
- Department of Chemosensation, Institute for Biology II, RWTH Aachen University, D-52074 Aachen, Germany
| |
Collapse
|
7
|
López-González I, Treviño CL, Darszon A. Regulation of Spermatogenic Cell T-Type Ca(2+) Currents by Zn(2+): Implications in Male Reproductive Physiology. J Cell Physiol 2016. [PMID: 26222306 DOI: 10.1002/jcp.25112] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Zn(2+) is a trace metal which is important for spermatogenesis progression; its deficiency causes atrophy or malignant growth of the testis. Although testis, epididymis, and prostate contain high Zn(2+) concentrations, the molecular entities which are modulated by this metal are still under study. Interestingly, spermatogenic cells mainly express CaV 3.2-encoded T-type Ca(2+) currents (ICaT) which are positively or negatively modulated by Zn(2+) in other tissues. To explore whether ICaT could be regulated by Zn(2+) and albumin, its main physiological carrier, we performed whole cell electrophysiological recordings of spermatogenic cell ICaT in the absence or presence of different Zn(2+) concentrations. Zn(2+) decreased ICaT in a concentration-dependent manner (IC50 = 2 μM) and this inhibition could only be completely removed in presence of albumin. Differently to previous reports, ICaT did not show a tonic inhibition by Zn(2+) . Further analysis showed that Zn(2+) did not affect the voltage dependency or the kinetics of current activation, but right shifted the steady-state inactivation curve and slowed inactivation and deactivation kinetics. Recovery from inactivation was also altered. However, these apparent alterations in gating properties are not enough to explain the strong ICaT reduction. Using non-stationary fluctuation analysis, we found that Zn(2+) mainly reduced the number of available Ca(2+) channels without changing the single channel current amplitude. ICaT modulation by Zn(2+) could be relevant for spontaneous Ca(2+) oscillations during spermatogenesis and in pathophysiological conditions such as diabetes.
Collapse
Affiliation(s)
- Ignacio López-González
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca Morelos, México
| | - Claudia L Treviño
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca Morelos, México
| | - Alberto Darszon
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca Morelos, México
| |
Collapse
|
8
|
Gerber J, Heinrich J, Brehm R. Blood-testis barrier and Sertoli cell function: lessons from SCCx43KO mice. Reproduction 2015; 151:R15-27. [PMID: 26556893 DOI: 10.1530/rep-15-0366] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 11/10/2015] [Indexed: 01/23/2023]
Abstract
The gap junction protein connexin43 (CX43) plays a vital role in mammalian spermatogenesis by allowing for direct cytoplasmic communication between neighbouring testicular cells. In addition, different publications suggest that CX43 in Sertoli cells (SC) might be important for blood-testis barrier (BTB) formation and BTB homeostasis. Thus, through the use of the Cre-LoxP recombination system, a transgenic mouse line was developed in which only SC are deficient of the gap junction protein, alpha 1 (Gja1) gene. Gja1 codes for the protein CX43. This transgenic mouse line has been commonly defined as the SC specific CX43 knockout (SCCx43KO) mouse line. Within the seminiferous tubule, SC aid in spermatogenesis by nurturing germ cells and help them to proliferate and mature. Owing to the absence of CX43 within the SC, homozygous KO mice are infertile, have reduced testis size, and mainly exhibit spermatogenesis arrest at the level of spermatogonia, seminiferous tubules containing only SC (SC-only syndrome) and intratubular SC-clusters. Although the SC specific KO of CX43 does not seem to have an adverse effect on BTB integrity, CX43 influences BTB composition as the expression pattern of different BTB proteins (like OCCLUDIN, β-CATENIN, N-CADHERIN, and CLAUDIN11) is altered in mutant males. The supposed roles of CX43 in dynamic BTB regulation, BTB assembly and/or disassembly and its possible interaction with other junctional proteins composing this unique barrier are discussed. Data collectively indicate that CX43 might represent an important regulator of dynamic BTB formation, composition and function.
Collapse
Affiliation(s)
- Jonathan Gerber
- Institute of AnatomyUniversity of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm 15, 30173 Hannover, Germany
| | - Julia Heinrich
- Institute of AnatomyUniversity of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm 15, 30173 Hannover, Germany
| | - Ralph Brehm
- Institute of AnatomyUniversity of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm 15, 30173 Hannover, Germany
| |
Collapse
|
9
|
Sánchez-Cárdenas C, Servín-Vences MR, José O, Treviño CL, Hernández-Cruz A, Darszon A. Acrosome reaction and Ca²⁺ imaging in single human spermatozoa: new regulatory roles of [Ca²⁺]i. Biol Reprod 2014; 91:67. [PMID: 25100708 DOI: 10.1095/biolreprod.114.119768] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The spermatozoa acrosome reaction (AR) is essential for mammalian fertilization. Few methods allow visualization of AR in real time together with Ca²⁺ imaging. Here, we show that FM4-64, a fluorescent dye used to follow exocytosis, reliably reports AR progression induced by ionomycin and progesterone in human spermatozoa. FM4-64 clearly delimits the spermatozoa contour and reports morphological cell changes before, during, and after AR. This strategy unveiled the formation of moving tubular appendages, emerging from acrosome-reacted spermatozoa, which was confirmed by scanning electron microscopy. Alternate wavelength illumination allowed concomitant imaging of FM4-64 and Fluo-4, a Ca²⁺ indicator. These AR and intracellular Ca²⁺ ([Ca²⁺]i) recordings revealed that the presence of [Ca²⁺]i oscillations, both spontaneous and progesterone induced, prevents AR in human spermatozoa. Notably, the progesterone-induced AR is preceded by a second [Ca²⁺]i peak and ~40% of reacting spermatozoa also manifest a slow [Ca²⁺]i rise ~2 min before AR. Our findings uncover new AR features related to [Ca²⁺]i.
Collapse
Affiliation(s)
- Claudia Sánchez-Cárdenas
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, México
| | - Martha Rocio Servín-Vences
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, México
| | - Omar José
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, México
| | - Claudia Lydia Treviño
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, México
| | - Arturo Hernández-Cruz
- Departamento de Neurociencia Cognitiva, Instituto de Fisiología Celular, UNAM, Circuito exterior s/n, Ciudad Universitaria, México DF
| | - Alberto Darszon
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, México
| |
Collapse
|
10
|
T-type Ca2+ channels in spermatogenic cells and sperm. Pflugers Arch 2014; 466:819-31. [DOI: 10.1007/s00424-014-1478-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 02/08/2014] [Indexed: 12/14/2022]
|