1
|
Brewer A, Girka E, Dalton A, Gutierrez-Castillo E, Bondioli KR. Bovine oocyte vitrification and recovery with ethylene glycol and either propylene glycol or dimethyl sulfoxide. Theriogenology 2025; 242:117439. [PMID: 40222315 DOI: 10.1016/j.theriogenology.2025.117439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/21/2025] [Accepted: 04/08/2025] [Indexed: 04/15/2025]
Abstract
Cryopreservation of female gametes allows for preservation and transportation of superior genetics; however, cryoinjury and cryoprotectant toxicity often affects the viability of oocytes that do survive the procedure due to the use of suboptimal protocols designed for embryo cryopreservation. With significant differences in cryoprotectant sensitivity and plasma membrane permeability between oocytes and embryos, there is a continued need to develop protocols accounting for the unique physiology of oocytes. In this study, oocyte recovery after vitrification with ethylene glycol and either dimethyl sulfoxide or propylene glycol were evaluated with reduced equilibration time compared to prior studies. In mature oocytes thawed after cryopreservation with the combination of dimethyl sulfoxide and ethylene glycol displayed increased mitochondrial membrane potential and reduced reactive oxygen species compared to those cryopreserved with propylene glycol and ethylene glycol (P < 0.05). The combination of propylene glycol and ethylene glycol only displayed improved recovery of the meiotic spindle measured by microtubule arrangement and chromosome distribution (P < 0.05). There were no differences in adenosine triphosphate (ATP) concentration or the number of ATP-depleted oocytes between those cryopreserved with dimethyl sulfoxide or propylene glycol (P > 0.05). Both mitochondrial and meiotic spindle functionality are vital for embryo development, and the concentration of cryoprotectants required to achieve vitrification affects both aspects of oocyte physiology. Further improvements to oocyte vitrification protocols are necessary to minimize damage induced during the procedure and improve reliability of the technology.
Collapse
Affiliation(s)
- Ashlyn Brewer
- School of Animal Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA, USA
| | - Emily Girka
- School of Animal Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA, USA
| | - Ashton Dalton
- School of Animal Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA, USA
| | | | - Kenneth R Bondioli
- School of Animal Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA, USA.
| |
Collapse
|
2
|
Ashibe S, Kobayashi Y, Toishikawa S, Nagao Y. Effects of maternal liver abnormality on in vitro maturation of bovine oocytes. ZYGOTE 2025; 33:32-37. [PMID: 39757829 DOI: 10.1017/s0967199424000352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
In cattle, maternal metabolic health has been suggested to influence oocyte and embryo quality. Here, we examined whether maternal liver abnormalities affected in vitro oocyte maturation by screening meiotic maturation, spindle morphology, actin filaments, and lysosomes. In oocytes from the abnormal liver group, the maturation rate (80.2%) was significantly lower compared to a control group with healthy livers (90.8%; P < 0.05). Mean spindle area in oocytes of the abnormal group (50.4 ± 3.4 μm2) was significantly larger than in the control (40.8 ± 1.6 μm2; P < 0.05). Likewise, mean spindle width in the abnormal group (8.8 ± 0.3 μm) was significantly larger than in the control group (7.8 ± 0.2 μm; P < 0.05). The proportion of cells with correctly aligned chromosomes in the abnormal group (48.0%) was significantly lower than in the control (78.3%; P < 0.05). The number of cortical actin filaments in mature oocytes of the abnormal group (299.3 ± 3.7) was significantly lower than in the control (314.7 ± 3.2; P < 0.05). The number of lysosomes in mature oocytes of the abnormal group (1363.6 ± 39.0) was significantly higher than in the control (1123.4 ± 26.3; P < 0.05). In conclusion, our findings indicate that the quality of in vitro matured oocytes is lower in cattle with liver abnormalities than in healthy cattle.
Collapse
Affiliation(s)
- Shiori Ashibe
- University Farm, Faculty of Agriculture, Utsunomiya University, Utsunomiya, Tochigi 321-4415, Japan
| | - Yui Kobayashi
- University Farm, Faculty of Agriculture, Utsunomiya University, Utsunomiya, Tochigi 321-4415, Japan
| | - Shusuke Toishikawa
- University Farm, Faculty of Agriculture, Utsunomiya University, Utsunomiya, Tochigi 321-4415, Japan
| | - Yoshikazu Nagao
- University Farm, Faculty of Agriculture, Utsunomiya University, Utsunomiya, Tochigi 321-4415, Japan
| |
Collapse
|
3
|
Sciorio R, Cantatore C, D'Amato G, Smith GD. Cryopreservation, cryoprotectants, and potential risk of epigenetic alteration. J Assist Reprod Genet 2024; 41:2953-2967. [PMID: 39436484 PMCID: PMC11621268 DOI: 10.1007/s10815-024-03287-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 10/02/2024] [Indexed: 10/23/2024] Open
Abstract
The cryopreservation of gametes and embryos has increased notably over the past 20 years and is now an essential part of assisted reproductive technologies (ARTs). However, because the cryopreservation process is un-physiological for human cells, gametes, and embryos, cryobiologists have suggested diverse methods to successfully cryopreserve human gametes and embryos in order to maintain their viability and assure successful pregnancy. During the first period of early development, major waves of epigenetic reprogramming-crucial for the fate of the embryo-occur. Recently, concerns relating to the increased incidence of epigenetic anomalies and genomic-imprinting disorders have been reported after ARTs and cryopreservation. Epigenetic reprogramming is particularly susceptible to environmental and un-physiological conditions such as ovarian stimulation, embryo culture, and cryopreservation that might collectively affect epigenetics dysregulation. Additionally, recent literature suggests that epigenetic and transcriptomic profiles are sensitive to the stress induced by vitrification, osmotic shock, oxidative stress, rapid temperature and pH changes, and cryoprotectants; it is therefore critical to have a more comprehensive understanding of the potential induced perturbations of epigenetic modifications that may be associated with vitrification. The aim of this paper is to present a critical evaluation of the association of gamete and embryo cryopreservation, use of cryoprotectants, and epigenetic dysregulations with potential long-term consequences for offspring health.
Collapse
Affiliation(s)
- Romualdo Sciorio
- Fertility Medicine and Gynaecological Endocrinology Unit, Department Woman-Mother-Child, Lausanne University Hospital, Lausanne, Switzerland
| | - Clementina Cantatore
- Department of Advanced Reproductive Risk Management and High-Risk Pregnancies, ASL Bari, Reproductive and IVF Unit, PTA Conversano, Conversano, BA, Italy
| | - Giuseppe D'Amato
- Department of Advanced Reproductive Risk Management and High-Risk Pregnancies, ASL Bari, Reproductive and IVF Unit, PTA Conversano, Conversano, BA, Italy
| | - Gary D Smith
- Departments of Obstetrics and Gynecology, Physiology, and Urology and Reproductive Sciences Program, University of Michigan, 4742F Medical Sciences II, 1301 E. Catherine Street, Ann Arbor, MI, 48109-056171500, USA.
| |
Collapse
|
4
|
Zhu Y, Liu H, Zheng L, Luo Y, Zhou G, Li J, Hou Y, Fu X. Vitrification of Mammalian Oocytes: Recent Studies on Mitochondrial Dysfunction. Biopreserv Biobank 2024; 22:428-440. [PMID: 38227396 DOI: 10.1089/bio.2023.0062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024] Open
Abstract
Vitrification of reproductive cells is definitely essential and integral in animal breeding, as well as in assisted reproduction. However, issues accompanied with this technology such as decreased oocyte competency and relatively low embryo survival rates appear to be a tough conundrum that has long perplexed us. As significant organelles in cell metabolism, mitochondria play pivotal roles in numerous pathways. Nonetheless, extensive evidence has demonstrated that vitrification can seriously impair mitochondrial function in mammalian oocytes. Thus, in this article, we summarize the current progress in oocyte vitrification and particularly outline the common mitochondrial abnormalities alongside subsequent injury cascades seen in mammalian oocytes following vitrification. Based on existing literature, we tentatively come up with the potential mechanisms related to mitochondrial dysfunction and generalize efficacious ways which have been recommended to restore mitochondrial function.
Collapse
Affiliation(s)
- Yixiao Zhu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the MARA, National Engineering Laboratory for Animal Breeding, Beijing Key Laboratory for Animal Genetic Improvement, State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
| | - Hongyu Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the MARA, National Engineering Laboratory for Animal Breeding, Beijing Key Laboratory for Animal Genetic Improvement, State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
| | - Lv Zheng
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the MARA, National Engineering Laboratory for Animal Breeding, Beijing Key Laboratory for Animal Genetic Improvement, State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
| | - Yuwen Luo
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Guizhen Zhou
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the MARA, National Engineering Laboratory for Animal Breeding, Beijing Key Laboratory for Animal Genetic Improvement, State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
| | - Jun Li
- Department of Reproductive Medicine, Reproductive Medical Center, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yunpeng Hou
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xiangwei Fu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the MARA, National Engineering Laboratory for Animal Breeding, Beijing Key Laboratory for Animal Genetic Improvement, State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
| |
Collapse
|
5
|
Ezoe K, Onogi S, Sawado A, Amagai A, Kato K. Maternal and obstetric outcomes following the transfer of embryos warmed with fatty acid-supplemented solutions. BMC Pregnancy Childbirth 2024; 24:343. [PMID: 38704546 PMCID: PMC11069166 DOI: 10.1186/s12884-024-06546-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 04/26/2024] [Indexed: 05/06/2024] Open
Abstract
BACKGROUND Vitrification procedures decrease intracytoplasmic lipid content and impair developmental competence. Adding fatty acids (FAs) to the warming solution has been shown to recover the lipid content of the cytoplasm and improve developmental competence and pregnancy outcomes. However, the influence of the FA supplementation on live birth rates after embryo transfers and perinatal outcomes remains unknown. In the present study, we examined the influence of FA-supplemented warming solutions on live birth rates, pregnancy complications, and neonatal outcomes after single vitrified-warmed cleavage-stage embryo transfers (SVCTs). METHODS The clinical records of 701 treatment cycles in 701 women who underwent SVCTs were retrospectively analyzed. Vitrified embryos were warmed using solutions (from April 2022 to June 2022, control group) or FA-supplemented solutions (from July 2022 to September 2022, FA group). The live birth rate, pregnancy complications, and perinatal outcomes were compared between the control and FA groups. RESULTS The live birth rate per transfer was significantly higher in the FA group than in the control group. Multivariate logistic regression analysis further demonstrated a higher probability of live births in the FA group than in the control group. Miscarriage rates, the incidence and types of pregnancy complications, the cesarean section rate, gestational age, incidence of preterm delivery, birth length and weight, incidence of low birth weight, infant sex, and incidence of birth defects were all comparable between the control and FA groups. Multivariate logistic regression analysis further demonstrated no adverse effects of FA-supplemented warming solutions. CONCLUSIONS FA-supplemented warming solutions improved live birth rates after SVCTs without exerting any adverse effects on maternal and obstetric outcomes. Therefore, FA-supplemented solutions can be considered safe and effective for improving clinical outcomes and reducing patient burden.
Collapse
Affiliation(s)
- Kenji Ezoe
- Kato Ladies Clinic, 7-20-3 Nishishinjyuku, Shinjyuku-ku, Tokyo, 160-0023, Japan
| | - Sachie Onogi
- Kato Ladies Clinic, 7-20-3 Nishishinjyuku, Shinjyuku-ku, Tokyo, 160-0023, Japan
| | - Ayano Sawado
- Kato Ladies Clinic, 7-20-3 Nishishinjyuku, Shinjyuku-ku, Tokyo, 160-0023, Japan
| | - Ayumi Amagai
- Kato Ladies Clinic, 7-20-3 Nishishinjyuku, Shinjyuku-ku, Tokyo, 160-0023, Japan
| | - Keiichi Kato
- Kato Ladies Clinic, 7-20-3 Nishishinjyuku, Shinjyuku-ku, Tokyo, 160-0023, Japan.
| |
Collapse
|
6
|
Daddangadi A, Uppangala S, Kabekkodu SP, Khan G N, Kalthur G, Talevi R, Adiga SK. Advanced Maternal Age Affects the Cryosusceptibility of Ovulated but not In Vitro Matured Mouse Oocytes. Reprod Sci 2024; 31:1420-1428. [PMID: 38294668 PMCID: PMC11090971 DOI: 10.1007/s43032-024-01462-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/12/2024] [Indexed: 02/01/2024]
Abstract
Oocyte cryopreservation is offered to women of various age groups for both health and social reasons. Oocytes derived from either controlled ovarian stimulation or in vitro maturation (IVM) are cryopreserved via vitrification. As maternal age is a significant determinant of oocyte quality, there is limited data on the age-related susceptibility of oocytes to the vitrification-warming procedure alone or in conjunction with IVM. In the present study, metaphase II oocytes obtained from 2, 6, 9, and 12 month old Swiss albino mice either by superovulation or IVM were used. To understand the association between maternal age and oocyte cryotolerance, oocytes were subjected to vitrification-warming and compared to non vitrified sibling oocytes. Survived oocytes were evaluated for mitochondrial potential, spindle integrity, relative expression of spindle checkpoint protein transcripts, and DNA double-strand breaks. Maturation potential and vitrification-warming survival were significantly affected (p < 0.001 and p < 0.05, respectively) in ovulated oocytes from the advanced age group but not in IVM oocytes. Although vitrification-warming significantly increased spindle abnormalities in ovulated oocytes from advanced maternal age (p < 0.01), no significant changes were observed in IVM oocytes. Furthermore, Bub1 and Mad2 transcript levels were significantly higher in vitrified-warmed IVM oocytes (p < 0.05). In conclusion, advanced maternal age can have a negative impact on the cryosusceptibility of ovulated oocytes but not IVM oocytes in mice.
Collapse
Affiliation(s)
- Akshatha Daddangadi
- Centre of Excellence in Clinical Embryology, Department of Reproductive Science, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, 576 104, India
| | - Shubhashree Uppangala
- Division of Reproductive Genetics, Department of Reproductive Science, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, 576 104, India
| | - Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576 104, India
| | - Nadeem Khan G
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576 104, India
| | - Guruprasad Kalthur
- Division of Reproductive Biology, Department of Reproductive Science, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, 576 104, India
| | - Riccardo Talevi
- Dipartimento Di Biologia, Università Di Napoli "Federico II", Complesso Universitario Di Monte S Angelo, Naples, Italy
| | - Satish Kumar Adiga
- Centre of Excellence in Clinical Embryology, Department of Reproductive Science, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, 576 104, India.
| |
Collapse
|
7
|
Sawado A, Ezoe K, Miki T, Ohata K, Amagai A, Shimazaki K, Okimura T, Kato K. Fatty acid supplementation during warming improves pregnancy outcomes after frozen blastocyst transfers: a propensity score-matched study. Sci Rep 2024; 14:9343. [PMID: 38653766 PMCID: PMC11039611 DOI: 10.1038/s41598-024-60136-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 04/19/2024] [Indexed: 04/25/2024] Open
Abstract
This study aimed to examine the viability of human blastocysts after warming with fatty acids (FAs) using an in vitro outgrowth model and to assess pregnancy outcomes after a single vitrified-warmed blastocyst transfer (SVBT). For the experimental study, we used 446 discarded vitrified human blastocysts donated for research purposes by consenting couples. The blastocysts were warmed using FA-supplemented (FA group) or non-FA-supplemented (control group) solutions. The outgrowth area was significantly larger in the FA group (P = 0.0428), despite comparable blastocyst adhesion rates between the groups. Furthermore, the incidence of outgrowth degeneration was significantly lower in the FA group than in the control group (P = 0.0158). For the clinical study, we retrospectively analyzed the treatment records of women who underwent SVBT in natural cycles between January and August 2022. Multiple covariates that affected the outcomes were used for propensity score matching as follows: 1342 patients in the FA group were matched to 2316 patients in the control group. Pregnancy outcomes were compared between the groups. The rates of implantation, clinical pregnancy, and ongoing pregnancy significantly increased in the FA group after SVBTs (P = 0.0091-0.0266). These results indicate that warming solutions supplemented with FAs improve blastocyst outgrowth and pregnancy outcomes after SVBTs.
Collapse
Affiliation(s)
- Ayano Sawado
- Kato Ladies Clinic, 7-20-3 Nishishinjuku, Shinjyuku-ku, Tokyo, 160-0023, Japan
| | - Kenji Ezoe
- Kato Ladies Clinic, 7-20-3 Nishishinjuku, Shinjyuku-ku, Tokyo, 160-0023, Japan.
| | - Tetsuya Miki
- Kato Ladies Clinic, 7-20-3 Nishishinjuku, Shinjyuku-ku, Tokyo, 160-0023, Japan
| | - Kazuki Ohata
- Kato Ladies Clinic, 7-20-3 Nishishinjuku, Shinjyuku-ku, Tokyo, 160-0023, Japan
| | - Ayumi Amagai
- Kato Ladies Clinic, 7-20-3 Nishishinjuku, Shinjyuku-ku, Tokyo, 160-0023, Japan
| | - Kiyoe Shimazaki
- Kato Ladies Clinic, 7-20-3 Nishishinjuku, Shinjyuku-ku, Tokyo, 160-0023, Japan
| | - Tadashi Okimura
- Kato Ladies Clinic, 7-20-3 Nishishinjuku, Shinjyuku-ku, Tokyo, 160-0023, Japan
| | - Keiichi Kato
- Kato Ladies Clinic, 7-20-3 Nishishinjuku, Shinjyuku-ku, Tokyo, 160-0023, Japan.
| |
Collapse
|
8
|
Cho JR, Yu EH, Lee HJ, Kim IH, Jeong JH, Lee DB, Cho SK, Joo JK. Ultra-Fast Vitrification: Minimizing the Toxicity of Cryoprotective Agents and Osmotic Stress in Mouse Oocyte Cryopreservation. Int J Mol Sci 2024; 25:1884. [PMID: 38339162 PMCID: PMC10856457 DOI: 10.3390/ijms25031884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/02/2024] [Accepted: 02/02/2024] [Indexed: 02/12/2024] Open
Abstract
Globally, women have been adopting oocyte cryopreservation (OC) for fertility preservation for various reasons, such as inevitable gonadotoxic treatment for specific pathologic states and social preferences. While conventional vitrification (C-VIT) has improved the success rate of OC, challenges of possible toxicities of high-concentration cryoprotective agents and osmotic stress persist. To overcome these challenges, we evaluated the ultra-fast vitrification (UF-VIT) method, which reduces the equilibration solution stage exposure time compared to C-VIT by observing mouse oocyte intracellular organelles and embryonic development. Consequently, compared to fresh mouse oocytes, UF-VIT presented significant differences only in endoplasmic reticulum (ER) intensity and mitochondrial (MT) distribution. Meanwhile, C-VIT showed substantial differences in the survival rate, key ER and MT parameters, and embryonic development rate. UF-VIT exhibited considerably fewer negative effects on key MT parameters and resulted in a notably higher blastocyst formation rate than C-VIT. Meiotic spindle (spindle and chromosomes) morphology showed no significant changes between the groups during vitrification/warming (VW), suggesting that VW did not negatively affect the meiotic spindle of the oocytes. In conclusion, UF-VIT seems more effective in OC owing to efficient cytoplasmic water molecule extraction, osmotic stress reduction, and minimization of cell contraction and expansion amplitude, thus compensating for the drawbacks of C-VIT.
Collapse
Affiliation(s)
- Jung-Ran Cho
- Infertility Center of Pusan National University Hospital, Busan 49241, Republic of Korea; (J.-R.C.); (J.-H.J.); (D.-B.L.)
- Laboratory of Animal Reproductive Physiology & Biotechnology, Department of Animal Science, Pusan National University Graduate School, Miryang 50463, Republic of Korea
| | - Eun-Hee Yu
- Department of Obstetrics and Gynecology, Pusan National University School of Medicine, Pusan National University Hospital Biomedical Research Institute, Busan 49241, Republic of Korea; (E.-H.Y.); (H.-J.L.); (I.-H.K.)
| | - Hyun-Joo Lee
- Department of Obstetrics and Gynecology, Pusan National University School of Medicine, Pusan National University Hospital Biomedical Research Institute, Busan 49241, Republic of Korea; (E.-H.Y.); (H.-J.L.); (I.-H.K.)
| | - In-Hye Kim
- Department of Obstetrics and Gynecology, Pusan National University School of Medicine, Pusan National University Hospital Biomedical Research Institute, Busan 49241, Republic of Korea; (E.-H.Y.); (H.-J.L.); (I.-H.K.)
| | - Ji-Hye Jeong
- Infertility Center of Pusan National University Hospital, Busan 49241, Republic of Korea; (J.-R.C.); (J.-H.J.); (D.-B.L.)
- Laboratory of Animal Reproductive Physiology & Biotechnology, Department of Animal Science, Pusan National University Graduate School, Miryang 50463, Republic of Korea
| | - Dan-Bi Lee
- Infertility Center of Pusan National University Hospital, Busan 49241, Republic of Korea; (J.-R.C.); (J.-H.J.); (D.-B.L.)
| | - Seong-Keun Cho
- Laboratory of Animal Reproductive Physiology & Biotechnology, Department of Animal Science, Pusan National University Graduate School, Miryang 50463, Republic of Korea
| | - Jong-Kil Joo
- Department of Obstetrics and Gynecology, Pusan National University School of Medicine, Pusan National University Hospital Biomedical Research Institute, Busan 49241, Republic of Korea; (E.-H.Y.); (H.-J.L.); (I.-H.K.)
| |
Collapse
|
9
|
Zhu Y, Zhang Z, Zhang GL, Jiang MX. Effects of multi-gradient equilibration during vitrification on oocyte survival and embryo development in mice. ZYGOTE 2023; 31:612-619. [PMID: 37997743 DOI: 10.1017/s0967199423000540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
Vitrification has been widely used for oocyte cryopreservation, but there is still a need for optimization to improve clinical outcomes. In this study, we compared the routine droplet merge protocol with modified multi-gradient equilibration vitrification for cryopreservation of mouse oocytes at metaphase II. Subsequently, the oocytes were thawed and subjected to intracytoplasmic sperm injection (ICSI). Oocyte survival and spindle status were evaluated by morphology and immunofluorescence staining. Moreover, the fertilization rates and blastocyst development were examined in vitro. The results showed that multi-gradient equilibration vitrification outperformed droplet merge vitrification in terms of oocyte survival, spindle morphology, blastocyst formation, and embryo quality. In contrast, droplet merge vitrification exhibited decreasing survival rates, a reduced proportion of oocytes with normal spindle morphology, and lower blastocyst rates as the number of loaded oocytes increased. Notably, when more than six oocytes were loaded, reduced oocyte survival rates, abnormal oocyte spindle morphology, and poor embryo quality were observed. These findings highlight that the vitrification of mouse metaphase II oocytes by the modified multi-gradient equilibration vitrification has the advantage of maintaining oocyte survival, spindle morphology, and subsequent embryonic development.
Collapse
Affiliation(s)
- Yan Zhu
- Medical Experimental Center, Guangdong Second Provincial General Hospital, Guangzhou 510317, People's Republic of China
| | - Zhen Zhang
- Medical Experimental Center, Guangdong Second Provincial General Hospital, Guangzhou 510317, People's Republic of China
| | - Guang-Li Zhang
- Center for Reproductive Medicine, Guangdong Second Provincial General Hospital, Guangzhou 510317, People's Republic of China
| | - Man-Xi Jiang
- Center for Reproductive Medicine, Guangdong Second Provincial General Hospital, Guangzhou 510317, People's Republic of China
| |
Collapse
|
10
|
Sciorio R, Pluchino N, Fuller BJ. Review of human oocyte cryopreservation in ART programs: Current challenges and opportunities. Cryobiology 2023; 113:104590. [PMID: 37804949 DOI: 10.1016/j.cryobiol.2023.104590] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/29/2023] [Accepted: 10/02/2023] [Indexed: 10/09/2023]
Abstract
Oocyte cryopreservation has notably increased in recent times, to become an essential part of clinical infertility treatment. Since the 1980s, many improvements in oocyte cryopreservation (OC) have been adopted, including the great advance with the application of vitrification. The commonly used vitrification protocol applies different cryoprotectants (Ethylene glycol and/or DMSO and/or PROH and sucrose and/or Trehalose) and two different steps: firstly, exposure in equilibration solution for 5-15 min, followed by a vitrification solution for 60-90 s at room temperature. The warming method includes a first step for 1 min at 37 °C and 3 subsequent steps at room temperature to remove the cryoprotectant for a total of 9-12 min. In addition, biosafety is a critical aspect to mention, and it is related to devices used during the vitrification, mainly in terms of whether the biological vitrified material comes in direct contact with liquid nitrogen (open vitrification) or not (closed vitrification), where LN2 may contain potentially contaminating viruses or pathogens. Furthermore, during early development major waves of epigenetic reprogramming take place. Recent literature suggests that epigenetic and transcriptomic profiles are sensitive to the stress induced by vitrification, including osmotic shock, temperature, rapid changes of pH and toxicity of cryoprotectants. It is, therefore, important to better understand the potential perturbations of epigenetic modifications that may be associated with the globally used vitrification methods. Therefore, we here discuss the benefits and efficiency of human oocyte vitrification; we also review the evidence surrounding oocyte cryopreservation-related epigenetic modifications and potential epigenetic dysregulations, together with long-term consequences for offspring health.
Collapse
Affiliation(s)
- Romualdo Sciorio
- Fertility Medicine and Gynaecological Endocrinology Unit, Department Woman-Mother-Child, CHUV-Lausanne University Hospital, 1011, Lausanne, Switzerland.
| | - Nicola Pluchino
- Fertility Medicine and Gynaecological Endocrinology Unit, Department Woman-Mother-Child, CHUV-Lausanne University Hospital, 1011, Lausanne, Switzerland
| | - Barry J Fuller
- Division of Surgery & Interventional Science, University College London Medical School, London, UK
| |
Collapse
|
11
|
Sun H, Guo Y, Yu R, Wang J, Liu Y, Chen H, Pang W, Yang G, Chu G, Gao L. Ru360 protects against vitrification-induced oocyte meiotic defects by restoring mitochondrial function. Theriogenology 2023; 204:40-49. [PMID: 37058855 DOI: 10.1016/j.theriogenology.2023.04.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/05/2023] [Accepted: 04/05/2023] [Indexed: 04/16/2023]
Abstract
Oocyte vitrification has been widely application in female fertility preservation. Recent studies found that vitrification of immature (germinal vesicle stage, GV) oocytes increased the risk of aneuploidy during meiotic maturation; however, the underlying mechanisms and the strategies to prevent this defect remain unexplored. In this study, we found that vitrification of GV oocytes decreased the first polarbody extrusion rate (90.51 ± 1.04% vs. 63.89 ± 1.39%, p < 0.05) and increased the aneuploid rate (2.50% vs. 20.00%, p < 0.05), accompanied with a series of defects during meiotic maturation, including aberrant spindle morphology, chromosome misalignment, incorrect Kinetochore-Microtubule attachments (KT-MTs) and weakened spindle assembly checkpoint protein complex (SAC) function. We also found that vitrification disrupted mitochondrial function by increasing mitochondrial Ca2+ levels. Importantly, inhibition of mitochondrial Ca2+ entry by 1 μM Ru360 significantly restored mitochondrial function and rescued the meiotic defects, indicating that the increase of mitochondrial Ca2+, at least, was a cause of meiotic defects in vitrified oocytes. These results shed light on the molecular mechanisms of oocyte vitrification-induced adverse effects of meiotic maturation and provided a potential strategy to improve oocyte cryopreservation protocols further.
Collapse
Affiliation(s)
- Haowei Sun
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Yaoyao Guo
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Ruochun Yu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Jialun Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Youxue Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Hui Chen
- Animal Husbandry Industry Test and Demonstration Center of Shaanxi Province, Jingyang, 713708, Shaanxi, China.
| | - Weijun Pang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Gongshe Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Guiyan Chu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Lei Gao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
12
|
Angel-Velez D, Meese T, Hedia M, Fernandez-Montoro A, De Coster T, Pascottini OB, Van Nieuwerburgh F, Govaere J, Van Soom A, Pavani K, Smits K. Transcriptomics Reveal Molecular Differences in Equine Oocytes Vitrified before and after In Vitro Maturation. Int J Mol Sci 2023; 24:ijms24086915. [PMID: 37108081 PMCID: PMC10138936 DOI: 10.3390/ijms24086915] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/27/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
In the last decade, in vitro embryo production in horses has become an established clinical practice, but blastocyst rates from vitrified equine oocytes remain low. Cryopreservation impairs the oocyte developmental potential, which may be reflected in the messenger RNA (mRNA) profile. Therefore, this study aimed to compare the transcriptome profiles of metaphase II equine oocytes vitrified before and after in vitro maturation. To do so, three groups were analyzed with RNA sequencing: (1) fresh in vitro matured oocytes as a control (FR), (2) oocytes vitrified after in vitro maturation (VMAT), and (3) oocytes vitrified immature, warmed, and in vitro matured (VIM). In comparison with fresh oocytes, VIM resulted in 46 differentially expressed (DE) genes (14 upregulated and 32 downregulated), while VMAT showed 36 DE genes (18 in each category). A comparison of VIM vs. VMAT resulted in 44 DE genes (20 upregulated and 24 downregulated). Pathway analyses highlighted cytoskeleton, spindle formation, and calcium and cation ion transport and homeostasis as the main affected pathways in vitrified oocytes. The vitrification of in vitro matured oocytes presented subtle advantages in terms of the mRNA profile over the vitrification of immature oocytes. Therefore, this study provides a new perspective for understanding the impact of vitrification on equine oocytes and can be the basis for further improvements in the efficiency of equine oocyte vitrification.
Collapse
Affiliation(s)
- Daniel Angel-Velez
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
- Research Group in Animal Sciences-INCA-CES, Universidad CES, Medellin 050021, Colombia
| | - Tim Meese
- Laboratory for Pharmaceutical Biotechnology, Faculty of Pharmaceutical Science, Ghent University, 9000 Ghent, Belgium
| | - Mohamed Hedia
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
- Department of Theriogenology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Andrea Fernandez-Montoro
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Tine De Coster
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Osvaldo Bogado Pascottini
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Filip Van Nieuwerburgh
- Laboratory for Pharmaceutical Biotechnology, Faculty of Pharmaceutical Science, Ghent University, 9000 Ghent, Belgium
| | - Jan Govaere
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Ann Van Soom
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Krishna Pavani
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
- Department for Reproductive Medicine, Ghent University Hospital, Corneel Heymanslaan 10, 9000 Gent, Belgium
| | - Katrien Smits
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| |
Collapse
|
13
|
The live birth rate of vitrified oocyte accumulation for managing diminished ovarian reserve: a retrospective cohort study. J Ovarian Res 2023; 16:49. [PMID: 36869354 PMCID: PMC9983267 DOI: 10.1186/s13048-023-01128-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 02/27/2023] [Indexed: 03/05/2023] Open
Abstract
BACKGROUND Vitrified M-II oocyte accumulation for later simultaneous insemination has been used for managing POR. Our study aimed to determine whether vitrified oocyte accumulation strategy improves live birth rate (LBR) for managing diminished ovarian reserve (DOR). METHODS A retrospective study included 440 women with DOR fulfilling Poseidon classification groups 3 and 4, defined as the presence of serum anti-Müllerian hormone (AMH) hormone level < 1.2 ng/ml or antral follicle count (AFC) < 5, from January 1, 2014, to December 31, 2019, in a single department. Patients underwent accumulation of vitrified oocytes (DOR-Accu) and embryo transfer (ET) or controlled ovarian stimulation (COS) using fresh oocytes (DOR-fresh) and ET. Primary outcomes were LBR per ET and cumulative LBR (CLBR) per intention to treat (ITT). Secondary outcomes were clinical pregnancy rate (CPR) and miscarriage rate (MR). RESULTS Two hundred eleven patients underwent simultaneous insemination of vitrified oocyte accumulation and ET in the DOR-Accu group (maternal age: 39.29 ± 4.23 y, AMH: 0.54 ± 0.35 ng/ml), and 229 patients underwent COS and ET in the DOR-fresh group (maternal age: 38.07 ± 3.77 y, AMH: 0.72 ± 0.32 ng/ml). CPR in the DOR-Accu group was similar in the DOR-fresh group (27.5% vs. 31.0%, p = 0.418). However, MR was statistically higher (41.4% vs. 14.1%, p = 0.001), while LBR per ET was statistically lower (15.2% vs. 26.2%, p < 0.001) in the DOR-Accu group. There is no difference in CLBR per ITT between groups (20.4% vs. 27.5%, p = 0.081). The secondary analysis categorized clinical outcomes into four groups regarding patients' age. CPR, LBR per ET, and CLBR did not improve in the DOR-Accu group. In the group of 31 patients, accumulated vitrified metaphase II (M-II) oocytes reached a total number of ≥ 15, and CPR improved among the DOR-Accu group (48.4% vs. 31.0%, p = 0.054); however, higher MR (40.0% vs. 14.1%, p = 0.03) resulted in similar LBR per ET (29.0% vs. 26.2%, p = 0.738). CONCLUSIONS Vitrified oocyte accumulation for managing DOR did not improve LBR. Higher MR resulted in lower LBR in the DOR-Accu group. Therefore, the vitrified oocyte accumulation strategy for managing DOR is not clinically practical. TRIAL REGISTRATION The study protocol was retrospectively registered and was approved by Institutional Review Board of Mackay Memorial Hospital (21MMHIS219e) on August 26, 2021.
Collapse
|
14
|
Amagai A, Ezoe K, Miki T, Shimazaki K, Okimura T, Kato K. Fatty acid supplementation into warming solutions improves pregnancy outcomes after single vitrified-warmed cleavage stage embryo transfers. Reprod Med Biol 2023; 22:e12517. [PMID: 37168396 PMCID: PMC10165886 DOI: 10.1002/rmb2.12517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/16/2023] [Accepted: 04/17/2023] [Indexed: 05/13/2023] Open
Abstract
Purpose This study aimed to examine the embryonic development of human 4-cell stage embryos after warming with fatty acids (FAs) and to assess the pregnancy outcomes after single vitrified-warmed cleavage stage embryo transfers (SVCTs). Methods Experimental study: A total of 217 discarded, vitrified human 4-cell stage embryos donated for research by consenting couples were used. The embryos were warmed using the fatty acid (FA)-supplemented solutions (FA group) or nonsupplemented solutions (control group). The developmental rate, morphokinetics, and outgrowth competence were analyzed. Clinical study: The treatment records of women undergoing SVCT in natural cycles between April and September 2022 were retrospectively analyzed (April-June 2022, control group; July-September 2022, FA group). Results Experimental study: The rate of morphologically good blastocysts was significantly higher in the FA group than in the control group (p = 0.0302). The morphokinetics during cleavage, morula, and blastocyst stages were comparable between the groups. The outgrowth was significantly increased in the FA group (p = 0.0438). Clinical study: The rates of implantation, clinical pregnancy, and ongoing pregnancy after SVCTs were significantly increased in the FA group (p = 0.0223-0.0281). Conclusions Fatty acid-supplemented warming solutions effectively improve embryo development to the blastocyst stage and pregnancy outcomes after SVCTs.
Collapse
|
15
|
Viana IGR, Vireque AA, Navarro PA. Comparing the effects of a commercial and a prototype vitrification medium on meiotic spindle morphology and survival rate of mouse oocytes. JBRA Assist Reprod 2022; 26:500-507. [PMID: 35261222 PMCID: PMC9355432 DOI: 10.5935/1518-0557.20210117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 12/30/2021] [Indexed: 01/05/2023] Open
Abstract
OBJECTIVE To compare oocyte survival and meiotic spindle normality between vitrified-warmed oocytes in a mouse embryo assay using Tvitri-4 or Ingámed vitrification media. METHODS C57BL/6 female mice aged 8-12 weeks were submitted to superovulation with pregnant mare's serum gonadotropin and human chorionic gonadotropin (hCG) for obtaining of in vivo matured oocytes. The oocytes were randomly distributed into one of the following three groups: CTR - control (fresh oocytes); ING - oocytes vitrified-warmed in a standard commercial kit supplied by Ingámed, and T4 - oocytes vitrified-warmed in the novel prototype Tvitri-4 medium. After warming and recovery culture, oocytes were assessed with respect to survival rate (SR) and both meiotic spindle morphology and chromosome alignment of each oocyte fixed in the sagittal position after immunostaining and analysis by confocal microscopy. RESULTS A total of 354 mature oocytes were vitrified in ING (n=178) and T4 (n=176), out of which 299 (85%) survived after warming. Oocyte survival rates were not statistically different (p=0.08) between ING (145/178=81.5%) and T4 (154/176=87.5%). Regarding meiotic normality, there were no significant changes in the proportion of oocytes with normal meiotic spindle morphology and chromosome structure between ING (52,2%) and T4 (63.4%) after warming (RR: 0.95, 95% CI: 0.92-1.607). When the meiotic normality was assessed using the CTR group as a reference in the analysis of relative risk, no significant differences were observed between T4 (63.4%) and CTR (70.5%) (RR: 0.95, 95% CI: 0.72-1.12). On the other hand, the percentage of oocytes retaining normal meiotic spindle morphology and chromosome configuration in ING (52.2%) was lower than in the CTR group (RR: 0.95, 95% CI: 0.57-0.97). CONCLUSIONS The novel prototype Tvitri-4 medium was efficient in preserve survival rate and meiotic spindle normality of oocytes and, with further verification, may be able to replace commercially available media in future clinical applications.
Collapse
Affiliation(s)
- Iara Gonçalves Roberto Viana
- Division of Human Reproduction, Department of Gynecology and Obstetrics, Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto, SP, Brazil
- Clinic Semear Fertility, Ribeirao Preto, SP, Brazil
| | | | - Paula Andrea Navarro
- Division of Human Reproduction, Department of Gynecology and Obstetrics, Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto, SP, Brazil
- National Institute of Hormones and Women’s Health CNPq, Brazil
| |
Collapse
|
16
|
Poly(I:C) exposure during in vitro fertilization disrupts first cleavage of mouse embryos and subsequent blastocyst development. J Reprod Immunol 2022; 151:103635. [DOI: 10.1016/j.jri.2022.103635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/19/2022] [Accepted: 04/27/2022] [Indexed: 11/18/2022]
|
17
|
Du X, Li J, Zhuan Q, Zhang L, Meng L, Ren P, Huang X, Bai J, Wan P, Sun W, Hou Y, Zhu S, Fu X. Artificially Increasing Cortical Tension Improves Mouse Oocytes Development by Attenuating Meiotic Defects During Vitrification. Front Cell Dev Biol 2022; 10:876259. [PMID: 35399525 PMCID: PMC8987233 DOI: 10.3389/fcell.2022.876259] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 03/09/2022] [Indexed: 01/22/2023] Open
Abstract
Oocyte cryopreservation demonstrates great benefits in the conservation of animal germplasm resources and assisted reproductive technology. However, vitrification causes damages in oocytes, which would lead to the decrease of oocyte quality, and embryonic development post fertilization. Cytoskeleton plays an important role in regulating cell shape, organelle migration, cell division and mechanical signal transduction. Cortical tension is a reflection of the physiological state and contractile ability of cortical cytoskeleton. Appropriate cortical tension is prerequesite for normal oocyte meiosis. In the present study, oocyte cortical tension was examined by evaluating the levels of cortical tension-related protein pERM (Phospho-Ezrin/Radixin/Moesin) and pMRLC (Phospho-Myosin Light Chain 2). We found that the cortical tension of vitrified oocytes was decreased. Increasing cortical tension of vitrified oocytes by adding 10 μg/ml ConA during in vitro culture could significantly improve the polar body extrusion rate and embryo development. Furthermore, increasing the cortical tension could improve spindle positioning, maintain kinetochore-microtubule (KT-MT) attachment, strengthen spindle assembly checkpoint (SAC) activity, and reduce the aneuploidy rate in vitrified oocytes. In conclusion, vitrification induced a remarkable decrease in cortical tension, and increasing the cortical tension could rescue the meiosis defect and improve oocyte quality.
Collapse
Affiliation(s)
- Xingzhu Du
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jun Li
- Department of Reproductive Medicine, Reproductive Medical Center, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Qingrui Zhuan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Luyao Zhang
- State Key Laboratories of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Lin Meng
- State Key Laboratories of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Panyu Ren
- State Key Laboratories of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xiaohan Huang
- State Key Laboratories of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jiachen Bai
- Institute of Biothermal Science and Technology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Pengcheng Wan
- State Key Laboratory of Sheep Genetic Improvement and Healthy Breeding, Institute of Animal Husbandry and Veterinary Sciences, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
| | - Wenquan Sun
- Institute of Biothermal Science and Technology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Yunpeng Hou
- State Key Laboratories of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Shien Zhu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xiangwei Fu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
- State Key Laboratory of Sheep Genetic Improvement and Healthy Breeding, Institute of Animal Husbandry and Veterinary Sciences, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
- *Correspondence: Xiangwei Fu,
| |
Collapse
|
18
|
McClam M, Xiao S. Preserving Oocytes in Oncofertility†. Biol Reprod 2022; 106:328-337. [PMID: 35040934 PMCID: PMC8862718 DOI: 10.1093/biolre/ioac008] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/09/2021] [Accepted: 01/13/2022] [Indexed: 01/19/2023] Open
Abstract
The prodigious rise of cancer survival rates enables many cancer survivors to live long lives. Therefore, the side effects of cancer treatments as well as the long-term quality of life after cancer have become more relevant. Ovarian toxicity is a major off-target effect of anticancer agents for childhood and young adult female cancer patients. Both chemotherapy and irradiation have been demonstrated to damage the ovary and increase the risks of premature ovarian failure (POF), early menopause, ovarian endocrine disorders, and sub- or infertility. Oncofertility is an emerging and multidisciplinary research and medical field that focuses on providing cancer patients with fertility preservation options. Oocyte quality and quantity are one of the most important factors to determine women's fertility success; therefore, preserving oocytes is paramount for maintaining the ability of young female cancer patients' reproduction after their recovery. This review summarizes peer-reviewed literature on current oocyte preservation options in oncofertility. We describe in-depth oocyte and embryo cryopreservation, ovarian suppression, ovarian tissue cryopreservation, in vitro maturation, ovarian transposition, and adjuvant therapy. Further, we discuss current guidelines and practices of female fertility preservation that cover preserving oocytes.
Collapse
Affiliation(s)
- Maria McClam
- Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC, USA
| | - Shuo Xiao
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Environmental and Occupational Health Sciences Institute (EOHSI), Rutgers University, Piscataway, NJ, USA
| |
Collapse
|
19
|
Chang CC, Shapiro DB, Nagy ZP. The effects of vitrification on oocyte quality. Biol Reprod 2021; 106:316-327. [PMID: 34962575 DOI: 10.1093/biolre/ioab239] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/13/2021] [Accepted: 12/21/2021] [Indexed: 11/13/2022] Open
Abstract
Vitrification, is an ultra-rapid, manual cooling process that produces glass-like (ice crystal free) solidification. Water is prevented from forming intercellular and intracellular ice crystals during cooling as a result of oocyte dehydration and the use of highly concentrated cryoprotectant. Though oocytes can be cryopreserved without ice crystal formation through vitrification, it is still not clear whether the process of vitrification causes any negative impact (temperature change/chilling effect, osmotic stress, cryoprotectant toxicity, and/or phase transitions) on oocyte quality that translate to diminished embryo developmental potential or subsequent clinical outcomes. In this review, we attempt to assess the technique's potential effects and the consequence of these effects on outcomes.
Collapse
Affiliation(s)
- Ching-Chien Chang
- Reproductive Biology Associates, 1100 Johnson Ferry Rd., Ste200, Atlanta, GA 30342, USA
| | - Daniel B Shapiro
- Reproductive Biology Associates, 1100 Johnson Ferry Rd., Ste200, Atlanta, GA 30342, USA
| | - Zsolt Peter Nagy
- Reproductive Biology Associates, 1100 Johnson Ferry Rd., Ste200, Atlanta, GA 30342, USA
| |
Collapse
|
20
|
Blengini CS, Schindler K. Acentriolar spindle assembly in mammalian female meiosis and the consequences of its perturbations on human reproduction. Biol Reprod 2021; 106:253-263. [PMID: 34791041 DOI: 10.1093/biolre/ioab210] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/26/2021] [Accepted: 11/11/2021] [Indexed: 12/18/2022] Open
Abstract
The purpose of meiosis is to generate developmentally competent, haploid gametes with the correct number of chromosomes. For reasons not completely understood, female meiosis is more prone to chromosome segregation errors than meiosis in males, leading to an abnormal number of chromosomes, or aneuploidy, in gametes. Meiotic spindles are the cellular machinery essential for the proper segregation of chromosomes. One unique feature of spindle structures in female meiosis is spindles poles that lack centrioles. The process of building a meiotic spindle without centrioles is complex and requires precise coordination of different structural components, assembly factors, motor proteins, and signaling molecules at specific times and locations to regulate each step. In this review, we discuss the basics of spindle formation during oocyte meiotic maturation focusing on mouse and human studies. Finally, we review different factors that could alter the process of spindle formation and its stability. We conclude with a discussion of how different assisted reproductive technologies (ART) could affect spindles and the consequences these perturbations may have for subsequent embryo development.
Collapse
Affiliation(s)
- Cecilia S Blengini
- Rutgers University, Human Genetics Institute of New Jersey, Piscataway, NJ 08854 USA
| | - Karen Schindler
- Rutgers University, Human Genetics Institute of New Jersey, Piscataway, NJ 08854 USA
| |
Collapse
|
21
|
Balboula AZ, Schindler K, Kotani T, Kawahara M, Takahashi M. Vitrification-induced activation of lysosomal cathepsin B perturbs spindle assembly checkpoint function in mouse oocytes. Mol Hum Reprod 2021; 26:689-701. [PMID: 32634244 DOI: 10.1093/molehr/gaaa051] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 06/16/2020] [Indexed: 01/05/2023] Open
Abstract
As the age of child-bearing increases and correlates with infertility, cryopreservation of female gametes is becoming common-place in ART. However, the developmental competence of vitrified oocytes has remained low. The underlying mechanisms responsible for reduced oocyte quality post-vitrification are largely unknown. Mouse cumulus-oocyte complexes were vitrified using a cryoloop technique and a mixture of dimethylsulphoxide, ethylene glycol and trehalose as cryoprotectants. Fresh and vitrified/thawed oocytes were compared for chromosome alignment, spindle morphology, kinetochore-microtubule attachments, spindle assembly checkpoint (SAC) and aneuploidy. Although the majority of vitrified oocytes extruded the first polar body (PB), they had a significant increase of chromosome misalignment, abnormal spindle formation and aneuploidy at metaphase II. In contrast to controls, vitrified oocytes extruded the first PB in the presence of nocodazole and etoposide, which should induce metaphase I arrest in a SAC-dependent manner. The fluorescence intensity of mitotic arrest deficient 2 (MAD2), an essential SAC protein, at kinetochores was reduced in vitrified oocytes, indicating that the SAC is weakened after vitrification/thawing. Furthermore, we found that vitrification-associated stress disrupted lysosomal function and stimulated cathepsin B activity, with a subsequent activation of caspase 3. MAD2 localization and SAC function in vitrified oocytes were restored upon treatment with a cathepsin B or a caspase 3 inhibitor. This study was conducted using mouse oocytes, therefore confirming these results in human oocytes is a prerequisite before applying these findings in IVF clinics. Here, we uncovered underlying molecular pathways that contribute to an understanding of how vitrification compromises oocyte quality. Regulating these pathways will be a step toward improving oocyte quality post vitrification and potentially increasing the efficiency of the vitrification program.
Collapse
Affiliation(s)
- Ahmed Z Balboula
- Division of Animal Sciences, Animal Sciences Research Center, University of Missouri, Columbia, MO 65211, USA.,Laboratory of Animal Breeding and Reproduction, Graduate school of Agriculture, Hokkaido University, Hokkaido 060-8589, Japan.,Department of Theriogenology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Karen Schindler
- Department of Genetics, Rutgers University, Piscataway, NJ 08854, USA
| | - Tomoya Kotani
- Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Manabu Kawahara
- Laboratory of Animal Breeding and Reproduction, Graduate school of Agriculture, Hokkaido University, Hokkaido 060-8589, Japan
| | - Masashi Takahashi
- Research Faculty of Agriculture, Hokkaido University, Hokkaido 060-8589, Japan.,Global Station for Food, Land and Water Resources, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido 060-0815, Japan
| |
Collapse
|
22
|
Melatonin Promotes In Vitro Maturation of Vitrified-Warmed Mouse Germinal Vesicle Oocytes, Potentially by Reducing Oxidative Stress through the Nrf2 Pathway. Animals (Basel) 2021; 11:ani11082324. [PMID: 34438783 PMCID: PMC8388487 DOI: 10.3390/ani11082324] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 07/30/2021] [Accepted: 08/04/2021] [Indexed: 12/17/2022] Open
Abstract
Simple Summary Cryopreservation of oocytes can cause high oxidative stress, reduce the quality of vitrified-warmed oocytes, and seriously hinder the application of oocyte cryopreservation technology in production and medicine. In this work, we found for the first time that melatonin can exert antioxidant effects through receptors and regulate the Nrf2 antioxidant pathway to respond to oxidative stress of vitrified-warmed oocytes, thereby improving both oocyte quality and the potential for subsequent development. The results illustrated the molecular mechanism of melatonin’s antioxidant effect in vitrified-warmed oocytes and provided a theoretical basis for the application of melatonin in the cryopreservation of oocytes. These findings are of great significance for the further application of oocyte cryopreservation technology to production and assisted reproduction in the future. Abstract Previously it was reported that melatonin could mitigate oxidative stress caused by oocyte cryopreservation; however, the underlying molecular mechanisms which cause this remain unclear. The objective was to explore whether melatonin could reduce oxidative stress during in vitro maturation of vitrified-warmed mouse germinal vesicle (GV) oocytes through the Nrf2 signaling pathway or its receptors. During in vitro maturation of vitrified-warmed mouse GV oocytes, there were decreases (p < 0.05) in the development rates of metaphase I (MI) oocytes and metaphase II (MII) and spindle morphology grades; increases (p < 0.05) in the reactive oxygen species (ROS) levels; and decreases (p < 0.05) in expressions of Nrf2 signaling pathway-related genes (Nrf2, SOD1) and proteins (Nrf2, HO-1). However, adding 10−7 mol/L melatonin to both the warming solution and maturation solutions improved (p < 0.05) these indicators. When the Nrf2 protein was specifically inhibited by Brusatol, melatonin did not increase development rates, spindle morphology grades, genes, or protein expressions, nor did it reduce vitrification-induced intracellular oxidative stress in GV oocytes during in vitro maturation. In addition, when melatonin receptors were inhibited by luzindole, the ability of melatonin to scavenge intracellular ROS was decreased, and the expressions of genes (Nrf2, SOD1) and proteins (Nrf2, HO-1) were not restored to control levels. Therefore, we concluded that 10−7 mol/L melatonin acted on the Nrf2 signaling pathway through its receptors to regulate the expression of genes (Nrf2, SOD1) and proteins (Nrf2, HO-1), and mitigate intracellular oxidative stress, thereby enhancing in vitro development of vitrified-warmed mouse GV oocytes.
Collapse
|
23
|
Yang J, Guo S, Pan B, Qazi IH, Qin J, Zang S, Han H, Meng Q, Zhou G. Melatonin promotes in vitro maturation of vitrified-warmed mouse GV oocytes potentially by modulating MAD2 protein expression of SAC component through MTRs. Cryobiology 2021; 102:82-91. [PMID: 34297995 DOI: 10.1016/j.cryobiol.2021.07.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 05/07/2021] [Accepted: 07/17/2021] [Indexed: 12/13/2022]
Abstract
Previous studies have shown that melatonin (MT) can ameliorate vitrification-inflicted damage in mouse germinal vesicle (GV) oocytes, however, the key mechanistic basis of this improvement still remains poorly understood. This study was conducted to investigate whether MT can improve in vitro developmental potential of vitrified-warmed GV oocytes through its receptors. The fresh oocytes were randomly divided into four groups: untreated (control group, F), vitrified by open-pulled straw method (vitrification group, V), vitrification group with 100 nmol/L MT supplementation (vitrification + MT group, VM), and with 100 nmol/L MT plus 100 nmol/L luzindole administration (vitrification + MT + luzindole group, VML) or with 50 nmol/L ramelteon addition (vitrification + ramelteon group; VR). After warming, oocytes were cultured in vitro, and MT receptors (MTRs), MAD2 (mitotic arrest deficient 2), Securin and CyclinB1 protein levels and spindle morphology were evaluated. The ratio of oocytes developed to the metaphase I (MI) and metaphase II (MII) stages was also assessed. The results showed that after vitrification-warming, the in vitro maturation rate of GV oocytes was significantly lower compared to the control (F) group. Vitrification also significantly impaired the spindle morphology, decreased the protein level of MTRs and Securin, and decreased MAD2 levels in MI oocytes. However, when MT or ramelteon (MTRs agonist) were added (group wise) to warming and maturation media, the maturation rate of GV oocytes was significantly increased, the normal proportion of the spindle morphology increased, and the expression level of MAD2 increased in their resulting MI oocytes compared to the vitrification group. However, following addition of both MT and ramelteon, the maturation rate of GV oocyte showed no significant difference between VML and vitrification groups. The spindle morphology and MAD2 levels in MI oocytes were comparable to the vitrification group but differed significantly from the VM group. Taken together, finding of the present study shows that MT (100 nmol/L) can ameliorate the in vitro maturation of vitrified-warmed mouse GV oocytes, potentially by improving the spindle morphology, modulating MAD2 protein level and promoting the development of MI stage oocytes through MTRs.
Collapse
Affiliation(s)
- Jinyu Yang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Shichao Guo
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Bo Pan
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Izhar Hyder Qazi
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China; Department of Veterinary Anatomy and Histology, Shaheed Benazir Bhutto University of Veterinary and Animal Sciences, Sakrand, 67210, Sindh, Pakistan.
| | - Jianpeng Qin
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Shengqin Zang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Hongbing Han
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| | - Qingyong Meng
- State Key Laboratory of AgroBiotechnology, China Agricultural University, Beijing, 100193, China.
| | - Guangbin Zhou
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
24
|
Pan B, Qazi IH, Guo S, Yang J, Qin J, Lv T, Zang S, Zhang Y, Zeng C, Meng Q, Han H, Zhou G. Melatonin improves the first cleavage of parthenogenetic embryos from vitrified-warmed mouse oocytes potentially by promoting cell cycle progression. J Anim Sci Biotechnol 2021; 12:84. [PMID: 34266479 PMCID: PMC8283938 DOI: 10.1186/s40104-021-00605-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 05/13/2021] [Indexed: 11/22/2022] Open
Abstract
Background This study investigated the effect of melatonin (MT) on cell cycle (G1/S/G2/M) of parthenogenetic zygotes developed from vitrified-warmed mouse metaphase II (MII) oocytes and elucidated the potential mechanism of MT action in the first cleavage of embryos. Results After vitrification and warming, oocytes were parthenogenetically activated (PA) and in vitro cultured (IVC). Then the spindle morphology and chromosome segregation in oocytes, the maternal mRNA levels of genes including Miss, Doc1r, Setd2 and Ythdf2 in activated oocytes, pronuclear formation, the S phase duration in zygotes, mitochondrial function at G1 phase, reactive oxygen species (ROS) level at S phase, DNA damage at G2 phase, early apoptosis in 2-cell embryos, cleavage and blastocyst formation rates were evaluated. The results indicated that the vitrification/warming procedures led to following perturbations 1) spindle abnormalities and chromosome misalignment, alteration of maternal mRNAs and delay in pronucleus formation, 2) decreased mitochondrial membrane potential (MMP) and lower adenosine triphosphate (ATP) levels, increased ROS production and DNA damage, G1/S and S/G2 phase transition delay, and delayed first cleavage, and 3) increased early apoptosis and lower levels of cleavage and blastocyst formation. Our results further revealed that such negative impacts of oocyte cryopreservation could be alleviated by supplementation of warming, recovery, PA and IVC media with 10− 9 mol/L MT before the embryos moved into the 2-cell stage of development. Conclusions MT might promote cell cycle progression via regulation of MMP, ATP, ROS and maternal mRNA levels, potentially increasing the first cleavage of parthenogenetic zygotes developed from vitrified–warmed mouse oocytes and their subsequent development.
Collapse
Affiliation(s)
- Bo Pan
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Izhar Hyder Qazi
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.,Department of Veterinary Anatomy and Histology, Shaheed Benazir Bhutto University of Veterinary and Animal Sciences, Sakrand, Sindh, 67210, Pakistan
| | - Shichao Guo
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jingyu Yang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jianpeng Qin
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Tianyi Lv
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Shengqin Zang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yan Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Changjun Zeng
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qingyong Meng
- State Key Laboratory of AgroBiotechnology, China Agricultural University, Beijing, 100193, China
| | - Hongbing Han
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Guangbin Zhou
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
25
|
Park JK, Lee JH, Park EA, Lim HJ, Lyu SW, Lee WS, Kim J, Song H. Development of Optimized Vitrification Procedures Using Closed Carrier System to Improve the Survival and Developmental Competence of Vitrified Mouse Oocytes. Cells 2021; 10:cells10071670. [PMID: 34359838 PMCID: PMC8304188 DOI: 10.3390/cells10071670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/28/2021] [Accepted: 06/28/2021] [Indexed: 11/16/2022] Open
Abstract
The open carrier system (OC) is used for vitrification due to its high efficiency in preserving female fertility, but concerns remain that it bears possible risks of cross-contamination. Closed carrier systems (CC) could be an alternative to the OC to increase safety. However, the viability and developmental competence of vitrified/warmed (VW) oocytes using the CC were significantly lower than with OC. We aimed to improve the efficiency of the CC. Metaphase II oocytes were collected from mice after superovulation and subjected to in vitro fertilization after vitrification/warming. Increasing the cooling/warming rate and exposure time to cryoprotectants as key parameters for the CC effectively improved the survival rate and developmental competence of VW oocytes. When all the conditions that improved the outcomes were applied to the conventional CC, hereafter named the modified vitrification/warming procedure using CC (mVW-CC), the viability and developmental competence of VW oocytes were significantly improved as compared to those of VW oocytes in the CC. Furthermore, mVW-CC increased the spindle normality of VW oocytes, as well as the cell number of blastocysts developed from VW oocytes. Collectively, our mVW-CC optimized for mouse oocytes can be utilized for humans without concerns regarding possible cross-contamination during vitrification in the future.
Collapse
Affiliation(s)
- Jae Kyun Park
- Department of Biomedical Sciences, CHA University, Seongnam 13488, Korea; (J.K.P.); (J.H.L.)
- CHA Fertility Center Gangnam, CHA University, Seoul 06125, Korea; (S.W.L.); (W.S.L.)
| | - Ju Hee Lee
- Department of Biomedical Sciences, CHA University, Seongnam 13488, Korea; (J.K.P.); (J.H.L.)
| | - Eun A Park
- CHA Fertility Center Seoul Station, CHA University, Seoul 04637, Korea;
| | - Hyunjung J. Lim
- Department of Veterinary Medicine, School of Veterinary Medicine, Konkuk University, Seoul 05029, Korea;
| | - Sang Woo Lyu
- CHA Fertility Center Gangnam, CHA University, Seoul 06125, Korea; (S.W.L.); (W.S.L.)
| | - Woo Sik Lee
- CHA Fertility Center Gangnam, CHA University, Seoul 06125, Korea; (S.W.L.); (W.S.L.)
| | - Jayeon Kim
- CHA Fertility Center Seoul Station, CHA University, Seoul 04637, Korea;
- Correspondence: (J.K.); (H.S.)
| | - Haengseok Song
- Department of Biomedical Sciences, CHA University, Seongnam 13488, Korea; (J.K.P.); (J.H.L.)
- Correspondence: (J.K.); (H.S.)
| |
Collapse
|
26
|
Ohata K, Ezoe K, Miki T, Kouraba S, Fujiwara N, Yabuuchi A, Kobayashi T, Kato K. Effects of fatty acid supplementation during vitrification and warming on the developmental competence of mouse, bovine and human oocytes and embryos. Reprod Biomed Online 2021; 43:14-25. [PMID: 34049810 DOI: 10.1016/j.rbmo.2021.03.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 03/25/2021] [Accepted: 03/31/2021] [Indexed: 02/05/2023]
Abstract
RESEARCH QUESTION Does fatty acid supplementation in vitrification and warming media influence developmental competence in oocytes after vitrification and warming? DESIGN Mouse oocytes and four-cell embryos were vitrified and warmed with solutions supplemented with fatty acid and cultured to the blastocyst stage. To study lipid metabolism after vitrification, quantitative real-time polymerase chain reaction was used to analyse the expression of genes related to beta oxidation in mouse embryos vitrified and warmed with or without fatty acids. The effects of fatty acid supplementation in the warming solutions on the developmental competence of bovine and human embryos were analysed. Blastocyst outgrowth assay was used to evaluate the potential of human blastocysts for adhesion to fibronectin. RESULTS The neutral lipid content of mouse oocytes in the fatty acid 1% supplementation group was significantly higher than in the fatty acid 0% group (P = 0.0032). The developmental rate to the blastocyst stage was significantly higher in the fatty acid 1% group than in the fatty acid 0% group in mice (P = 0.0345). Fatty acid supplementation in warming solution upregulated Acaa2 and Hadha in mouse embryos. Fatty acids significantly improved the developmental ability of bovine embryos to the blastocyst stage (P = 0.0048). Warming with 1% fatty acid supplementation significantly increased the proportion of human blastocysts with morphological grade A inner cell mass (P = 0.0074) and trophectoderm (P = 0.0323). CONCLUSIONS Fatty acid supplementation in the warming solutions improved the developmental competence of vitrified-warmed mouse oocytes by activating the beta-oxidation pathway. Fatty acid supplementation enhanced the developmental rate of bovine embryos to the blastocyst stage and improved morphological characteristics of human embryos vitrified at the cleavage stage.
Collapse
Affiliation(s)
- Kazuki Ohata
- Kato Ladies Clinic, 7-20-3 Nishishinjuku, Tokyo Shinjuku-ku 160-0023, Japan
| | - Kenji Ezoe
- Kato Ladies Clinic, 7-20-3 Nishishinjuku, Tokyo Shinjuku-ku 160-0023, Japan.
| | - Tetsuya Miki
- Kato Ladies Clinic, 7-20-3 Nishishinjuku, Tokyo Shinjuku-ku 160-0023, Japan
| | - Shizu Kouraba
- Towako Medical Research Center, 2-5-2 Asahidai, Ishikawa Nomi-shi 923-1211, Japan
| | - Nanoha Fujiwara
- Kato Ladies Clinic, 7-20-3 Nishishinjuku, Tokyo Shinjuku-ku 160-0023, Japan
| | - Akiko Yabuuchi
- Kato Ladies Clinic, 7-20-3 Nishishinjuku, Tokyo Shinjuku-ku 160-0023, Japan
| | - Tamotsu Kobayashi
- Kato Ladies Clinic, 7-20-3 Nishishinjuku, Tokyo Shinjuku-ku 160-0023, Japan
| | - Keiichi Kato
- Kato Ladies Clinic, 7-20-3 Nishishinjuku, Tokyo Shinjuku-ku 160-0023, Japan.
| |
Collapse
|
27
|
Nevoral J, Havránková J, Kolinko Y, Prokešová Š, Fenclová T, Monsef L, Žalmanová T, Petr J, Králíčková M. Exposure to alternative bisphenols BPS and BPF through breast milk: Noxious heritage effect during nursing associated with idiopathic infertility. Toxicol Appl Pharmacol 2021; 413:115409. [PMID: 33476676 DOI: 10.1016/j.taap.2021.115409] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 01/08/2021] [Accepted: 01/10/2021] [Indexed: 02/08/2023]
Abstract
There is increasing evidence that bisphenols BPS and BPF, which are analogues of BPA, have deleterious effects on reproduction even at extremely low doses. Indirect exposure via the maternal route (i.e. across the placenta and/or by breastfeeding) is underestimated, although it can be assumed to be a cause of idiopathic female infertility. Therefore, we hypothesised the deleterious effects of exposure to BPA analogues during breastfeeding on the ovarian and oocyte quality of offspring. A 15-day exposure period of pups was designed, whilst nursing dams (N ≥ 6 per experimental group) were treated via drinking water with a low (0.2 ng/g body weight/day) or moderate (20 ng/g body weight/day) dose of bisphenol, mimicking real exposure in humans. Thereafter, female pups were bred to 60 days and oocytes were collected. Immature oocytes were used in the in-vitro maturation assay; alternatively, in-vivo-matured oocytes were isolated and used for parthenogenetic activation. Both in-vitro- and in-vivo-matured oocytes were subjected to immunostaining of spindle microtubules (α-tubulin) and demethylation of histone H3 on the lysine K27 (H3K27me2) residue. Although very low doses of both BPS and BPF did not affect the quality of ovarian histology, spindle formation and epigenetic signs were affected. Notably, in-vitro-matured oocytes were significantly sensitive to both doses of BPS and BPF. Although no significant differences in spindle-chromatin quality were identified in ovulated and in-vivo-matured oocytes, developmental competence was significantly damaged. Taken together, our mouse model provides evidence that bisphenol analogues represent a risk to human reproduction, possibly leading to idiopathic infertility in women.
Collapse
Affiliation(s)
- Jan Nevoral
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic; Department of Histology and Embryology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic.
| | - Jiřina Havránková
- Department of Histology and Embryology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Yaroslav Kolinko
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic; Department of Histology and Embryology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Šárka Prokešová
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic; Institute of Animal Science, Prague 10-Uhrineves, Czech Republic
| | - Tereza Fenclová
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Ladan Monsef
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Tereza Žalmanová
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic; Institute of Animal Science, Prague 10-Uhrineves, Czech Republic
| | - Jaroslav Petr
- Institute of Animal Science, Prague 10-Uhrineves, Czech Republic
| | - Milena Králíčková
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic; Department of Histology and Embryology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| |
Collapse
|
28
|
Jia B, Xiang D, Fu X, Shao Q, Hong Q, Quan G, Wu G. Proteomic Changes of Porcine Oocytes After Vitrification and Subsequent in vitro Maturation: A Tandem Mass Tag-Based Quantitative Analysis. Front Cell Dev Biol 2020; 8:614577. [PMID: 33425922 PMCID: PMC7785821 DOI: 10.3389/fcell.2020.614577] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 11/24/2020] [Indexed: 01/01/2023] Open
Abstract
Cryopreservation of immature germinal vesicle (GV) oocytes is a promising strategy in pigs but still results in reduced oocyte quality due to inevitable cryodamages. Recently, there has been more focus on the molecular changes of oocytes after vitrification, but the alteration in the proteome level remains elusive. The aim of this study therefore was to decipher the proteomic characteristics of porcine GV oocytes following vitrification and in vitro maturation (IVM) by using tandem mass tag (TMT)-based quantitative approach and bioinformatics analysis. A total of 4,499 proteins were identified, out of which 153 presented significant difference. There were 94 up-regulated and 59 down-regulated proteins expressed differentially in the vitrified oocytes. Functional classification and enrichment analyses revealed that many of these proteins were involved in metabolism, signal transduction, response to stimulus, immune response, complement, coagulation cascades, and so on. Moreover, a parallel reaction monitoring technique validated the reliability of TMT data through quantitative analysis for 10 candidate proteins. In conclusion, our results provided a novel perspective of proteomics to comprehend the quality change in the vitrified porcine GV oocytes after IVM.
Collapse
Affiliation(s)
- Baoyu Jia
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Decai Xiang
- Yunnan Provincial Engineering Laboratory of Animal Genetic Resource Conservation and Germplasm Enhancement, Yunnan Animal Science and Veterinary Institute, Kunming, China
| | - Xiangwei Fu
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Qingyong Shao
- Yunnan Provincial Engineering Laboratory of Animal Genetic Resource Conservation and Germplasm Enhancement, Yunnan Animal Science and Veterinary Institute, Kunming, China
| | - Qionghua Hong
- Yunnan Provincial Engineering Laboratory of Animal Genetic Resource Conservation and Germplasm Enhancement, Yunnan Animal Science and Veterinary Institute, Kunming, China
| | - Guobo Quan
- Yunnan Provincial Engineering Laboratory of Animal Genetic Resource Conservation and Germplasm Enhancement, Yunnan Animal Science and Veterinary Institute, Kunming, China
| | - Guoquan Wu
- Yunnan Provincial Engineering Laboratory of Animal Genetic Resource Conservation and Germplasm Enhancement, Yunnan Animal Science and Veterinary Institute, Kunming, China
| |
Collapse
|
29
|
Development and ultrastructure of bovine matured oocytes vitrified using electron microscopy grids. Theriogenology 2020; 158:258-266. [PMID: 32998079 DOI: 10.1016/j.theriogenology.2020.09.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 09/04/2020] [Accepted: 09/06/2020] [Indexed: 12/12/2022]
Abstract
The aim of this study was to establish a methodology of cryopreservation of cattle oocytes and the quality assessment of oocytes and subsequent embryos produced in vitro under our laboratory conditions. Previously in vitro matured (IVM) oocytes were vitrified in minimum volume by ultra-rapid cooling technique. The oocytes were put into the equilibration solution (3% ethylene glycol in M199-HEPES + 10% foetal bovine serum) for 12 min, transferred to vitrification solution (30% ethylene glycol + 1 M sucrose in M199-HEPES + 10% foetal bovine serum) at room temperature for 25 s, then placed onto nickel electron microscopy grids and plunged into liquid nitrogen. After warming 75% of the oocytes were assessed as viable. Part of viable oocytes was taken for electron microscopy, the remaining oocytes were fertilized in vitro, and the presumptive zygotes were cultured until the blastocyst stage. Embryo cleavage and blastocyst rates in vitrified group after warming were 64.98% and 17.3%, resp. versus 70.72% and 25.54% in the control group (P < 0.05). No significant differences were found in the blastocyst total cell number, TUNEL and dead cell indexes between both groups. Ultrastructure of vitrified oocytes showed damages in smooth endoplasmic reticulum (SER) vesicles and lipid droplets as well as irregular arrangement of solitary cortical granules. Several mitochondria were damaged and the microtubules around the chromosomes were less occurred compared to the control group. However, the extent of injuries was lower than reported by other authors studying the ultrastructure of vitrified bovine oocytes, what is also supported by the better development of our oocytes after IVF. In conclusion, the designed oocyte vitrification technique ensures obtaining the blastocysts of the quality comparable to the fresh oocytes.
Collapse
|
30
|
Daddangadi A, Uppangala S, Kalthur G, Talevi R, Adiga SK. Germinal stage vitrification is superior to MII stage vitrification in prepubertal mouse oocytes. Cryobiology 2020; 93:49-55. [PMID: 32112808 DOI: 10.1016/j.cryobiol.2020.02.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 02/24/2020] [Accepted: 02/25/2020] [Indexed: 01/17/2023]
Abstract
This study investigated if in vitro maturation (IVM) before or after vitrification would be more successful for prepubertal oocytes. To mimic prepubertal conditions in an experimental setup, oocytes were collected from healthy 14, 21 and 28day old Swiss albino mice. The germinal vesicle (GV) stage oocytes and in vitro matured MII oocytes were subjected to vitrification-warming. Both structural (meiotic spindle morphology, mitochondrial integrity, cortical granules) and functional (sperm zona binding, fertilization) characteristics were assessed in oocytes after warming. This study demonstrated that IVM was more detrimental to prepubertal oocytes than to young adults. Further, vitrification of the IVM oocytes resulted in an increase in the number of abnormal meiotic spindles, a change in the cortical distribution pattern, a reduction in sperm zona binding and the fertilization rate. Importantly, oocyte integrity was better when prepubertal oocytes were vitrified before, rather than after, IVM. The above observations support GV stage vitrification for prepubertal oocytes requiring fertility preservation. Understanding the mechanisms behind the differing outcomes for oocytes from immature females will help in refining current protocol, thereby retaining the oocytes' maximum structural and functional integrity Further investigation is necessary to determine whether human prepubertal oocytes also behave in a similar way. It is to be noted here, with great emphasis, that a major limitation of this study is that the oocytes' abilities were tested only until fertilisation, as a consequence of which the study cannot reveal the developmental potentials of the embryos beyond fertilisation.
Collapse
Affiliation(s)
- Akshatha Daddangadi
- Department of Clinical Embryology, Kasturba Medical College Manipal, Manipal Academy of Higher Education, Manipal, 576 104, India
| | - Shubhashree Uppangala
- Department of Clinical Embryology, Kasturba Medical College Manipal, Manipal Academy of Higher Education, Manipal, 576 104, India
| | - Guruprasad Kalthur
- Department of Clinical Embryology, Kasturba Medical College Manipal, Manipal Academy of Higher Education, Manipal, 576 104, India
| | - Riccardo Talevi
- Dipartimento di Biologia, Università di Napoli "Federico II", Complesso Universitario di Monte S Angelo, Napoli, Italy
| | - Satish Kumar Adiga
- Department of Clinical Embryology, Kasturba Medical College Manipal, Manipal Academy of Higher Education, Manipal, 576 104, India.
| |
Collapse
|
31
|
Serra E, Gadau SD, Berlinguer F, Naitana S, Succu S. Morphological features and microtubular changes in vitrified ovine oocytes. Theriogenology 2019; 148:216-224. [PMID: 31735434 DOI: 10.1016/j.theriogenology.2019.11.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 10/31/2019] [Accepted: 11/09/2019] [Indexed: 01/06/2023]
Abstract
Cryobanking of oocytes collected from prepubertal donors may supply a virtually unlimited number of female gametes for both basic research and commercial applications. Prepubertal oocytes show some structural and functional limitations compared to the adult ones that may impair their ability to recover damages from cryopreservation. In oocytes, the meiotic spindle is acutely sensitive to temperature deviation, but capable of regeneration following cryopreservation. In the present work, we studied the effects of vitrification and post-warming incubation on the microtubular cytoskeleton and the tubulin post-translational modifications (tyrosination and acetylation) in prepubertal and adult oocytes. Obtained results showed that prepubertal oocytes are more affected by vitrification-induced injuries than adult ones. In fact, prepubertal oocytes showed more severe alterations of the meiotic spindle conformation and a higher percentage of parthenogenetic activation compared to adult ones. Moreover, in the adult oocytes the equilibrium between tyrosinated and acetylated α-tubulin was restored after 4 h of post-warming incubation. Diversely, in prepubertal oocytes the imbalance between tyrosinated and acetylated α-tubulin was increased during post-warming incubation. Our study shows that prepubertal oocytes react differently to the insults provoked by vitrification compared to adult oocytes, showing an impaired ability to recover from vitrification-induced injuries. In the evaluation of oocyte ability to recover from vitrification-induced injuries, tubulin post-translational modifications represent an important indicator for assessing oocyte quality.
Collapse
Affiliation(s)
- Elisa Serra
- Department of Veterinary Medicine, University of Sassari, Italy
| | | | | | | | - Sara Succu
- Department of Veterinary Medicine, University of Sassari, Italy
| |
Collapse
|
32
|
Wu Z, Pan B, Qazi IH, Yang H, Guo S, Yang J, Zhang Y, Zeng C, Zhang M, Han H, Meng Q, Zhou G. Melatonin Improves In Vitro Development of Vitrified-Warmed Mouse Germinal Vesicle Oocytes Potentially via Modulation of Spindle Assembly Checkpoint-Related Genes. Cells 2019; 8:E1009. [PMID: 31480299 PMCID: PMC6770451 DOI: 10.3390/cells8091009] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 08/23/2019] [Accepted: 08/28/2019] [Indexed: 12/12/2022] Open
Abstract
The present study aimed to investigate the effect of melatonin (MT) supplementation on in vitro maturation of vitrified mouse germinal vesicle (GV) oocytes. The fresh oocytes were randomly divided into three groups: untreated (control), or vitrified by open-pulled straw method without (vitrification group) or with MT supplementation (vitrification + MT group). After warming, oocytes were cultured in vitro, then the reactive oxygen species (ROS) and glutathione (GSH) levels, mitochondrial membrane potential, ATP levels, spindle morphology, mRNA expression of spindle assembly checkpoint (SAC)-related genes (Mps1, BubR1, Mad1, Mad2), and their subsequent developmental potential in vitro were evaluated. The results showed that vitrification/warming procedures significantly decreased the percentage of GV oocytes developed to metaphase II (MII) stage, the mitochondrial membrane potential, ATP content, and GSH levels, remarkably increased the ROS levels, and significantly impaired the spindle morphology. The expressions of SAC-related genes were also altered in vitrified oocytes. However, when 10-7 mol/L MT was administered during the whole length of the experiment, the percentage of GV oocytes matured to MII stage was significantly increased, and the other indicators were also significantly improved and almost recovered to the normal levels relative to the control. Thus, we speculate that MT might regulate the mitochondrial membrane potential, ATP content, ROS, GSH, and expression of SAC-related genes, potentially increasing the in vitro maturation of vitrified-warmed mouse GV oocytes.
Collapse
Affiliation(s)
- Zhenzheng Wu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Bo Pan
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Izhar Hyder Qazi
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Department of Veterinary Anatomy & Histology, Shaheed Benazir Bhutto University of Veterinary and Animal Sciences, Sakrand 67210, Sindh, Pakistan
| | - Haoxuan Yang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Shichao Guo
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Jingyu Yang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Yan Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Changjun Zeng
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Ming Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Hongbing Han
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Qingyong Meng
- State Key Laboratory of AgroBiotechnology, China Agricultural University, Beijing 100193, China
| | - Guangbin Zhou
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
33
|
Namgoong S, Kim NH. Meiotic spindle formation in mammalian oocytes: implications for human infertility. Biol Reprod 2019; 98:153-161. [PMID: 29342242 DOI: 10.1093/biolre/iox145] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 12/27/2017] [Indexed: 12/12/2022] Open
Abstract
In the final stage of oogenesis, mammalian oocytes generate a meiotic spindle and undergo chromosome segregation to yield an egg that is ready for fertilization. Herein, we describe the recent advances in understanding the mechanisms controlling formation of the meiotic spindle in metaphase I (MI) and metaphase II (MII) in mammalian oocytes, and focus on the differences between mouse and human oocytes. Unlike mitotic cells, mammalian oocytes lack typical centrosomes that consist of two centrioles and the surrounding pericentriolar matrix proteins, which serve as microtubule-organizing centers (MTOCs) in most somatic cells. Instead, oocytes rely on different mechanisms for the formation of microtubules in MI spindles. Two different mechanisms have been described for MI spindle formation in mammalian oocytes. Chromosome-mediated microtubule formation, including RAN-mediated spindle formation and chromosomal passenger complex-mediated spindle elongation, controls the growth of microtubules from chromatin, while acentriolar MTOC-mediated microtubule formation contributes to spindle formation. Mouse oocytes utilize both chromatin- and MTOC-mediated pathways for microtubule formation. The existence of both pathways may provide a fail-safe mechanism to ensure high fidelity of chromosome segregation during meiosis. Unlike mouse oocytes, human oocytes considered unsuitable for clinical in vitro fertilization procedures, lack MTOCs; this may explain why meiosis in human oocytes is often error-prone. Understanding the mechanisms of MI/MII spindle formation, spindle assembly checkpoint, and chromosome segregation, in mammalian oocytes, will provide valuable insights into the molecular mechanisms of human infertility.
Collapse
Affiliation(s)
| | - Nam-Hyung Kim
- Department of Animal Science, Chungbuk National University, Cheong-Ju, Chungbuk, Republic of Korea
| |
Collapse
|
34
|
Iussig B, Maggiulli R, Fabozzi G, Bertelle S, Vaiarelli A, Cimadomo D, Ubaldi FM, Rienzi L. A brief history of oocyte cryopreservation: Arguments and facts. Acta Obstet Gynecol Scand 2019; 98:550-558. [PMID: 30739329 DOI: 10.1111/aogs.13569] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 02/02/2019] [Accepted: 02/04/2019] [Indexed: 12/11/2022]
Abstract
The term "cryopreservation" refers to the process of cooling cells and tissues and storing them at subzero temperatures in order to stop all biological activity and preserve their viability and physiological competences for future use. Cooling to subzero temperatures is not a physiological condition for human cells; this is probably due to the high content of water in the living matter, whose conversion to ice crystals may be associated with severe and irreversible damage. Among reproductive cells and tissues, metaphase II oocytes are notably vulnerable to cryopreservation, mainly because of their large size, low surface area to volume ratio, relatively high water content and presence of the meiotic spindle. As human biological systems lack efficient internal defense mechanisms against chilling injuries, it is of the utmost importance to supply adequate external support, in terms of cryoprotectant additives, appropriate cooling/warming rates, and suitable long-term storage. Over the years, scientists have proposed different cryopreservation strategies in the effort to achieve an optimized recipe ensuring cell survival and, at the same time, maintenance of the physiological functions and abilities necessary to continue life. However, despite the first success obtained in the 1980s with frozen oocytes, it was not until recently that notable improvements in the cryopreservation technique, thanks to the advent of vitrification, allowed a breakthrough of this fine procedure.
Collapse
Affiliation(s)
- Benedetta Iussig
- G.EN.E.R.A. Center for Reproductive Medicine, G.EN.E.R.A. Veneto, Marostica, Italy
| | - Roberta Maggiulli
- G.EN.E.R.A. Center for Reproductive Medicine, Clinica Valle Giulia, Rome, Italy
| | - Gemma Fabozzi
- G.EN.E.R.A. Center for Reproductive Medicine, Clinica Valle Giulia, Rome, Italy
| | - Sara Bertelle
- G.EN.E.R.A. Center for Reproductive Medicine, G.EN.E.R.A. Veneto, Marostica, Italy
| | - Alberto Vaiarelli
- G.EN.E.R.A. Center for Reproductive Medicine, Clinica Valle Giulia, Rome, Italy
| | - Danilo Cimadomo
- G.EN.E.R.A. Center for Reproductive Medicine, G.EN.E.R.A. Veneto, Marostica, Italy.,G.EN.E.R.A. Center for Reproductive Medicine, Clinica Valle Giulia, Rome, Italy
| | - Filippo M Ubaldi
- G.EN.E.R.A. Center for Reproductive Medicine, G.EN.E.R.A. Veneto, Marostica, Italy.,G.EN.E.R.A. Center for Reproductive Medicine, Clinica Valle Giulia, Rome, Italy
| | - Laura Rienzi
- G.EN.E.R.A. Center for Reproductive Medicine, G.EN.E.R.A. Veneto, Marostica, Italy.,G.EN.E.R.A. Center for Reproductive Medicine, Clinica Valle Giulia, Rome, Italy
| |
Collapse
|
35
|
Ahmadi E, Shirazi A, Shams-Esfandabadi N, Nazari H. Antioxidants and glycine can improve the developmental competence of vitrified/warmed ovine immature oocytes. Reprod Domest Anim 2019; 54:595-603. [PMID: 30637807 DOI: 10.1111/rda.13402] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 12/28/2018] [Indexed: 01/25/2023]
Abstract
Despite the numerous potential applications of oocyte cryopreservation, the poor success rate has limited its practical applications. In livestock, particularly in ovine, the oocytes have low developmental competence following vitrification/warming process. Considering the occurrence of osmotic and oxidative stresses during the vitrification/warming process, the application of antioxidants and osmolytes may improve the developmental competence of vitrified/warmed oocytes. In the present study, we aimed to evaluate the effects of the addition of ascorbic acid (AA) and N-acetyl cysteine (NAC) as antioxidants and glycine as an organic osmolyte either to the vitrification/warming solutions (VWS) or to the IVM medium on the developmental competence of vitrified/warmed ovine germinal vesicle stage oocytes. The survival rate in the vitrified groups was significantly lower than fresh ones. In vitrified/warmed oocytes, there was no significant difference in survival rate between supplemented and non-supplemented groups. The addition of AA and/or NAC to the VWS or IVM medium and adding glycine to the IVM medium reduced the proportion of apoptotic oocytes and fragmented embryos, which was reflected as an increase in the proportions of metaphase II stage oocytes and blastocyst production. The best result was achieved by supplementing the IVM medium with NAC. In our study condition, antioxidants and glycine could improve the developmental competence of vitrified/warmed ovine immature oocytes, especially when added during IVM.
Collapse
Affiliation(s)
- Ebrahim Ahmadi
- Research Institute of Animal Embryo Technology, Shahrekord University, Shahrekord, Iran.,Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahrekord University, Shahrekord, Iran
| | - Abolfazl Shirazi
- Research Institute of Animal Embryo Technology, Shahrekord University, Shahrekord, Iran.,Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahrekord University, Shahrekord, Iran.,Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Naser Shams-Esfandabadi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahrekord University, Shahrekord, Iran
| | - Hassan Nazari
- Research Institute of Animal Embryo Technology, Shahrekord University, Shahrekord, Iran
| |
Collapse
|
36
|
Sanaei B, Movaghar B, Valojerdi MR, Ebrahimi B, Bazrgar M, Jafarpour F, Nasr-Esfahani MH. An improved method for vitrification of in vitro matured ovine oocytes; beneficial effects of Ethylene Glycol Tetraacetic acid, an intracellular calcium chelator. Cryobiology 2018; 84:82-90. [PMID: 30244698 DOI: 10.1016/j.cryobiol.2018.07.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 06/03/2018] [Accepted: 07/02/2018] [Indexed: 01/17/2023]
Abstract
Vitrification affects fertilization ability and developmental competence of mammalian oocytes. This effect may be more closely associated with an intracellular calcium rise induced by cryoprotectants. The present study aimed to assess whether addition of Ethylene Glycol Tetraacetic acid (EGTA) to vitrification solution could improve quality and developmental competence of in vitro matured ovine oocytes. Vitrified groups were designed according to the presence or absence of EGTA and/or calcium in base media, including: mPB1+ (modified PBS with Ca2+), mPB1- (modified PBS without Ca2+), mPB1+/EGTA (mPB1+ containing EGTA), mPB1-/EGTA (mPB1- containing EGTA). In vitro development, numerical chromosome abnormalities, hardening of zona pellucida, mitochondrial distribution and function of viable oocytes were evaluated and compared between groups. Quality of blastocysts was assessed by differential and TUNEL staining. Also, mRNA expression levels of six candidate genes (KIF11, KIF2C, CENP-E, KIF20A, KIF4A and KIF2A), were quantitatively evaluated by RT-PCR. Our results showed that calcium-free vitrification and EGTA supplementation can significantly increase the percentage of normal haploid oocytes and maintain normal distribution and function of mitochondria in vitrified ovine oocytes, consequently improving developmental rate after in vitro fertilization. qRT-PCR analysis showed no significant difference in mRNA expression levels of kinesin genes between vitrified and fresh oocytes. Also, the presence of calcium in vitrification solution significantly increased zona hardening. In conclusion, we have shown for the first time that supplementation of vitrification solution with EGTA, as a calcium chelator, improved the ability of vitrified ovine oocytes to preserve mitochondrial distribution and function, as well as normal chromosome segregation.
Collapse
Affiliation(s)
- Batool Sanaei
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Bahar Movaghar
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.
| | | | - Bita Ebrahimi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Masood Bazrgar
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Farnoosh Jafarpour
- Department of Reproductive Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Mohammad Hossein Nasr-Esfahani
- Department of Reproductive Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| |
Collapse
|
37
|
Barrera N, dos Santos Neto PC, Cuadro F, Bosolasco D, Mulet AP, Crispo M, Menchaca A. Impact of delipidated estrous sheep serum supplementation on in vitro maturation, cryotolerance and endoplasmic reticulum stress gene expression of sheep oocytes. PLoS One 2018; 13:e0198742. [PMID: 29912910 PMCID: PMC6005475 DOI: 10.1371/journal.pone.0198742] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 05/24/2018] [Indexed: 11/21/2022] Open
Abstract
High lipid content of oocytes and embryos in domestic animals is one of the well-known factors associated with poor cryosurvival. Herein, we wanted to determine whether the use of delipidated estrous sheep serum during in vitro maturation (IVM) of ovine oocytes reduces the cytoplasmic lipid droplets content and improves embryo development and cryotolerance after vitrification. Cumulus oocytes complexes (COCs) were matured in vitro for 24 h in medium supplemented with whole or delipidated estrous sheep serum prior to vitrification. Neutral lipid present in lipid droplets of COCs, cleavage rate, embryo development rate on Day 6 and Day 8, and hatching rate on Day 8, were compared among experimental groups. Endoplasmic reticulum stress genes were evaluated in in vitro matured COCs under different lipid conditions prior to vitrification. The lipid droplets’ content (mean fluorescence intensity) of oocytes cultured with IVM media supplemented with delipidated serum was lower than COCs matured with whole serum (7.6 ± 1.7 vs. 22.8 ± 5.0 arbitrary units, respectively; P< 0.05). Despite IVM treatment, oocytes subjected to vitrification showed impaired competence compared with the non-vitrified groups (P<0.05). No significant differences in embryo production were observed in non-vitrified COCs after maturation in delipidated or whole serum (33.4±4.9 vs 31.9 ±4.2). COCs matured in delipidated serum and subjected to vitrification showed increased expression of ATF4, ATF6, GRP78, and CHOP10 genes (ER stress markers). Collectively, our results demonstrate that although supplementation of IVM medium with delipidated estrous sheep serum reduces the presence of cytoplasmic lipid droplets in oocytes after maturation, oocyte cryotolerance is not improved. Notably, the expression of genes associated with the unfolded protein response (UPR) was increased in COCs, with fewer lipid droplets subjected to vitrification, suggesting that oocyte cryopreservation is associated with ER stress and activation of adaptive responses.
Collapse
Affiliation(s)
- Natalibeth Barrera
- Instituto de Reproducción Animal Uruguay, Fundación IRAUy, Montevideo, Uruguay
- * E-mail: (NB); (AM)
| | | | - Federico Cuadro
- Instituto de Reproducción Animal Uruguay, Fundación IRAUy, Montevideo, Uruguay
| | - Diego Bosolasco
- Instituto de Reproducción Animal Uruguay, Fundación IRAUy, Montevideo, Uruguay
| | - Ana P. Mulet
- Unidad de Animales Transgénicos y de Experimentación, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Martina Crispo
- Unidad de Animales Transgénicos y de Experimentación, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Alejo Menchaca
- Instituto de Reproducción Animal Uruguay, Fundación IRAUy, Montevideo, Uruguay
- * E-mail: (NB); (AM)
| |
Collapse
|
38
|
Preincubation with glutathione ethyl ester improves the developmental competence of vitrified mouse oocytes. J Assist Reprod Genet 2018; 35:1169-1178. [PMID: 29876682 DOI: 10.1007/s10815-018-1215-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 05/17/2018] [Indexed: 01/08/2023] Open
Abstract
PURPOSE Oocyte vitrification is currently used for human fertility preservation. However, vitrification damage is a problem caused by decreasing ooplasmic levels of glutathione (GSH). The GSH donor glutathione ethyl ester (GSH-OEt) can significantly increase the GSH content in oocytes. However, it is difficult to obtain oocyte from woman. To overcome this, we used mouse oocytes to replace human oocytes as a model of study. METHODS Oocytes from B6D2F1 mice were preincubated for 30 min with 2.5 mmol/L GSH-OEt (GSH-OEt group), without GSH-OEt preincubation before vitrification (control vitrification group) or in nonvitrified oocytes (fresh group). After thawing, oocytes were fertilized for evaluating the developmental competence of embryos in vitro and in vivo. Immunofluorescence, Polscope equipment and quantitative reverse transcription polymerase chain reaction (RT-qPCR) were used to analyze damage, including mitochondrial distribution, reactive oxygen species (ROS) levels, spindle morphology, and gene expression levels (Bcl-2, BAX, and MnSOD). RESULTS The rates of fertilization, 3-4 cell, blastocyst formation and expanded blastocysts were significantly higher (p < 0.05) in the GSH-OEt group (90.4%; 91.1%; 88.9% and 63.0%) than in the control (80.0%; 81.4%; 77.7% and 50.5%). Provided embryos overcame the 2-cell block and developed to the blastocyst stage, birth rates of all groups were similar. Vitrification altered mitochondrial distribution, increased ROS levels, and caused abnormal spindle morphology; GSH-OEt preincubation could improve such damage. RT-qPCR showed that the expression of Bcl-2 was lower in the control group compared with the GSH-OEt group; BAX and MnSoD expression levels were higher in the control group than in the GSH-OEt group (p < 0.05). CONCLUSIONS The beneficial effect of GSH-OEt preincubation occurred before the 2-cell stage.
Collapse
|
39
|
Pre-clinical validation of a closed surface system (Cryotop SC) for the vitrification of oocytes and embryos in the mouse model. Cryobiology 2018; 81:107-116. [PMID: 29475071 DOI: 10.1016/j.cryobiol.2018.02.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 02/01/2018] [Accepted: 02/02/2018] [Indexed: 11/21/2022]
Abstract
Vitrification is currently a well-established technique for the cryopreservation of oocytes and embryos. It can be achieved either by direct (open systems) or indirect (closed systems) contact with liquid nitrogen. While there is not a direct evidence of disease transmission by transferred cryopreserved embryos, it was experimentally demonstrated that cross-contamination between liquid nitrogen and embryos may occur, and thus, the use of closed devices has been recommended to avoid the risk of contamination. Unfortunately, closed systems may result in lower cooling rates compared to open systems, due to the thermal insulation of the samples, which may cause ice crystal formation resulting in impaired results. In our study, we aimed to validate a newly developed vitrification device (Cryotop SC) that has been specifically designed for being used as a closed system. The cooling and warming rates calculated for the closed system were 5.254 °C/min and 43.522 °C/min, respectively. Results obtained with the closed system were equivalent to those with the classic Cryotop (open system), with survival rates in oocytes close to 100%. Similarly, the potential of the survived oocytes to develop up to good quality blastocysts after parthenogenetic activation between both groups was statistically equivalent. Assessment of the meiotic spindle and chromosome distribution by fluorescence microscopy in vitrified oocytes showed alike morphologies between the open and closed system. No differences were found either between the both systems in terms of survival rates of one-cell stage embryos or blastocysts, as well as, in the potential of the vitrified/warmed blastocysts to develop to full-term after transferred to surrogate females.
Collapse
|
40
|
No difference in mitochondrial distribution is observed in human oocytes after cryopreservation. Arch Gynecol Obstet 2017. [DOI: 10.1007/s00404-017-4428-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
41
|
High survival of mouse oocytes using an optimized vitrification protocol. Sci Rep 2016; 6:19465. [PMID: 26781721 PMCID: PMC4726034 DOI: 10.1038/srep19465] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 12/14/2015] [Indexed: 11/24/2022] Open
Abstract
The method of vitrification has been widely used for cryopreservation. However, the effectiveness of this method for mammalian oocytes could be improved by optimizing each step of the process. In the present study, we tested the effects of varying several key parameters to determine the most effective protocol for mouse oocyte vitrification. We found that cryoprotectant containing ethylene glycol and dimethylsulfoxide plus 20% fetal calf serum produced the highest rates of oocyte survival, fertilization, and blastocyst formation. The duration and temperature of oocyte exposure to vitrification and thawing solutions influenced survival rate. The presence of cumulus cells surrounding oocytes and the incubation of thawed oocytes in Toyoda-Yokoyama-Hosoki medium also increased oocyte survival. Open pulled straw and nylon loop methods were more effective than the mini-drop method. Finally, the combination of these improved methods resulted in better spindle morphology when compared to the unimproved methods. These results demonstrate that the outcomes of mouse oocyte vitrification can be improved by a suitable combination of cryopreservation methods, which could be applied to future clinical research with human oocytes.
Collapse
|
42
|
Improved low-CPA vitrification of mouse oocytes using quartz microcapillary. Cryobiology 2015; 70:269-72. [PMID: 25869750 DOI: 10.1016/j.cryobiol.2015.04.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 04/04/2015] [Accepted: 04/05/2015] [Indexed: 01/24/2023]
Abstract
Cryopreservation by low-cryoprotectant (CPA) vitrification has the potential to combine all the advantages of the conventional high-CPA vitrification and slow-freezing approaches while avoiding their drawbacks. However, current low-CPA vitrification protocol for cryopreservation of oocytes requires a lengthy and multi-step procedure for unloading CPAs. In this study, we report a much-simplified procedure of using quartz microcapillary (QMC) for low-CPA vitrification of mouse oocytes with only one step for unloading CPAs. The immediate viability of oocytes after the improved low-CPA vitrification was determined to be more than 90%. Moreover, no significant difference was observed in terms of embryonic development from the two-cell to blastocyst stages between the fresh and vitrified oocytes after in vitro fertilization (IVF). This improved low-CPA vitrification technology has the potential for efficient cryopreservation of oocytes to preserve the fertility of mammals including humans for assisted reproductive medicine, maintenance of animal resource and endangered species, and livestock management.
Collapse
|
43
|
Goldman KN, Kramer Y, Hodes-Wertz B, Noyes N, McCaffrey C, Grifo JA. Long-term cryopreservation of human oocytes does not increase embryonic aneuploidy. Fertil Steril 2015; 103:662-8. [DOI: 10.1016/j.fertnstert.2014.11.025] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 11/05/2014] [Accepted: 11/18/2014] [Indexed: 10/24/2022]
|
44
|
Kopeika J, Thornhill A, Khalaf Y. The effect of cryopreservation on the genome of gametes and embryos: principles of cryobiology and critical appraisal of the evidence. Hum Reprod Update 2014; 21:209-27. [DOI: 10.1093/humupd/dmu063] [Citation(s) in RCA: 171] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
45
|
Bogliolo L, Murrone O, Piccinini M, Ariu F, Ledda S, Tilocca S, Albertini DF. Evaluation of the impact of vitrification on the actin cytoskeleton of in vitro matured ovine oocytes by means of Raman microspectroscopy. J Assist Reprod Genet 2014; 32:185-93. [PMID: 25399064 DOI: 10.1007/s10815-014-0389-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 11/05/2014] [Indexed: 12/11/2022] Open
Abstract
PURPOSE Investigation of the changes induced by vitrification on the cortical F-actin of in vitro matured ovine oocytes by Raman microspectroscopy (RMS). METHODS Cumulus-oocyte complexes, recovered from the ovaries of slaughtered sheep, were matured in vitro and vitrified following the Minimum Essential Volume method using cryotops. The cortical region of metaphase II (MII) oocytes (1) exposed to vitrification solutions but not cryopreserved (CPA-exp), (2) vitrified/warmed (VITRI), and (3) untreated (CTR) was analyzed by RMS. A chemical map of one quadrant of single CPA-exp, VITRI and CTR oocytes was, also, performed. In order to identify the region of Raman spectra representative of the cortical F-actin modification, a group of in vitro matured oocytes were incubated with latrunculin-A (LATA), a specific F-actin destabilizing drug, and processed for RMS analysis. Thereafter, all the oocytes were stained with rhodamine phalloidin and evaluated by fluorescence confocal microscopy. Raman spectra of the oocytes were, statistically, analyzed using Principal Component Analysis (PCA). RESULTS The PCA score plots showed a marked discrimination between CTR oocytes and CPA-exp/ VITRI groups. The main differences, highlighted by PCA loadings, were referable to proteins (1657, 1440 and 1300 cm(-1)) and, as indicated by LATA experiments, also included the changes of the F-actin. Analysis by confocal microscopy revealed a clear alteration of the cortical F-actin of CPA-exp and VITRI oocytes confirming RMS results. CONCLUSIONS Raman microspectroscopy may represent an alternative analytical tool for investigating the biochemical modification of the oocyte cortex, including the F-actin cytoskeleton, during vitrification of in vitro matured ovine oocytes.
Collapse
Affiliation(s)
- Luisa Bogliolo
- Department of Veterinary Medicine, of Sassari, Via Vienna 2, 07100, Sassari, Sardegna, Italy,
| | | | | | | | | | | | | |
Collapse
|
46
|
Doyle JO, Lee HJ, Selesniemi K, Styer AK, Rueda BR. The impact of vitrification on murine germinal vesicle oocyte In vitro maturation and aurora kinase A protein expression. J Assist Reprod Genet 2014; 31:1695-702. [PMID: 25318984 DOI: 10.1007/s10815-014-0336-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 09/04/2014] [Indexed: 12/01/2022] Open
Abstract
PURPOSE Investigate the effect of vitrification on in vitro maturation (IVM) and expression of Aurora kinases A, B, and C in germinal vesicle (GV)-stage oocytes. METHODS GV-stage oocytes from B6D2F1 female mice 7-11 weeks of age were vitrified after collection, thawed, and matured in vitro for 0, 4, 8, and 12 h (hrs). The rate of germinal vesicle breakdown (GVBD), spindle apparatus assembly, and Aurora kinase mRNA and protein expression during IVM was measured. RESULTS Oocyte vitrification was associated with significant delays in both GVBD and normal spindle apparatus assembly at 4 and 8 h of IVM (p < 0.05). There was no difference in mRNA levels between control and vitrified oocytes for any of the Aurora kinases. Aurora A protein levels were reduced in vitrified compared to control oocytes at 0 h (p = 0.008), and there was no difference at 4 and 8 h (p = 0.08 and 0.69, respectively) of IVM. CONCLUSIONS Vitrified oocytes have delayed GVBD and normal spindle assembly during in vitro maturation. Reduced levels of Aurora A protein immediately post-thaw may be associated with the impaired oocyte maturation manifested by the delayed progression through meiosis I and II, and the atypical timing of the formation of meiotic spindles in vitrified GV-stage oocytes.
Collapse
Affiliation(s)
- Joseph O Doyle
- Vincent Center for Reproductive Biology, Thier 9, MGH Vincent Department of Obstetrics and Gynecology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA, 02114, USA
| | | | | | | | | |
Collapse
|