1
|
Takeshima M, Gotoh A. Establishment of a rapid, cost-effective, and accurate method for assessing insect sperm viability. JOURNAL OF INSECT PHYSIOLOGY 2024; 158:104682. [PMID: 39069118 DOI: 10.1016/j.jinsphys.2024.104682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/19/2024] [Accepted: 07/25/2024] [Indexed: 07/30/2024]
Abstract
High-quality sperm cells are crucial to reproductive success for both males and post-mating females in animals. Sperm viability, defined as the proportion of viable sperm cells, is used as a sperm quality index and this method has provided new insights into research on reproductive strategies. Sperm viability has been assessed by fluorescent staining of sperm cells. However, current staining protocols could potentially underestimate viability due to cell damage caused by cell treatments such as high dye concentration and long time for post-mounting. In this study, we established a method that enables rapid sperm viability assessment, has low sperm cell toxicity, and provides precise results regardless of operator expertise, and cost-effective using sperm cells from an ant, Crematogaster osakensis (Hymenoptera). First, to shorten the time for observation of a sufficient number of sperm cells, the volume per field of view was increased by height elevation between the glass slide and the coverslip, thereby we increased the number of sperm cells in a field of view. Second, to reduce sperm cell toxicity, we optimized the minimum dye concentration and incubation time using acridine orange (AO) and Hoechst in addition to SYBR 14 and propidium iodide (PI), which has been used in most previous studies. We determined the optimal protocol to be 1 µg/mL AO and 150 µM PI without incubation. Besides, we automated counting sperm cells with ImageJ software and combined with manual correction for more accurate results. We employed the improved method for sperm samples from mealworm beetles (Tenebrio molitor) and silkmoths (Bombyx mori). This method, established through our study, will advance research on reproductive strategies, including sperm competition and sperm quality maintenance in females.
Collapse
Affiliation(s)
- Mika Takeshima
- Department of Biology, Faculty of Science and Engineering, Konan University, 8-9-1 Okamoto, Higashinada-ku, Kobe 658-8501, Japan.
| | - Ayako Gotoh
- Department of Biology, Faculty of Science and Engineering, Konan University, 8-9-1 Okamoto, Higashinada-ku, Kobe 658-8501, Japan; Institute for Integrative Neurobiology, Konan University, 8-9-1 Okamoto, Higashinada-ku, Kobe 658-8501, Japan; Suntory Rising Stars Encouragement Program in Life Sciences (SunRiSE), Japan.
| |
Collapse
|
2
|
Kato S, Kubo T, Fukazawa T. Effective enrichment of stem cells in the regenerating Xenopus laevis tadpole tails using the side population method. Dev Growth Differ 2022; 64:290-296. [PMID: 35839785 DOI: 10.1111/dgd.12797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/27/2022] [Accepted: 07/13/2022] [Indexed: 11/30/2022]
Abstract
Xenopus laevis tadpoles have high regenerative ability and can regenerate their whole tails after tail amputation. Lineage-restricted tissue stem cells are thought to provide sources for the regenerating tissues by producing undifferentiated progenitor cells in response to tail amputation. However, elucidating the behavioral dynamics of tissue stem cells during tail regeneration is difficult because of their rarity, and there are few established methods of isolating these cells in amphibians. Here, to detect and analyze rare tissue stem cells, we attempted to enrich tissue stem cells from tail regeneration buds. High Hoechst dye efflux capacity is thought to be a common characteristic of several types of mammalian tissue stem cells; these stem cells designated as the "side population (SP)" may be enriched by flow cytometry (SP method). To evaluate the effectiveness of stem cell enrichment using the SP method in regenerating X. laevis tadpole tails, we performed single-cell RNA sequencing (scRNA-seq) of SP cells from regeneration buds and analyzed the frequency of satellite cells, which are muscle stem/progenitor cells expressing pax7. The pax7-expressing cells were enriched in the SP compared with whole normal tails and regeneration buds. Furthermore, hes1-expressing cells assumed to be neural stem/progenitor cells were also enriched in the SP. Our findings suggest that the SP method was efficient for successfully enriching tissue stem cells in the regenerating X. laevis tadpole tails, indicating that the combination of the SP method and scRNA-seq was useful for studying tissue stem cells that contribute to tail regeneration.
Collapse
Affiliation(s)
- Sumika Kato
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, Japan
| | - Takeo Kubo
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, Japan
| | - Taro Fukazawa
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
3
|
Song H, Park HJ, Lee WY, Lee KH. Models and Molecular Markers of Spermatogonial Stem Cells in Vertebrates: To Find Models in Nonmammals. Stem Cells Int 2022; 2022:4755514. [PMID: 35685306 PMCID: PMC9174007 DOI: 10.1155/2022/4755514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 03/21/2022] [Accepted: 04/17/2022] [Indexed: 11/24/2022] Open
Abstract
Spermatogonial stem cells (SSCs) are the germline stem cells that are essential for the maintenance of spermatogenesis in the testis. However, it has not been sufficiently understood in amphibians, reptiles, and fish because numerous studies have been focused mainly on mammals. The aim of this review is to discuss scientific ways to elucidate SSC models of nonmammals in the context of the evolution of testicular organization since rodent SSC models. To further understand the SSC models in nonmammals, we point out common markers of an SSC pool (undifferentiated spermatogonia) in various types of testes where the kinetics of the SSC pool appears. This review includes the knowledge of (1) common molecular markers of vertebrate type A spermatogonia including putative SSC markers, (2) localization of the markers on the spermatogonia that have been reported in previous studies, (3) highlighting the most common markers in vertebrates, and (4) suggesting ways of finding SSC models in nonmammals.
Collapse
Affiliation(s)
- Hyuk Song
- Department of Stem Cell and Regenerative Technology, KIT, Konkuk University, Seoul 05029, Republic of Korea
| | - Hyun-Jung Park
- Department of Animal Biotechnology, College of Life Science and Natural Resources, Sangji University, Wonju-si 26339, Republic of Korea
| | - Won-Young Lee
- Department of Animal Science, Korea National College of Agriculture and Fisheries, Jeonju-si 54874, Republic of Korea
| | - Kyung Hoon Lee
- Department of Stem Cell and Regenerative Technology, KIT, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
4
|
Ryu JH, Xu L, Wong TT. Advantages, Factors, Obstacles, Potential Solutions, and Recent Advances of Fish Germ Cell Transplantation for Aquaculture-A Practical Review. Animals (Basel) 2022; 12:ani12040423. [PMID: 35203131 PMCID: PMC8868515 DOI: 10.3390/ani12040423] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/05/2022] [Accepted: 02/06/2022] [Indexed: 12/11/2022] Open
Abstract
Simple Summary This review aims to provide practical information and viewpoints regarding fish germ cell transplantation for enhancing its commercial applications. We reviewed and summarized the data from more than 70 important studies and described the advantages, obstacles, recent advances, and future perspectives of fish germ cell transplantation. We concluded and proposed the critical factors for achieving better success and various options for germ cell transplantation with their pros and cons. Additionally, we discussed why this technology has not actively been utilized for commercial purposes, what barriers need to be overcome, and what potential solutions can advance its applications in aquaculture. Abstract Germ cell transplantation technology enables surrogate offspring production in fish. This technology has been expected to mitigate reproductive barriers, such as long generation time, limited fecundity, and complex broodstock management, enhancing seed production and productivity in aquaculture. Many studies of germ cell transplantation in various fish species have been reported over a few decades. So far, surrogate offspring production has been achieved in many commercial species. In addition, the knowledge of fish germ cell biology and the related technologies that can enhance transplantation efficiency and productivity has been developed. Nevertheless, the commercial application of this technology still seems to lag behind, indicating that the established models are neither beneficial nor cost-effective enough to attract potential commercial users of this technology. Furthermore, there are existing bottlenecks in practical aspects such as impractical shortening of generation time, shortage of donor cells with limited resources, low efficiency, and unsuccessful surrogate offspring production in some fish species. These obstacles need to be overcome through further technology developments. Thus, we thoroughly reviewed the studies on fish germ cell transplantation reported to date, focusing on the practicality, and proposed potential solutions and future perspectives.
Collapse
|
5
|
Xie X, Tichopád T, Kislik G, Langerová L, Abaffy P, Šindelka R, Franěk R, Fučíková M, Steinbach C, Shah MA, Šauman I, Chen F, Pšenička M. Isolation and Characterization of Highly Pure Type A Spermatogonia From Sterlet ( Acipenser ruthenus) Using Flow-Cytometric Cell Sorting. Front Cell Dev Biol 2021; 9:772625. [PMID: 34957105 PMCID: PMC8708567 DOI: 10.3389/fcell.2021.772625] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/08/2021] [Indexed: 12/17/2022] Open
Abstract
Sturgeons are among the most ancient linages of actinopterygians. At present, many sturgeon species are critically endangered. Surrogate production could be used as an affordable and a time-efficient method for endangered sturgeons. Our study established a method for identifying and isolating type A spermatogonia from different developmental stages of testes using flow cytometric cell sorting (FCM). Flow cytometric analysis of a whole testicular cell suspension showed several well-distinguished cell populations formed according to different values of light scatter parameters. FCM of these different cell populations was performed directly on glass slides for further immunocytochemistry to identify germ cells. Results showed that the cell population in gate P1 on a flow cytometry plot (with high forward scatter and high side scatter parameter values) contains the highest amount of type A spermatogonia. The sorted cell populations were characterized by expression profiles of 10 germ cell specific genes. The result confirmed that setting up for the P1 gate could precisely sort type A spermatogonia in all tested testicular developmental stages. The P2 gate, which was with lower forward scatter and side scatter values mostly, contained type B spermatogonia at a later maturing stage. Moreover, expressions of plzf, dnd, boule, and kitr were significantly higher in type A spermatogonia than in later developed germ cells. In addition, plzf was firstly found as a reliable marker to identify type A spermatogonia, which filled the gap of identification of spermatogonial stem cells in sterlet. It is expected to increase the efficiency of germ stem cell culture and transplantation with plzf identification. Our study thus first addressed a phenotypic characterization of a pure type A spermatogonia population in sterlet. FCM strategy can improve the production of sturgeons with surrogate broodstock and further the analysis of the cellular and molecular mechanisms of sturgeon germ cell development.
Collapse
Affiliation(s)
- Xuan Xie
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, Research Institute of Fish Culture and Hydrobiology, University of South Bohemia in České Budějovice, Vodňany, Czechia
| | - Tomáš Tichopád
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, Research Institute of Fish Culture and Hydrobiology, University of South Bohemia in České Budějovice, Vodňany, Czechia
| | - Galina Kislik
- Imaging Methods Core Facility at BIOCEV, Operated by Faculty of Science, Charles University in Prague, Vestec, Czechia
| | - Lucie Langerová
- Laboratory of Gene Expression, Institute of Biotechnology of the Czech Academy of Sciences, Vestec, Czechia
| | - Pavel Abaffy
- Laboratory of Gene Expression, Institute of Biotechnology of the Czech Academy of Sciences, Vestec, Czechia
| | - Radek Šindelka
- Laboratory of Gene Expression, Institute of Biotechnology of the Czech Academy of Sciences, Vestec, Czechia
| | - Roman Franěk
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, Research Institute of Fish Culture and Hydrobiology, University of South Bohemia in České Budějovice, Vodňany, Czechia
| | - Michaela Fučíková
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, Research Institute of Fish Culture and Hydrobiology, University of South Bohemia in České Budějovice, Vodňany, Czechia
| | - Christoph Steinbach
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, Research Institute of Fish Culture and Hydrobiology, University of South Bohemia in České Budějovice, Vodňany, Czechia
| | - Mujahid Ali Shah
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, Research Institute of Fish Culture and Hydrobiology, University of South Bohemia in České Budějovice, Vodňany, Czechia
| | - Ivo Šauman
- Biology Center of the Czech Academy of Sciences, Institute of Entomology, České Budějovice, Czechia
- University of South Bohemia, Faculty of Science, České Budějovice, Czechia
| | - Fan Chen
- Department of Pharmacology, C_DAT, University Medicine Greifswald, Greifswald, Germany
| | - Martin Pšenička
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, Research Institute of Fish Culture and Hydrobiology, University of South Bohemia in České Budějovice, Vodňany, Czechia
| |
Collapse
|
6
|
Ichida K, Jangprai A, Khaosa-Art P, Yoshizaki G, Boonanuntanasarn S. Characterization of a vasa homolog in Mekong giant catfish (Pangasianodon gigas): Potential use as a germ cell marker. Anim Reprod Sci 2021; 234:106869. [PMID: 34656888 DOI: 10.1016/j.anireprosci.2021.106869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 09/25/2021] [Accepted: 09/27/2021] [Indexed: 11/25/2022]
Abstract
For the long-term preservation of the genetic resources of endangered fish species, a combination of germ cell cryopreservation and transplantation can be an effective technique. To optimize these techniques, it is important to identify undifferentiated germ cells possessing transplantability, such as primordial germ cells, type A spermatogonia (ASGs), and oogonia. In this study, a homolog of vasa cDNA in Mekong giant catfish (MGC-vasa) (Pangasianodon gigas), which is an endangered species inhabiting the Mekong river, was cloned and characterized for use as a putative germ cell marker. Results indicate that MGC-Vasa contained all of the consensus motifs, including the arginine-glycine and arginine-glycine-glycine motifs, as well as the nine conserved motifs belonging to the DEAD-box family of proteins. Results from phylogenetic analysis indicated MGC-vasa also grouped with Vasa and was clearly distinguishable from Pl10 in other teleosts. Results from analysis of abundance of mRNA transcripts using reverse transcription-polymerase chain reaction and in situ hybridization performed on immature Mekong giant catfish testis indicated vasa was present specifically in germ cells, with large abundances of the relevant mRNA in spermatogonia and spermatocytes. Sequence similarity and the specific localization of MGC-vasa in these germ cells suggest that the sequence ascertained in this study was a vasa homolog in Mekong giant catfish. Furthermore, vasa-positive cells were detected in prepared smears of testicular cells, indicating that it may be a useful germ cell marker for enzymatically dissociated cells used for transplantation studies.
Collapse
Affiliation(s)
- Kensuke Ichida
- Institute for Reproductive Biotechnology for Aquatic Species (IRBAS), Tokyo University of Marine Science and Technology, 4-5-7 Konan Minato-ku, Tokyo 108-8477, Japan
| | - Araya Jangprai
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Pongsawan Khaosa-Art
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Goro Yoshizaki
- Institute for Reproductive Biotechnology for Aquatic Species (IRBAS), Tokyo University of Marine Science and Technology, 4-5-7 Konan Minato-ku, Tokyo 108-8477, Japan; Department of Marine Biosciences, Tokyo University of Marine Science and Technology, 4-5-7 Konan Minato-ku, Tokyo 108-8477, Japan
| | - Surintorn Boonanuntanasarn
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, Thailand.
| |
Collapse
|
7
|
Cryopreservation of testicular tissue from Murray River Rainbowfish, Melanotaenia fluviatilis. Sci Rep 2020; 10:19355. [PMID: 33168894 PMCID: PMC7653925 DOI: 10.1038/s41598-020-76378-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 10/26/2020] [Indexed: 11/14/2022] Open
Abstract
Globally, fish populations are in decline from overfishing, habitat destruction and poor water quality. Recent mass fish deaths in Australia’s Murray–Darling Basin highlight the need for improved conservation methods for endangered fish species. Cryopreservation of testicular tissue allows storage of early sperm precursor cells for use in generating new individuals via surrogacy. We describe successful isolation and cryopreservation of spermatogonia in an Australian rainbowfish. Testis histology showed rainbowfish spermatogonia are large (> 10 μm) and stain positive for Vasa, an early germ line-specific protein. Using size-based flow cytometry, testis cell suspensions were sorted through “A” (> 9 μm) and “B” gates (2–5 μm); the A gate produced significantly more Vasa-positive cells (45.0% ± 15.2%) than the “B” gate (0.0% ± 0.0%) and an unsorted control (22.9% ± 9.5%, p < 0.0001). The most successful cryoprotectant for “large cell” (> 9 μm) viability (72.6% ± 10.5%) comprised 1.3 M DMSO, 0.1 M trehalose and 1.5% BSA; cell viability was similar to fresh controls (78.8% ± 10.5%) and significantly better than other cryoprotectants (p < 0.0006). We have developed a protocol to cryopreserve rainbowfish testicular tissue and recover an enriched population of viable spermatogonia. This is the first step in developing a biobank of reproductive tissues for this family, and other Australian fish species, in the Australian Frozen Zoo.
Collapse
|
8
|
Xu D, Yoshino T, Konishi J, Yoshikawa H, Ino Y, Yazawa R, Dos Santos Nassif Lacerda SM, de França LR, Takeuchi Y. Germ cell-less hybrid fish: ideal recipient for spermatogonial transplantation for the rapid production of donor-derived sperm†. Biol Reprod 2020; 101:492-500. [PMID: 31132090 DOI: 10.1093/biolre/ioz045] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2019] [Indexed: 12/14/2022] Open
Abstract
An interspecific hybrid marine fish that developed a testis-like gonad without any germ cells, i.e., a germ cell-less gonad, was produced by hybridizing a female blue drum Nibea mitsukurii with a male white croaker Pennahia argentata. In this study, we evaluated the suitability of the germ cell-less fish as a recipient by transplanting donor testicular cells directly into the gonads through the urogenital papilla. The donor testicular cells were collected from hemizygous transgenic, green fluorescent protein (gfp) (+/-) blue drum, and transplanted into the germ cell-less gonads of the 6-month-old adult hybrid croakers. Fluorescent and histological observations showed the colonization, proliferation, and differentiation of transplanted spermatogonial cells in the gonads of hybrid croakers. The earliest production of spermatozoa in a hybrid recipient was observed at 7 weeks post-transplantation (pt), and 10% of the transplanted recipients produced donor-derived gfp-positive spermatozoa by 25 weeks pt. Sperm from the hybrid recipients were used to fertilize eggs from wild-type blue drums, and approximately 50% of the resulting offspring were gfp-positive, suggesting that all offspring originated from donor-derived sperm that were produced in the transplanted gfp (+/-) germ cells. To the best of our knowledge, this is the first report of successful spermatogonial transplantation using a germ cell-less adult fish as a recipient. This transplantation system has considerable advantages, such as the use of comparatively simple equipment and procedures, and rapid generation of donor-derived spermatogenesis and offspring, and presents numerous applications in commercial aquaculture.
Collapse
Affiliation(s)
- Dongdong Xu
- Marine Fishery Institute of Zhejiang Province, Key Lab of Mariculture and Enhancement of Zhejiang Province, Zhoushan, Zhejiang Province, PR China.,Division of Fisheries Resource Sciences, Faculty of Fisheries, Kagoshima University, Shimoarata 4-50-20, Kagoshima City, Japan
| | - Tasuku Yoshino
- Department of Marine Bioscience, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato, Tokyo, Japan
| | - Junpei Konishi
- Department of Marine Bioscience, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato, Tokyo, Japan
| | - Hiroyuki Yoshikawa
- Department of Applied Aquabiology, National Fisheries University, Japan Fisheries Research and Education Agency, 2-7-1 Nagata-Honmachi, Shimonoseki, Japan
| | - Yasuko Ino
- Department of Applied Aquabiology, National Fisheries University, Japan Fisheries Research and Education Agency, 2-7-1 Nagata-Honmachi, Shimonoseki, Japan
| | - Ryosuke Yazawa
- Department of Marine Bioscience, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato, Tokyo, Japan
| | | | - Luiz Renato de França
- Laboratory of Cellular Biology, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Yutaka Takeuchi
- Division of Fisheries Resource Sciences, Faculty of Fisheries, Kagoshima University, Shimoarata 4-50-20, Kagoshima City, Japan.,The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
9
|
Hayashi M, Ichida K, Sadaie S, Miwa M, Fujihara R, Nagasaka Y, Yoshizaki G. Establishment of novel monoclonal antibodies for identification of type A spermatogonia in teleosts†. Biol Reprod 2020; 101:478-491. [PMID: 31077286 DOI: 10.1093/biolre/ioz080] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 03/14/2019] [Accepted: 05/10/2019] [Indexed: 11/15/2022] Open
Abstract
We recently established a germ cell transplantation system in salmonids. Donor germ cells transplanted into the body cavity of recipient embryos migrate toward and are incorporated into the recipient gonad, where they undergo gametogenesis. Among the various types of testicular germ cells, only type A spermatogonia (A-SG) can be incorporated into the recipient gonads. Enriching for A-SG is therefore important for improving the efficiency of germ cell transplantation. To enrich for A-SG, an antibody against a cell surface marker is a convenient and powerful approach used in mammals; however, little is known about cell surface markers for A-SG in fish. To that end, we have produced novel monoclonal antibodies (mAbs) against cell-surface molecules of rainbow trout (Oncorhynchus mykiss) A-SG. We inoculated mice with living A-SG isolated from pvasa-GFP transgenic rainbow trout using GFP-dependent flow cytometry. By fusing lymph node cells of the inoculated mice with myeloma cells, we generated 576 hybridomas. To identify hybridomas that produce mAbs capable of labeling A-SG preferentially and effectively, we screened them using cell ELISA, fluorescence microscopy, and flow cytometry. We thereby identified two mAbs that can label A-SG. By using flow cytometry with these two antibodies, we could enrich for A-SG with transplantability to recipient gonads from amongst total testicular cells. Furthermore, one of these mAbs could also label zebrafish (Danio rerio) spermatogonia. Thus, we expect these monoclonal antibodies to be powerful tools for germ cell biology and biotechnology.
Collapse
Affiliation(s)
- Makoto Hayashi
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Tokyo, Japan.,Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, University of Tsukuba, Ibaraki, Japan
| | - Kensuke Ichida
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Sakiko Sadaie
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Misako Miwa
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Ryo Fujihara
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | | | - Goro Yoshizaki
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Tokyo, Japan
| |
Collapse
|
10
|
Ichida K, Kawamura W, Miwa M, Iwasaki Y, Kubokawa T, Hayashi M, Yazawa R, Yoshizaki G. Specific visualization of live type A spermatogonia of Pacific bluefin tuna using fluorescent dye-conjugated antibodies†. Biol Reprod 2020; 100:1637-1647. [PMID: 30934056 DOI: 10.1093/biolre/ioz047] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 01/31/2019] [Accepted: 03/31/2019] [Indexed: 11/12/2022] Open
Abstract
During our previous work toward establishing surrogate broodstock that can produce donor-derived gametes by germ cell transplantation, we found that only type A spermatogonia (ASGs) have the potency to colonize recipient gonads. Therefore, the ability to visualize ASGs specifically would allow the sequential analysis of donor cell behavior in the recipient gonads. Here we produced monoclonal antibodies that could recognize the cell surface antigens of ASGs in Pacific bluefin tuna (Thunnus orientalis), with the aim of visualizing live ASGs. We generated monoclonal antibodies by inoculating Pacific bluefin tuna testicular cells containing ASGs into mice and then screened them using cell-based enzyme-linked immunosorbent assay (ELISA), immunocytochemistry, flow cytometry (FCM), and immunohistochemistry, which resulted in the selection of two antibodies (Nos. 152 and 180) from a pool of 1152 antibodies. We directly labeled these antibodies with fluorescent dye, which allowed ASG-like cells to be visualized in a one-step procedure using immunocytochemistry. Molecular marker analyses against the FCM-sorted fluorescent cells confirmed that ASGs were highly enriched in the antibody-positive fraction. To evaluate the migratory capability of the ASGs, we transplanted visualized cells into the peritoneal cavity of nibe croaker (Nibea mitsukurii) larvae. This resulted in incorporated fluorescent cells labeled with antibody No. 152 being detected in the recipient gonads, suggesting that the visualized ASGs possessed migratory and incorporation capabilities. Thus, the donor germ cell visualization method that was developed in this study will facilitate and simplify Pacific bluefin tuna germ cell transplantation.
Collapse
Affiliation(s)
- Kensuke Ichida
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Wataru Kawamura
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Misako Miwa
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Yoshiko Iwasaki
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Tsubasa Kubokawa
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Makoto Hayashi
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, University of Tsukuba, Ibaraki, Japan
| | - Ryosuke Yazawa
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Goro Yoshizaki
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Tokyo, Japan
| |
Collapse
|
11
|
Dias GCM, Batlouni SR, Cassel M, Chehade C, De Jesus LWO, Branco GS, Camargo MP, Borella MI. Isolation, in vitro study, and stem cell markers for type A spermatogonia in a Characiformes species. Mol Reprod Dev 2020; 87:783-799. [PMID: 32557886 DOI: 10.1002/mrd.23394] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/31/2020] [Accepted: 06/04/2020] [Indexed: 12/20/2022]
Abstract
The objective of this study was to establish a protocol for the characterization, isolation, and culture of type A spermatogonia using specific molecular markers for these cells in fish. To this end, adult Prochilodus lineatus testes were collected and digested enzymatically and the resulting testicular suspension was separated using a discontinuous Percoll gradient, followed by differential plating. The cell cultures obtained were monitored for 15 days and analyzed using the immunofluorescence method with anti-Vasa, anti-GFRα1, and anti-OCT4 antibodies. Spermatogonial enrichment was also performed using flow cytometry. Although discontinuous Percoll gradient centrifugation followed by differential plating enabled the removal of differentiated germ cells and somatic cells, enriching the pool of type A spermatogonia, the enrichment of type A spermatogonia through flow cytometry of samples without Percoll proved to be more efficient. Prominent cell agglomerates that were characterized according to different stem cell markers as type A spermatogonia were observed during the 15 days of the cell culture. The use of immunoperoxidase and western blot analysis methods confirmed the specificity of the markers for type A spermatogonia of P. lineatus. When combined with specific cell culture conditions, the positive characterization of these molecular markers clarified certain aspects of spermatogonial regulation, such as survival and proliferation. Finally, understanding the regulation of the in vitro germ cell maintenance process may contribute to the enhancement of in vivo and in vitro reproduction techniques of endangered or aquaculture fish species.
Collapse
Affiliation(s)
- Gisele C M Dias
- Fish Endocrinology Laboratory, Department of Cell and Developmental Biology, Biomedical Sciences Institute, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Sérgio R Batlouni
- Aquaculture Center of São Paulo State University (CAUNESP), São Paulo State University (UNESP), Campus Jaboticabal, Jaboticabal, São Paulo, Brazil
| | - Mônica Cassel
- Department of Education - Bachelor of Science in Animal Science, Mato Grosso Federal Institute of Education, Science, and Technology, Campus Alta Floresta, Alta Floresta, Mato Grosso, Brazil
| | - Chayrra Chehade
- Fish Endocrinology Laboratory, Department of Cell and Developmental Biology, Biomedical Sciences Institute, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Lázaro W O De Jesus
- Laboratory of Applied Animal Morphophysiology, Department of Histology and Embryology, Institute of Biological Sciences and Health, Federal University of Alagoas, Campus A. C. Simões, Maceió, Alagoas, Brazil
| | - Giovana S Branco
- Fish Endocrinology Laboratory, Department of Cell and Developmental Biology, Biomedical Sciences Institute, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Marília P Camargo
- Fish Endocrinology Laboratory, Department of Cell and Developmental Biology, Biomedical Sciences Institute, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Maria I Borella
- Fish Endocrinology Laboratory, Department of Cell and Developmental Biology, Biomedical Sciences Institute, University of São Paulo, São Paulo, São Paulo, Brazil
| |
Collapse
|
12
|
Yoshizaki G, Lee S. Production of live fish derived from frozen germ cells via germ cell transplantation. Stem Cell Res 2018; 29:103-110. [DOI: 10.1016/j.scr.2018.03.015] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 03/17/2018] [Accepted: 03/28/2018] [Indexed: 10/25/2022] Open
|
13
|
Hybrid Sterility in Fish Caused by Mitotic Arrest of Primordial Germ Cells. Genetics 2018; 209:507-521. [PMID: 29610216 DOI: 10.1534/genetics.118.300777] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 03/23/2018] [Indexed: 11/18/2022] Open
Abstract
Sterility in hybrid animals is widely known to be due to a cytological mechanism of aberrant homologous chromosome pairing during meiosis in hybrid germ cells. In this study, the gametes of four marine fish species belonging to the Sciaenid family were artificially fertilized, and germ cell development was examined at the cellular and molecular levels. One of the intergeneric hybrids had gonads that were testis-like in structure, small in size, and lacked germ cells. Specification of primordial germ cells (PGCs) and their migration toward genital ridges occurred normally in hybrid embryos, but these PGCs did not proliferate in the hybrid gonads. By germ cell transplantation assay, we showed that the gonadal microenvironment in hybrid recipients produced functional donor-derived gametes, suggesting that the germ cell-less phenotype was caused by cell autonomous proliferative defects of hybrid PGCs. This is the first evidence of mitotic arrest of germ cells causing hybrid sterility in animals.
Collapse
|
14
|
Tang L, Bondareva A, González R, Rodriguez-Sosa JR, Carlson DF, Webster D, Fahrenkrug S, Dobrinski I. TALEN-mediated gene targeting in porcine spermatogonia. Mol Reprod Dev 2018; 85:250-261. [PMID: 29393557 DOI: 10.1002/mrd.22961] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 01/22/2018] [Accepted: 01/25/2018] [Indexed: 01/05/2023]
Abstract
Spermatogonia represent a diploid germ cell population that includes spermatogonial stem cells. In this report, we describe new methods for isolation of highly enriched porcine spermatogonia based on light scatter properties, and for targeted mutagenesis in porcine spermatogonia using nucleofection and TALENs. We optimized a nucleofection protocol to deliver TALENs specifically targeting the DMD locus in porcine spermatogonia. We also validated specific sorting of porcine spermatogonia based on light scatter properties. We were able to obtain a highly enriched germ cell population with over 90% of cells being UCH-L1 positive undifferentiated spermatogonia. After gene targeting in porcine spermatogonia, indel (insertion or deletion) mutations as a result of non-homologous end joining (NHEJ) were detected in up to 18% of transfected cells. Our report demonstrates for the first time an approach to obtain a live cell population highly enriched in undifferentiated spermatogonia from immature porcine testes, and that gene targeting can be achieved in porcine spermatogonia which will enable germ line modification.
Collapse
Affiliation(s)
- Lin Tang
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada
| | - Alla Bondareva
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada
| | - Raquel González
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada
| | - Jose R Rodriguez-Sosa
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada
| | | | | | | | - Ina Dobrinski
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada
| |
Collapse
|
15
|
Hamasaki M, Takeuchi Y, Yazawa R, Yoshikawa S, Kadomura K, Yamada T, Miyaki K, Kikuchi K, Yoshizaki G. Production of Tiger Puffer Takifugu rubripes Offspring from Triploid Grass Puffer Takifugu niphobles Parents. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2017; 19:579-591. [PMID: 28942506 DOI: 10.1007/s10126-017-9777-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 09/11/2017] [Indexed: 06/07/2023]
Abstract
The tiger puffer Takifugu rubripes is one of the most popular aquacultural fish; however, there are two major obstacles to selective breeding. First, they have a long generation time of 2 or 3 years until maturation. Second, the parental tiger puffer has a body size (2-5 kg) much larger than average market size (0.6-1.0 kg). The grass puffer Takifugu niphobles is closely related to the tiger puffer and matures in half the time. Furthermore, grass puffer can be reared in small areas since their maturation weight is about 1/150 that of mature tiger puffer. Therefore, to overcome the obstacles of maturation size and generation time of tiger puffer, we generated surrogate grass puffer that can produce tiger puffer gametes through germ cell transplantation. Approximately 5000 tiger puffer testicular cells were transplanted into the peritoneal cavity of triploid grass puffer larvae at 1 day post hatching. When the recipient fish matured, both males and females produced donor-derived gametes. Through their insemination, we successfully produced donor-derived tiger puffer offspring presenting the same body surface dot pattern, number of dorsal fin rays, and DNA fingerprint as those of the donor tiger puffer, suggesting that the recipient grass puffer produced functional eggs and sperm derived from the donor tiger puffer. Although fine tunings are still needed to improve efficiencies, surrogate grass puffer are expected to accelerate the breeding process of tiger puffer because of their short generation time and small body size.
Collapse
Affiliation(s)
- Masaomi Hamasaki
- Nagasaki Prefectural Institute of Fisheries, 1551-4 Taira, Nagasaki-shi, Nagasaki, 851-2213, Japan.
| | - Yutaka Takeuchi
- Division of Fisheries Resource and Sciences, Faculty of Fisheries, Kagoshima University, 4-50-20 Shimoarata, Kagoshima-shi, Kagoshima, 890-0056, Japan
| | - Ryosuke Yazawa
- Department Marine Biosciences, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo, 108-8477, Japan
| | - Souta Yoshikawa
- Nagasaki Prefectural Institute of Fisheries, 1551-4 Taira, Nagasaki-shi, Nagasaki, 851-2213, Japan
| | - Kazushi Kadomura
- Nagasaki Prefectural Institute of Fisheries, 1551-4 Taira, Nagasaki-shi, Nagasaki, 851-2213, Japan
| | - Toshiyuki Yamada
- Nagasaki Prefectural Institute of Fisheries, 1551-4 Taira, Nagasaki-shi, Nagasaki, 851-2213, Japan
| | - Kadoo Miyaki
- Nagasaki Prefectural Institute of Fisheries, 1551-4 Taira, Nagasaki-shi, Nagasaki, 851-2213, Japan
| | - Kiyoshi Kikuchi
- Fisheries Laboratory, Graduate School of Agricultural and Life Sciences, University of Tokyo, 2971-4 Bentenjima, Maisaka, Hamamatsu-shi, Shizuoka, 431-0214, Japan
| | - Goro Yoshizaki
- Department Marine Biosciences, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo, 108-8477, Japan
| |
Collapse
|
16
|
Ichida K, Kise K, Morita T, Yazawa R, Takeuchi Y, Yoshizaki G. Flow-cytometric enrichment of Pacific bluefin tuna type A spermatogonia based on light-scattering properties. Theriogenology 2017; 101:91-98. [PMID: 28708521 DOI: 10.1016/j.theriogenology.2017.06.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 05/31/2017] [Accepted: 06/20/2017] [Indexed: 11/20/2022]
Abstract
We previously established surrogate broodstock in which the donor germ cells transplanted into the peritoneal cavities of xenogeneic recipients were capable of developing into functional eggs and sperm in teleost fish. In this transplantation system, only the undifferentiated germ cells such as type A spermatogonia (ASG) or a portion of the ASG population were capable of being incorporated into the genital ridges of the recipients and undergo gametogenesis. Therefore, the use of enriched ASGs can be expected to achieve efficient donor-cell incorporation. Here, we established a method of isolation and enrichment of the ASG of Pacific bluefin tuna using flow cytometry. Whole testicular cell suspensions were fractionated by forward and side scatter properties, following which ASGs were enriched in a fraction in which the forward scatter signal was relatively high and side scatter signal was relatively low. The diameter of sorted cells using the fraction was identical to the size of ASGs observed in histological analysis, and these cells also expressed the vasa gene. In addition, we succeeded in applying this method to several maturation stages of Pacific bluefin tuna. Since this method was based on light-scattering characteristics of ASGs, it can potentially be applied to various teleosts. We expect that this method can contribute to the production of seeds of Pacific bluefin tuna using surrogate broodstock.
Collapse
Affiliation(s)
- Kensuke Ichida
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, 4-5-7 Konan Minato-ku, Tokyo 108-8477, Japan
| | - Kazuyoshi Kise
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, 4-5-7 Konan Minato-ku, Tokyo 108-8477, Japan
| | - Tetsuro Morita
- Central Research Laboratory, Nippon Suisan Kaisha, Ltd, 1-32-3 Nanakuni, Hachioji, Tokyo 192-0991, Japan
| | - Ryosuke Yazawa
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, 4-5-7 Konan Minato-ku, Tokyo 108-8477, Japan
| | - Yutaka Takeuchi
- Division of Fisheries Resource and Sciences, Faculty of Fisheries, Kagoshima University, 4-50-20 Shimoarata, Kagoshima City, Kagoshima 890-0056, Japan.
| | - Goro Yoshizaki
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, 4-5-7 Konan Minato-ku, Tokyo 108-8477, Japan
| |
Collapse
|
17
|
Ye H, Li CJ, Yue HM, Du H, Yang XG, Yoshino T, Hayashida T, Takeuchi Y, Wei QW. Establishment of intraperitoneal germ cell transplantation for critically endangered Chinese sturgeon Acipenser sinensis. Theriogenology 2017; 94:37-47. [PMID: 28407859 DOI: 10.1016/j.theriogenology.2017.02.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 02/11/2017] [Accepted: 02/11/2017] [Indexed: 01/28/2023]
Abstract
Recent progress in germ cell transplantation techniques in fish has paved the way for the conservation of endangered species. Here, we developed an intraperitoneal germ cell transplantation procedure using Chinese and Dabry's sturgeon as donor and recipient species, respectively. Histological analysis revealed that primordial germ cells migrated on the peritoneal wall at 16 days post-hatch (dph) in Dabry's sturgeon. The genital ridges of Dabry's sturgeon (recipient) first formed at 28 dph, suggesting that for successful colonization of donor germ cells in the recipient gonads, the transplantation should be performed earlier than this age. Sexual dimorphism of gonadal structure was first observed at 78 dph. Gonadal germ cell proliferation was not seen in either sex during this period. Immunohistochemistry using the anti-Vasa antibody found that donor testes from 2-year-old Dabry's sturgeon mainly consisted of single- or paired-type A spermatogonia, while donor ovaries from 11.5-year-old Chinese sturgeon had perinucleolus stage oocytes and clusters of oogonia. Donor cells isolated from Dabry's sturgeon testes or Chinese sturgeon ovary labeled with PKH26 fluorescent dye were transplanted into the peritoneal cavity of the 7- or 8-dph Dabry's sturgeon larvae. More than 90% and 70% of transplanted larvae survived after 2 days post-transplantation (dpt) and 51 dpt, respectively. At 51 dpt, PKH26-labeled cells exhibiting germ cell-specific nuclear morphology and diameter were observed in excised recipient gonads by fluorescent and confocal microscopy. The colonization rate of allogeneic testicular germ cell transplantation (Group 1) was 70%, while that of two batches of xenogeneic ovarian germ cell transplantation (Group 2 and Group 3) were 6.7% and 40%, respectively. The ratio of colonized germ cells to endogenous germ cells was 11.96%, 5.35% and 3.56% for Group 1, Group 2 and Group 3, respectively. Thus, we established a germ cell transplantation technique for the critically endangered Chinese sturgeon using the most closely related species as a recipient and demonstrated the successful preparation of transplantable female germ cells from aged adult Chinese sturgeon.
Collapse
Affiliation(s)
- Huan Ye
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture of China, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China; Institute of Hydrobiology, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Wuhan, 430072, China; Research Center for Advanced Science and Technology, Tokyo University of Marine Science and Technology, 670 Banda, Tateyama-shi, Chiba, 294-0308, Japan
| | - Chuang-Ju Li
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture of China, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China; Freshwater Fisheries Research Center, Chinese Academy of Fisheries Science, Wuxi, 214081, China
| | - Hua-Mei Yue
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture of China, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China; Freshwater Fisheries Research Center, Chinese Academy of Fisheries Science, Wuxi, 214081, China
| | - Hao Du
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture of China, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China; Freshwater Fisheries Research Center, Chinese Academy of Fisheries Science, Wuxi, 214081, China
| | - Xiao-Ge Yang
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture of China, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China; Institute of Hydrobiology, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Wuhan, 430072, China
| | - Tasuku Yoshino
- Research Center for Advanced Science and Technology, Tokyo University of Marine Science and Technology, 670 Banda, Tateyama-shi, Chiba, 294-0308, Japan
| | - Takao Hayashida
- Research Center for Advanced Science and Technology, Tokyo University of Marine Science and Technology, 670 Banda, Tateyama-shi, Chiba, 294-0308, Japan
| | - Yutaka Takeuchi
- Research Center for Advanced Science and Technology, Tokyo University of Marine Science and Technology, 670 Banda, Tateyama-shi, Chiba, 294-0308, Japan.
| | - Qi-Wei Wei
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture of China, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China; Institute of Hydrobiology, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Wuhan, 430072, China; Freshwater Fisheries Research Center, Chinese Academy of Fisheries Science, Wuxi, 214081, China.
| |
Collapse
|