1
|
Park JE, Sasaki E. Assisted Reproductive Techniques and Genetic Manipulation in the Common Marmoset. ILAR J 2021; 61:286-303. [PMID: 33693670 PMCID: PMC8918153 DOI: 10.1093/ilar/ilab002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 10/27/2020] [Accepted: 11/05/2020] [Indexed: 12/12/2022] Open
Abstract
Abstract
Genetic modification of nonhuman primate (NHP) zygotes is a useful method for the development of NHP models of human diseases. This review summarizes the recent advances in the development of assisted reproductive and genetic manipulation techniques in NHP, providing the basis for the generation of genetically modified NHP disease models. In this study, we review assisted reproductive techniques, including ovarian stimulation, in vitro maturation of oocytes, in vitro fertilization, embryo culture, embryo transfer, and intracytoplasmic sperm injection protocols in marmosets. Furthermore, we review genetic manipulation techniques, including transgenic strategies, target gene knock-out and knock-in using gene editing protocols, and newly developed gene-editing approaches that may potentially impact the production of genetically manipulated NHP models. We further discuss the progress of assisted reproductive and genetic manipulation techniques in NHP; future prospects on genetically modified NHP models for biomedical research are also highlighted.
Collapse
Affiliation(s)
- Jung Eun Park
- Department of Neurobiology, University of Pittsburgh, School of Medicine in Pittsburgh, Pennsylvania, USA
| | - Erika Sasaki
- Department of Marmoset Biology and Medicine, Central Institute for Experimental Animals in Kawasaki, Kanagawa, Japan
| |
Collapse
|
2
|
Drummer C, Vogt EJ, Heistermann M, Roshani B, Becker T, Mätz-Rensing K, Kues WA, Kügler S, Behr R. Generation and Breeding of EGFP-Transgenic Marmoset Monkeys: Cell Chimerism and Implications for Disease Modeling. Cells 2021; 10:505. [PMID: 33673402 PMCID: PMC7996964 DOI: 10.3390/cells10030505] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/18/2021] [Accepted: 02/22/2021] [Indexed: 02/07/2023] Open
Abstract
Genetic modification of non-human primates (NHP) paves the way for realistic disease models. The common marmoset is a NHP species increasingly used in biomedical research. Despite the invention of RNA-guided nucleases, one strategy for protein overexpression in NHP is still lentiviral transduction. We generated three male and one female enhanced green fluorescent protein (EGFP)-transgenic founder marmosets via lentiviral transduction of natural preimplantation embryos. All founders accomplished germline transmission of the transgene by natural mating, yielding 20 transgenic offspring together (in total, 45 pups; 44% transgenic). This demonstrates that the transgenic gametes are capable of natural fertilization even when in competition with wildtype gametes. Importantly, 90% of the transgenic offspring showed transgene silencing, which is in sharp contrast to rodents, where the identical transgene facilitated robust EGFP expression. Furthermore, we consistently discovered somatic, but so far, no germ cell chimerism in mixed wildtype/transgenic litters. Somatic cell chimerism resulted in false-positive genotyping of the respective wildtype littermates. For the discrimination of transgenic from transgene-chimeric animals by polymerase chain reaction on skin samples, a chimeric cell depletion protocol was established. In summary, it is possible to establish a cohort of genetically modified marmosets by natural mating, but specific requirements including careful promoter selection are essential.
Collapse
Affiliation(s)
- Charis Drummer
- Platform Degenerative Diseases, German Primate Center–Leibniz Institute for Primate Research, Kellnerweg 4, 37077 Göttingen, Germany;
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, 37099 Göttingen, Germany
| | - Edgar-John Vogt
- Platform Degenerative Diseases, German Primate Center–Leibniz Institute for Primate Research, Kellnerweg 4, 37077 Göttingen, Germany;
| | - Michael Heistermann
- Endocrinology Laboratory, German Primate Center–Leibniz Institute for Primate Research, Kellnerweg 4, 37077 Göttingen, Germany;
| | - Berit Roshani
- Unit of Infection Models, German Primate Center–Leibniz Institute for Primate Research, Kellnerweg 4, 37077 Göttingen, Germany;
| | - Tamara Becker
- Primate Husbandry, German Primate Center–Leibniz Institute for Primate Research, Kellnerweg 4, 37077 Göttingen, Germany;
| | - Kerstin Mätz-Rensing
- Pathology Unit, German Primate Center–Leibniz-Institute for Primate Research, Kellnerweg 4, 37077 Göttingen, Germany;
| | - Wilfried A. Kues
- Friedrich-Loeffler-Institut, Institut für Nutztiergenetik, Mariensee, 31535 Neustadt, Germany;
| | - Sebastian Kügler
- Center for Nanoscale Microscopy and Physiology of the Brain (CNMPB) at Department of Neurology, University of Göttingen, Waldweg 33, 37073 Göttingen, Germany;
| | - Rüdiger Behr
- Platform Degenerative Diseases, German Primate Center–Leibniz Institute for Primate Research, Kellnerweg 4, 37077 Göttingen, Germany;
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, 37099 Göttingen, Germany
| |
Collapse
|
3
|
Ishii A, Okada H, Hayashita-Kinoh H, Shin JH, Tamaoka A, Okada T, Takeda S. rAAV8 and rAAV9-Mediated Long-Term Muscle Transduction with Tacrolimus (FK506) in Non-Human Primates. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 18:44-49. [PMID: 32577431 PMCID: PMC7298335 DOI: 10.1016/j.omtm.2020.05.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 05/19/2020] [Indexed: 01/06/2023]
Abstract
To establish an efficient, safe immunosuppressive regimen of adeno-associated vector (AAV)-mediated gene therapy for Duchenne muscular dystrophy (DMD), we evaluated the effect of tacrolimus (FK506) on skeletal muscle transduction with AAV8 and AAV9 vectors expressing the LacZ and microdystrophin (M3) genes labeled by FLAG. We utilized 3- to 4-year-old Macaca fascicularis, screened for neutralizing antibodies against AAV. 3 days before AAV injection and throughout the experiment, 0.06 mg/kg tacrolimus was intravenously administered. A viral suspension of 1 × 1013 viral genomes/muscle was intramuscularly injected bilaterally at the tibialis anterior and biceps brachii muscles, which were biopsied at 8, 16, 24, and 42 weeks after injection. Without tacrolimus, AAV8- and AAV9-mediated LacZ expression disappeared 8 and 16 weeks after transduction, respectively. With tacrolimus, AAV8/9-mediated LacZ expression persisted for at least 42 weeks after injection. At 42 weeks after AAV8CMVLacZ and AAV9CMVLacZ injection, nearly 50% and 17% of muscle fibers were positive for β-galactosidase, respectively. AAV8/9-mediated M3-FLAG expression lasted for up to 42 weeks using tacrolimus. No significant generalized toxicity was observed in any monkey. These results indicate that tacrolimus administration regulated the immune response to transgenes and truncated microdystrophin in normal primates and may enhance the benefits of AAV-mediated gene therapy for DMD.
Collapse
Affiliation(s)
- Akiko Ishii
- Department of Molecular Therapy, National Institute of Neuroscience, NCNP, Tokyo, Japan.,Department of Neurology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Hironori Okada
- Department of Molecular Therapy, National Institute of Neuroscience, NCNP, Tokyo, Japan.,Department of Biochemistry and Molecular Biology, Nippon Medical School, Tokyo, Japan
| | - Hiromi Hayashita-Kinoh
- Department of Molecular Therapy, National Institute of Neuroscience, NCNP, Tokyo, Japan.,Department of Biochemistry and Molecular Biology, Nippon Medical School, Tokyo, Japan.,Division of Molecular and Medical Genetics, Center for Gene and Cell Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Jin-Hong Shin
- Department of Molecular Therapy, National Institute of Neuroscience, NCNP, Tokyo, Japan
| | - Akira Tamaoka
- Department of Neurology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Takashi Okada
- Department of Molecular Therapy, National Institute of Neuroscience, NCNP, Tokyo, Japan.,Department of Biochemistry and Molecular Biology, Nippon Medical School, Tokyo, Japan.,Division of Molecular and Medical Genetics, Center for Gene and Cell Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Shin'ichi Takeda
- Department of Molecular Therapy, National Institute of Neuroscience, NCNP, Tokyo, Japan
| |
Collapse
|
4
|
Abstract
The biology of fertility, early development, and pregnancy is variable across mammalian species. In addition, while the physiology and pathophysiology of human diseases can be investigated in other animal models (principally, rodents), differences between human and lower mammals often present limitations in the applicability of physiological processes from rodent models to human biology. Since 1984, when the first live birth from rhesus monkey in vitro fertilization and embryo transfer was reported (Bavister et al., Proc Natl Acad Sci 81:2218-2222, 1984), there has been progress in the implementation of assisted reproductive technologies with several nonhuman primate (NHP) species that play important roles in biomedical research. In recent years, the significance of this progress has been amplified by the development of genomic editing approaches for facile genetic manipulation of the embryo, including methods now applied to NHPs (Liu et al., Cell Stem Cell 14:323-328, 2014; Niu et al., Cell 156:836-843, 2014). In this review, we summarize current protocols and practices for the common marmoset. It is our intention to provide current state-of-the-art protocols for gamete procurement and in vitro fertilization techniques, so that laboratories wishing to implement experimental embryology in marmoset models will have a basic set of tools with which to initiate such studies.
Collapse
|
5
|
Kropp J, Di Marzo A, Golos T. Assisted reproductive technologies in the common marmoset: an integral species for developing nonhuman primate models of human diseases. Biol Reprod 2018; 96:277-287. [PMID: 28203717 DOI: 10.1095/biolreprod.116.146514] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 01/03/2017] [Accepted: 01/05/2017] [Indexed: 12/31/2022] Open
Abstract
Generation of nonhuman primate models of human disease conditions will foster the development of novel therapeutic strategies. Callithrix jacchus, or the common marmoset, is a New World, nonhuman primate species that exhibits great reproductive fitness in captivity with an ovarian cycle that can be easily managed with pharmacological agents. This characteristic, among others, provides an opportunity to employ assisted reproductive technologies to generate embryos that can be genetically manipulated to create a variety of nonhuman primate models for human disease. Here, we review methods to synchronize the marmoset ovarian cycle and stimulate oocyte donors, and compare various protocols for in vitro production of embryos. In light of advances in genomic editing, recent approaches used to generate transgenic or genetically edited embryos in the marmoset and also future perspective are reviewed.
Collapse
Affiliation(s)
- Jenna Kropp
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Andrea Di Marzo
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Thaddeus Golos
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Department of Obstetrics and Gynecology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
6
|
Transgenic Monkey Model of the Polyglutamine Diseases Recapitulating Progressive Neurological Symptoms. eNeuro 2017; 4:eN-NWR-0250-16. [PMID: 28374014 PMCID: PMC5368386 DOI: 10.1523/eneuro.0250-16.2017] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 03/06/2017] [Accepted: 03/07/2017] [Indexed: 01/11/2023] Open
Abstract
Age-associated neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, and the polyglutamine (polyQ) diseases, are becoming prevalent as a consequence of elongation of the human lifespan. Although various rodent models have been developed to study and overcome these diseases, they have limitations in their translational research utility owing to differences from humans in brain structure and function and in drug metabolism. Here, we generated a transgenic marmoset model of the polyQ diseases, showing progressive neurological symptoms including motor impairment. Seven transgenic marmosets were produced by lentiviral introduction of the human ataxin 3 gene with 120 CAG repeats encoding an expanded polyQ stretch. Although all offspring showed no neurological symptoms at birth, three marmosets with higher transgene expression developed neurological symptoms of varying degrees at 3-4 months after birth, followed by gradual decreases in body weight gain, spontaneous activity, and grip strength, indicating time-dependent disease progression. Pathological examinations revealed neurodegeneration and intranuclear polyQ protein inclusions accompanied by gliosis, which recapitulate the neuropathological features of polyQ disease patients. Consistent with neuronal loss in the cerebellum, brain MRI analyses in one living symptomatic marmoset detected enlargement of the fourth ventricle, which suggests cerebellar atrophy. Notably, successful germline transgene transmission was confirmed in the second-generation offspring derived from the symptomatic transgenic marmoset gamete. Because the accumulation of abnormal proteins is a shared pathomechanism among various neurodegenerative diseases, we suggest that this new marmoset model will contribute toward elucidating the pathomechanisms of and developing clinically applicable therapies for neurodegenerative diseases.
Collapse
|
7
|
Lauterboeck L, Wolkers W, Glasmacher B. Cryobiological parameters of multipotent stromal cells obtained from different sources. Cryobiology 2017; 74:93-102. [DOI: 10.1016/j.cryobiol.2016.11.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 11/10/2016] [Accepted: 11/26/2016] [Indexed: 11/26/2022]
|
8
|
Park JE, Zhang XF, Choi SH, Okahara J, Sasaki E, Silva AC. Generation of transgenic marmosets expressing genetically encoded calcium indicators. Sci Rep 2016; 6:34931. [PMID: 27725685 PMCID: PMC5057151 DOI: 10.1038/srep34931] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 09/20/2016] [Indexed: 02/04/2023] Open
Abstract
Chronic monitoring of neuronal activity in the living brain with optical imaging techniques became feasible owing to the continued development of genetically encoded calcium indicators (GECIs). Here we report for the first time the successful generation of transgenic marmosets (Callithrix jacchus), an important nonhuman primate model in neurophysiological research, which were engineered to express the green fluorescent protein (GFP)-based family of GECIs, GCaMP, under control of either the CMV or the hSyn promoter. High titer lentiviral vectors were produced, and injected into embryos collected from donor females. The infected embryos were then transferred to recipient females. Eight transgenic animals were born and shown to have stable and functional GCaMP expression in several different tissues. Germline transmission of the transgene was confirmed in embryos generated from two of the founder transgenic marmosets that reached sexual maturity. These embryos were implanted into six recipient females, three of which became pregnant and are in advanced stages of gestation. We believe these transgenic marmosets will be invaluable non-human primate models in neuroscience, allowing chronic in vivo monitoring of neural activity with functional confocal and multi-photon optical microscopy imaging of intracellular calcium dynamics.
Collapse
Affiliation(s)
- Jung Eun Park
- Cerebral Microcirculation Section, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Xian Feng Zhang
- Cerebral Microcirculation Section, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Sang-Ho Choi
- Cerebral Microcirculation Section, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Junko Okahara
- Department of Applied Developmental Biology, Central Institute for Experimental Animals, Tonomachi, Kawasaki, Kanagawa 210-0821, Japan
| | - Erika Sasaki
- Department of Applied Developmental Biology, Central Institute for Experimental Animals, Tonomachi, Kawasaki, Kanagawa 210-0821, Japan.,Keio advanced Research Center, Keio University, Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Afonso C Silva
- Cerebral Microcirculation Section, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
9
|
Ishibashi H. More effective induction of anesthesia using midazolam-butorphanol-ketamine-sevoflurane compared with ketamine-sevoflurane in the common marmoset monkey (Callithrix jacchus). J Vet Med Sci 2015; 78:317-9. [PMID: 26369292 PMCID: PMC4785126 DOI: 10.1292/jvms.15-0099] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The common marmoset has been increasingly used for research in the biomedical field; however, there is little
information available regarding effective methods of anesthesia in this species. This study retrospectively
analyzed 2 regimens of anesthesia induction: intramuscular injection of ketamine followed by inhalation of 5%
sevoflurane, and intramuscular injection of midazolam, butorphanol and ketamine followed by inhalation of 5%
sevoflurane. Anesthetic depth did not reach the surgical anesthesia stage in 7 out of 99 animals receiving the
former regimen, whereas there were only 2 such animals out of 273 receiving the latter regimen. The latter
regimen, when followed by maintenance anesthesia with 3% sevoflurane inhalation, was successfully used in
various nociceptive procedures. These results indicate that the injection of a combination of midazolam,
butorphanol and ketamine followed by inhalation of a high concentration of sevoflurane is effective for
anesthesia induction in marmosets.
Collapse
Affiliation(s)
- Hidetoshi Ishibashi
- Division of Primate Resources, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo 187-8502, Japan
| |
Collapse
|
10
|
Sasaki E. Prospects for genetically modified non-human primate models, including the common marmoset. Neurosci Res 2015; 93:110-5. [PMID: 25683291 DOI: 10.1016/j.neures.2015.01.011] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 10/03/2014] [Accepted: 10/07/2014] [Indexed: 01/01/2023]
Abstract
Genetically modified mice have contributed much to studies in the life sciences. In some research fields, however, mouse models are insufficient for analyzing the molecular mechanisms of pathology or as disease models. Often, genetically modified non-human primate (NHP) models are desired, as they are more similar to human physiology, morphology, and anatomy. Recent progress in studies of the reproductive biology in NHPs has enabled the introduction of exogenous genes into NHP genomes or the alteration of endogenous NHP genes. This review summarizes recent progress in the production of genetically modified NHPs, including the common marmoset, and future perspectives for realizing genetically modified NHP models for use in life sciences research.
Collapse
Affiliation(s)
- Erika Sasaki
- Advanced Research Center, Keio University, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan; Center of Applied Developmental Biology, Central Institute for Experimental Animals, 3-25-12 Tonomachi, Kawasaki, Kanagawa 210-0821, Japan.
| |
Collapse
|