1
|
Wu H, Zhang Y, Li Y, Sun S, Zhang J, Xie Q, Dong Y, Zhou S, Sha X, Li K, Chen J, Zhang X, Gao Y, Shen Q, Wang G, Zha X, Duan Z, Tang D, Xu C, Geng H, Lv M, Xu Y, Zhou P, Wei Z, Hua R, Cao Y, Liu M, He X. Adenylate kinase phosphate energy shuttle underlies energetic communication in flagellar axonemes. SCIENCE CHINA. LIFE SCIENCES 2024; 67:1697-1714. [PMID: 38761355 DOI: 10.1007/s11427-023-2539-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/29/2024] [Indexed: 05/20/2024]
Abstract
The complexities of energy transfer mechanisms in the flagella of mammalian sperm flagella have been intensively investigated and demonstrate significant diversity across species. Enzymatic shuttles, particularly adenylate kinase (AK) and creatine kinase (CK), are pivotal in the efficient transfer of intracellular ATP, showing distinct tissue- and species-specificity. Here, the expression profiles of AK and CK were investigated in mice and found to fall into four subgroups, of which Subgroup III AKs were observed to be unique to the male reproductive system and conserved across chordates. Both AK8 and AK9 were found to be indispensable to male reproduction after analysis of an infertile male cohort. Knockout mouse models showed that AK8 and AK9 were central to promoting sperm motility. Immunoprecipitation combined with mass spectrometry revealed that AK8 and AK9 interact with the radial spoke (RS) of the axoneme. Examination of various human and mouse sperm samples with substructural damage, including the presence of multiple RS subunits, showed that the head of radial spoke 3 acts as an adapter for AK9 in the flagellar axoneme. Using an ATP probe together with metabolomic analysis, it was found that AK8 and AK9 cooperatively regulated ATP transfer in the axoneme, and were concentrated at sites associated with energy consumption in the flagellum. These findings indicate a novel function for RS beyond its structural role, namely, the regulation of ATP transfer. In conclusion, the results expand the functional spectrum of AK proteins and suggest a fresh model regarding ATP transfer within mammalian flagella.
Collapse
Affiliation(s)
- Huan Wu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, 230032, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, 230032, China
| | - Yanman Zhang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 210029, China
| | - Yuqian Li
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Shuya Sun
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 210029, China
| | - Jintao Zhang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Clinical Center of Reproductive Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Qingsong Xie
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Yue Dong
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 210029, China
| | - Shushu Zhou
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, 230032, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, 230032, China
| | - Xuan Sha
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Kuokuo Li
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, 230032, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, 230032, China
| | - Jinyi Chen
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 210029, China
| | - Xin Zhang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 210029, China
| | - Yang Gao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, 230032, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, 230032, China
| | - Qunshan Shen
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, 230032, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, 230032, China
| | - Guanxiong Wang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Xiaomin Zha
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, 230032, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, 230032, China
| | - Zongliu Duan
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, 230032, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, 230032, China
| | - Dongdong Tang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, 230032, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, 230032, China
| | - Chuan Xu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, 230032, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, 230032, China
| | - Hao Geng
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, 230032, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, 230032, China
| | - Mingrong Lv
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, 230032, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, 230032, China
| | - Yuping Xu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, 230032, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, 230032, China
| | - Ping Zhou
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, 230032, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, 230032, China
| | - Zhaolian Wei
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, 230032, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, 230032, China
| | - Rong Hua
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, 230032, China.
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, 230032, China.
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, 230032, China.
| | - Yunxia Cao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, 230032, China.
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, 230032, China.
| | - Mingxi Liu
- State Key Laboratory of Reproductive Medicine and Offspring Health, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Nanjing, 211166, China.
| | - Xiaojin He
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China.
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
2
|
Leggere JC, Hibbard JV, Papoulas O, Lee C, Pearson CG, Marcotte EM, Wallingford JB. Label-free proteomic comparison reveals ciliary and nonciliary phenotypes of IFT-A mutants. Mol Biol Cell 2024; 35:ar39. [PMID: 38170584 PMCID: PMC10916875 DOI: 10.1091/mbc.e23-03-0084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 12/11/2023] [Accepted: 12/18/2023] [Indexed: 01/05/2024] Open
Abstract
DIFFRAC is a powerful method for systematically comparing proteome content and organization between samples in a high-throughput manner. By subjecting control and experimental protein extracts to native chromatography and quantifying the contents of each fraction using mass spectrometry, it enables the quantitative detection of alterations to protein complexes and abundances. Here, we applied DIFFRAC to investigate the consequences of genetic loss of Ift122, a subunit of the intraflagellar transport-A (IFT-A) protein complex that plays a vital role in the formation and function of cilia and flagella, on the proteome of Tetrahymena thermophila. A single DIFFRAC experiment was sufficient to detect changes in protein behavior that mirrored known effects of IFT-A loss and revealed new biology. We uncovered several novel IFT-A-regulated proteins, which we validated through live imaging in Xenopus multiciliated cells, shedding new light on both the ciliary and non-ciliary functions of IFT-A. Our findings underscore the robustness of DIFFRAC for revealing proteomic changes in response to genetic or biochemical perturbation.
Collapse
Affiliation(s)
- Janelle C. Leggere
- Department of Molecular Biosciences, University of Texas at Austin, TX 78712
| | - Jaime V.K. Hibbard
- Department of Molecular Biosciences, University of Texas at Austin, TX 78712
| | - Ophelia Papoulas
- Department of Molecular Biosciences, University of Texas at Austin, TX 78712
| | - Chanjae Lee
- Department of Molecular Biosciences, University of Texas at Austin, TX 78712
| | - Chad G. Pearson
- Anschutz Medical Campus, Department of Cell and Developmental Biology, University of Colorado, Aurora, CO 80045
| | - Edward M. Marcotte
- Department of Molecular Biosciences, University of Texas at Austin, TX 78712
| | - John B. Wallingford
- Department of Molecular Biosciences, University of Texas at Austin, TX 78712
| |
Collapse
|
3
|
Ito C, Mutoh T, Toshimori K. Spermatozoa from male mice with infertility due to Odf4 deficiency can fertilize oocytes by in vitro fertilization. Reprod Med Biol 2024; 23:e12605. [PMID: 39314832 PMCID: PMC11418632 DOI: 10.1002/rmb2.12605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 08/14/2024] [Indexed: 09/25/2024] Open
Abstract
Purpose The purpose of this study is to confirm whether in vitro fertilization (IVF) with spermatozoa from Odf4-deficient infertile males (Odf4 -/- spermatozoa) can lead to the development of zygotes, which was reported in a previous in vivo study. Methods In vitro capacitation and IVF were performed using Odf4 -/- spermatozoa in a small drop of TYH medium with pyruvate and glucose, for 60 min or up to 4 days. A capacitation test was performed by immunoblotting using an anti-p-Tyr antibody. A sperm movement test was performed using a computer-assisted sperm motility analysis system (SMAS). An IVF fertilization test was also performed to evaluate zygote production. Videos were taken by a DMi8 stereomicroscope equipped with a high-speed camera. Results In in vitro condition, Odf4 -/- spermatozoa with hairpin flagella harboring large cytoplasmic droplets (CDs) underwent capacitation, about 30% of large CDs were removed from spermatozoa, and the flagella became straight (capacitation test). The Odf4 -/- spermatozoa with straight flagella swam forward (movement test) and fertilized Odf4 +/+ oocytes, which eventually developed into zygotes (fertilization test). Conclusions By conventional IVF, spermatozoa from Odf4-deficient male mice can fertilize oocytes that then develop into zygotes. These findings can be translated to human males with infertility caused by ODF4 deficiency.
Collapse
Affiliation(s)
- Chizuru Ito
- Department of Functional Anatomy, Graduate School of MedicineChiba UniversityChibaJapan
| | - Tohru Mutoh
- Department of Functional Anatomy, Graduate School of MedicineChiba UniversityChibaJapan
| | - Kiyotaka Toshimori
- Department of Functional Anatomy, Graduate School of MedicineChiba UniversityChibaJapan
- Future Medicine Research CenterChiba UniversityChibaJapan
- Chiba UniversityChibaJapan
| |
Collapse
|
4
|
O’Callaghan E, Navarrete-Lopez P, Štiavnická M, Sánchez JM, Maroto M, Pericuesta E, Fernández-González R, O’Meara C, Eivers B, Kelleher MM, Evans RD, Mapel XM, Lloret-Villas A, Pausch H, Balastegui-Alarcón M, Avilés M, Sanchez-Rodriguez A, Roldan ERS, McDonald M, Kenny DA, Fair S, Gutiérrez-Adán A, Lonergan P. Adenylate kinase 9 is essential for sperm function and male fertility in mammals. Proc Natl Acad Sci U S A 2023; 120:e2305712120. [PMID: 37812723 PMCID: PMC10589668 DOI: 10.1073/pnas.2305712120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 08/23/2023] [Indexed: 10/11/2023] Open
Abstract
Despite passing routine laboratory tests for semen quality, bulls used in artificial insemination exhibit significant variation in fertility. Routine analysis of fertility data identified a dairy bull with extreme subfertility (10% pregnancy rate). To characterize the subfertility phenotype, a range of in vitro, in vivo, and molecular assays were carried out. Sperm from the subfertile bull exhibited reduced motility and severely reduced caffeine-induced hyperactivation compared to controls. Ability to penetrate the zona pellucida, cleavage rate, cleavage kinetics, and blastocyst yield after IVF or AI were significantly lower than in control bulls. Whole-genome sequencing from semen and RNA sequencing of testis tissue revealed a critical mutation in adenylate kinase 9 (AK9) that impaired splicing, leading to a premature termination codon and a severely truncated protein. Mice deficient in AK9 were generated to further investigate the function of the gene; knockout males were phenotypically indistinguishable from their wild-type littermates but produced immotile sperm that were incapable of normal fertilization. These sperm exhibited numerous abnormalities, including a low ATP concentration and reduced motility. RNA-seq analysis of their testis revealed differential gene expression of components of the axoneme and sperm flagellum as well as steroid metabolic processes. Sperm ultrastructural analysis showed a high percentage of sperm with abnormal flagella. Combined bovine and murine data indicate the essential metabolic role of AK9 in sperm motility and/or hyperactivation, which in turn affects sperm binding and penetration of the zona pellucida. Thus, AK9 has been found to be directly implicated in impaired male fertility in mammals.
Collapse
Affiliation(s)
- Elena O’Callaghan
- Animal and Crop Sciences, School of Agriculture and Food Science, University College Dublin, Belfield, DublinD04 V1W8, Ireland
| | - Paula Navarrete-Lopez
- Departamento de Reproducción Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria-Centro Nacional integrado en la Agencia Estatal Consejo Superior de Investigaciones Científicas, Madrid28040, Spain
| | - Miriama Štiavnická
- Department of Biological Sciences, Bernal Institute, Faculty of Science and Engineering, University of Limerick, LimerickV94 T9PX, Ireland
| | - José M. Sánchez
- Animal and Crop Sciences, School of Agriculture and Food Science, University College Dublin, Belfield, DublinD04 V1W8, Ireland
- Departamento de Reproducción Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria-Centro Nacional integrado en la Agencia Estatal Consejo Superior de Investigaciones Científicas, Madrid28040, Spain
| | - Maria Maroto
- Departamento de Reproducción Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria-Centro Nacional integrado en la Agencia Estatal Consejo Superior de Investigaciones Científicas, Madrid28040, Spain
| | - Eva Pericuesta
- Departamento de Reproducción Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria-Centro Nacional integrado en la Agencia Estatal Consejo Superior de Investigaciones Científicas, Madrid28040, Spain
| | - Raul Fernández-González
- Departamento de Reproducción Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria-Centro Nacional integrado en la Agencia Estatal Consejo Superior de Investigaciones Científicas, Madrid28040, Spain
| | - Ciara O’Meara
- National Cattle Breeding Centre, County KildareW91 WF59, Ireland
| | - Bernard Eivers
- National Cattle Breeding Centre, County KildareW91 WF59, Ireland
| | - Margaret M. Kelleher
- Irish Cattle Breeding Federation, Link Road, Ballincollig, County CorkP31 D452, Ireland
| | - Ross D. Evans
- Irish Cattle Breeding Federation, Link Road, Ballincollig, County CorkP31 D452, Ireland
| | - Xena M. Mapel
- Animal Genomics, Institute of Agricultural Sciences, ETH Zürich, Zürich8092, Switzerland
| | - Audald Lloret-Villas
- Animal Genomics, Institute of Agricultural Sciences, ETH Zürich, Zürich8092, Switzerland
| | - Hubert Pausch
- Animal Genomics, Institute of Agricultural Sciences, ETH Zürich, Zürich8092, Switzerland
| | - Miriam Balastegui-Alarcón
- Departamento de Biología Celular e Histología, Universidad de Murcia-Instituto Murciano de Investigación Biosanitaria Pascual Parrilla, Murcia30120, Spain
| | - Manuel Avilés
- Departamento de Biología Celular e Histología, Universidad de Murcia-Instituto Murciano de Investigación Biosanitaria Pascual Parrilla, Murcia30120, Spain
| | - Ana Sanchez-Rodriguez
- Departmento de Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales, Madrid28006, Spain
| | - Eduardo R. S. Roldan
- Departmento de Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales, Madrid28006, Spain
| | - Michael McDonald
- Animal and Crop Sciences, School of Agriculture and Food Science, University College Dublin, Belfield, DublinD04 V1W8, Ireland
| | - David A. Kenny
- Animal and Bioscience Department, Teagasc, Animal and Grassland Research and Innovation Centre, Grange, Dunsany, County MeathC15 PW93, Ireland
| | - Sean Fair
- Department of Biological Sciences, Bernal Institute, Faculty of Science and Engineering, University of Limerick, LimerickV94 T9PX, Ireland
| | - Alfonso Gutiérrez-Adán
- Departamento de Reproducción Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria-Centro Nacional integrado en la Agencia Estatal Consejo Superior de Investigaciones Científicas, Madrid28040, Spain
| | - Patrick Lonergan
- Animal and Crop Sciences, School of Agriculture and Food Science, University College Dublin, Belfield, DublinD04 V1W8, Ireland
| |
Collapse
|
5
|
Sha Y, Liu W, Li S, Osadchuk LV, Chen Y, Nie H, Gao S, Xie L, Qin W, Zhou H, Li L. Deficiency in AK9 causes asthenozoospermia and male infertility by destabilising sperm nucleotide homeostasis. EBioMedicine 2023; 96:104798. [PMID: 37713809 PMCID: PMC10507140 DOI: 10.1016/j.ebiom.2023.104798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/26/2023] [Accepted: 08/30/2023] [Indexed: 09/17/2023] Open
Abstract
BACKGROUND Asthenozoospermia is the primary cause of male infertility; however, its genetic aetiology remains poorly understood. Adenylate kinase 9 (AK9) is highly expressed in the testes of humans and mice and encodes a type of adenosine kinase that is functionally involved in cellular nucleotide homeostasis and energy metabolism. We aimed to assess whether AK9 is involved in asthenozoospermia. METHODS One-hundred-and-sixty-five Chinese men with idiopathic asthenozoospermia were recruited. Whole-exome sequencing (WES) and Sanger sequencing were performed for genetic analyses. Papanicolaou staining, Haematoxylin and eosin staining, scanning electron microscopy, and transmission electron microscopy were used to observe the sperm morphology and structure. Ak9-knockout mice were generated using CRISPR-Cas9. Sperm adenosine was detected by liquid chromatography-mass spectrometry. Targeted sperm metabolomics was performed. Intracytoplasmic sperm injection (ICSI) was used to treat patients. FINDINGS We identified five patients harbouring bi-allelic AK9 mutations. Spermatozoa from men harbouring bi-allelic AK9 mutations have a decreased ability to sustain nucleotide homeostasis. Moreover, bi-allelic AK9 mutations inhibit glycolysis in sperm. Ak9-knockout male mice also presented similar phenotypes of asthenozoospermia. Interestingly, ICSI was effective in bi-allelic AK9 mutant patients in achieving good pregnancy outcomes. INTERPRETATION Defects in AK9 induce asthenozoospermia with defects in nucleotide homeostasis and energy metabolism. This sterile phenotype could be rescued by ICSI. FUNDING The National Natural Science Foundation of China (82071697), Medical Innovation Project of Fujian Province (2020-CXB-051), open project of the NHC Key Laboratory of Male Reproduction and Genetics in Guangzhou (KF202004), Medical Research Foundation of Guangdong Province (A2021269), Guangdong Provincial Reproductive Science Institute Innovation Team grants (C-03), and Outstanding Young Talents Program of Capital Medical University (B2205).
Collapse
Affiliation(s)
- Yanwei Sha
- Department of Andrology, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, China; Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen, Fujian, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, Fujian, China
| | - Wensheng Liu
- NHC Key Laboratory of Male Reproduction and Genetics, Guangdong Provincial Reproductive Science Institute (Guangdong Provincial Fertility Hospital), Guangzhou, Guangdong, China
| | - Shu Li
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Ludmila V Osadchuk
- The Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Yongjie Chen
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Dongcheng, Beijing, China
| | - Hua Nie
- NHC Key Laboratory of Male Reproduction and Genetics, Guangdong Provincial Reproductive Science Institute (Guangdong Provincial Fertility Hospital), Guangzhou, Guangdong, China
| | - Shuai Gao
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Linna Xie
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, Fujian, China
| | - Weibing Qin
- NHC Key Laboratory of Male Reproduction and Genetics, Guangdong Provincial Reproductive Science Institute (Guangdong Provincial Fertility Hospital), Guangzhou, Guangdong, China.
| | - Huiliang Zhou
- Department of Andrology, First Affiliated Hospital of Fujian Medical University, No.20, Chazhong Road, Fuzhou, Fujian, China.
| | - Lin Li
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Dongcheng, Beijing, China.
| |
Collapse
|
6
|
Wu B, Li R, Ma S, Ma Y, Fan L, Gong C, Liu C, Sun L, Yuan L. The cilia and flagella associated protein CFAP52 orchestrated with CFAP45 is required for sperm motility in mice. J Biol Chem 2023:104858. [PMID: 37236356 PMCID: PMC10319328 DOI: 10.1016/j.jbc.2023.104858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Asthenozoospermia characterized by decreased sperm motility is a major cause of male infertility, but the majority of their etiology remains unknown. Here, we showed that the cilia and flagella associated protein 52 (Cfap52) gene was predominantly expressed in testis and its deletion in a Cfap52 knockout mouse model resulted in decreased sperm motility and male infertility. Cfap52 knockout also led to the disorganization of midpiece-principal piece junction of the sperm tail, but had no effect on the axoneme ultrastructure in spermatozoa. Furthermore, we found that CFAP52 interacted with the cilia and flagella associated protein 45 (CFAP45), and knockout of Cfap52 decreased the expression level of CFAP45 in sperm flagellum, which further disrupted the microtubule sliding produced by dynein ATPase. Together, our studies demonstrate that CFAP52 plays an essential role in sperm motility by interacting with CFAP45 in sperm flagellum, providing insights into the potential pathogenesis of the infertility of the human CFAP52 mutations.
Collapse
Affiliation(s)
- Bingbing Wu
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623 Guangzhou, China; State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Rachel Li
- Beijing Academy International Division, Beijing, 100018, China
| | - Shuang Ma
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623 Guangzhou, China; State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yanjie Ma
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623 Guangzhou, China; State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Lijun Fan
- Department of Endocrinology, Genetics, Metabolism, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
| | - Chunxiu Gong
- Department of Endocrinology, Genetics, Metabolism, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
| | - Chao Liu
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623 Guangzhou, China
| | - Ling Sun
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623 Guangzhou, China.
| | - Li Yuan
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
7
|
Regulation of Adenine Nucleotide Metabolism by Adenylate Kinase Isozymes: Physiological Roles and Diseases. Int J Mol Sci 2023; 24:ijms24065561. [PMID: 36982634 PMCID: PMC10056885 DOI: 10.3390/ijms24065561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/13/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
Adenylate kinase (AK) regulates adenine nucleotide metabolism and catalyzes the ATP + AMP ⇌ 2ADP reaction in a wide range of organisms and bacteria. AKs regulate adenine nucleotide ratios in different intracellular compartments and maintain the homeostasis of the intracellular nucleotide metabolism necessary for growth, differentiation, and motility. To date, nine isozymes have been identified and their functions have been analyzed. Moreover, the dynamics of the intracellular energy metabolism, diseases caused by AK mutations, the relationship with carcinogenesis, and circadian rhythms have recently been reported. This article summarizes the current knowledge regarding the physiological roles of AK isozymes in different diseases. In particular, this review focused on the symptoms caused by mutated AK isozymes in humans and phenotypic changes arising from altered gene expression in animal models. The future analysis of intracellular, extracellular, and intercellular energy metabolism with a focus on AK will aid in a wide range of new therapeutic approaches for various diseases, including cancer, lifestyle-related diseases, and aging.
Collapse
|
8
|
Leggere JC, Hibbard JVK, Papoulas O, Lee C, Pearson CG, Marcotte EM, Wallingford JB. Label-free proteomic comparison reveals ciliary and non-ciliary phenotypes of IFT-A mutants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.08.531778. [PMID: 36945534 PMCID: PMC10028850 DOI: 10.1101/2023.03.08.531778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
DIFFRAC is a powerful method for systematically comparing proteome content and organization between samples in a high-throughput manner. By subjecting control and experimental protein extracts to native chromatography and quantifying the contents of each fraction using mass spectrometry, it enables the quantitative detection of alterations to protein complexes and abundances. Here, we applied DIFFRAC to investigate the consequences of genetic loss of Ift122, a subunit of the intraflagellar transport-A (IFT-A) protein complex that plays a vital role in the formation and function of cilia and flagella, on the proteome of Tetrahymena thermophila . A single DIFFRAC experiment was sufficient to detect changes in protein behavior that mirrored known effects of IFT-A loss and revealed new biology. We uncovered several novel IFT-A-regulated proteins, which we validated through live imaging in Xenopus multiciliated cells, shedding new light on both the ciliary and non-ciliary functions of IFT-A. Our findings underscore the robustness of DIFFRAC for revealing proteomic changes in response to genetic or biochemical perturbation.
Collapse
|
9
|
Ito C, Makino T, Mutoh T, Kikkawa M, Toshimori K. The association of ODF4 with AK1 and AK2 in mice is essential for fertility through its contribution to flagellar shape. Sci Rep 2023; 13:2969. [PMID: 36804949 PMCID: PMC9941515 DOI: 10.1038/s41598-023-28177-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 01/12/2023] [Indexed: 02/22/2023] Open
Abstract
Normal sperm flagellar shape and movement are essential for fertilization. The integral protein outer dense fiber 4 (ODF4) localizes to ODFs, but its function remains unclear. Adenylate kinase (AK) is a phosphotransferase that catalyzes the interconversion and controls the concentration equilibrium of adenine nucleotides. AK shuttles ATP to energy-consuming sites. Here, we report on the relationship of flagellar shape and movement with ODF4, AK1 and AK2 by using Odf4-deletion (Odf4-/-) mice. Soluble ODF4 is coimmunoprecipitated with AK1 and AK2 in Odf4+/+ spermatozoa. ODF4, AK1 and AK2 localize to whole flagella (plasmalemma, mitochondria, ODFs, and residual cytoplasmic droplets (CDs)), principal pieces, and midpieces, respectively. Odf4-/- sperm flagella lose ODF4 and reduce AK1 and AK2 but produce ATP. The flagellum is bent (hairpin flagellum) with a large CD in the midpiece. There is no motility in the midpiece, but the principal piece is motile. Odf4-/- spermatozoa progress backward and fail to ascend in the uterus. Thus, Odf4-/- males are infertile owing to abnormal flagellar shape and movement caused mainly by the loss of ODF4 with AK1 and AK2. This study is supported by the rescue experiment; the abnormalities and male infertility caused by Odf4 deletion were reversed by Odf4 restoration.
Collapse
Affiliation(s)
- Chizuru Ito
- Department of Functional Anatomy, Reproductive Biology and Medicine, Graduate School of Medicine, Chiba University, Chiba, 260-8670, Japan.
| | - Tsukasa Makino
- grid.26999.3d0000 0001 2151 536XDepartment of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tohru Mutoh
- grid.136304.30000 0004 0370 1101Department of Functional Anatomy, Reproductive Biology and Medicine, Graduate School of Medicine, Chiba University, Chiba, 260-8670 Japan
| | - Masahide Kikkawa
- grid.26999.3d0000 0001 2151 536XDepartment of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kiyotaka Toshimori
- Department of Functional Anatomy, Reproductive Biology and Medicine, Graduate School of Medicine, Chiba University, Chiba, 260-8670, Japan. .,Future Medicine Research Center, Chiba University, Chiba, 260-8670, Japan.
| |
Collapse
|
10
|
Townsend J, Braz CU, Taylor T, Khatib H. Effects of paternal methionine supplementation on sperm DNA methylation and embryo transcriptome in sheep. ENVIRONMENTAL EPIGENETICS 2022; 9:dvac029. [PMID: 36727109 PMCID: PMC9885981 DOI: 10.1093/eep/dvac029] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 12/18/2022] [Accepted: 12/22/2022] [Indexed: 06/18/2023]
Abstract
Environmental effects on gene expression and offspring development can be mediated by epigenetic modifications. It is well established that maternal diet influences DNA methylation patterns and phenotypes in the offspring; however, the epigenetic effects of paternal diet on developing offspring warrants further investigation. Here, we examined how a prepubertal methionine-enriched paternal diet affected sperm DNA methylation and its subsequent effects on embryo gene expression. Three treatment and three control rams were bred to seven ewes, and blastocysts were flushed for RNA extraction. Semen was collected from all rams and submitted for reduced representation bisulfite sequencing analysis. In total, 166 differentially methylated cytosines were identified in the sperm from treatment versus control rams. Nine genes were found to be differentially expressed in embryos produced from treatment versus control rams, and seven differentially methylated cytosines in the sperm were found to be highly correlated with gene expression in the embryos. Our results demonstrate that sperm methylation differences induced by diet may influence fetal programming.
Collapse
Affiliation(s)
- Jessica Townsend
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, 1675 Observatory Dr., Madison, WI 53706, USA
| | - Camila U Braz
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, 1675 Observatory Dr., Madison, WI 53706, USA
| | - Todd Taylor
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, 1675 Observatory Dr., Madison, WI 53706, USA
| | - Hasan Khatib
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, 1675 Observatory Dr., Madison, WI 53706, USA
| |
Collapse
|
11
|
The Effect of Semen Cryopreservation Process on Metabolomic Profiles of Turkey Sperm as Assessed by NMR Analysis. BIOLOGY 2022; 11:biology11050642. [PMID: 35625370 PMCID: PMC9138281 DOI: 10.3390/biology11050642] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/16/2022] [Accepted: 04/20/2022] [Indexed: 12/03/2022]
Abstract
Semen cryopreservation represents the main tool for preservation of biodiversity; however, in avian species, the freezing−thawing process results in a sharp reduction in sperm quality and consequently fertility. Thus, to gain a first insight into the molecular basis of the cryopreservation of turkey sperm, the NMR-assessed metabolite profiles of fresh and frozen−thawed samples were herein investigated and compared with sperm qualitative parameters. Cryopreservation decreased the sperm viability, mobility, and osmotic tolerance of frozen−thawed samples. This decrease in sperm quality was associated with the variation in the levels of some metabolites in both aqueous and lipid sperm extracts, as investigated by NMR analysis. Higher amounts of the amino acids Ala, Ile, Leu, Phe, Tyr, and Val were found in fresh than in frozen−thawed sperm; on the contrary, Gly content increased after cryopreservation. A positive correlation (p < 0.01) between the amino acid levels and all qualitative parameters was found, except in the case of Gly, the levels of which were negatively correlated (p < 0.01) with sperm quality. Other water-soluble compounds, namely formate, lactate, AMP, creatine, and carnitine, turned out to be present at higher concentrations in fresh sperm, whereas cryopreserved samples showed increased levels of citrate and acetyl-carnitine. Frozen−thawed sperm also showed decreases in cholesterol and polyunsaturated fatty acids, whereas saturated fatty acids were found to be higher in cryopreserved than in fresh sperm. Interestingly, lactate, carnitine (p < 0.01), AMP, creatine, cholesterol, and phosphatidylcholine (p < 0.05) levels were positively correlated with all sperm quality parameters, whereas citrate (p < 0.01), fumarate, acetyl-carnitine, and saturated fatty acids (p < 0.05) showed negative correlations. A detailed discussion aimed at explaining these correlations in the sperm cell context is provided, returning a clearer scenario of metabolic changes occurring in turkey sperm cryopreservation.
Collapse
|
12
|
Tourzani DA, Battistone MA, Salicioni AM, Breton S, Visconti PE, Gervasi MG. Caput Ligation Renders Immature Mouse Sperm Motile and Capable to Undergo cAMP-Dependent Phosphorylation. Int J Mol Sci 2021; 22:ijms221910241. [PMID: 34638585 PMCID: PMC8549708 DOI: 10.3390/ijms221910241] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/16/2021] [Accepted: 09/17/2021] [Indexed: 12/01/2022] Open
Abstract
Mammalian sperm must undergo two post-testicular processes to become fertilization-competent: maturation in the male epididymis and capacitation in the female reproductive tract. While caput epididymal sperm are unable to move and have not yet acquired fertilization potential, sperm in the cauda epididymis have completed their maturation, can move actively, and have gained the ability to undergo capacitation in the female tract or in vitro. Due to the impossibility of mimicking sperm maturation in vitro, the molecular pathways underlying this process remain largely unknown. We aimed to investigate the use of caput epididymal ligation as a tool for the study of sperm maturation in mice. Our results indicate that after seven days of ligation, caput sperm gained motility and underwent molecular changes comparable with those observed for cauda mature sperm. Moreover, ligated caput sperm were able to activate pathways related to sperm capacitation. Despite these changes, ligated caput sperm were unable to fertilize in vitro. Our results suggest that transit through the epididymis is not required for the acquisition of motility and some capacitation-associated signaling but is essential for full epididymal maturation. Caput epididymal ligation is a useful tool for the study of the molecular pathways involved in the acquisition of sperm motility during maturation.
Collapse
Affiliation(s)
- Darya A. Tourzani
- Department of Veterinary and Animal Sciences, Integrated Science Building, University of Massachusetts, Amherst, MA 01003, USA; (D.A.T.); (A.M.S.)
| | - Maria A. Battistone
- Program in Membrane Biology, Nephrology Division, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02115, USA; (M.A.B.); (S.B.)
| | - Ana M. Salicioni
- Department of Veterinary and Animal Sciences, Integrated Science Building, University of Massachusetts, Amherst, MA 01003, USA; (D.A.T.); (A.M.S.)
| | - Sylvie Breton
- Program in Membrane Biology, Nephrology Division, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02115, USA; (M.A.B.); (S.B.)
| | - Pablo E. Visconti
- Department of Veterinary and Animal Sciences, Integrated Science Building, University of Massachusetts, Amherst, MA 01003, USA; (D.A.T.); (A.M.S.)
- Correspondence: (P.E.V.); (M.G.G.); Tel.: +1-413-545-5565 (P.E.V.)
| | - Maria G. Gervasi
- Department of Veterinary and Animal Sciences, Integrated Science Building, University of Massachusetts, Amherst, MA 01003, USA; (D.A.T.); (A.M.S.)
- Correspondence: (P.E.V.); (M.G.G.); Tel.: +1-413-545-5565 (P.E.V.)
| |
Collapse
|
13
|
Foot NJ, Gonzalez MB, Gembus K, Fonseka P, Sandow JJ, Nguyen TT, Tran D, Webb AI, Mathivanan S, Robker RL, Kumar S. Arrdc4-dependent extracellular vesicle biogenesis is required for sperm maturation. J Extracell Vesicles 2021; 10:e12113. [PMID: 34188787 PMCID: PMC8217992 DOI: 10.1002/jev2.12113] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/07/2021] [Accepted: 06/07/2021] [Indexed: 01/04/2023] Open
Abstract
Extracellular vesicles (EVs) are important players in cell to cell communication in reproductive systems. Notably, EVs have been found and characterized in the male reproductive tract, however, direct functional evidence for their importance in mediating sperm function is lacking. We have previously demonstrated that Arrdc4, a member of the α-arrestin protein family, is involved in extracellular vesicle biogenesis and release. Here we show that Arrdc4-mediated extracellular vesicle biogenesis is required for proper sperm function. Sperm from Arrdc4-/- mice develop normally through the testis but fail to acquire adequate motility and fertilization capabilities through the epididymis, as observed by reduced motility, premature acrosome reaction, reduction in zona pellucida binding and two-cell embryo production. We found a significant reduction in extracellular vesicle production by Arrdc4-/- epididymal epithelial cells, and further, supplementation of Arrdc4-/- sperm with additional vesicles dampened the acrosome reaction defect and restored zona pellucida binding. These results indicate that Arrdc4 is important for proper sperm maturation through the control of extracellular vesicle biogenesis.
Collapse
Affiliation(s)
- Natalie J. Foot
- Centre for Cancer BiologyUniversity of South Australia and SA PathologyAdelaideSouth AustraliaAustralia
- School of MedicineRobinson Research InstituteUniversity of AdelaideAdelaideSouth AustraliaAustralia
| | - Macarena B. Gonzalez
- School of MedicineRobinson Research InstituteUniversity of AdelaideAdelaideSouth AustraliaAustralia
| | - Kelly Gembus
- Centre for Cancer BiologyUniversity of South Australia and SA PathologyAdelaideSouth AustraliaAustralia
| | - Pamali Fonseka
- Department of Biochemistry and GeneticsLa Trobe Institute for Molecular SciencesLa Trobe UniversityMelbourneVictoriaAustralia
| | - Jarrod J. Sandow
- Advanced Technology and Biology DivisionWalter and Eliza Hall InstituteParkvilleVictoriaAustralia
- Department of Medical BiologyUniversity of MelbourneParkvilleVICAustralia
| | - Thuy Tien Nguyen
- Centre for Cancer BiologyUniversity of South Australia and SA PathologyAdelaideSouth AustraliaAustralia
- School of Biological SciencesUniversity of AdelaideAdelaideSouth AustraliaAustralia
| | - Diana Tran
- School of Chemical Engineering & Advanced MaterialsUniversity of AdelaideAdelaideSouth AustraliaAustralia
| | - Andrew I. Webb
- Advanced Technology and Biology DivisionWalter and Eliza Hall InstituteParkvilleVictoriaAustralia
- Department of Medical BiologyUniversity of MelbourneParkvilleVICAustralia
| | - Suresh Mathivanan
- Department of Biochemistry and GeneticsLa Trobe Institute for Molecular SciencesLa Trobe UniversityMelbourneVictoriaAustralia
| | - Rebecca L. Robker
- School of MedicineRobinson Research InstituteUniversity of AdelaideAdelaideSouth AustraliaAustralia
- Department of Anatomy and Developmental BiologyBiomedicine Discovery InstituteMonash UniversityMelbourneVictoriaAustralia
| | - Sharad Kumar
- Centre for Cancer BiologyUniversity of South Australia and SA PathologyAdelaideSouth AustraliaAustralia
- Faculty of Health and Medical SciencesUniversity of AdelaideAdelaideSouth AustraliaAustralia
| |
Collapse
|
14
|
Tang CL, Zhang RH, Li R, Li XR, Pan Q, Li L, Xiao JL. EFFECT OF ADENYLATE KINASE 1 ON THE GROWTH AND DEVELOPMENT OF SCHISTOSOMA JAPONICUM SCHISTOSOMULUM. J Parasitol 2021; 107:472-480. [PMID: 34153095 DOI: 10.1645/19-113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
We investigated the effect of Schistosoma japonicum adenylate kinase 1 (Sjak1) on the growth and development of schistosomula. Quantitative real-time PCR showed that Sjak1 mRNA was expressed in 3-, 10-, 14-, 18-, and 21-day-old schistosomula, and its levels increased gradually with the development of S. japonicum. Using immunohistochemical techniques, ak1 protein was found to be mainly distributed in the tegument and some parenchymal tissues of the schistosomula. Double-stranded RNA-mediated knockdowns of ak1 decreased ak1 mRNA transcripts by more than 90%, and western blot results showed that expression of ak1 protein was decreased by 66%. Scanning electron microscopy following the RNA-mediated ak1 knockdown showed that the sensory papillae did not develop. Transmission electron microscopy showed a lower mean thickness of the tegument in the Sjak1 interference group than in the negative control group. Terminal deoxynucleotidyl transferase dUTP nick-end labeling suggested higher apoptosis in the interference group than the negative control group. These results showed that ak1 may be involved in the growth and development of S. japonicum schistosomula and especially in the development of the integument. Consequently, ak1 may be a potential target in developing prevention methods for schistosomiasis in the future.
Collapse
Affiliation(s)
- Chun-Lian Tang
- Wuchang Hospital affiliated to Wuhan University of Science and Technology, Wuhan 430063, China
| | - Rong-Hui Zhang
- Wuchang Hospital affiliated to Wuhan University of Science and Technology, Wuhan 430063, China
| | - Ru Li
- Wuchang Hospital affiliated to Wuhan University of Science and Technology, Wuhan 430063, China
| | - Xiu-Rong Li
- Wuchang Hospital affiliated to Wuhan University of Science and Technology, Wuhan 430063, China
| | - Qun Pan
- Wuchang Hospital affiliated to Wuhan University of Science and Technology, Wuhan 430063, China
| | - Li Li
- Wuchang Hospital affiliated to Wuhan University of Science and Technology, Wuhan 430063, China
| | - Jin-Lei Xiao
- Wuchang Hospital affiliated to Wuhan University of Science and Technology, Wuhan 430063, China
| |
Collapse
|
15
|
CFAP45 deficiency causes situs abnormalities and asthenospermia by disrupting an axonemal adenine nucleotide homeostasis module. Nat Commun 2020; 11:5520. [PMID: 33139725 PMCID: PMC7606486 DOI: 10.1038/s41467-020-19113-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 09/25/2020] [Indexed: 11/08/2022] Open
Abstract
Axonemal dynein ATPases direct ciliary and flagellar beating via adenosine triphosphate (ATP) hydrolysis. The modulatory effect of adenosine monophosphate (AMP) and adenosine diphosphate (ADP) on flagellar beating is not fully understood. Here, we describe a deficiency of cilia and flagella associated protein 45 (CFAP45) in humans and mice that presents a motile ciliopathy featuring situs inversus totalis and asthenospermia. CFAP45-deficient cilia and flagella show normal morphology and axonemal ultrastructure. Proteomic profiling links CFAP45 to an axonemal module including dynein ATPases and adenylate kinase as well as CFAP52, whose mutations cause a similar ciliopathy. CFAP45 binds AMP in vitro, consistent with structural modelling that identifies an AMP-binding interface between CFAP45 and AK8. Microtubule sliding of dyskinetic sperm from Cfap45−/− mice is rescued with the addition of either AMP or ADP with ATP, compared to ATP alone. We propose that CFAP45 supports mammalian ciliary and flagellar beating via an adenine nucleotide homeostasis module. The mechanism by which adenosine monophosphate modulates dynein ATPase-mediated ciliary and flagellar beating remains obscure. Here the authors identify an axonemal module including cilia and flagella associated protein 45 that supports adenine nucleotide homeostasis and underlies a human ciliopathy
Collapse
|
16
|
Xie M, Zhang G, Zhang H, Chen F, Chen Y, Zhuang Y, Huang Z, Zou F, Liu M, An G, Kang X, Chen Z. Adenylate kinase 1 deficiency disrupts mouse sperm motility under conditions of energy stress†. Biol Reprod 2020; 103:1121-1131. [PMID: 32744313 DOI: 10.1093/biolre/ioaa134] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 06/29/2020] [Accepted: 07/31/2020] [Indexed: 12/21/2022] Open
Abstract
Mammalian spermatozoa are highly polarized cells characterized by compartmentalized cellular structures and energy metabolism. Adenylate kinase (AK), which interconverts two ADP molecules into stoichiometric amounts of ATP and AMP, plays a critical role in buffering adenine nucleotides throughout the tail to support flagellar motility. Yet the role of the major AK isoform, AK1, is still not well characterized. Here, by using a proteomic analysis of testis biopsy samples, we found that AK1 levels were significantly decreased in nonobstructive azoospermia patients. This result was further verified by immunohistochemical staining of AK1 on a tissue microarray. AK1 was found to be expressed in post-meiotic round and elongated spermatids in mouse testis and subsequent mature sperm in the epididymis. We then generated Ak1 knockout mice, which showed that AK1 deficiency did not induce any defects in testis development, spermatogenesis, or sperm morphology and motility under physiological conditions. We further investigated detergent-modeled epididymal sperm and included individual or mixed adenine nucleotides to mimic energy stress. When only ADP was available, Ak1 disruption largely compromised sperm motility, manifested as a smaller beating amplitude and higher beating frequency, which resulted in less effective forward swimming. The energy restriction/recover experiments with intact sperm further addressed this finding. Besides, decreased AK activity was observed in sperm of a male fertility disorder mouse model induced by cadmium chloride. These results cumulatively demonstrate that AK1 was dispensable for testis development, spermatogenesis, or sperm motility under physiological conditions, but was required for sperm to maintain a constant adenylate energy charge to support sperm motility under conditions of energy stress.
Collapse
Affiliation(s)
- Minyu Xie
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Guofei Zhang
- Department of Urology, Nanhai Hospital, Southern Medical University, Foshan, China
| | - Hanbin Zhang
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Feilong Chen
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yan Chen
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yuge Zhuang
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Zicong Huang
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Feng Zou
- Department of Urology, Nanhai Hospital, Southern Medical University, Foshan, China
| | - Min Liu
- Center for Reproductive Medicine, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Geng An
- Center for Reproductive Medicine, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiangjin Kang
- Center for Reproductive Medicine, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhenguo Chen
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
17
|
Role of adenylate kinase 1 in the integument development of Schistosoma japonicum schistosomula. Acta Trop 2020; 207:105467. [PMID: 32277925 DOI: 10.1016/j.actatropica.2020.105467] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 03/14/2020] [Accepted: 03/29/2020] [Indexed: 11/21/2022]
Abstract
Schistosomula antigens play an important role in the growth and development of Schistosoma japonicum. We investigated the role of S. japonicum adenylate kinase 1 (SjAK1) in the growth and development of schistosomula. Quantitative real-time PCR showed that SjAK1 mRNA was expressed in all schistosomula stages, but increased gradually with the development of S. japonicum schistosomula. Using immunohistochemical techniques, the AK1 protein was found to be mainly distributed in the tegument and in some parenchymal tissues of the schistosomula. Double-stranded RNA-mediated knockdown of AK1 reduced AK1 mRNA transcripts by more than 90%; western blot analysis demonstrated that AK1 protein expression decreased by 66%. Scanning electron microscopy following RNA-mediated AK1 knockdown demonstrated that the sensory papillae degenerated significantly. Transmission electron microscopy demonstrated that the mean thickness of the tegument in the SjAK1 interference group was lower than that in the negative control group. Terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) suggested that, compared with the negative control group, apoptosis increased in the interference group. These results show that AK1 may be involved in the growth and development of S. japonicum schistosomula, and thus may be a target when developing treatments for schistosomiasis.
Collapse
|
18
|
Touré A, Martinez G, Kherraf ZE, Cazin C, Beurois J, Arnoult C, Ray PF, Coutton C. The genetic architecture of morphological abnormalities of the sperm tail. Hum Genet 2020; 140:21-42. [PMID: 31950240 DOI: 10.1007/s00439-020-02113-x] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 01/06/2020] [Indexed: 12/29/2022]
Abstract
Spermatozoa contain highly specialized structural features reflecting unique functions required for fertilization. Among them, the flagellum is a sperm-specific organelle required to generate the motility, which is essential to reach the egg. The flagellum integrity is, therefore, critical for normal sperm function and flagellum defects consistently lead to male infertility due to reduced or absent sperm motility defined as asthenozoospermia. Multiple morphological abnormalities of the flagella (MMAF), also called short tails, is among the most severe forms of sperm flagellum defects responsible for male infertility and is characterized by the presence in the ejaculate of spermatozoa being short, coiled, absent and of irregular caliber. Recent studies have demonstrated that MMAF is genetically heterogeneous which is consistent with the large number of proteins (over one thousand) localized in the human sperm flagella. In the past 5 years, genomic investigation of the MMAF phenotype allowed the identification of 18 genes whose mutations induce MMAF and infertility. Here we will review information about those genes including their expression pattern, the features of the encoded proteins together with their localization within the different flagellar protein complexes (axonemal or peri-axonemal) and their potential functions. We will categorize the identified MMAF genes following the protein complexes, functions or biological processes they may be associated with, based on the current knowledge in the field.
Collapse
Affiliation(s)
- Aminata Touré
- Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, 75014, Paris, France.,INSERM U1016, Institut Cochin, 75014, Paris, France.,Centre National de La Recherche Scientifique UMR8104, 75014, Paris, France
| | - Guillaume Martinez
- INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Team Genetics Epigenetics and Therapies of Infertility, Univ. Grenoble Alpes, 38000, Grenoble, France.,CHU Grenoble Alpes, UM de Génétique Chromosomique, 38000, Grenoble, France
| | - Zine-Eddine Kherraf
- INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Team Genetics Epigenetics and Therapies of Infertility, Univ. Grenoble Alpes, 38000, Grenoble, France.,CHU Grenoble Alpes, UM GI-DPI, 38000, Grenoble, France
| | - Caroline Cazin
- INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Team Genetics Epigenetics and Therapies of Infertility, Univ. Grenoble Alpes, 38000, Grenoble, France
| | - Julie Beurois
- INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Team Genetics Epigenetics and Therapies of Infertility, Univ. Grenoble Alpes, 38000, Grenoble, France
| | - Christophe Arnoult
- INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Team Genetics Epigenetics and Therapies of Infertility, Univ. Grenoble Alpes, 38000, Grenoble, France
| | - Pierre F Ray
- INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Team Genetics Epigenetics and Therapies of Infertility, Univ. Grenoble Alpes, 38000, Grenoble, France.,CHU Grenoble Alpes, UM GI-DPI, 38000, Grenoble, France
| | - Charles Coutton
- INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Team Genetics Epigenetics and Therapies of Infertility, Univ. Grenoble Alpes, 38000, Grenoble, France. .,CHU Grenoble Alpes, UM de Génétique Chromosomique, 38000, Grenoble, France.
| |
Collapse
|
19
|
D'Amours O, Calvo É, Bourassa S, Vincent P, Blondin P, Sullivan R. Proteomic markers of low and high fertility bovine spermatozoa separated by Percoll gradient. Mol Reprod Dev 2019; 86:999-1012. [DOI: 10.1002/mrd.23174] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 04/04/2019] [Accepted: 05/05/2019] [Indexed: 01/07/2023]
Affiliation(s)
- Olivier D'Amours
- Département d'obstétrique, Gynécologie et ReproductionCentre de Recherche du Centre Hospitalier de l'Université Laval Québec Québec Canada
| | - Ézéquiel Calvo
- Proteomic Core FacilityCentre de Recherche du Centre Hospitalier de l'Université Laval, Axe Reproduction, Santé de la mère et de l'enfant Québec Québec Canada
| | - Sylvie Bourassa
- Proteomic Core FacilityCentre de Recherche du Centre Hospitalier de l'Université Laval, Axe Reproduction, Santé de la mère et de l'enfant Québec Québec Canada
| | - Patrick Vincent
- Department of Research and DevelopmentSemex Alliance, L'Alliance Boviteq Inc Saint‐Hyacinthe Québec Canada
| | - Patrick Blondin
- Department of Research and DevelopmentSemex Alliance, L'Alliance Boviteq Inc Saint‐Hyacinthe Québec Canada
| | - Robert Sullivan
- Département d'obstétrique, Gynécologie et ReproductionCentre de Recherche du Centre Hospitalier de l'Université Laval Québec Québec Canada
| |
Collapse
|
20
|
Nsota Mbango JF, Coutton C, Arnoult C, Ray PF, Touré A. Genetic causes of male infertility: snapshot on morphological abnormalities of the sperm flagellum. Basic Clin Androl 2019; 29:2. [PMID: 30867909 PMCID: PMC6398242 DOI: 10.1186/s12610-019-0083-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 01/09/2019] [Indexed: 11/10/2022] Open
Abstract
Male infertility due to Multiple Morphological Abnormalities of the sperm Flagella (MMAF), is characterized by nearly total asthenozoospermia due to the presence of a mosaic of sperm flagellar anomalies, which corresponds to short, angulated, absent flagella and flagella of irregular calibre. In the last four years, 7 novel genes whose mutations account for 45% of a cohort of 78 MMAF individuals were identified: DNAH1, CFAP43, CFAP44, CFAP69, FSIP2, WDR66 (CFAP251), AK7. This successful outcome results from the efficient combination of high-throughput sequencing technologies together with robust and complementary approaches for functional validation, in vitro, and in vivo using the mouse and unicellular model organisms such as the flagellated parasite T. brucei. Importantly, these genes are distinct from genes responsible for Primary Ciliary Dyskinesia (PCD), an autosomal recessive disease associated with both respiratory cilia and sperm flagellum defects, and their mutations therefore exclusively lead to male infertility. In the future, these genetic findings will definitely improve the diagnosis efficiency of male infertility and might provide genotype-phenotype correlations, which could be helpful for the prognosis of intracytoplasmic sperm injection (ICSI) performed with sperm from MMAF patients. In addition, functional study of these novel genes should improve our knowledge about the protein networks and molecular mechanisms involved in mammalian sperm flagellum structure and beating.
Collapse
Affiliation(s)
- Jean-Fabrice Nsota Mbango
- 1INSERMU1016, CNRS UMR8104, Université Paris Descartes, 75014 Paris, France.,2Centre National de la Recherche Scientifique UMR8104, 75014 Paris, France.,3Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, 75014 Paris, France
| | - Charles Coutton
- Institut for Advanced Biosciences, Université Grenoble Alpes, INSERM U1209, CNRS UMR 5309, 38000 Grenoble, France.,5CHU Grenoble Alpes, UM de Génétique Chromosomique, Grenoble, France
| | - Christophe Arnoult
- Institut for Advanced Biosciences, Université Grenoble Alpes, INSERM U1209, CNRS UMR 5309, 38000 Grenoble, France
| | - Pierre F Ray
- Institut for Advanced Biosciences, Université Grenoble Alpes, INSERM U1209, CNRS UMR 5309, 38000 Grenoble, France.,CHU de Grenoble, UM GI-DPI, F-38000 Grenoble, France
| | - Aminata Touré
- 1INSERMU1016, CNRS UMR8104, Université Paris Descartes, 75014 Paris, France.,2Centre National de la Recherche Scientifique UMR8104, 75014 Paris, France.,3Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, 75014 Paris, France
| |
Collapse
|
21
|
Ushiyama A, Priyadarshana C, Setiawan R, Miyazaki H, Ishikawa N, Tajima A, Asano A. Membrane raft-mediated regulation of glucose signaling pathway leading to acrosome reaction in chicken sperm†. Biol Reprod 2019; 100:1482-1491. [DOI: 10.1093/biolre/ioz015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 12/21/2018] [Accepted: 02/01/2019] [Indexed: 01/13/2023] Open
Affiliation(s)
- Ai Ushiyama
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki—, Japan
| | - Chathura Priyadarshana
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki—, Japan
| | - Rangga Setiawan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki—, Japan
| | - Hitoshi Miyazaki
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki—, Japan
| | - Naoto Ishikawa
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki—, Japan
| | - Atsushi Tajima
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki—, Japan
| | - Atsushi Asano
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki—, Japan
| |
Collapse
|
22
|
von Schalburg KR, Rondeau EB, Leong JS, Davidson WS, Koop BF. Regulatory processes that control haploid expression of salmon sperm mRNAs. BMC Res Notes 2018; 11:639. [PMID: 30176937 PMCID: PMC6122464 DOI: 10.1186/s13104-018-3749-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 08/30/2018] [Indexed: 11/12/2022] Open
Abstract
Objective Various stages of mRNA processing are necessary for functionally important genes required during late-stage sperm differentiation. Protein–RNA complexes form that edit, stabilize, store, deliver, localize and regulate translation of sperm mRNAs. These regulatory processes are often directed by recognition sequence elements and the particular composition of the proteins associated with the mRNAs. Previous work has shown that the cAMP response element modulator (CREM), estrogen receptor-alpha (ERα) and forkhead box L2A (FOXL2A) proteins are present in late-stage salmon sperm. Here we investigate whether these and other regulatory proteins might control processing of mRNAs not expressed until the haploid stage of development. We also examine regulatory processes that prepare and present mRNAs that generate unique products essential for differentiating sperm (i.e. for flagellar assembly and function). Results We provide evidence for potential sperm-specific recognition elements in 5′-untranslated regions (utrs) that may bind CREM, ERα, FOXL2A, Y-box and other proteins. We show that changes within the 5′-utrs and open reading frames of some sperm genes lead to distinct protein termini that may provide specific interfaces necessary for localization and function within the paternal gamete. Electronic supplementary material The online version of this article (10.1186/s13104-018-3749-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kristian R von Schalburg
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada.
| | - Eric B Rondeau
- Department of Biology, Centre for Biomedical Research, University of Victoria, Victoria, BC, V8W 3N5, Canada
| | - Jong S Leong
- Department of Biology, Centre for Biomedical Research, University of Victoria, Victoria, BC, V8W 3N5, Canada
| | - William S Davidson
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | - Ben F Koop
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada.,Department of Biology, Centre for Biomedical Research, University of Victoria, Victoria, BC, V8W 3N5, Canada
| |
Collapse
|
23
|
García-Rodríguez A, de la Casa M, Peinado H, Gosálvez J, Roy R. Human prostasomes from normozoospermic and non-normozoospermic men show a differential protein expression pattern. Andrology 2018; 6:585-596. [DOI: 10.1111/andr.12496] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 03/20/2018] [Accepted: 03/28/2018] [Indexed: 12/11/2022]
Affiliation(s)
| | | | - H. Peinado
- Microenvironment and Metastasis Group; Molecular Oncology Program; Spanish National Cancer Research Centre (CNIO); Madrid Spain
| | - J. Gosálvez
- Biology Department; University Autónoma of Madrid; Madrid Spain
| | - R. Roy
- Biology Department; University Autónoma of Madrid; Madrid Spain
| |
Collapse
|
24
|
Subcellular localization and characterization of estrogenic pathway regulators and mediators in Atlantic salmon spermatozoal cells. Histochem Cell Biol 2017; 149:75-96. [DOI: 10.1007/s00418-017-1611-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2017] [Indexed: 12/26/2022]
|
25
|
Bhattacharjee R, Goswami S, Dudiki T, Popkie AP, Phiel CJ, Kline D, Vijayaraghavan S. Targeted disruption of glycogen synthase kinase 3A (GSK3A) in mice affects sperm motility resulting in male infertility. Biol Reprod 2015; 92:65. [PMID: 25568307 DOI: 10.1095/biolreprod.114.124495] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The signaling enzyme glycogen synthase kinase 3 (GSK3) exists as two isoforms-GSK3A and GSK3B. Protein phosphorylation by GSK3 has important signaling roles in several cells. In our past work, we found that both isoforms of GSK3 are present in mouse sperm and that catalytic GSK3 activity correlates with motility of sperm from several species. Here, we examined the role of Gsk3a in male fertility using a targeted gene knockout (KO) approach. The mutant mice are viable, but have a male infertility phenotype, while female fertility is unaffected. Testis weights of Gsk3a(-/-) mice are normal and sperm are produced in normal numbers. Although spermatogenesis is apparently unimpaired, sperm motility parameters in vitro are impaired. In addition, the flagellar waveform appears abnormal, characterized by low amplitude of flagellar beat. Sperm ATP levels were lower in Gsk3a(-/-) mice compared to wild-type animals. Protein phosphatase PP1 gamma2 protein levels were unaltered, but its catalytic activity was elevated in KO sperm. Remarkably, tyrosine phosphorylation of hexokinase and capacitation-associated changes in tyrosine phosphorylation of proteins are absent or significantly lower in Gsk3a(-/-) sperm. The GSK3B isoform was present and unaltered in testis and sperm of Gsk3a(-/-) mice, showing the inability of GSK3B to substitute for GSK3A in this context. Our studies show that sperm GSK3A is essential for male fertility. In addition, the GSK3A isoform, with its highly conserved glycine-rich N terminus in mammals, may have an isoform-specific role in its requirement for normal sperm motility and fertility.
Collapse
Affiliation(s)
| | - Suranjana Goswami
- Department of Biological Sciences, Kent State University, Kent, Ohio
| | - Tejasvi Dudiki
- Department of Biological Sciences, Kent State University, Kent, Ohio
| | - Anthony P Popkie
- Laboratory of Cancer Epigenomics, Center for Epigenetics, Van Andel Research Institute, Grand Rapids, Michigan
| | - Christopher J Phiel
- Department of Integrative Biology, University of Colorado Denver, Denver, Colorado
| | - Douglas Kline
- Department of Biological Sciences, Kent State University, Kent, Ohio
| | | |
Collapse
|
26
|
Mitochondria: Participation to infertility as source of energy and cause of senescence. Int J Biochem Cell Biol 2014; 55:60-4. [DOI: 10.1016/j.biocel.2014.08.011] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 08/13/2014] [Indexed: 01/06/2023]
|