1
|
Hayashi K, MacLean JA. RHOX Homeobox Transcription Factor Regulation of Ins2 in Rodent Granulosa Cells. Cells 2025; 14:478. [PMID: 40214432 PMCID: PMC11987862 DOI: 10.3390/cells14070478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/15/2025] [Accepted: 03/20/2025] [Indexed: 04/14/2025] Open
Abstract
The Rhox family of homeobox transcription factors comprises established regulators of gonad function, but their downstream targets have been relatively elusive, particularly in the female reproductive tract. Here, we characterize Ins2 as a downstream target of the two granulosa cell-specific factors, Rhox5 and Rhox8, in the ovary. While INS2 is classically produced by islet cells in the pancreas, we found that Ins2 gene expression is present in the mural granulosa cell layer of large antral follicles, and it was not significantly reduced in Rhox5-null mice. This was a surprising finding as we previously validated Ins2 as a direct target of RHOX5 in Sertoli cells, the male counterpart to granulosa cells that serves the germ cell nurse function in the testis. In the ovary, RHOX8 appears to be the major driver of Ins2 expression, as evidenced from the maximal activity of Ins2 promoter reporter plasmids when RHOX8 protein was active within granulosa cells in vitro and the downregulation of endogenous Ins2 in mice with the granulosa cell-specific knockdown of RHOX8 in vivo. RHOX5 induces Rhox8 expression in pre-antral granulosa cells and then becomes relatively silent in peri-ovulatory follicles. However, Rhox8 does not peak until after the ovulatory LH surge. The induction of Rhox8 by progesterone, after the normal window of RHOX5 has passed, may explain why Rhox5-null female mice display apparently normal fertility, if RHOX8 is capable of the redundant stimulation of target genes that are essential for ovulation.
Collapse
Affiliation(s)
- Kanako Hayashi
- Center for Reproductive Biology, School of Molecular Biosciences, Washington State University, Pullman, WA 99164, USA;
- Department of Physiology, Southern Illinois University, Carbondale, IL 62901, USA
| | - James A. MacLean
- Center for Reproductive Biology, School of Molecular Biosciences, Washington State University, Pullman, WA 99164, USA;
- Department of Physiology, Southern Illinois University, Carbondale, IL 62901, USA
| |
Collapse
|
2
|
Hu Q, Gui Y, Cao C, Xie J, Tang H. Single-cell sequencing reveals transcriptional dynamics regulated by ERα in mouse ovaries. PLoS One 2024; 19:e0313867. [PMID: 39570927 PMCID: PMC11581351 DOI: 10.1371/journal.pone.0313867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 10/31/2024] [Indexed: 11/24/2024] Open
Abstract
CONTEXT Estrogen receptor α (ERα) is a key regulator of reproductive function, particularly in ovarian development and function, yet the specifics of its role at the molecular level remain unclear. AIMS The study aims to elucidate the molecular mechanisms of ERα-regulated transcriptional dynamics in ovarian cells using ERα knockout (αERKO) mice created via CRISPR/Cas9. METHODS Single-cell RNA sequencing (scRNA-seq) was used to compare transcriptomes from individual ovarian cells in both wild type and αERKO mice. Bioinformatics analyses identified distinct cell populations and their transcriptional profiles post ERα deletion. KEY RESULTS Distinct oocyte and granulosa cell populations were identified, with ERα deletion disrupting the regulation of genes linked to ovarian infertility, the ovulation cycle, and steroidogenesis. Greb1 expression in granulosa cells was found to be ERα-dependent. CONCLUSIONS ERα deletion significantly alters the transcriptional landscape of ovarian cells, affecting genes and pathways central to ovarian function and the ovulation process. IMPLICATIONS The findings provide an in-depth, single-cell view of ERα's role in the reproductive system, offering insights that may lead to novel treatments for ovarian disorders.
Collapse
Affiliation(s)
- Qicai Hu
- Center of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, China
- Institute of Obstetrics and Gynecology, Shenzhen PKU-HKUST Medical Center, Shenzhen, P. R. China
- Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecologic Diseases, Shenzhen, P. R. China
| | - Yiqian Gui
- Institute Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Congcong Cao
- Guangdong and Shenzhen Key Laboratory of Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen PKU-HKUST Medical Center, Shenzhen, China
| | - Jun Xie
- Guangdong and Shenzhen Key Laboratory of Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen PKU-HKUST Medical Center, Shenzhen, China
| | - Huiru Tang
- Center of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, China
- Cheerland Watson Precision Medicine Co. LTD, Shenzhen, China
| |
Collapse
|
3
|
Douglas JC, Sekulovski N, Arreola MR, Oh Y, Hayashi K, MacLean JA. Normal Ovarian Function in Subfertile Mouse with Amhr2-Cre-Driven Ablation of Insr and Igf1r. Genes (Basel) 2024; 15:616. [PMID: 38790245 PMCID: PMC11121541 DOI: 10.3390/genes15050616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Insulin receptor signaling promotes cell differentiation, proliferation, and growth which are essential for oocyte maturation, embryo implantation, endometrial decidualization, and placentation. The dysregulation of insulin signaling in women with metabolic syndromes including diabetes exhibits poor pregnancy outcomes that are poorly understood. We utilized the Cre/LoxP system to target the tissue-specific conditional ablation of insulin receptor (Insr) and insulin-like growth factor-1 receptor (Igf1r) using an anti-Mullerian hormone receptor 2 (Amhr2) Cre-driver which is active in ovarian granulosa and uterine stromal cells. Our long-term goal is to examine insulin-dependent molecular mechanisms that underlie diabetic pregnancy complications, and our conditional knockout models allow for such investigation without confounding effects of ligand identity, source and cross-reactivity, or global metabolic status within dams. Puberty occurred with normal timing in all conditional knockout models. Estrous cycles progressed normally in Insrd/d females but were briefly stalled in diestrus in Igf1rd/d and double receptor (DKO) mice. The expression of vital ovulatory genes (Lhcgr, Pgr, Ptgs2) was not significantly different in 12 h post-hCG superovulated ovaries in knockout mice. Antral follicles exhibited an elevated apoptosis of granulosa cells in Igf1rd/d and DKO mice. However, the distribution of ovarian follicle subtypes and subsequent ovulations was normal in all insulin receptor mutants compared to littermate controls. While ovulation was normal, all knockout lines were subfertile suggesting that the loss of insulin receptor signaling in the uterine stroma elicits implantation and decidualization defects responsible for subfertility in Amhr2-Cre-derived insulin receptor mutants.
Collapse
Affiliation(s)
- Jenna C. Douglas
- Center for Reproductive Biology, School of Molecular Biosciences, Washington State University, Pullman, WA 99164, USA; (J.C.D.)
| | - Nikola Sekulovski
- Department of Physiology, Southern Illinois University, Carbondale, IL 62901, USA
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Madison R. Arreola
- Center for Reproductive Biology, School of Molecular Biosciences, Washington State University, Pullman, WA 99164, USA; (J.C.D.)
| | - Yeongseok Oh
- Center for Reproductive Biology, School of Molecular Biosciences, Washington State University, Pullman, WA 99164, USA; (J.C.D.)
| | - Kanako Hayashi
- Center for Reproductive Biology, School of Molecular Biosciences, Washington State University, Pullman, WA 99164, USA; (J.C.D.)
| | - James A. MacLean
- Center for Reproductive Biology, School of Molecular Biosciences, Washington State University, Pullman, WA 99164, USA; (J.C.D.)
- Department of Physiology, Southern Illinois University, Carbondale, IL 62901, USA
| |
Collapse
|
4
|
Oh Y, Kasu M, Bottoms CJ, Douglas JC, Sekulovski N, Hayashi K, MacLean II JA. Rhox8 homeobox gene ablation leads to rete testis abnormality and male subfertility in mice†. Biol Reprod 2023; 109:520-532. [PMID: 37471646 PMCID: PMC10577278 DOI: 10.1093/biolre/ioad077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 07/10/2023] [Accepted: 07/15/2023] [Indexed: 07/22/2023] Open
Abstract
The reproductive homeobox X-linked (Rhox) genes encode transcription factors that are expressed selectively in reproductive tissues including the testis, epididymis, ovary, and placenta. While many Rhox genes are expressed in germ cells in the mouse testis, only Rhox8 is expressed exclusively in the Sertoli cells during embryonic and postnatal development, suggesting a possible role of Rhox8 in embryonic gonad development. Previously, Sertoli cell-specific knockdown of RHOX8 resulted in male subfertility due to germ cell defects. However, this knockdown model was limited in examining the functions of Rhox8 as RHOX8 knockdown occurred only postnatally, and there was still residual RHOX8 in the testis. In this study, we generated new Rhox8 knockout (KO) mice using the CRISPR/Cas9 system. Sex determination and fetal testis development were apparently normal in mutant mice. Fertility analysis showed a low fecundity in Rhox8 KO adult males, with disrupted spermatogenic cycles, increased germ cell apoptosis, and reduced sperm count and motility. Interestingly, Rhox8 KO testes showed an increase in testis size with dilated seminiferous tubules and rete testis, which might be affected by efferent duct (ED) Rhox8 ablation dysregulating the expression of metabolism and transport genes in the EDs. Taken together, the data presented in this study suggest that Rhox8 in the Sertoli cells is not essential for sex determination and embryonic testis differentiation but has an important role in complete spermatogenesis and optimal male fertility.
Collapse
Affiliation(s)
- Yeongseok Oh
- Center for Reproductive Biology, School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
- Department of Physiology, Southern Illinois School of Medicine, Carbondale, IL, USA
| | - Maho Kasu
- Center for Reproductive Biology, School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Constence J Bottoms
- Center for Reproductive Biology, School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Jenna C Douglas
- Center for Reproductive Biology, School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Nikola Sekulovski
- Department of Physiology, Southern Illinois School of Medicine, Carbondale, IL, USA
| | - Kanako Hayashi
- Center for Reproductive Biology, School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
- Department of Physiology, Southern Illinois School of Medicine, Carbondale, IL, USA
| | - James A MacLean II
- Center for Reproductive Biology, School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
- Department of Physiology, Southern Illinois School of Medicine, Carbondale, IL, USA
| |
Collapse
|
5
|
Sekulovski N, Whorton AE, Shi M, Hayashi K, MacLean JA. Insulin signaling is an essential regulator of endometrial proliferation and implantation in mice. FASEB J 2021; 35:e21440. [PMID: 33749878 DOI: 10.1096/fj.202002448r] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 01/27/2021] [Accepted: 01/29/2021] [Indexed: 01/04/2023]
Abstract
Insulin signaling is critical for the development of preovulatory follicles and progression through the antral stage. Using a conditional knockout model that escapes this blockage, we recently described the role of insulin signaling in granulosa cells during the periovulatory window in mice lacking Insr and Igf1r driven by Pgr-Cre. These mice were infertile, exhibiting defects in ovulation, luteinization, steroidogenesis, and early embryo development. Herein, we demonstrate that while these mice exhibit normal uterine receptivity, uterine cell proliferation and decidualization are compromised resulting in complete absence of embryo implantation in uteri lacking both receptors. While the histological organization of double knockout mice appeared normal, the thickness of their endometrium was significantly reduced. This was supported by the reduced proliferation of both epithelial and stromal cells during the preimplantation stages of pregnancy. Expression and localization of the main drivers of uterine proliferation, ESR1 and PGR, was normal in knockouts, suggesting that insulin signaling acts downstream of these two receptors. While AKT/PI3K signaling was unaffected by insulin receptor ablation, activation of p44/42 MAPK was significantly reduced in both single and double knockout uteri at 3.5 dpc. Overall, we conclude that both INSR and IGF1R are necessary for optimal endometrial proliferation and implantation.
Collapse
Affiliation(s)
- Nikola Sekulovski
- Department of Physiology, Southern Illinois School of Medicine, Carbondale, IL, USA
| | - Allison E Whorton
- Department of Physiology, Southern Illinois School of Medicine, Carbondale, IL, USA
| | - Mingxin Shi
- Department of Physiology, Southern Illinois School of Medicine, Carbondale, IL, USA
| | - Kanako Hayashi
- Department of Physiology, Southern Illinois School of Medicine, Carbondale, IL, USA.,Center for Reproductive Biology, Washington State University, Pullman, WA, USA
| | - James A MacLean
- Department of Physiology, Southern Illinois School of Medicine, Carbondale, IL, USA.,Center for Reproductive Biology, Washington State University, Pullman, WA, USA.,School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| |
Collapse
|
6
|
Tan K, Song HW, Wilkinson MF. RHOX10 drives mouse spermatogonial stem cell establishment through a transcription factor signaling cascade. Cell Rep 2021; 36:109423. [PMID: 34289349 PMCID: PMC8357189 DOI: 10.1016/j.celrep.2021.109423] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/17/2021] [Accepted: 06/28/2021] [Indexed: 12/31/2022] Open
Abstract
Spermatogonial stem cells (SSCs) are essential for male fertility. Here, we report that mouse SSC generation is driven by a transcription factor (TF) cascade controlled by the homeobox protein, RHOX10, which acts by driving the differentiation of SSC precursors called pro-spermatogonia (ProSG). We identify genes regulated by RHOX10 in ProSG in vivo and define direct RHOX10-target genes using several approaches, including a rapid temporal induction assay: iSLAMseq. Together, these approaches identify temporal waves of RHOX10 direct targets, as well as RHOX10 secondary-target genes. Many of the RHOX10-regulated genes encode proteins with known roles in SSCs. Using an in vitro ProSG differentiation assay, we find that RHOX10 promotes mouse ProSG differentiation through a conserved transcriptional cascade involving the key germ-cell TFs DMRT1 and ZBTB16. Our study gives important insights into germ cell development and provides a blueprint for how to define TF cascades.
Collapse
Affiliation(s)
- Kun Tan
- Department of Obstetrics, Gynecology, and Reproductive Sciences, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Hye-Won Song
- Department of Obstetrics, Gynecology, and Reproductive Sciences, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Miles F Wilkinson
- Department of Obstetrics, Gynecology, and Reproductive Sciences, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Institute of Genomic Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
7
|
Abstract
Transposable elements (TEs) are mobile sequences that engender widespread mutations and thus are a major hazard that must be silenced. The most abundant active class of TEs in mammalian genomes is long interspersed element class 1 (LINE1). Here, we report that LINE1 transposition is suppressed in the male germline by transcription factors encoded by a rapidly evolving X-linked homeobox gene cluster. LINE1 transposition is repressed by many members of this RHOX transcription factor family, including those with different patterns of expression during spermatogenesis. One family member-RHOX10-suppresses LINE1 transposition during fetal development in vivo when the germline would otherwise be susceptible to LINE1 activation because of epigenetic reprogramming. We provide evidence that RHOX10 suppresses LINE transposition by inducing Piwil2, which encodes a key component in the Piwi-interacting RNA pathway that protects against TEs. The ability of RHOX transcription factors to suppress LINE1 is conserved in humans but is lost in RHOXF2 mutants from several infertile human patients, raising the possibility that loss of RHOXF2 causes human infertility by allowing uncontrolled LINE1 expression in the germline. Together, our results support a model in which the Rhox gene cluster is in an evolutionary arms race with TEs, resulting in expansion of the Rhox gene cluster to suppress TEs in different biological contexts.
Collapse
|
8
|
Sekulovski N, Whorton AE, Shi M, Hayashi K, MacLean JA. Periovulatory insulin signaling is essential for ovulation, granulosa cell differentiation, and female fertility. FASEB J 2020; 34:2376-2391. [PMID: 31908002 PMCID: PMC7781071 DOI: 10.1096/fj.201901791r] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 11/20/2019] [Accepted: 11/29/2019] [Indexed: 12/12/2022]
Abstract
Recent studies have demonstrated an essential role for insulin signaling in folliculogenesis as conditional ablation of Igf1r in primary follicles elicits defective follicle-stimulating hormone responsiveness blocking development at the preantral stage. Thus the potential role of insulin action in the periovulatory window and in the corpus luteum is unknown. To examine this, we generated conditional Insr,Igf1r, and double receptor knockout mice driven by Pgr-Cre. These models escape the preantral follicle block and in response to superovulatory gonadotropins exhibit normal distribution of ovarian follicles and corpora lutea. However, single ablation of Igf1r leads to subfertility and mice lacking both receptors are infertile. Double knockout mice have impaired oocyte development and ovulation. While some oocytes are released and fertilized, subsequent embryo development is retarded, and the embryos potentially fail to thrive due to lack of luteal support. In support of this, we found reduced expression of key enzymes in the steroid synthesis pathway and reduced serum progesterone. In addition to metabolic and steroidogenic pathways, RNA-sequencing analysis revealed transcription factor-3 as an important transcription factor downstream of insulin signaling. Collectively, these results highlight the importance of growth factors of the insulin family during two distinct windows of follicular development, ovulation, and luteinization.
Collapse
Affiliation(s)
- Nikola Sekulovski
- Department of Physiology, Southern Illinois University School of Medicine, Life Science III, Carbondale, IL, USA
| | - Allison E Whorton
- Department of Physiology, Southern Illinois University School of Medicine, Life Science III, Carbondale, IL, USA
| | - Mingxin Shi
- Department of Physiology, Southern Illinois University School of Medicine, Life Science III, Carbondale, IL, USA
| | - Kanako Hayashi
- Department of Physiology, Southern Illinois University School of Medicine, Life Science III, Carbondale, IL, USA
| | - James A MacLean
- Department of Physiology, Southern Illinois University School of Medicine, Life Science III, Carbondale, IL, USA
| |
Collapse
|
9
|
Starvation during pregnancy impairs fetal oogenesis and folliculogenesis in offspring in the mouse. Cell Death Dis 2018; 9:452. [PMID: 29670080 PMCID: PMC5906686 DOI: 10.1038/s41419-018-0492-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 03/10/2018] [Accepted: 03/15/2018] [Indexed: 12/14/2022]
Abstract
Although it is becoming increasingly evident that maternal starvation during pregnancy can have permanent effects on a range of physiological processes in the offspring, scant information is available about the consequence of such condition for oogenesis and hence for lifetime reproductive success of progeny in mammals. In the present study, we address this topic by starving pregnant mice at the time of ovarian differentiation (12.5 days post coitum (dpc)) for three consecutive days and analyzed the consequence first on the survival of the fetal oocytes and their capability to progress throughout the stages of meiotic prophase I (MPI) and then on the postnatal folliculogenesis of the offspring. The results showed that maternal starvation increased apoptosis in the fetal ovaries, resulting in reduction of the oocyte number. Moreover, MPI progression was slowed down in the surviving oocytes and the expression of DNA repair players in the starved ovaries increased. Transcriptome analysis identified 61 differentially expressed genes between control and starved ovaries, the most part of these being involved in metabolic processes. A significant decrease in the percentage of oocytes enclosed in primordial follicles and the expression of oocyte genes critically involved in folliculogenesis such as Nobox, Lhx8 and Sohlh2 in the 3 days post partum (dpp) starved ovaries were found. Finally, at the time of juvenile period (21 dpp), the number of oocytes and antral follicles resulted significantly lower in the ovaries of the offspring from starved mothers in comparison to controls. Our findings support the notion that maternal starvation can affect ovary development in the offspring that could adversely affect their reproductive success in the adult life.
Collapse
|
10
|
Shi M, Sekulovski N, MacLean JA, Hayashi K. Effects of bisphenol A analogues on reproductive functions in mice. Reprod Toxicol 2017; 73:280-291. [DOI: 10.1016/j.reprotox.2017.06.134] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 06/16/2017] [Accepted: 06/22/2017] [Indexed: 11/29/2022]
|
11
|
Molecular Effects of Polymorphism in the 3'UTR of Unc-5 homolog C Associated with Conception Rate in Holsteins. PLoS One 2015; 10:e0131283. [PMID: 26147436 PMCID: PMC4493121 DOI: 10.1371/journal.pone.0131283] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2014] [Accepted: 06/01/2015] [Indexed: 11/20/2022] Open
Abstract
Conception rates among dairy cows in Japan have declined in recent decades. To enhance our understanding of the genes involved in conception rates, we conducted a genome-wide association study (GWAS) using 822 Holsteins and identified a single-nucleotide polymorphism (SNP) associated with conception rate: A+169G in the 3’ untranslated region (UTR) of unc-5 homolog C (UNC5C). Cows with higher conception rates carried the A polymorphism in the UNC5C 3’UTR. Luciferase assays and quantitative analysis of allele ratios revealed that UNC5C transcripts with the A polymorphism were expressed at higher levels than those carrying the G polymorphism. UNC5C transmits either pro- or anti-apoptotic signals depending on the availability of its ligand, Netrin-1. UNC5C expression is negatively regulated by reproductive homeobox X-linked 5 (Rhox5), and the Rhox5 locus is methylated by G9a methyltransferase. G9a-knockout mice have previously been demonstrated to be subfertile, and we found that UNC5C, G9a, and Netrin-1 expression levels increased from the 4-cell stage to the blastocyst stage in fertilized murine embryos, whereas Rhox5 expression decreased. Repression of UNC5C, G9a, or Netrin-1 or forced expression of Rhox5 in the anterior nucleus stage inhibited development to the blastocyst stage, suggesting that cows carrying the G polymorphism in UNC5C might have lower conception rates because of the poor development of preimplantation embryos. This study provides novel insights into the role of UNC5C during embryonic development.
Collapse
|
12
|
Welborn JP, Davis MG, Ebers SD, Stodden GR, Hayashi K, Cheatwood JL, Rao MK, MacLean JA. Rhox8 Ablation in the Sertoli Cells Using a Tissue-Specific RNAi Approach Results in Impaired Male Fertility in Mice. Biol Reprod 2015; 93:8. [PMID: 25972016 DOI: 10.1095/biolreprod.114.124834] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Accepted: 05/11/2015] [Indexed: 12/27/2022] Open
Abstract
The reproductive homeobox X-linked, Rhox, genes encode transcription factors that are selectively expressed in reproductive tissues. While there are 33 Rhox genes in mice, only Rhox and Rhox8 are expressed in Sertoli cells, suggesting that they may regulate the expression of somatic-cell gene products crucial for germ cell development. We previously characterized Rhox5-null mice, which are subfertile, exhibiting excessive germ cell apoptosis and compromised sperm motility. To assess the role of Rhox8 in Sertoli cells, we used a tissue-specific RNAi approach to knockdown RHOX8 in vivo, in which the Rhox5 promoter was used to drive Rhox8-siRNA transgene expression in the postnatal Sertoli cells. Western and immunohistochemical analysis confirmed Sertoli-specific knockdown of RHOX8. However, other Sertoli markers, Gata1 and Rhox5, maintained normal expression patterns, suggesting that the knockdown was specific. Interestingly, male RHOX8-knockdown animals showed significantly reduced spermatogenic output, increased germ cell apoptosis, and compromised sperm motility, leading to impaired fertility. Importantly, our results revealed that while some RHOX5-dependent factors were also misregulated in Sertoli cells of RHOX8-knockdown animals, the majority were not, and novel putative RHOX8-regulated genes were identified. This suggests that while reduction in levels of RHOX5 and RHOX8 in Sertoli cells elicits similar phenotypes, these genes are not entirely redundant. Taken together, our study underscores the importance of Rhox genes in male fertility and suggests that Sertoli cell-specific expression of Rhox5 and Rhox8 is critical for complete male fertility.
Collapse
Affiliation(s)
- Joshua P Welborn
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, Illinois
| | - Matthew G Davis
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, Illinois
| | - Steven D Ebers
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, Illinois
| | - Genna R Stodden
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, Illinois
| | - Kanako Hayashi
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, Illinois
| | - Joseph L Cheatwood
- Department of Anatomy, Southern Illinois University School of Medicine, Carbondale, Illinois
| | - Manjeet K Rao
- Department of Cellular and Structural Biology, Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - James A MacLean
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, Illinois
| |
Collapse
|
13
|
Pan B, Toms D, Shen W, Li J. MicroRNA-378 regulates oocyte maturation via the suppression of aromatase in porcine cumulus cells. Am J Physiol Endocrinol Metab 2015; 308:E525-34. [PMID: 25628423 PMCID: PMC4360015 DOI: 10.1152/ajpendo.00480.2014] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We sought to investigate whether miR-378 plays a role in cumulus cells and whether the manipulation of miRNA levels in cumulus cells influences oocyte maturation in vitro. Cumulus-oocyte complexes (COCs) from ovarian follicles had significantly lower levels of precursor and mature miR-378 in cumulus cells surrounding metaphase II (MII) oocytes than cumulus cells surrounding germinal vesicle (GV) oocytes, suggesting a possible role of miR-378 during COC maturation. Overexpression of miR-378 in cumulus cells impaired expansion and decreased expression of genes associated with expansion (HAS2, PTGS2) and oocyte maturation (CX43, ADAMTS1, PGR). Cumulus cell expression of miR-378 also suppressed oocyte progression from the GV to MII stage (from 54 ± 2.7 to 31 ± 5.1%), accompanied by a decrease of growth differentiation factor 9 (GDF9), bone morphogenetic protein 15 (BMP15), zona pellucida 3 (ZP3), and CX37 in the oocytes. Subsequent in vitro fertilization resulted in fewer oocytes from COCs overexpressing miR-378 reaching the blastocyst stage (7.3 ± 0.7 vs. 16.6 ± 0.5%). miR-378 knockdown led to increased cumulus expansion and oocyte progression to MII, confirming a specific effect of miR-378 in suppressing COC maturation. Aromatase (CYP19A1) expression in cumulus cells was also inhibited by miR-378, leading to a significant decrease in estradiol production. The addition of estradiol to IVM culture medium reversed the effect of miR-378 on cumulus expansion and oocyte meiotic progression, suggesting that decreased estradiol production via suppression of aromatase may be one of the mechanisms by which miR-378 regulates the maturation of COCs. Our data suggest that miR-378 alters gene expression and function in cumulus cells and influences oocyte maturation, possibly via oocyte-cumulus interaction and paracrine regulation.
Collapse
Affiliation(s)
- Bo Pan
- Department of Animal and Poultry Science, University of Guelph, Guelph, Ontario, Canada; and
| | - Derek Toms
- Department of Animal and Poultry Science, University of Guelph, Guelph, Ontario, Canada; and
| | - Wei Shen
- Laboratory of Germ Cell Biology, College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Julang Li
- Department of Animal and Poultry Science, University of Guelph, Guelph, Ontario, Canada; and
| |
Collapse
|
14
|
MacLean JA, Hu Z, Welborn JP, Song HW, Rao MK, Wayne CM, Wilkinson MF. The RHOX homeodomain proteins regulate the expression of insulin and other metabolic regulators in the testis. J Biol Chem 2013; 288:34809-25. [PMID: 24121513 DOI: 10.1074/jbc.m113.486340] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Defects in cellular metabolism have been widely implicated in causing male infertility, but there has been little progress in understanding the underlying mechanism. Here we report that several key metabolism genes are regulated in the testis by Rhox5, the founding member of a large X-linked homeobox gene cluster. Among these Rhox5-regulated genes are insulin 2 (Ins2), resistin (Retn), and adiponectin (Adipoq), all of which encode secreted proteins that have profound and wide-ranging effects on cellular metabolism. The ability of Rhox5 to regulate their levels in the testis has the potential to dictate metabolism locally in this organ, given the existence of the blood-testes barrier. We demonstrate that Ins2 is a direct target of Rhox5 in Sertoli cells, and we show that this regulation is physiologically significant, because Rhox5-null mice fail to up-regulate Ins2 expression during the first wave of spermatogenesis and have insulin-signaling defects. We identify other Rhox family members that induce Ins2 transcription, define protein domains and homeodomain amino acid residues crucial for this property, and demonstrate that this regulation is conserved. Rhox5-null mice also exhibit altered expression of other metabolism genes, including those encoding the master transcriptional regulators of metabolism, PPARG and PPARGC1A, as well as SCD1, the rate-limiting enzyme for fatty acid metabolism. These results, coupled with the known roles of RHOX5 and its target metabolism genes in spermatogenesis in vivo, lead us to propose a model in which RHOX5 is a central transcription factor that promotes the survival of male germ cells via its effects on cellular metabolism.
Collapse
Affiliation(s)
- James A MacLean
- From the Department of Physiology, Southern Illinois University School of Medicine, Carbondale, Illinois 62901
| | | | | | | | | | | | | |
Collapse
|
15
|
Lee SE, Lee SY, Lee KA. Rhox in mammalian reproduction and development. Clin Exp Reprod Med 2013; 40:107-14. [PMID: 24179867 PMCID: PMC3811726 DOI: 10.5653/cerm.2013.40.3.107] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2013] [Revised: 09/10/2013] [Accepted: 09/10/2013] [Indexed: 01/06/2023] Open
Abstract
Homeobox genes play essential roles in embryonic development and reproduction. Recently, a large cluster of homeobox genes, reproductive homeobox genes on the X chromosome (Rhox) genes, was discovered as three gene clusters, α, β, and γ in mice. It was found that Rhox genes were selectively expressed in reproduction-associated tissues, such as those of the testes, epididymis, ovaries, and placenta. Hence, it was proposed that Rhox genes are important for regulating various reproductive features, especially gametogenesis in male as well as in female mammals. It was first determined that 12 Rhox genes are clustered into α (Rhox1-4), β (Rhox5-9), and γ (Rhox10-12) subclusters, and recently Rhox13 has also been found. At present, 33 Rhox genes have been identified in the mouse genome, 11 in the rat, and three in the human. Rhox genes are also responsible for embryonic development, with considerable amounts of Rhox expression in trophoblasts, placenta tissue, embryonic stem cells, and primordial germ cells. In this article we summarized the current understanding of Rhox family genes involved in reproduction and embryonic development and elucidated a previously unreported cell-specific expression in ovarian cells.
Collapse
Affiliation(s)
- Sang-Eun Lee
- Department of Biomedical Science, College of Life Science, CHA University, Seoul, Korea
| | | | | |
Collapse
|