1
|
Kelp NC, Pru CA, Paudel S, Lydon JP, Kim JJ, Peluso JJ, Pru JK. Uterine Pgrmc2 Deficiency Attenuates Endometrial Hyperplasia and Cancer and Prolongs Lifespan in a Pten Loss-of-Function-Induced Cancer Model. Cancers (Basel) 2025; 17:1178. [PMID: 40227710 PMCID: PMC11988108 DOI: 10.3390/cancers17071178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Revised: 03/14/2025] [Accepted: 03/26/2025] [Indexed: 04/15/2025] Open
Abstract
The expression of members of the progesterone receptor membrane component (PGRMC) family, particularly PGRMC1, is elevated in diverse types of cancers, particularly those of the female reproductive system. While xenograft tumor studies using human transformed cell lines in immunocompromised mice have suggested that PGRMC1 enhances tumor growth and chemoresistance, the exact role of members of the PGRMC family in cancer development in vivo remains unclear. In this study, we examined the effect of deleting Pgrmc2 on the development of endometrial hyperplasia and cancer using a murine phosphatase and tensin homologue (Pten) conditional loss-of-function model. We previously established that PGRMCs are cell survival factors that are required for normal estrogen-induced uterine epithelial cell proliferation and normal female fertility. The deletion of Pgrmc2 reduced the incidence and severity of endometrial hyperplasia and cancer in mice with conditional Pten-heterozygous uteri and increased lifespan in mice with conditional Pten-knockout uteri. Mechanistically, the deletion of Pgrmc2 decreased uterine glandular epithelial cell proliferation. Pten loss-of-function-induced endometrial hyperplasia and cancer elevated uterine inflammation, but this was not impacted by PGRMC2 deficiency. This study identifies PGRMC2 as a potential therapeutic target to be inhibited in the treatment of endometrial hyperplasia and cancer, particularly where PTEN activity is reduced due to gene mutation or loss.
Collapse
Affiliation(s)
- Nicole C. Kelp
- Center for Reproductive Biology, School of Molecular Biosciences and Department of Animal Sciences, Washington State University, Pullman, WA 99163, USA; (N.C.K.)
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Cindy A. Pru
- Center for Reproductive Biology, School of Molecular Biosciences and Department of Animal Sciences, Washington State University, Pullman, WA 99163, USA; (N.C.K.)
- Program in Reproductive Biology, Department of Animal Science, University of Wyoming, Laramie, WY 82071, USA;
| | - Sandeep Paudel
- Program in Reproductive Biology, Department of Animal Science, University of Wyoming, Laramie, WY 82071, USA;
| | - John P. Lydon
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA;
| | - J. Julie Kim
- Division of Reproductive Science in Medicine, Department of Obstetrics and Gynecology, Northwestern University, Chicago, IL 60611, USA;
| | - John J. Peluso
- Departments of Cell Biology and Obstetrics and Gynecology, University of Connecticut Health Center, Farmington, CT 06030, USA;
| | - James K. Pru
- Center for Reproductive Biology, School of Molecular Biosciences and Department of Animal Sciences, Washington State University, Pullman, WA 99163, USA; (N.C.K.)
- Program in Reproductive Biology, Department of Animal Science, University of Wyoming, Laramie, WY 82071, USA;
| |
Collapse
|
2
|
Ten Years of CRISPRing Cancers In Vitro. Cancers (Basel) 2022; 14:cancers14235746. [PMID: 36497228 PMCID: PMC9738354 DOI: 10.3390/cancers14235746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 11/24/2022] Open
Abstract
Cell lines have always constituted a good investigation tool for cancer research, allowing scientists to understand the basic mechanisms underlying the complex network of phenomena peculiar to the transforming path from a healthy to cancerous cell. The introduction of CRISPR in everyday laboratory activity and its relative affordability greatly expanded the bench lab weaponry in the daily attempt to better understand tumor biology with the final aim to mitigate cancer's impact in our lives. In this review, we aim to report how this genome editing technique affected in the in vitro modeling of different aspects of tumor biology, its several declinations, and analyze the advantages and drawbacks of each of them.
Collapse
|
3
|
Fang X, Ni N, Wang X, Tian Y, Ivanov I, Rijnkels M, Bayless KJ, Lydon JP, Li Q. EZH2 and Endometrial Cancer Development: Insights from a Mouse Model. Cells 2022; 11:cells11050909. [PMID: 35269532 PMCID: PMC8909840 DOI: 10.3390/cells11050909] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/24/2022] [Accepted: 03/03/2022] [Indexed: 01/26/2023] Open
Abstract
Enhancer of zeste homolog 2 (EZH2), a core component of polycomb repressive complex 2, plays an important role in cancer development. As both oncogenic and tumor suppressive functions of EZH2 have been documented in the literature, the objective of this study is to determine the impact of Ezh2 deletion on the development and progression of endometrial cancer induced by inactivation of phosphatase and tensin homolog (PTEN), a tumor suppressor gene frequently dysregulated in endometrial cancer patients. To this end, we created mice harboring uterine deletion of both Ezh2 and Pten using Cre recombinase driven by the progesterone receptor (Pgr) promoter. Our results showed reduced tumor burden in Ptend/d; Ezh2d/d mice compared with that of Ptend/d mice during early carcinogenesis. The decreased Ki67 index in EZH2 and PTEN-depleted uteri versus that in PTEN-depleted uteri indicated an oncogenic role of EZH2 during early tumor development. However, mice harboring uterine deletion of both Ezh2 and Pten developed unfavorable disease outcome, accompanied by exacerbated epithelial stratification and heightened inflammatory response. The observed effect was non-cell autonomous and mediated by altered immune response evidenced by massive accumulation of intraluminal neutrophils, a hallmark of endometrial carcinoma in Ptend/d; Ezh2d/d mice during disease progression. Hence, these results reveal dual roles of EZH2 in endometrial cancer development.
Collapse
Affiliation(s)
- Xin Fang
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843, USA; (X.F.); (N.N.); (M.R.)
| | - Nan Ni
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843, USA; (X.F.); (N.N.); (M.R.)
| | - Xiaofang Wang
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX 75246, USA;
| | - Yanan Tian
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, USA; (Y.T.); (I.I.)
| | - Ivan Ivanov
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, USA; (Y.T.); (I.I.)
| | - Monique Rijnkels
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843, USA; (X.F.); (N.N.); (M.R.)
| | - Kayla J. Bayless
- Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA;
| | - John P. Lydon
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA;
| | - Qinglei Li
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843, USA; (X.F.); (N.N.); (M.R.)
- Correspondence: ; Tel.: +1-979-862-2009; Fax: +1-979-847-8981
| |
Collapse
|
4
|
Al-Mulhim F, Alqosaibi AI, Al-Muhnna A, Farid K, Abdel-Ghany S, Rizk H, Prince AB, Isichei A, Sabit H. CRISPR/Cas9-mediated activation of CDH1 suppresses metastasis of breast cancer in rats. ELECTRON J BIOTECHN 2021. [DOI: 10.1016/j.ejbt.2021.06.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
5
|
Sekulovski N, Whorton AE, Shi M, Hayashi K, MacLean JA. Insulin signaling is an essential regulator of endometrial proliferation and implantation in mice. FASEB J 2021; 35:e21440. [PMID: 33749878 DOI: 10.1096/fj.202002448r] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 01/27/2021] [Accepted: 01/29/2021] [Indexed: 01/04/2023]
Abstract
Insulin signaling is critical for the development of preovulatory follicles and progression through the antral stage. Using a conditional knockout model that escapes this blockage, we recently described the role of insulin signaling in granulosa cells during the periovulatory window in mice lacking Insr and Igf1r driven by Pgr-Cre. These mice were infertile, exhibiting defects in ovulation, luteinization, steroidogenesis, and early embryo development. Herein, we demonstrate that while these mice exhibit normal uterine receptivity, uterine cell proliferation and decidualization are compromised resulting in complete absence of embryo implantation in uteri lacking both receptors. While the histological organization of double knockout mice appeared normal, the thickness of their endometrium was significantly reduced. This was supported by the reduced proliferation of both epithelial and stromal cells during the preimplantation stages of pregnancy. Expression and localization of the main drivers of uterine proliferation, ESR1 and PGR, was normal in knockouts, suggesting that insulin signaling acts downstream of these two receptors. While AKT/PI3K signaling was unaffected by insulin receptor ablation, activation of p44/42 MAPK was significantly reduced in both single and double knockout uteri at 3.5 dpc. Overall, we conclude that both INSR and IGF1R are necessary for optimal endometrial proliferation and implantation.
Collapse
Affiliation(s)
- Nikola Sekulovski
- Department of Physiology, Southern Illinois School of Medicine, Carbondale, IL, USA
| | - Allison E Whorton
- Department of Physiology, Southern Illinois School of Medicine, Carbondale, IL, USA
| | - Mingxin Shi
- Department of Physiology, Southern Illinois School of Medicine, Carbondale, IL, USA
| | - Kanako Hayashi
- Department of Physiology, Southern Illinois School of Medicine, Carbondale, IL, USA.,Center for Reproductive Biology, Washington State University, Pullman, WA, USA
| | - James A MacLean
- Department of Physiology, Southern Illinois School of Medicine, Carbondale, IL, USA.,Center for Reproductive Biology, Washington State University, Pullman, WA, USA.,School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| |
Collapse
|
6
|
Metibemu DS, Akinloye OA, Akamo AJ, Okoye JO, Ojo DA, Morifi E, Omotuyi IO. VEGFR-2 kinase domain inhibition as a scaffold for anti-angiogenesis: Validation of the anti-angiogenic effects of carotenoids from Spondias mombin in DMBA model of breast carcinoma in Wistar rats. Toxicol Rep 2021; 8:489-498. [PMID: 34408968 PMCID: PMC8363596 DOI: 10.1016/j.toxrep.2021.02.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 02/18/2021] [Accepted: 02/20/2021] [Indexed: 01/22/2023] Open
Abstract
Vascular endothelial growth factor (VEGF) and its receptor-2 (VEGFR-2) mediated tumorigenesis, metastasis, and angiogenesis are the cause of the increased levels of mortality associated with breast cancer and other forms of cancer. Inhibition of VEGF and VEGFR-2 provides a great therapeutic option in the management of cancer. This study employed VEGFR-2 kinase domain inhibition as an anti-angiogenic scaffold and further validate the anti-angiogenic effects of the lead phytochemicals, carotenoids from Spondias mombin in 7, 12-Dimethylbenz[a]anthracene (DMBA) model of breast carcinoma in Wistar rats. Phytochemicals characterized from 6 reported anti-cancer plants were screened against the VEGFR-2 kinase domain. The lead phytochemicals, carotenoids from Spondias mombin were isolated and subjected to Liquid Chromatography-Electrospray Ionization-Mass Spectrometry (LC-ESI-MS) for characterization. The anti-angiogenic potentials of the carotenoid isolates were validated in the DMBA model of breast carcinoma in female Wistar rats through assessment of the expression of anti-angiogenic related mRNAs, histopathological analysis, and molecular docking. Treatment with carotenoid isolates (100 mg/kg and 200 mg/kg) significantly (p < 0.05) downregulated the expression of VEGF, VEGFR, Epidermal Growth Factor Receptor (EGFR), Hypoxia-Inducible Factor-1(HIF-1), and Matrix Metalloproteinase-2 (MMP-2) mRNAs in the mammary tumours, while the expression of Chromodomain Helicase DNA-Binding Protein-1 (CHD-1) mRNA was significantly (p < 0.05) upregulated. DMBA induced comedo and invasive ductal subtypes of breast carcinoma. The binding of astaxanthin, 7,7',8,8'-tetrahydro-β,β-carotene, and beta-carotene-15,15'-epoxide to the ATP binding site led to the DFG-out conformation with binding energies of -8.2 kcal/mol, -10.3 kcal/mol, and -10.5 kcal/mol respectively. Carotenoid isolates demonstrated anti-angiogenic and anti-proliferating potentials via VEGFR-2 kinase domain inhibition.
Collapse
Affiliation(s)
- Damilohun Samuel Metibemu
- Department of Biochemistry, Adekunle Ajasin University, Akungba-Akoko, Ondo State, Nigeria
- Department of Biochemistry, Federal University of Agriculture, Abeokuta, Nigeria
| | | | - Adio Jamiu Akamo
- Department of Biochemistry, Federal University of Agriculture, Abeokuta, Nigeria
| | - Jude Ogechukwu Okoye
- Department of Medical Laboratory Science, Faculty of Health Sciences and Technology, College of Medicine, Nnamdi Azikiwe University, Nnewi Campus, Nigeria
| | - David Ajiboye Ojo
- Department of Microbiology, Federal University of Agriculture, Abeokuta, Nigeria
| | - Eric Morifi
- Department of Chemistry, School of Chemistry, University of the Witwatersrand, Johannesburg, South Africa
| | - Idowu Olaposi Omotuyi
- Department of Biochemistry, Adekunle Ajasin University, Akungba-Akoko, Ondo State, Nigeria
| |
Collapse
|
7
|
Angiogenesis regulation by microRNAs and long non-coding RNAs in human breast cancer. Pathol Res Pract 2021; 219:153326. [PMID: 33601152 DOI: 10.1016/j.prp.2020.153326] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 12/18/2020] [Accepted: 12/22/2020] [Indexed: 02/07/2023]
Abstract
MicroRNAs (miRNAs) and long non-coding RNAs (lncRNAs) are capable of regulating gene expression post-transcriptionally. Since the past decade, a number of in vitro, in vivo, and clinical studies reported the roles of these non-coding RNAs (ncRNAs) in regulating angiogenesis, an important cancer hallmark that is associated with metastases and poor prognosis. The specific roles of various miRNAs and lncRNAs in regulating angiogenesis in breast cancer, with particular focus on the downstream targets and signalling pathways regulated by these ncRNAs will be discussed in this review. In light of the recent trend in exploiting ncRNAs as cancer therapeutics, the potential use of miRNAs and lncRNAs as biomarkers and novel therapeutic agent against angiogenesis was also discussed.
Collapse
|
8
|
Muraoka A, Osuka S, Kiyono T, Suzuki M, Yokoi A, Murase T, Nishino K, Niimi K, Nakamura T, Goto M, Kajiyama H, Kondo Y, Kikkawa F. Establishment and characterization of cell lines from human endometrial epithelial and mesenchymal cells from patients with endometriosis. F&S SCIENCE 2020; 1:195-205. [PMID: 35559928 DOI: 10.1016/j.xfss.2020.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 09/08/2020] [Accepted: 09/08/2020] [Indexed: 06/15/2023]
Abstract
OBJECTIVE To establish and characterize cell lines derived from human endometrial epithelial cells (ECs) and mesenchymal cells (MCs) from patients with and without endometriosis. DESIGN In vitro experimental study. SETTING University and national cancer center research institute. PATIENT(S) Two women with endometriosis and two women without endometriosis. INTERVENTION(S) Sampling of endometrial ECs and MCs. MAIN OUTCOME MEASURE(S) Establishing immortalized endometrial ECs and MCs with quantitative reverse transcription-polymerase chain reaction (qRT-PCR), immunocytochemical analysis, and RNA sequence profiling performed to characterize the immortalized cells and a cell proliferation assay, three-dimensional culture, and assays for hormone responses performed to characterize the features of ECs. RESULT(S) The qRT-PCR, immunocytochemical analysis, and Western blot analysis revealed that the ECs and MCs maintained their original features. Moreover, the immortalized cells were found to retain responsiveness to sex steroid hormones. The ECs formed a gland-like structure in three-dimensional culture, indicating the maintenance of normal EC phenotypes. The RNA sequence profiling, principal component analysis, and clustering analysis showed that the gene expression patterns of the immortalized cells were different from those of cancer cells. Several signaling pathways that were statistically significantly enriched in ECs and MCs with endometriosis were revealed. CONCLUSION(S) We successfully obtained four paired immortalized endometrial ECs and MCs from patients with and without endometriosis. Using these cells could help identify diagnostic and therapeutic targets for endometriosis. The cell lines established in this study will thus serve as powerful experimental tools in the study of endometriosis.
Collapse
Affiliation(s)
- Ayako Muraoka
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Nagoya University, Nagoya, Japan; Division of Cancer Biology, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Satoko Osuka
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Nagoya University, Nagoya, Japan.
| | - Tohru Kiyono
- Project for Prevention of HPV-related Cancer, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa City, Japan.
| | - Miho Suzuki
- Division of Cancer Biology, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Akira Yokoi
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Tomohiko Murase
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Kimihiro Nishino
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Kaoru Niimi
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Tomoko Nakamura
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Maki Goto
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Hiroaki Kajiyama
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Yutaka Kondo
- Division of Cancer Biology, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Fumitaka Kikkawa
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| |
Collapse
|
9
|
Gao Y, Lin P, Lydon JP, Li Q. Conditional abrogation of transforming growth factor-β receptor 1 in PTEN-inactivated endometrium promotes endometrial cancer progression in mice. J Pathol 2017; 243:89-99. [PMID: 28657664 DOI: 10.1002/path.4930] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 05/10/2017] [Accepted: 05/28/2017] [Indexed: 12/16/2022]
Abstract
Although a putative role for transforming growth factor-β (TGFB) signalling in the pathogenesis of human endometrial cancer has long been proposed, the precise function of TGFB signalling in the development and progression of endometrial cancer remains elusive. Depletion of phosphatase and tensin homologue (PTEN) in the mouse uterus causes endometrial cancer. To identify the potential role of TGFB signalling in endometrial cancer, we simultaneously deleted TGFB receptor 1 (Tgfbr1) and Pten in the mouse uterus by using Cre-recombinase driven by the progesterone receptor (termed Ptend/d ;Tgfbr1d/d ). We found that Ptend/d ;Tgfbr1d/d mice developed severe endometrial lesions that progressed more rapidly than those resulting from conditional deletion of Pten alone, suggesting that TGFB signalling synergizes with PTEN to suppress endometrial cancer progression. Remarkably, Ptend/d ;Tgfbr1d/d mice developed distant pulmonary metastases, leading to a significantly reduced lifespan. The development of metastasis and accelerated tumour progression in Ptend/d ;Tgfbr1d/d mice are associated with increased production of proinflammatory chemokines, enhanced cancer cell motility, as shown by myometrial invasion and disruption, and an altered tumour microenvironment characterized by recruitment of tumour-associated macrophages. Thus, conditional deletion of Tgfbr1 in PTEN-inactivated endometrium leads to a disease that recapitulates invasive and lethal human endometrial cancer. This mouse model may be valuable for preclinical testing of new cancer therapies, particularly those targeting metastasis, one of the hallmarks of cancer and a major cause of death in endometrial cancer patients. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Yang Gao
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine, Texas A&M University, College Station, TX, USA
| | - Pengfei Lin
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine, Texas A&M University, College Station, TX, USA.,Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, PR China
| | - John P Lydon
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Qinglei Li
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine, Texas A&M University, College Station, TX, USA
| |
Collapse
|
10
|
Walker CJ, Goodfellow PJ. Traditional Approaches to Molecular Genetic Analysis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 943:99-118. [DOI: 10.1007/978-3-319-43139-0_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
11
|
Rodriguez A, Tripurani SK, Burton JC, Clementi C, Larina I, Pangas SA. SMAD Signaling Is Required for Structural Integrity of the Female Reproductive Tract and Uterine Function During Early Pregnancy in Mice. Biol Reprod 2016; 95:44. [PMID: 27335065 PMCID: PMC5029477 DOI: 10.1095/biolreprod.116.139477] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 06/10/2016] [Indexed: 12/20/2022] Open
Abstract
Pregnancy is a complex physiological process tightly controlled by the interplay among hormones, morphogens, transcription factors, and signaling pathways. Although recent studies using genetically engineered mouse models have revealed that ligands and receptors of transforming growth factor beta (TGFbeta) and bone morphogenetic protein (BMP) signaling pathways are essential for multiple reproductive events during pregnancy, the functional role of SMAD transcription factors, which serve as the canonical signaling platform for the TGFbeta/BMP pathways, in the oviduct and uterus is undefined. Here, we used a mouse model containing triple conditional deletion of the BMP receptor signaling Smads (Smad1 and Smad5) and Smad4, the central mediator of both TGFbeta and BMP signaling, to investigate the role of the SMADs in reproductive tract structure and function in cells from the Amhr2 lineage. Unlike the respective single- or double-knockouts, female Smad1(flox/flox) Smad5(flox/flox) Smad4(flox/flox) Amhr2(cre/+)conditional knockout (i.e., Smad1/5/4-Amhr2-cre KO) mice are sterile. We discovered that Smad1/5/4-Amhr2-cre KO females have malformed oviducts that subsequently develop oviductal diverticuli. These oviducts showed dysregulation of multiple genes essential for oviduct and smooth muscle development. In addition, uteri from Smad1/5/4-Amhr2-cre KO females exhibit multiple defects in stroma, epithelium, and smooth muscle layers and fail to assemble a closed uterine lumen upon embryo implantation, with defective uterine decidualization that led to pregnancy loss at early to mid-gestation. Taken together, our study uncovers a new role for the SMAD transcription factors in maintaining the structural and functional integrity of oviduct and uterus, required for establishment and maintenance of pregnancy.
Collapse
Affiliation(s)
- Amanda Rodriguez
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas Graduate Program in Molecular and Cell Biology, Baylor College of Medicine, Houston, Texas
| | - Swamy K Tripurani
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas
| | - Jason C Burton
- Graduate Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, Texas
| | - Caterina Clementi
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas Graduate Program in Developmental Biology, Baylor College of Medicine, Houston, Texas
| | - Irina Larina
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas
| | - Stephanie A Pangas
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas Center for Reproductive Medicine, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
12
|
Terakawa J, Rocchi A, Serna VA, Bottinger EP, Graff JM, Kurita T. FGFR2IIIb-MAPK Activity Is Required for Epithelial Cell Fate Decision in the Lower Müllerian Duct. Mol Endocrinol 2016; 30:783-95. [PMID: 27164167 DOI: 10.1210/me.2016-1027] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Cell fate of lower Müllerian duct epithelium (MDE), to become uterine or vaginal epithelium, is determined by the absence or presence of ΔNp63 expression, respectively. Previously, we showed that SMAD4 and runt-related transcription factor 1 (RUNX1) were independently required for MDE to express ΔNp63. Here, we report that vaginal mesenchyme directs vaginal epithelial cell fate in MDE through paracrine activation of fibroblast growth factor (FGF) receptor-MAPK pathway. In the developing reproductive tract, FGF7 and FGF10 were enriched in vaginal mesenchyme, whereas FGF receptor 2IIIb was expressed in epithelia of both the uterus and vagina. When Fgfr2 was inactivated, vaginal MDE underwent uterine cell fate, and this differentiation defect was corrected by activation of MEK-ERK pathway. In vitro, FGF10 in combination with bone morphogenetic protein 4 and activin A (ActA) was sufficient to induce ΔNp63 in MDE, and ActA was essential for induction of RUNX1 through SMAD-independent pathways. Accordingly, inhibition of type 1 receptors for activin in neonatal mice induced uterine differentiation in vaginal epithelium by down-regulating RUNX1, whereas conditional deletion of Smad2 and Smad3 had no effect on vaginal epithelial differentiation. In conclusion, vaginal epithelial cell fate in MDE is induced by FGF7/10-MAPK, bone morphogenetic protein 4-SMAD, and ActA-RUNX1 pathway activities, and the disruption in any one of these pathways results in conversion from vaginal to uterine epithelial cell fate.
Collapse
Affiliation(s)
- Jumpei Terakawa
- Department of Molecular Virology Immunology and Medical Genetics (J.T., V.A.S., T.K.), The Comprehensive Cancer Center, Ohio State University, Columbus, Ohio 43210; Department of Cell and Molecular Biology (A.R.), Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611; The Charles Bronfman Institute for Personalized Medicine (E.P.B.), Icahn School of Medicine at Mt Sinai, New York, New York 10029; and Developmental Biology (J.M.G.), Molecular Biology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Altea Rocchi
- Department of Molecular Virology Immunology and Medical Genetics (J.T., V.A.S., T.K.), The Comprehensive Cancer Center, Ohio State University, Columbus, Ohio 43210; Department of Cell and Molecular Biology (A.R.), Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611; The Charles Bronfman Institute for Personalized Medicine (E.P.B.), Icahn School of Medicine at Mt Sinai, New York, New York 10029; and Developmental Biology (J.M.G.), Molecular Biology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Vanida A Serna
- Department of Molecular Virology Immunology and Medical Genetics (J.T., V.A.S., T.K.), The Comprehensive Cancer Center, Ohio State University, Columbus, Ohio 43210; Department of Cell and Molecular Biology (A.R.), Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611; The Charles Bronfman Institute for Personalized Medicine (E.P.B.), Icahn School of Medicine at Mt Sinai, New York, New York 10029; and Developmental Biology (J.M.G.), Molecular Biology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Erwin P Bottinger
- Department of Molecular Virology Immunology and Medical Genetics (J.T., V.A.S., T.K.), The Comprehensive Cancer Center, Ohio State University, Columbus, Ohio 43210; Department of Cell and Molecular Biology (A.R.), Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611; The Charles Bronfman Institute for Personalized Medicine (E.P.B.), Icahn School of Medicine at Mt Sinai, New York, New York 10029; and Developmental Biology (J.M.G.), Molecular Biology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Jonathan M Graff
- Department of Molecular Virology Immunology and Medical Genetics (J.T., V.A.S., T.K.), The Comprehensive Cancer Center, Ohio State University, Columbus, Ohio 43210; Department of Cell and Molecular Biology (A.R.), Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611; The Charles Bronfman Institute for Personalized Medicine (E.P.B.), Icahn School of Medicine at Mt Sinai, New York, New York 10029; and Developmental Biology (J.M.G.), Molecular Biology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Takeshi Kurita
- Department of Molecular Virology Immunology and Medical Genetics (J.T., V.A.S., T.K.), The Comprehensive Cancer Center, Ohio State University, Columbus, Ohio 43210; Department of Cell and Molecular Biology (A.R.), Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611; The Charles Bronfman Institute for Personalized Medicine (E.P.B.), Icahn School of Medicine at Mt Sinai, New York, New York 10029; and Developmental Biology (J.M.G.), Molecular Biology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390
| |
Collapse
|
13
|
Mitochondrial Reprogramming Regulates Breast Cancer Progression. Clin Cancer Res 2016; 22:3348-60. [DOI: 10.1158/1078-0432.ccr-15-2456] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 02/06/2016] [Indexed: 11/16/2022]
|
14
|
Kluth M, Runte F, Barow P, Omari J, Abdelaziz ZM, Paustian L, Steurer S, Christina Tsourlakis M, Fisch M, Graefen M, Tennstedt P, Huland H, Michl U, Minner S, Sauter G, Simon R, Adam M, Schlomm T. Concurrent deletion of 16q23 and PTEN is an independent prognostic feature in prostate cancer. Int J Cancer 2015; 137:2354-63. [PMID: 26009879 DOI: 10.1002/ijc.29613] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 03/13/2015] [Accepted: 04/22/2015] [Indexed: 01/14/2023]
Abstract
The deletion of 16q23-q24 belongs to the most frequent chromosomal changes in prostate cancer, but the clinical consequences of this alteration have not been studied in detail. We performed fluorescence in situ hybridization analysis using a 16q23 probe in more than 7,400 prostate cancers with clinical follow-up data assembled in a tissue microarray format. Chromosome 16q deletion was found in 21% of cancers, and was linked to advanced tumor stage, high Gleason grade, accelerated cell proliferation, the presence of lymph node metastases (p < 0.0001 each) and positive surgical margin (p = 0.0004). 16q Deletion was more frequent in ERG fusion-positive (27%) as compared to ERG fusion-negative cancers (16%, p < 0.0001), and was linked to other ERG-associated deletions including phosphatase and tensin homolog (PTEN) (p < 0.0001) and 3p13 (p = 0.0303). In univariate analysis, the deletion of 16q was linked to early biochemical recurrence independently from the ERG status (p < 0.0001). Tumors with codeletions of 16q and PTEN had a worse prognosis (p = 0.0199) than those with PTEN or the deletion of 16q alone. Multivariate modeling revealed that the prognostic value of 16q/PTEN deletion patterns was independent from the established prognostic factors. In summary, the results of our study demonstrate that the deletion of 16q and PTEN cooperatively drives prostate cancer progression, and suggests that deletion analysis of 16q and PTEN could be of important clinical value particularly for preoperative risk assessment of the clinically most challenging group of low- and intermediated grade prostate cancers.
Collapse
Affiliation(s)
- Martina Kluth
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Frederic Runte
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Philipp Barow
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jazan Omari
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Zaid M Abdelaziz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lisa Paustian
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan Steurer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Margit Fisch
- Department of Urology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Markus Graefen
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Pierre Tennstedt
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hartwig Huland
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Uwe Michl
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sarah Minner
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Guido Sauter
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ronald Simon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Meike Adam
- Department of Urology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thorsten Schlomm
- Department of Urology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Urology, Section for Translational Prostate Cancer Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
15
|
Stodden GR, Lindberg ME, King ML, Paquet M, MacLean JA, Mann JL, DeMayo FJ, Lydon JP, Hayashi K. Loss of Cdh1 and Trp53 in the uterus induces chronic inflammation with modification of tumor microenvironment. Oncogene 2015; 34:2471-82. [PMID: 24998851 PMCID: PMC4551401 DOI: 10.1038/onc.2014.193] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 05/05/2014] [Accepted: 05/28/2014] [Indexed: 12/16/2022]
Abstract
Type II endometrial carcinomas (ECs) are estrogen independent, poorly differentiated tumors that behave in an aggressive manner. As TP53 mutation and CDH1 inactivation occur in 80% of human endometrial type II carcinomas, we hypothesized that mouse uteri lacking both Trp53 and Cdh1 would exhibit a phenotype indicative of neoplastic transformation. Mice with conditional ablation of Cdh1 and Trp53 (Cdh1(d/d)Trp53(d/d)) clearly demonstrate architectural features characteristic of type II ECs, including focal areas of papillary differentiation, protruding cytoplasm into the lumen (hobnailing) and severe nuclear atypia at 6 months of age. Further, Cdh1(d/d)Trp53(d/d) tumors in 12-month-old mice were highly aggressive, and metastasized to nearby and distant organs within the peritoneal cavity, such as abdominal lymph nodes, mesentery and peri-intestinal adipose tissues, demonstrating that tumorigenesis in this model proceeds through the universally recognized morphological intermediates associated with type II endometrial neoplasia. We also observed abundant cell proliferation and complex angiogenesis in the uteri of Cdh1(d/d)Trp53(d/d) mice. Our microarray analysis found that most of the genes differentially regulated in the uteri of Cdh1(d/d)Trp53(d/d) mice were involved in inflammatory responses. CD163 and Arg1, markers for tumor-associated macrophages, were also detected and increased in the uteri of Cdh1(d/d)Trp53(d/d) mice, suggesting that an inflammatory tumor microenvironment with immune cell recruitment is augmenting tumor development in Cdh1(d/d)Trp53(d/d) uteri. Further, inflammatory mediators secreted from CDH1-negative, TP53 mutant endometrial cancer cells induced normal macrophages to express inflammatory-related genes through activation of nuclear factor-κB signaling. These results indicate that absence of CDH1 and TP53 in endometrial cells initiates chronic inflammation, promotes tumor microenvironment development following the recruitment of macrophages and promotes aggressive ECs.
Collapse
Affiliation(s)
- Genna R. Stodden
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, IL, USA
| | - Mallory E. Lindberg
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, IL, USA
| | - Mandy L. King
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, IL, USA
| | - Marilène Paquet
- Departement de Pathologie et de Microbiologie, Université de Montreal, St-Hyacinthe (Qc) J2S 2M2, Canada
| | - James A. MacLean
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, IL, USA
| | - Jordan L. Mann
- Department of Pathology, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Francesco J. DeMayo
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston TX, USA
| | - John P. Lydon
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston TX, USA
| | - Kanako Hayashi
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, IL, USA
| |
Collapse
|
16
|
Schneider MR, Kolligs FT. E-cadherin's role in development, tissue homeostasis and disease: Insights from mouse models: Tissue-specific inactivation of the adhesion protein E-cadherin in mice reveals its functions in health and disease. Bioessays 2014; 37:294-304. [PMID: 25449798 DOI: 10.1002/bies.201400141] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Recent studies uncovered critical roles of the adhesion protein E-cadherin in health and disease. Global inactivation of Cdh1, the gene encoding E-cadherin in mice, results in early embryonic lethality due to an inability to form the trophectodermal epithelium. To unravel E-cadherin's functions beyond development, numerous mouse lines with tissue-specific disruption of Cdh1 have been generated. The consequences of E-cadherin loss showed great variability depending on the tissue in question, ranging from nearly undetectable changes to a complete loss of tissue structure and function. This review focuses on these studies and discusses how they provided important insights into E-cadherin's role in cell adhesion, proliferation and differentiation, and its consequences for biological processes as epithelial-to-mesenchymal transition, vascularization, and carcinogenesis. Lastly, we present some perspectives and possible approaches for future research.
Collapse
Affiliation(s)
- Marlon R Schneider
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, LMU Munich, Germany
| | | |
Collapse
|
17
|
Zhou XM, Zhang H, Han X. Role of epithelial to mesenchymal transition proteins in gynecological cancers: pathological and therapeutic perspectives. Tumour Biol 2014; 35:9523-30. [PMID: 25168372 DOI: 10.1007/s13277-014-2537-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 08/20/2014] [Indexed: 12/31/2022] Open
Abstract
Gynecorelogic cancers like ovarian, cervical, and endometrial cancers are among the major threats to modern life, especially to female health. Like some other types of cancers, all of these gynecological cancers have found to be associated with the developmental stage epithelial to mesenchymal transition (EMT). More specifically, the aberrant expression of major EMT markers, such as lower expressions of E-cadherin and alpha-catenin, and overexpressions of N-cadherin, beta-catenin, vimentin, and matrix metalloproteinases, have been reported in ovarian, cervical, and endometrial cancers. The transcription factors, such as Twist, Snail, Slug, and Zeb, which regulate these EMT mediators, are also reported to be overexpressed in gynecological cancers. In addition to the over/lower expression, the promoter methylation of some of these genes has been identified too. In the era of target-specific cancer therapeutics, some promising studies showed that targeting EMT markers might be an interesting and successful tool in future cancer therapy. In this study, we have reviewed the recent development in the research on the association of EMT markers with three major gynecological cancers in the perspectives of carcinogenesis and therapeutics.
Collapse
Affiliation(s)
- Xiao-Mei Zhou
- Department of Gynaecolgy and Obstetrics, Shenzhen FuTian District Traditional Chinese Medicine Hospital, No. 6001 Beihuan Blvd., Futian District, Shenzhen, 518000, China,
| | | | | |
Collapse
|
18
|
Dong P, Konno Y, Watari H, Hosaka M, Noguchi M, Sakuragi N. The impact of microRNA-mediated PI3K/AKT signaling on epithelial-mesenchymal transition and cancer stemness in endometrial cancer. J Transl Med 2014; 12:231. [PMID: 25141911 PMCID: PMC4145234 DOI: 10.1186/s12967-014-0231-0] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Accepted: 08/12/2014] [Indexed: 02/06/2023] Open
Abstract
Activation of the PI3K/AKT pathway, a common mechanism in all subtypes of endometrial cancers (endometrioid and non-endometrioid tumors), has important roles in contributing to epithelial-mesenchymal transition (EMT) and cancer stem cell (CSC) features. MicroRNAs (miRNAs) are small non-coding RNA molecules that concurrently affect multiple target genes, and regulate a wide range of genes involved in modulating EMT and CSC properties. Here we overview the recent advances revealing the impact of miRNAs on EMT and CSC phenotypes in tumors including endometrial cancer via regulating PI3K/AKT pathway. MiRNAs are crucial mediators of EMT and CSC through targeting PTEN-PI3K-AKT-mTOR axis. In endometrial cancer cells, miRNAs can activate or attenuate EMT and CSC by targeting PTEN and other EMT-associated genes, such as Twist1, ZEB1 and BMI-1. More detailed studies of miRNAs will deepen our understanding of the molecular basis underlying PI3K/AKT-induced endometrial cancer initiation and progression. Targeting key signaling components of PI3K/AKT pathway by restoring or inhibiting miRNA function holds promise as a potential therapeutic approach to suppress EMT and CSC in endometrial cancer.
Collapse
Affiliation(s)
- Peixin Dong
- Department of Women's Health Educational System, Hokkaido University School of Medicine, Hokkaido University, N15, W7, Sapporo 0608638, Japan.
| | | | | | | | | | | |
Collapse
|
19
|
Abstract
Progesterone plays an essential role in the maintenance of the endometrium; it prepares the endometrium for pregnancy, promotes decidualization, and inhibits estrogen-dependent proliferation. Progesterone function is often dysregulated in endometrial disease states. In addition, the PI3K/AKT signaling pathway is often overactive in endometrial pathologies and promotes the survival and proliferation of the diseased cells. Understanding how AKT influences progesterone action is critical in improving hormone-based therapies in endometrial pathologies. Here, we summarize recent studies investigating the crosstalk between the AKT pathway and progesterone receptor function in endometriosis and endometrial cancer.
Collapse
Affiliation(s)
- Irene I Lee
- Division of Reproductive Science in Medicine, Department of Obstetrics and Gynecology, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - J Julie Kim
- Division of Reproductive Science in Medicine, Department of Obstetrics and Gynecology, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| |
Collapse
|
20
|
Skrzypczak M, Lattrich C, Häring J, Schüler S, Ortmann O, Treeck O. Expression of SCUBE2 gene declines in high grade endometrial cancer and associates with expression of steroid hormone receptors and tumor suppressor PTEN. Gynecol Endocrinol 2013; 29:1031-5. [PMID: 24053619 DOI: 10.3109/09513590.2013.829441] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
SCUBE2 (Signal peptide-CUB-epidermal growth factor-like domain-containing 2) gene codes for a cell-surface glycoprotein. In breast cancer, SCUBE2 transcript levels are part of important prognostic and predictive gene signatures and are linked to expression of estrogen receptor α (ERα). To elucidate the role of this gene in endometrial cancer, we compared SCUBE2 expression in malignant and normal endometrial tissue specimens. We then examined its correlation with steroid hormone receptors and PTEN and compared it to SCUBE2 expression in breast cancer samples. Expression of SCUBE2 was found to be decreased in G3 endometrial cancer when compared to postmenopausal endometrium or to G1 tumors (p < 0.05). In postmenopausal endometrium, SCUBE2 transcript levels were more than twice as high as in premenopausal women. In breast cancer, SCUBE2 expression was found to be notably reduced particularly in ERα-negative G3 tumors. Both in endometrial and breast cancer we observed a significant positive correlation of SCUBE2 transcript levels with expression of ERα, PR and PTEN. Our data suggest that SCUBE2, like in breast cancer, associates with ERα and might have a potential as prognostic or predictive marker in endometrial cancer.
Collapse
Affiliation(s)
- Maciej Skrzypczak
- Department of Obstetrics and Gynecology, University Medical Center Regensburg , Regensburg , Germany and
| | | | | | | | | | | |
Collapse
|