1
|
Li H, Lin H, Yang H, Ren C, He Y, Jiang X, Chen T, Hu C. Molecular Characterization, Recombinant Expression, and Functional Analysis of Carboxypeptidase B in Litopenaeus vannamei. Genes (Basel) 2025; 16:69. [PMID: 39858615 PMCID: PMC11764914 DOI: 10.3390/genes16010069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/02/2025] [Accepted: 01/06/2025] [Indexed: 01/27/2025] Open
Abstract
Background/Objectives: The Pacific white shrimp (L. vannamei) is economically significant, and its growth is regulated by multiple factors. Carboxypeptidase B (CPB) is related to protein digestion, but its gene sequence and features in L. vannamei are not fully understood. This study aimed to explore the molecular and functional properties of CPB in L. vannamei. Methods: The Lv-CPB gene was cloned, and bioinformatics analysis, qRT-PCR, in situ hybridization, recombinant protein expression in Escherichia coli, and an enzyme activity assay were performed. Results: The Lv-CPB gene is 1414 bp long with a 1263 bp ORF encoding a 420-amino-acid protein. It is stable, hydrophilic, and is highly expressed in the hepatopancreas. The recombinant protein was efficiently expressed with a molecular weight of about 47 kDa. The optimal pH and temperature for Lv-CPB were 8.0 and 50 °C, respectively. Conclusions: This study revealed the molecular and functional characteristics of Lv-CPB, providing insights into its role in shrimp digestion, as well as suggestions for improving aquaculture practices.
Collapse
Affiliation(s)
- Hongmei Li
- School of Engineering, Guangzhou College of Technology and Business, Guangzhou 510850, China; (H.L.); (H.L.)
| | - Hai Lin
- School of Engineering, Guangzhou College of Technology and Business, Guangzhou 510850, China; (H.L.); (H.L.)
| | - Hao Yang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- Key Laboratory of Applied Marine Biology of Guangdong Province and Chinese Academy of Sciences (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou 510301, China
| | - Chunhua Ren
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- Key Laboratory of Applied Marine Biology of Guangdong Province and Chinese Academy of Sciences (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou 510301, China
| | - Yi He
- School of Engineering, Guangzhou College of Technology and Business, Guangzhou 510850, China; (H.L.); (H.L.)
| | - Xiao Jiang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- Key Laboratory of Applied Marine Biology of Guangdong Province and Chinese Academy of Sciences (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou 510301, China
| | - Ting Chen
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- Key Laboratory of Applied Marine Biology of Guangdong Province and Chinese Academy of Sciences (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou 510301, China
| | - Chaoqun Hu
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- Key Laboratory of Applied Marine Biology of Guangdong Province and Chinese Academy of Sciences (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou 510301, China
| |
Collapse
|
2
|
Mo N, Shao S, Zhuang Y, Yang Y, Cui Z, Bao C. Activation and characterization of G protein-coupled receptors for CHHs in the mud crab, Scylla paramamosain. Comp Biochem Physiol A Mol Integr Physiol 2024; 288:111563. [PMID: 38122925 DOI: 10.1016/j.cbpa.2023.111563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023]
Abstract
Crustacean hyperglycemic hormone (CHH) superfamily peptides constitute a group of neurohormones, including the crustacean hyperglycemic hormone (CHH), molt-inhibiting hormone (MIH), and gonad-inhibiting hormone (GIH) or vitellogenesis-inhibiting hormone (VIH), which reportedly play an essential role in regulating various biological activities by binding to their receptors in crustaceans. Although bioinformatics analyses have identified G protein-coupled receptors (GPCRs) as potential CHH receptors, no validation through binding experiments has been carried out. This study employed a eukaryotic expression system, HEK293T cell transient transfection, and ligand-receptor interaction tests to identify the GPCRs of CHHs in the mud crab Scylla paramamosain. We found that four GPCRs (Sp-GPCR-A34-A37) were activated by their corresponding CHHs (Sp-CHH1-v1, Sp-MIH, Sp-VIH) in a dose-dependent manner. Of these, Sp-GPCR-A34 was exclusively activated by Sp-VIH; Sp-GPCR-A35 was activated by Sp-CHH1-v1 and Sp-VIH, respectively; Sp-GPCR-A36 was activated by Sp-CHH1-v1 and Sp-MIH; Sp-GPCR-A37 was exclusively activated by Sp-MIH. The half-maximal effective concentration (EC50) values for all CHHs/GPCRs pairs (both Ca2+ and cAMP signaling) were in the nanomolar range. Overall, our study provided hitherto undocumented evidence of the presence of G protein-coupled receptors of CHH in crustaceans, providing the foothold for further studies on the signaling pathways of CHHs and their corresponding GPCRs.
Collapse
Affiliation(s)
- Nan Mo
- School of Marine Sciences, Ningbo University, Ningbo 315020, China
| | - Shucheng Shao
- School of Marine Sciences, Ningbo University, Ningbo 315020, China
| | - Yan Zhuang
- School of Marine Sciences, Ningbo University, Ningbo 315020, China
| | - Yanan Yang
- School of Marine Sciences, Ningbo University, Ningbo 315020, China
| | - Zhaoxia Cui
- School of Marine Sciences, Ningbo University, Ningbo 315020, China
| | - Chenchang Bao
- School of Marine Sciences, Ningbo University, Ningbo 315020, China.
| |
Collapse
|
3
|
Green S, Bachvaroff T, Sook Chung J. Eyestalk neuropeptide identification in the female red deep-sea crab, Chaceon quinquedens. Gen Comp Endocrinol 2023; 330:114128. [PMID: 36152768 DOI: 10.1016/j.ygcen.2022.114128] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 09/09/2022] [Accepted: 09/16/2022] [Indexed: 12/14/2022]
Abstract
Eyestalk-derived neuropeptides, primarily the crustacean hyperglycemic hormone (CHH) neuropeptide family, regulate vitellogenesis in decapod crustaceans. The red deep-sea crab, Chaceon quinquedens, a cold-water species inhabiting depths between 200 and 1800 m, has supported a small fishery, mainly harvesting adult males in the eastern US for over 40 years. This study aimed to understand the role of eyestalk-neuropeptides in vitellogenesis in C. quinquedens with an extended intermolt stage. Chromatography shows two CHH and one MIH peak in the sinus gland, with a CHH2 peak area four times larger than CHH1. The cDNA sequence of MIH and CHH of C. quinquedens is isolated from the eyestalk ganglia, and the qPCR assay shows MIH is significantly higher only at ovarian stages 3 than 4 and 5. However, MIH transcript and its neuropeptides do differ between stages 1 and 3. While CHH transcripts remain constant, its neuropeptide levels are higher at stages 3 than 1. Additionally, transcriptomic analysis of the de novo eyestalk ganglia assembly at ovarian stages 1 and 3 found 28 eyestalk neuropeptides. A GIH/VIH or GSH/VSH belonging to the CHH family is absent in the transcriptome. Transcripts per million (TPM) values of ten neuropeptides increase by 1.3 to 2.0-fold at stage 3 compared to stage 1: twofold for Bursicon α, followed by CHH, AKH/corazonin-like, Pyrokinin, CCAP, Glycoprotein B, PDH1, and IDLSRF-like peptide, and 1.3-fold of allatostatin A and short NP-F. WXXXRamide, the only downregulated neuropeptide, decreases TPM by ∼ 2-fold at stage 3, compared to stage 1. Interestingly, neuroparsin with the highest TPM values remains the same in stages 1 and 3. The mandibular organ-inhibiting hormone is not found in de novo assembly. We report that CHH, MIH, and eight other neuropeptides may play a role in vitellogenesis in this species.
Collapse
Affiliation(s)
- Shadaesha Green
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, 701 E. Pratt Street, Baltimore, MD 21202, USA
| | - Tsvetan Bachvaroff
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, 701 E. Pratt Street, Baltimore, MD 21202, USA
| | - J Sook Chung
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, 701 E. Pratt Street, Baltimore, MD 21202, USA.
| |
Collapse
|
4
|
Pacific white shrimp (Litopenaeus vannamei) vitelline membrane outer layer protein 1 (VMO1) is produced in the hepatopancreas and transported into ovarian oocytes during vitellogenesis. Gene X 2023; 851:147027. [DOI: 10.1016/j.gene.2022.147027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/13/2022] [Accepted: 10/27/2022] [Indexed: 11/11/2022] Open
|
5
|
Wahltinez SJ, Stacy NI, Hadfield CA, Harms CA, Lewbart GA, Newton AL, Nunamaker EA. Perspective: Opportunities for advancing aquatic invertebrate welfare. Front Vet Sci 2022; 9:973376. [PMID: 36458054 PMCID: PMC9705766 DOI: 10.3389/fvets.2022.973376] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 10/17/2022] [Indexed: 08/27/2023] Open
Abstract
Welfare considerations and regulations for invertebrates have lagged behind those for vertebrates, despite invertebrates comprising more than 95% of earth's species. Humans interact with and use aquatic invertebrates for exhibition in zoos and aquaria, as pets, research subjects, and important food sources. Recent research has indicated that aquatic invertebrates, in particular cephalopod mollusks and decapod crustaceans, experience stress and may be able to feel pain. With this article, we present results of a survey on attitudes of aquatic animal health professionals toward aquatic invertebrate welfare and provide practical recommendations for advancing aquatic invertebrate welfare across four areas of opportunity: use of anesthesia, analgesia, and euthanasia; development of less invasive diagnostic and research sampling methods based on 3R principles; use of humane slaughter methods for aquatic invertebrates; and reducing impacts of invasive procedures in aquaculture and fisheries. We encourage consideration of these opportunities to achieve far-reaching improvements in aquatic invertebrate welfare.
Collapse
Affiliation(s)
- Sarah J. Wahltinez
- Department of Comparative, Diagnostic, and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States
| | - Nicole I. Stacy
- Department of Comparative, Diagnostic, and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States
| | | | - Craig A. Harms
- Department of Clinical Sciences and Center for Marine Sciences and Technology, College of Veterinary Medicine, North Carolina State University, Morehead City, NC, United States
| | - Gregory A. Lewbart
- College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - Alisa L. Newton
- ZooQuatic Laboratory, LLC, Baltimore, MD, United States
- OCEARCH, Park City, UT, United States
| | - Elizabeth A. Nunamaker
- Global Animal Welfare and Training, Charles River Laboratory, Wilmington, MA, United States
| |
Collapse
|
6
|
Zhang X, Yang H, Li H, Chen T, Ruan Y, Ren C, Luo P, Wang Y, Liu B, Li H, Zhong P, Zhang J, Jiang X, Hu C. Molecular Identification of Anion Exchange Protein 3 in Pacific White Shrimp ( Litopenaeus vannamei): mRNA Profiles for Tissues, Ontogeny, Molting, and Ovarian Development and Its Potential Role in Stress-Induced Gill Damage. Front Physiol 2021; 12:726600. [PMID: 34658912 PMCID: PMC8514663 DOI: 10.3389/fphys.2021.726600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 09/02/2021] [Indexed: 11/13/2022] Open
Abstract
Bicarbonate (HCO3 -) transport mechanisms play an essential role in the acid-base homeostasis of aquatic animals, and anion exchange protein 3 (AE3) is a membrane transport protein that exchanges Cl-/HCO3 - across the cell membrane to regulate the intracellular pH. In this study, the full-length cDNA of AE3 (Lv-AE3) was obtained from the Pacific white shrimp (Litopenaeus vannamei). The Lv-AE3 cDNA is 4,943 bp in length, contains an open reading frame of 2,850 bp, coding for a protein of 949 amino acids with 12 transmembrane domains. Lv-AE3 shows high sequence homology with other AE3 at the protein level. Lv-AE3 mRNA was ubiquitously detected in all tissues selected, with the highest expression level in the gill, followed by the ovary, eyestalk and brain. By in situ hybridization, Lv-AE3-positive cells were shown predominant localization in the secondary gill filaments. The expression levels of Lv-AE3 were further investigated during the essential life processes of shrimp, including ontogeny, molting, and ovarian development. In this case, the spatiotemporal expression profiles of Lv-AE3 in L. vannamei were highly correlated with the activities of water and ion absorption; for example, increased mRNA levels were present after hatching, during embryonic development, after ecdysis during the molt cycle, and in the stage IV ovary during gonadal development. After low/high pH and low/high salinity challenges, the transcript levels of Lv-AE3 were reduced in the gill, while the cell apoptosis rate increased. In addition, knockdown of Lv-AE3 mRNA expression induced cell apoptosis in the gill, indicating a potential link between Lv-AE3 and gill damage. Altogether, this study thoroughly investigated the relationship between the mRNA expression profiles of Lv-AE3 and multiple developmental and physiological processes in L. vannamei, and it may benefit the protection of crustaceans from fluctuated aquatic environments.
Collapse
Affiliation(s)
- Xin Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Hao Yang
- College of Life Sciences, Hebei University, Baoding, China
| | - Hongmei Li
- Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China
| | - Ting Chen
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Yao Ruan
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Chunhua Ren
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Peng Luo
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Yanhong Wang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Bing Liu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Huo Li
- Jinyang Biotechnology Co. Ltd., Maoming, China
| | - Ping Zhong
- Institute of Hydrobiology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Jiquan Zhang
- College of Life Sciences, Hebei University, Baoding, China
| | - Xiao Jiang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Chaoqun Hu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
7
|
Kang BJ, Sultana Z, Wilder MN. Assessment of the Effects of Double-Stranded RNAs Corresponding to Multiple Vitellogenesis-Inhibiting Hormone Subtype I Peptides in Subadult Female Whiteleg Shrimp, Litopenaeus vannamei. Front Endocrinol (Lausanne) 2021; 12:594001. [PMID: 33737908 PMCID: PMC7961077 DOI: 10.3389/fendo.2021.594001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 01/05/2021] [Indexed: 11/13/2022] Open
Abstract
Vitellogenesis-inhibiting hormone (VIH) negatively regulates reproduction in shrimp and other decapod crustaceans. In order to assess the effects of transcriptional silencing by multiple VIH subtype I sinus gland peptides (SGPs) on ovarian maturation in female whiteleg shrimp, Litopenaeus vannamei, we synthesized five dsRNAs targeting Liv-SGP-A, -B, -C, -F, and -G and injected them into subadults. The following treatments were employed: sgpG-dsRNA (targeting Liv-SGP-G), sgpC-dsRNA (targeting Liv-SGP-C), and mixed-dsRNA (targeting Liv-SGP-A, -B, and -F). The expression of Liv-SGP-G in eyestalks was significantly decreased at 10, 20, and 30 days after the injection of sgpG-dsRNA In addition, it was significantly decreased at 10 and 30 days after the injection of mixed-dsRNA. The expression of vitellogenin (Vg) gene expression in the ovaries, and concentrations of Vg protein in the hemolymph, were not changed by the administration of any dsRNA treatment (the ovaries remained immature in all treated individuals and contained mostly oogonia and previtellogenic oocytes). Although the administration of dsRNAs corresponding to multiple VIHs did not promote ovarian maturation, this is the first report of the co-transcriptional repression of Liv-SGP-G by the injection of dsRNA for homologous genes (Liv-SGP-A, -B, and -F). These results indicate that subadults can respond to the techniques of transcriptional silencing.
Collapse
|
8
|
Laphyai P, Kruangkum T, Chotwiwatthanakun C, Semchuchot W, Thaijongrak P, Sobhon P, Tsai PS, Vanichviriyakit R. Suppression of a Novel Vitellogenesis-Inhibiting Hormone Significantly Increases Ovarian Vitellogenesis in the Black Tiger Shrimp, Penaeus monodon. Front Endocrinol (Lausanne) 2021; 12:760538. [PMID: 34867802 PMCID: PMC8634883 DOI: 10.3389/fendo.2021.760538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/12/2021] [Indexed: 11/13/2022] Open
Abstract
In this study, a novel Crustacean Hyperglycemic Hormone-type II gene (CHH-type II) was identified and biologically characterized in a shrimp, Penaeus monodon. Based on its structure and function, this gene was named P. monodon vitellogenesis-inhibiting hormone (PemVIH). The complete cDNA sequence of PemVIH consisted of 1,022 nt with an open reading frame (ORF) of 339 nt encoding a polypeptide of 112 amino acids. It was classified as a member of the CHH-type II family based on conserved cysteine residues, a characteristically positioned glycine residue, and the absence of CHH precursor-related peptide (CPRP) domain. The deduced mature PemVIH shared the highest sequence similarities with giant river prawn sinus gland peptide A. Unlike P. monodon gonad-inhibiting hormone (PemGIH), PemVIH was expressed only in the brain and ventral nerve cord, but not the eyestalks. Whole mount immunofluorescence using a newly generated PemVIH antiserum detected positive signals in neuronal cluster 9/11 and 17 of the brain, commissural ganglion (CoG), and neuronal clusters of ventral nerve cord. The presence of PemVIH-positive neurons in CoG, a part of stomatogastric nervous system, suggested a potential mechanism for crosstalk between nutritional and reproductive signaling. The role of PemVIH in vitellogenesis was evaluated using RNA interference technique. Temporal knockdown of PemVIH in female subadults resulted in a 3-fold increase in ovarian vitellogenin expression, suggesting an inhibitory role of PemVIH in vitellogenesis. This study provided novel insight into the control of vitellogenesis and additional strategies for improving ovarian maturation in P. monodon without the current harmful practice of eyestalk ablation.
Collapse
Affiliation(s)
- Phaivit Laphyai
- Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Bangkok, Thailand
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Thanapong Kruangkum
- Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Bangkok, Thailand
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Charoonroj Chotwiwatthanakun
- Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Bangkok, Thailand
- Academic and Curriculum Division, Nakhonsawan Campus, Mahidol University, Nakhonsawan, Thailand
| | - Wanita Semchuchot
- Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Bangkok, Thailand
- Department of Science, Faculty of Science and Technology, Prince of Songkla University, Pattani, Thailand
| | - Prawporn Thaijongrak
- Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Bangkok, Thailand
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, Nakhonpathom, Thailand
| | - Prasert Sobhon
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Pei-San Tsai
- Department of Integrative Physiology, University of Colorado, Boulder, CO, United States
| | - Rapeepun Vanichviriyakit
- Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Bangkok, Thailand
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok, Thailand
- *Correspondence: Rapeepun Vanichviriyakit,
| |
Collapse
|
9
|
Wei LL, Chen TT, Luo BY, Qiu GF. Evidences for Red Pigment Concentrating Hormone ( RPCH) and Beta-Pigment Dispersing Hormone ( β-PDH) Inducing Oocyte Meiotic Maturation in the Chinese Mitten Crab, Eriocheir sinensis. Front Endocrinol (Lausanne) 2021; 12:802768. [PMID: 34975771 PMCID: PMC8716682 DOI: 10.3389/fendo.2021.802768] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 11/30/2021] [Indexed: 11/13/2022] Open
Abstract
Red pigment concentrating hormone (RPCH) and pigment dispersing hormone (PDH) are crustacean neuropeptides involved in broad physiological processes including body color changes, circadian rhythm, and ovarian growth. In this study, the full-length cDNA of RPCH and PDH were identified from the brain of the Chinese mitten crab Eriocheir sinensis. The deduced RPCH and PDH mature peptides shared identical sequence to the adipokinetic hormone/RPCH peptides family and the β-PDH isoforms and were designated as Es-RPCH and Es-β-PDH, respectively. Es-RPCH and Es-β-PDH transcripts were distributed in the brain and eyestalks. The positive signals of Es-RPCH and Es-β-PDH were localized in the neuronal clusters 6, 8, 9, 10, and 17 of the brain as revealed by in situ hybridization. The expression level of Es-RPCH and Es-β-PDH mRNA in nervous tissues were all significantly increased at vitellogenic stage, and then decreased at the final meiotic maturation stage. The administrated with synthesized Es-RPCH peptide results in germinal vesicles shift toward the plasma membrane in vitellogenic oocyte, and significant decrease of the gonad-somatic index (GSI) and mean oocyte diameter as well as the expression of vitellogenin mRNA at 30 days post injection in vivo. Similar results were also found when injection of the Es-β-PDH peptide. In vitro culture demonstrated that Es-RPCH and Es-β-PDH induced germinal vesicle breakdown of the late vitellogenic oocytes. Comparative ovarian transcriptome analysis indicated that some reproduction/meiosis-related genes such as cdc2 kinase, cyclin B, 5-HT-R and retinoid-X receptor were significantly upregulated in response to Es-RPCH and Es-β-PDH treatments. Taken together, these results provided the evidence for the inductive effect of Es-RPCH and Es-β-PDH on the oocyte meiotic maturation in E. sinensis.
Collapse
|
10
|
Chen HY, Toullec JY, Lee CY. The Crustacean Hyperglycemic Hormone Superfamily: Progress Made in the Past Decade. Front Endocrinol (Lausanne) 2020; 11:578958. [PMID: 33117290 PMCID: PMC7560641 DOI: 10.3389/fendo.2020.578958] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/09/2020] [Indexed: 12/11/2022] Open
Abstract
Early studies recognizing the importance of the decapod eyestalk in the endocrine regulation of crustacean physiology-molting, metabolism, reproduction, osmotic balance, etc.-helped found the field of crustacean endocrinology. Characterization of putative factors in the eyestalk using distinct functional bioassays ultimately led to the discovery of a group of structurally related and functionally diverse neuropeptides, crustacean hyperglycemic hormone (CHH), molt-inhibiting hormone (MIH), gonad-inhibiting hormone (GIH) or vitellogenesis-inhibiting hormone (VIH), and mandibular organ-inhibiting hormone (MOIH). These peptides, along with the first insect member (ion transport peptide, ITP), constitute the original arthropod members of the crustacean hyperglycemic hormone (CHH) superfamily. The presence of genes encoding the CHH-superfamily peptides across representative ecdysozoan taxa has been established. The objective of this review is to, aside from providing a general framework, highlight the progress made during the past decade or so. The progress includes the widespread identification of the CHH-superfamily peptides, in particular in non-crustaceans, which has reshaped the phylogenetic profile of the superfamily. Novel functions have been attributed to some of the newly identified members, providing exceptional opportunities for understanding the structure-function relationships of these peptides. Functional studies are challenging, especially for the peptides of crustacean and insect species, where they are widely expressed in various tissues and usually pleiotropic. Progress has been made in deciphering the roles of CHH, ITP, and their alternatively spliced counterparts (CHH-L, ITP-L) in the regulation of metabolism and ionic/osmotic hemostasis under (eco)physiological, developmental, or pathological contexts, and of MIH in the stimulation of ovarian maturation, which implicates it as a regulator for coordinating growth (molt) and reproduction. In addition, experimental elucidation of the steric structure and structure-function relationships have given better understanding of the structural basis of the functional diversification and overlapping among these peptides. Finally, an important finding was the first-ever identification of the receptors for this superfamily of peptides, specifically the receptors for ITPs of the silkworm, which will surely give great impetus to the functional study of these peptides for years to come. Studies regarding recent progress are presented and synthesized, and prospective developments remarked upon.
Collapse
Affiliation(s)
- Hsiang-Yin Chen
- Department of Aquaculture, National Penghu University of Science and Technology, Magong, Taiwan
| | - Jean-Yves Toullec
- Sorbonne Université, Faculté des Sciences, CNRS, UMR 7144, Adaptation et Diversité en Milieu Marin, Station Biologique de Roscoff, Roscoff, France
| | - Chi-Ying Lee
- Graduate Program of Biotechnology and Department of Biology, National Changhua University of Education, Changhua, Taiwan
| |
Collapse
|
11
|
First echinoderm alpha-amylase from a tropical sea cucumber (Holothuria leucospilota): Molecular cloning, tissue distribution, cellular localization and functional production in a heterogenous E.coli system with codon optimization. PLoS One 2020; 15:e0239044. [PMID: 32931501 PMCID: PMC7491741 DOI: 10.1371/journal.pone.0239044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 08/28/2020] [Indexed: 11/19/2022] Open
Abstract
Holothuria leucospilota (Echinodermata: Holothuroidea) is a widespread tropical sea cucumber with strong value for the ecological restoration of coral reefs. Therefore, some studies regarding the artificial breeding and cultivation of H. leucospilota have been undertaken recently. However, the biological functions of the digestive system of this species have not been elucidated. In this study, a cDNA coding for α-amylase, an indicator of digestive maturity in animals, was identified from H. leucospilota and designated Hl-Amy. The full-length cDNA of the Hl-Amy gene, which is 1734 bp in length with an open reading frame (ORF) of 1578 bp, encodes a 525 amino acid (a.a.) protein with a deduced molecular weight of 59.34 kDa. According to the CaZy database annotation, Hl-Amy belongs to the class of GH-H with the official nomenclature of α-amylase (EC 3.2.1.1) or 4-α-D-glucan glucanohydrolase. The Hl-Amy protein contains a signal peptide at the N-terminal followed by a functional amylase domain, which includes the catalytic activity site. The mRNA expression of Hl-Amy was abundantly exhibited in the intestine, followed by the transverse vessel with a low level, but was hardly detected in other selected tissues. During embryonic and larval development, Hl-Amy was constitutively expressed in all stages, and the highest expression level was observed in the blastula. By in situ hybridization (ISH), positive Hl-Amy signals were observed in different parts of the three different intestinal segments (foregut, midgut and hindgut). The Hl-Amy recombinant protein was generated in an E. coli system with codon optimization, which is necessary for Hl-Amy successfully expressed in this heterogenous system. The Hl-Amy recombinant protein was purified by immobilized metal ion affinity chromatography (IMAC), and its activity of starch hydrolysis was further detected. The optimal temperatures and pH for Hl-Amy recombinant protein were 55°C and 6.0, respectively, with an activity of 62.2 U/mg. In summary, this current study has filled a knowledge gap on the biological function and expression profiles of an essential digestive enzyme in sea cucumber, which may encourage future investigation toward rationalized diets for H. leucospilota in artificial cultivation, and optimized heterogenous prokaryotic systems for producing recombinant enzymes of marine origins.
Collapse
|
12
|
Shi W, Liu F, Liu A, Huang H, Lin Q, Zeng C, Ye H. Roles of gonad-inhibiting hormone in the protandric simultaneous hermaphrodite peppermint shrimp†. Biol Reprod 2020; 103:817-827. [PMID: 32582944 DOI: 10.1093/biolre/ioaa111] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 06/06/2020] [Accepted: 06/19/2020] [Indexed: 11/14/2022] Open
Abstract
To date, the molecular mechanisms of the unique gonadal development mode known as protandric simultaneous hermaphroditism (PSH) are unclear in crustaceans. In this study, cDNA of a gonad-inhibiting hormone (Lv-GIH1) was isolated from the PSH peppermint shrimp Lysmata vittata, and its expression was exclusively found in the eyestalk ganglion. Real-time quantitative polymerase chain reaction (qRT-PCR) revealed that the expression of Lv-GIH1 increased during gonadal development of the functional male stages but decreased significantly at subsequent simultaneous hermaphroditism stage. Further in vitro experiment showed that recombinant GIH1 protein (rGIH1) effectively inhibited Vg expression in the cultured hepatopancreas tissues while the short-term injection of GIH1-dsRNA resulted in reduced expression of Lv-GIH1 and upregulated expression of Vg in the hepatopancreas. Moreover, long-term rGIH1 injection led to significantly reduced expression of Lv-Vg, Lv-VgR, and Lv-CFSH1, subdued growth of oocytes, and feathery setae as a secondary sexual characteristic in females. Interestingly, while germ cells in testicular part were suppressed by rGIH1 injection, the expression of Lv-IAGs showed no significant difference; and long-term GIH1-dsRNA injection results were contrary to those of rGIH1 injection. Taken together, the results of this study indicate that Lv-GIH1 is involved in gonadal development and might also participate in controlling secondary sexual characteristic development in L. vittata by inhibiting Lv-CFSH1 expression.
Collapse
Affiliation(s)
- Wenyuan Shi
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, People's Republic of China
| | - Fang Liu
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, People's Republic of China
| | - An Liu
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, People's Republic of China
| | - Huiyang Huang
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, People's Republic of China
| | - Qi Lin
- Fisheries Research Institute of Fujian, Xiamen, People's Republic of China
| | - Chaoshu Zeng
- College of Science & Engineering, James Cook University, Townsville, Queensland, Australia
| | - Haihui Ye
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, People's Republic of China
| |
Collapse
|
13
|
Ruan Y, Wong NK, Zhang X, Zhu C, Wu X, Ren C, Luo P, Jiang X, Ji J, Wu X, Hu C, Chen T. Vitellogenin Receptor (VgR) Mediates Oocyte Maturation and Ovarian Development in the Pacific White Shrimp ( Litopenaeus vannamei). Front Physiol 2020; 11:485. [PMID: 32499719 PMCID: PMC7243368 DOI: 10.3389/fphys.2020.00485] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 04/20/2020] [Indexed: 11/13/2022] Open
Abstract
Oocyte maturation and ovarian development are sequentially coordinated events critical to reproduction. In the ovaries of adult oviparous animals such as birds, bony fish, insects, and crustaceans, vitellogenin receptor (VgR) is a plasma membrane receptor that specifically mediates vitellogenin (Vg) transport into oocytes. Accumulation of Vg drives sexual maturation of the female crustaceans by acting as a pivotal regulator of nutritional accumulation within oocytes, a process known as vitellogenesis. However, the mechanisms by which VgR mediates vitellogenesis are still not fully understood. In this study, we first identified a unique VgR (Lv-VgR) and characterized its genomic organization and protein structural domains in Litopenaeus vannamei, a predominant cultured shrimp species worldwide. This newly identified Lv-VgR phylogenetically forms a group with VgRs from other crustacean species within the arthropod cluster. Duplicated LBD/EGFD regions are found exclusively among arthropod VgRs but not in paralogs from vertebrates and nematodes. In terms of expression patterns, Lv-VgR transcripts are specifically expressed in ovaries of female shrimps, which increases progressively during ovarian development, and rapidly declines toward embryonic development. The cellular and subcellular locations were For analyzed by in situ hybridization and immunofluorescence, respectively. The Lv-VgR mRNA was found to be expressed in the oocytes of ovaries, and Lv-VgR protein was found to localize in the cell membrane of maturing oocytes while accumulation of the ligand Vg protein assumed an even cytoplasmic distribution. Silencing of VgR transcript expression by RNAi was effective for stunting ovarian development. This present study has thus provided new insights into the regulatory roles of VgR in crustacean ovarian development.
Collapse
Affiliation(s)
- Yao Ruan
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Nai-Kei Wong
- National Clinical Research Center for Infectious Diseases, Shenzhen Third People's Hospital, The Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
| | - Xin Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Chunhua Zhu
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Xiaofen Wu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Chunhua Ren
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,Institution of South China Sea Ecology and Environmental Engineering (ISEE), Chinese Academy of Sciences, Guangzhou, China
| | - Peng Luo
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,Institution of South China Sea Ecology and Environmental Engineering (ISEE), Chinese Academy of Sciences, Guangzhou, China
| | - Xiao Jiang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,Institution of South China Sea Ecology and Environmental Engineering (ISEE), Chinese Academy of Sciences, Guangzhou, China
| | - Jiatai Ji
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,Guangdong Haimao Investment Co., Ltd., Zhanjiang, China
| | - Xugan Wu
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China
| | - Chaoqun Hu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,Institution of South China Sea Ecology and Environmental Engineering (ISEE), Chinese Academy of Sciences, Guangzhou, China
| | - Ting Chen
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,Institution of South China Sea Ecology and Environmental Engineering (ISEE), Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
14
|
Xu Z, Yan Y, Zhang H, Cao J, Zhou Y, Xu Q, Zhou J. A serpin from the tick Rhipicephalus haemaphysaloides: Involvement in vitellogenesis. Vet Parasitol 2020; 279:109064. [PMID: 32143012 DOI: 10.1016/j.vetpar.2020.109064] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 02/24/2020] [Accepted: 02/26/2020] [Indexed: 11/16/2022]
Abstract
Tick serpins are involved in enzyme activity, food digestion, blood-feeding, immune response and anticoagulation. Little is known about the potential roles of serpins in tick reproduction. RHS8, a serpin from the tick Rhipicephalus haemaphysaloides, has an open reading frame 1212 bp long and encodes a protein that has 404 amino acids and a predicted molecular weight of 45 kDa. RHS8 exhibits 89.58 % amino acid identity with RmS15 in Rhipicephalus microplus. RHS8 was expressed primarily in larvae and nymphs. RHS8 mRNA expression in the ovaries, fat bodies and salivary glands were up-regulated from feeding to ovipositing ticks. RNAi results showed that RHS8 dsRNA-injected ticks had a lower body weight, longer feeding time, fewer eggs laid and lower egg hatchability. Tick reproduction, such as egg laying and hatching, was disrupted by RNAi. Compared with the control group, ovaries of the RHS8 interference group were light brown color, indicating a reduction in yolk granule accumulation. Western blot results showed that the expression of RHVg3 and RHVg4 proteins in ovaries was reduced in the RHS8 dsRNA-injected group. These results indicate that RHS8 is related to tick reproduction and its interference affects vitellogenesis.
Collapse
Affiliation(s)
- Zhengmao Xu
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China.
| | - Yijie Yan
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China; College of Animal Science and Technology, Anhui Agricultural University, Hefei, China.
| | - Houshuang Zhang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China.
| | - Jie Cao
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China.
| | - Yongzhi Zhou
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China.
| | - Qianming Xu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China.
| | - Jinlin Zhou
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China.
| |
Collapse
|
15
|
Tsutsui N, Kobayashi Y, Izumikawa K, Sakamoto T. Transcriptomic Analysis of the Kuruma Prawn Marsupenaeus japonicus Reveals Possible Peripheral Regulation of the Ovary. Front Endocrinol (Lausanne) 2020; 11:541. [PMID: 32973675 PMCID: PMC7466434 DOI: 10.3389/fendo.2020.00541] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 07/06/2020] [Indexed: 11/13/2022] Open
Abstract
Crustacean reproduction has been hypothesized to be under complex endocrinological regulation by peptide hormones. To further improve our understanding of the mechanisms underlying this complex regulation, knowledge is needed regarding the hormones not only of the central nervous system (CNS) such as the X-organ/sinus gland (XOSG), brain, and thoracic ganglia, but also the peripheral gonadal tissues. For example, in vertebrates, some gonadal peptide hormones including activin, inhibin, follistatin, and relaxin are known to be involved in the reproductive physiology. Therefore, it is highly likely that some peptide factors from the ovary are serving as the signals among peripheral tissues and central nervous tissues in crustaceans. In this work, we sought to find gonadal peptide hormones and peptide hormone receptors by analyzing the transcriptome of the ovary of the kuruma prawn Marsupenaeus japonicus. The generated ovarian transcriptome data led to the identification of five possible peptide hormones, including bursicon-α and -β, the crustacean hyperglycemic hormone (CHH)-like peptide, insulin-like peptide (ILP), and neuroparsin-like peptide (NPLP). Dominant gene expressions for the bursicons were observed in the thoracic ganglia and the ovary, in the CNS for the CHH-like peptide, in the heart for NPLP, and in the ovary for ILP. Since the gene expressions of CHH-like peptide and NPLP were affected by a CHH (Penaeus japonicus sinus gland peptide-I) from XOSG, we produced recombinant peptides for CHH-like peptide and NPLP using Escherichia coli expression system to examine their possible peripheral regulation. As a result, we found that the recombinant NPLP increased vitellogenin gene expression in incubated ovarian tissue fragments. Moreover, contigs encoding putative receptors for insulin-like androgenic gland factor, insulin, neuroparsin, and neuropeptide Y/F, as well as several contigs encoding orphan G-protein coupled receptors and receptor-type guanylyl cyclases were also identified in the ovarian transcriptome. These results suggest that reproductive physiology in crustaceans is regulated by various gonadal peptide hormones, akin to vertebrates.
Collapse
Affiliation(s)
- Naoaki Tsutsui
- Department of Marine Bioresources, Faculty of Bioresources, Mie University, Tsu, Japan
- Faculty of Science, Ushimado Marine Institute, Okayama University, Setouchi, Japan
- *Correspondence: Naoaki Tsutsui
| | - Yasuhisa Kobayashi
- Faculty of Science, Ushimado Marine Institute, Okayama University, Setouchi, Japan
- Department of Fisheries, Faculty of Agriculture, Kindai University, Nara, Japan
| | - Kouichi Izumikawa
- Research Institute for Fisheries Science, Okayama Prefectural Technology Center for Agriculture, Forestry, and Fisheries, Setouchi, Japan
| | - Tatsuya Sakamoto
- Faculty of Science, Ushimado Marine Institute, Okayama University, Setouchi, Japan
| |
Collapse
|
16
|
Jayasankar V, Tomy S, Wilder MN. Insights on Molecular Mechanisms of Ovarian Development in Decapod Crustacea: Focus on Vitellogenesis-Stimulating Factors and Pathways. Front Endocrinol (Lausanne) 2020; 11:577925. [PMID: 33123094 PMCID: PMC7573297 DOI: 10.3389/fendo.2020.577925] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 08/18/2020] [Indexed: 01/20/2023] Open
Abstract
Vitellogenesis in crustaceans is an energy-consuming process. Though the underlying mechanisms of ovarian maturation in decapod Crustacea are still unclear, evidence indicates the process to be regulated by antagonistically-acting inhibitory and stimulating factors specifically originating from X-organ/sinus gland (XO/SG) complex. Among the reported neuromediators, neuropeptides belonging to the crustacean hyperglycemic hormone (CHH)-family have been studied extensively. The structure and dynamics of inhibitory action of vitellogenesis-inhibiting hormone (VIH) on vitellogenesis have been demonstrated in several species. Similarly, the stimulatory effects of other neuropeptides of the CHH-family on crustacean vitellogenesis have also been validated. Advancement in transcriptomic sequencing and comparative genome analysis has led to the discovery of a large number of neuromediators, peptides, and putative peptide receptors having pleiotropic and novel functions in decapod reproduction. Furthermore, differing research strategies have indicated that neurotransmitters and steroid hormones play an integrative role by stimulating neuropeptide secretion, thus demonstrating the complex intertwining of regulatory factors in reproduction. However, the molecular mechanisms by which the combinatorial effect of eyestalk hormones, neuromediators and other factors coordinate to regulate ovarian maturation remain elusive. These multifunctional substances are speculated to control ovarian maturation possibly via the autocrine/paracrine pathway by acting directly on the gonads or by indirectly exerting their stimulatory effects by triggering the release of a putative gonad stimulating factor from the thoracic ganglion. Acting through receptors, they possibly affect levels of cyclic nucleotides (cAMP and cGMP) and Ca2+ in target tissues leading to the regulation of vitellogenesis. The "stimulatory paradox" effect of eyestalk ablation on ovarian maturation continues to be exploited in commercial aquaculture operations, and is outweighed by the detrimental physiological effects of this procedure. In this regard, the development of efficient alternatives to eyestalk ablation based on scientific knowledge is a necessity. In this article, we focus principally on the signaling pathways of positive neuromediators and other factors regulating crustacean reproduction, providing an overview of their proposed receptor-mediated stimulatory mechanisms, intracellular signaling, and probable interaction with other hormonal signals. Finally, we provide insight into future research directions on crustacean reproduction as well as potential applications of such research to aquaculture technology development.
Collapse
Affiliation(s)
- Vidya Jayasankar
- Marine Biotechnology Division, Madras Research Centre, ICAR-Central Marine Fisheries Research Institute, Chennai, India
| | - Sherly Tomy
- Genetics and Biotechnology Unit, ICAR-Central Institute of Brackishwater Aquaculture, Chennai, India
| | - Marcy N. Wilder
- Fisheries Division, Japan International Research Center for Agricultural Sciences, Tsukuba, Japan
- *Correspondence: Marcy N. Wilder
| |
Collapse
|
17
|
Liao J, Zhang Z, Jia X, Zou Z, Liang K, Wang Y. Transcriptional Regulation of Vih by Oct4 and Sox9 in Scylla paramamosain. Front Endocrinol (Lausanne) 2020; 11:650. [PMID: 33178132 PMCID: PMC7593643 DOI: 10.3389/fendo.2020.00650] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 08/10/2020] [Indexed: 01/28/2023] Open
Abstract
Mud crab (Scylla paramamosain) is one of the most economically-important marine crabs in China. However, research on mechanisms of reproductive regulation is not sufficient. Vitellogenesis-inhibiting hormone (VIH) is a member of the crustacean hyperglycemia hormones (CHH) family, which plays an essential role in the regulation of gonadal development and maturation in crustaceans, and current studies on the regulation of Vih transcription in crabs are relatively rare. Our previous studies on the transcriptional regulation of mud crab Vih (SpVih) have proved that the binding site of Oct4/Sox9 transcription factor may be the key region for positively regulating the expression of SpVih. In this study, the electrophoretic mobility shift assay (EMSA) experiment confirmed that the nuclear protein extracted from the eyestalk could bind to the key region of SpVih promoter, and these specific bindings were dependent on the presence of Oct4/Sox9 binding sites. Two specific binding complex bands were detected in the supershift group of EMSA supershift experiments by Oct4 and Sox9 antibodies, further confirming the specific recognition of these two transcription factors on the key regulatory region of SpVih. In vitro, Oct4 and Sox9 gene overexpression vectors and SpVih core promoter fragment vector were constructed and co-transfected into HEK293T cells. As a result, SpVih activity increased with the concentration of transcription factors. In vivo, when Oct4 and Sox9 dsRNA were injected into the eyestalks of mud crab, respectively, the expression level of SpVih decreased significantly after interference with Oct4 or Sox9, and the expression level of SpVtg in the ovary and hepatopancreatic increased. Both in vitro and in vivo experiments showed that Oct4 and Sox9 had a positive regulatory effect on SpVih. The GST pull-down experiment was carried out by purified Oct4 and Sox9 proteins, and the results showed that there was an interaction between them. It was speculated that they regulated the expression of SpVih through the interaction.
Collapse
Affiliation(s)
- Jiaqian Liao
- Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Fisheries College, Jimei University, Xiamen, China
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Xiamen, China
| | - Ziping Zhang
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiwei Jia
- Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Fisheries College, Jimei University, Xiamen, China
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Xiamen, China
| | - Zhihua Zou
- Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Fisheries College, Jimei University, Xiamen, China
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Xiamen, China
| | - Keying Liang
- Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Fisheries College, Jimei University, Xiamen, China
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Xiamen, China
| | - Yilei Wang
- Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Fisheries College, Jimei University, Xiamen, China
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Xiamen, China
- *Correspondence: Yilei Wang
| |
Collapse
|
18
|
Wang Z, Luan S, Meng X, Cao B, Luo K, Kong J. Comparative transcriptomic characterization of the eyestalk in Pacific white shrimp (Litopenaeus vannamei) during ovarian maturation. Gen Comp Endocrinol 2019; 274:60-72. [PMID: 30611813 DOI: 10.1016/j.ygcen.2019.01.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 01/02/2019] [Accepted: 01/02/2019] [Indexed: 12/17/2022]
Abstract
In crustaceans, some of fundamental regulatory processes related to a range of physiological functions, including ovarian maturation, molting, glucose homeostasis, osmoregulation, etc., occur in the organs of the eyestalk. Additionally, reproduction is regulated by neuropeptide hormones and other proteins released from secretory sites (X-organ/sinus gland, XO/SG) within the eyestalk. As unilateral eyestalk ablation was the most common method used to artificially induce ovarian maturation for farmed Litopenaeus vannamei, to better understand the reproductive regulation mechanism in L. vannamei, we have investigated the transcriptomes of the eyestalk during five ovary developmental stages with or without eyestalk ablation by high-throughput Illumina sequencing technology. The raw reads were assembled and clustered into 127,031 unigenes. Meanwhile, the differentially expressed genes (DEGs) between ovarian development stages were identified. We examined, through DEG enrichment analysis, eyestalk gene expression patterns for Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, comparing natural to artificially induced ovarian maturation. We also identified a variety of transcripts that appear to be differentially expressed throughout ovarian maturation. These include transcripts that encode G-protein coupled receptors (GPCRs) and neuropeptides, such as the crustacean hyperglycemic hormone (CHH), molt-inhibiting hormone (MIH), and crustacean female sex hormone (CFSH). Furthermore, numerous exoskeleton formation-related genes were found to be down-regulated during ovarian maturation, including cuticle-like proteins, eclosion hormone (EH), and gastrolith-like proteins, of which the latter are the first reported in L. vannamei. Our work is the first reproduction-related investigation of L. vannamei focusing on the eyestalk at the whole transcriptome level. These findings provide novel insight into the function of the eyestalk in reproduction regulation.
Collapse
Affiliation(s)
- Zhongkai Wang
- Key Laboratory for Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China.
| | - Sheng Luan
- Key Laboratory for Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China.
| | - Xianhong Meng
- Key Laboratory for Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China.
| | - Baoxiang Cao
- Key Laboratory for Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Kun Luo
- Key Laboratory for Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China.
| | - Jie Kong
- Key Laboratory for Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China.
| |
Collapse
|
19
|
Chen T, Lin T, Li H, Lu T, Li J, Huang W, Sun H, Jiang X, Zhang J, Yan A, Hu C, Luo P, Ren C. Heat Shock Protein 40 (HSP40) in Pacific White Shrimp ( Litopenaeus vannamei): Molecular Cloning, Tissue Distribution and Ontogeny, Response to Temperature, Acidity/Alkalinity and Salinity Stresses, and Potential Role in Ovarian Development. Front Physiol 2018; 9:1784. [PMID: 30618799 PMCID: PMC6299037 DOI: 10.3389/fphys.2018.01784] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Accepted: 11/27/2018] [Indexed: 12/20/2022] Open
Abstract
Heat shock proteins (HSPs), a family of conserved proteins that are produced by cells in response to stresses, are known as molecular chaperones with a range of housekeeping and cellular protective functions. The 40 kD heat shock protein (HSP40) is a co-chaperone for HSP70 in the regulation of ATP hydrolysis. Unlike its well-documented cofactor HSP70, little is currently known regarding the biological functions of HSP40 in crustacean species such as penaeid shrimp. In the present study, the cDNA encoding HSP40 (Lv-HSP40) was identified from the Pacific white shrimp Litopenaeus vannamei, a highly significant commercial culture species. The structural organization indicates that Lv-HSP40 belongs to the type-I HSP40s. The muscle, gill, and hepatopancreas are the main sites of Lv-HSP40 transcript expression. Within these tissues, Lv-HSP40 mRNA were predominantly exhibited in the myocytes, epithelial cells and hepatopancreatic cells, respectively. Under acute thermal stress in the culture environment, Lv-HSP40 transcript levels are significantly induced in these three tissues, while low pH stress only upregulates Lv-HSP40 mRNA in the hepatopancreas and gill. During ontogenesis, Lv-HSP40 transcript levels are high at early embryonic stages and drop sharply at late embryonic and early larval stages. The ovary is another major organ of Lv-HSP40 mRNA expression in female shrimp, and Lv-HSP40 transcripts were mainly presented in the follicle cells but only weekly detected in the oocytes. Ovarian Lv-HSP40 mRNA levels increase continuously during gonadal development. Silencing of the Lv-HSP40 gene by RNA interference may effectively delay ovarian maturation after unilateral eyestalk ablation. The roles of Lv-HSP40 in ovarian development are speculated to be independent of its cofactor HSP70, and the vitellogenesis factor vitellogenin (Vg) and vitellogenin receptor (VgR). Our study, as a whole, provides new insights into the roles of HSP40 in multiple physiological processes in L. vannamei: (1) HSP40 is a responding factor during stressful conditions; and (2) HSP40 participates in embryonic and ovarian development.
Collapse
Affiliation(s)
- Ting Chen
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou, China
| | - Tiehao Lin
- Guangdong Institute for Drug Control, Guangzhou, China
| | - Hongmei Li
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Ting Lu
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Jiaxi Li
- Foshan University, Foshan, China
| | - Wen Huang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou, China
| | - Hongyan Sun
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Xiao Jiang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Jiquan Zhang
- College of Life Sciences, Hebei University, Baoding, China
| | | | - Chaoqun Hu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou, China
| | - Peng Luo
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou, China
| | - Chunhua Ren
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou, China
| |
Collapse
|
20
|
Aaqillah-Amr MA, Hidir A, Noordiyana MN, Ikhwanuddin M. Morphological, biochemical and histological analysis of mud crab ovary and hepatopancreas at different stages of development. Anim Reprod Sci 2018; 195:274-283. [DOI: 10.1016/j.anireprosci.2018.06.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 05/26/2018] [Accepted: 06/08/2018] [Indexed: 02/07/2023]
|
21
|
Chen T, Ren C, Jiang X, Zhang L, Li H, Huang W, Hu C. Mechanisms for type-II vitellogenesis-inhibiting hormone suppression of vitellogenin transcription in shrimp hepatopancreas: Crosstalk of GC/cGMP pathway with different MAPK-dependent cascades. PLoS One 2018; 13:e0194459. [PMID: 29590153 PMCID: PMC5874034 DOI: 10.1371/journal.pone.0194459] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 03/02/2018] [Indexed: 01/15/2023] Open
Abstract
Vitellogenesis is the process of yolk formation via accumulating vitellin (Vn) with nutrients in the oocytes. Expression of vitellogenin (Vg), the precursor of Vn, is one of the indicators for the start of vitellogenesis. In Pacific white shrimp (Litopenaeus vannamei), the type-II vitellogenesis-inhibiting hormone (VIH-2) effectively suppresses hepatopancreatic Vg mRNA expression. In this study, we demonstrate the increasing transcript levels of hepatopancreatic Vg during L. vannamei ovarian development, suggesting that the hepatopancreas-derived Vg/Vn may also contribute to vitellogenesis in this species. Using a combination of in vivo injections and in vitro primary cell cultures, we provide evidences that the inhibition of VIH-2 on hepatopancreatic Vg gene expression is mediated through a functional coupling of the GC/cGMP pathway with different MAPK-dependent cascades in female shrimp. In VIH-2 signaling, the NO-independent GC/cGMP/PKG cascades were upstream of the MAPKs. Activations of the MAPK signal by VIH-2 include the phosphorylation of JNK and the mRNA/protein expression of P38MAPK. Additionally, the cAMP/PKA pathway is another positive intracellular signal for hepatopancreatic Vg mRNA expression but is independent of its VIH-2 regulation. Our findings establish a model for the signal transduction mechanism of Vg regulation by VIH and shed light on the biological functions and signaling of the CHH family in crustaceans.
Collapse
Affiliation(s)
- Ting Chen
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB); Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou, China
| | - Chunhua Ren
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB); Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou, China
| | - Xiao Jiang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB); Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Lvping Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB); Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Hongmei Li
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB); Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Wen Huang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB); Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou, China
- * E-mail: (CH); (WH)
| | - Chaoqun Hu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB); Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou, China
- * E-mail: (CH); (WH)
| |
Collapse
|
22
|
Liu C, Jia X, Zou Z, Wang X, Wang Y, Zhang Z. VIH from the mud crab is specifically expressed in the eyestalk and potentially regulated by transactivator of Sox9/Oct4/Oct1. Gen Comp Endocrinol 2018; 255:1-11. [PMID: 28935584 DOI: 10.1016/j.ygcen.2017.09.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 08/08/2017] [Accepted: 09/16/2017] [Indexed: 12/30/2022]
Abstract
Vitellogenesis-inhibiting hormone (VIH) is known to regulate ovarian maturation by suppressing the synthesis of vitellogenin (Vtg) in crustaceans, which belongs to a member of crustacean hyperglycemic hormone (CHH) family synthesized and secreted from the X-organ/sinus gland complex of eyestalks. In this study, the cDNA, genomic DNA (gDNA) and the 5'-upstream regulatory (promoter region) sequences of VIH gene were obtained by conventional PCR, genome walker and tail-PCR techniques according to our transcriptomic database of Scylla paramamosain. The full-length cDNA of SpVIH is 634bp including 105bp 5'UTR, 151bp 3'UTR and 378bp ORF that encodes a peptide of 125 amino acids. The full length gDNA of SpVIH is 790bp containing two exons and one intron. The 5'-flanking promoter regions of SpVIH we isolated are 3070bp from the translation initiation (ATG) and 2398bp from the predicted transcription initiation (A), which consists of putative core promoter region and multiple potential transcription factor binding sites. SpVIH was only expressed in eyestalk. The expression level of SpVIH in eyestalk of female crab decreased gradually along with the development of ovary. As there is not cell line of crabs available, we chose the mature transfection system HEK293FT cell lines to explore the mechanism of transcription regulation of SpVIH in crabs. Sequential deletion assays using luciferase reporter gene in HEK293FT cells revealed that the possible promoter activity regions (including positive and negative transcription factors binding sites simultaneously) presented between pSpVIH-4 and pSpVIH-6. In order to further identify the crucial transcription factors binding site in this region, the site-directed mutagenesis of Sox9/Oct4/Oct1 binding site of pSpVIH-4 was created. The results demonstrated that the transcriptional activity of pSpVIH-4△ decreased significantly (p<0.05). Thus, it is reasonable to deduce that the Sox9/Oct4/Oct1 may be the essential positive transcription factors which regulate the expression of SpVIH.
Collapse
Affiliation(s)
- Chunyun Liu
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen 361021, China
| | - Xiwei Jia
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen 361021, China
| | - Zhihua Zou
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen 361021, China
| | - Xiaowei Wang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen 361021, China
| | - Yilei Wang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen 361021, China.
| | - Ziping Zhang
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
23
|
Tsutsui N, Kotaka S, Ohira T, Sakamoto T. Characterization of distinct ovarian isoform of crustacean female sex hormone in the kuruma prawn Marsupenaeus japonicus. Comp Biochem Physiol A Mol Integr Physiol 2017; 217:7-16. [PMID: 29277431 DOI: 10.1016/j.cbpa.2017.12.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 11/09/2017] [Accepted: 12/15/2017] [Indexed: 10/18/2022]
Abstract
The eyestalk hormone, crustacean female sex hormone (CFSH), regulates the development of female secondary sexual characteristics in the blue crab Callinectes sapidus. After its discovery, several CFSH gene orthologs have been identified in some species of the suborder Pleocyemata as well. Similarly, in species of another suborder (Dendrobranchiata), an ortholog (Maj-CFSH) has been characterized as an eyestalk factor expressed in both females and males of the kuruma prawn, Marsupenaeus japonicus. In this study, another novel CFSH isoform was identified in the same species using cDNA cloning, expression analysis, and recombinant protein production. The isoform has "CFSH-family" structural characteristics but is dominantly expressed in the ovary, and was therefore designated as Maj-CFSH-ov. Its mRNA and protein levels in vitellogenic ovaries are higher than those in non-vitellogenic ovaries. In the vitellogenic ovary, both mRNA and protein expression of Maj-CFSH-ov are localized to oogonia and previtellogenic oocytes that occupy a small portion of vitellogenic ovaries, but not to the major developing oocytes. A vitellogenesis-inhibiting peptide of M. japonicus (Pej-SGP-I) reduced the expression of vitellogenin in incubated ovarian fragments, but not that of Maj-CFSH-ov. These results indicate that M. japonicus possesses two CFSH isoforms that are derived from distinct tissues, the central X-organ/sinus gland complex and peripheral ovaries. The expression profile of Maj-CFSH-ov suggests its involvement in some reproductive process other than vitellogenesis.
Collapse
Affiliation(s)
- Naoaki Tsutsui
- Ushimado Marine Institute, Faculty of Science, Okayama University, Setouchi, Okayama 701-4303, Japan.
| | - Sayaka Kotaka
- Department of Biological Sciences, Faculty of Science, Kanagawa University, Hiratsuka, Kanagawa 259-1293, Japan
| | - Tsuyoshi Ohira
- Department of Biological Sciences, Faculty of Science, Kanagawa University, Hiratsuka, Kanagawa 259-1293, Japan
| | - Tatsuya Sakamoto
- Ushimado Marine Institute, Faculty of Science, Okayama University, Setouchi, Okayama 701-4303, Japan
| |
Collapse
|
24
|
Lee JH, Suryaningtyas IT, Yoon TH, Shim JM, Park H, Kim HW. Transcriptomic analysis of the hepatopancreas induced by eyestalk ablation in shrimp, Litopenaeus vannamei. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2017; 24:99-110. [PMID: 28915415 DOI: 10.1016/j.cbd.2017.08.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 08/29/2017] [Accepted: 08/30/2017] [Indexed: 11/26/2022]
Abstract
Although eyestalk ablation (ESA) is currently considered the most effective method to facilitate molting and maturation, its physiological responses are still not clearly explained in decapod crustaceans. In this study, we analyzed the hepatopancreatic transcriptomes of Litopenaeus vannamei after ESA using the Illumina Miseq platform. After screening 53,029 contigs with high cutoff values (fold change>|10|; P-value<0.05; RPKM>1), we were able to identify 105 differentially expressed genes (DEGs), of which 100 were up-regulated and five were down-regulated. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that many DEGs were involved in the synthetic pathways for glycerol and trehalose, which are known to function as the major protectants under conditions of low temperature and osmotic stress in arthropods. Additional analysis of the other DEGs enabled us to classify them in four categories: immunity; cellular trafficking; transcriptional regulation; molting and maturation. Many DEGs were involved in immunity and stress responses, in particular the proPO activation system, which is the major immune and wound-healing system in arthropods. In addition to immunity and stress responses, we were also able to identify DEGs involved in molting and maturation processes (e.g., group I chitinase), as well as those involved in hormone metabolism and trafficking. Collectively, based on the transcriptomic analysis, ESA causes not only stress and immune responses, but also molting and maturation in L. vannamei. The DEGs identified in this study could be useful markers to understand the physiological responses that ESA induces in shrimp, such as molting, maturation, and immunity.
Collapse
Affiliation(s)
- Ji-Hyun Lee
- Interdisciplinary Program of Biomedical Mechanical & Electrical Engineering, Pukyong National University, Busan 608-737, Republic of Korea
| | | | - Tae-Ho Yoon
- Interdisciplinary Program of Biomedical Mechanical & Electrical Engineering, Pukyong National University, Busan 608-737, Republic of Korea
| | - Jeong Min Shim
- East Sea Fisheries Research Institute, National Institute of Fisheries Research, Gangneung 46083, Republic of Korea
| | - Hyun Park
- Korea Polar Research Institute, Korea Ocean Research and Development Institute, Incheon, Republic of Korea
| | - Hyun-Woo Kim
- Interdisciplinary Program of Biomedical Mechanical & Electrical Engineering, Pukyong National University, Busan 608-737, Republic of Korea; Department of Marine Biology, Pukyong National University, Busan 608-737, Republic of Korea.
| |
Collapse
|
25
|
Ventura-López C, Galindo-Torres PE, Arcos FG, Galindo-Sánchez C, Racotta IS, Escobedo-Fregoso C, Llera-Herrera R, Ibarra AM. Transcriptomic information from Pacific white shrimp (Litopenaeus vannamei) ovary and eyestalk, and expression patterns for genes putatively involved in the reproductive process. Gen Comp Endocrinol 2017; 246:164-182. [PMID: 27964922 DOI: 10.1016/j.ygcen.2016.12.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 12/07/2016] [Accepted: 12/09/2016] [Indexed: 11/27/2022]
Abstract
The increased use of massive sequencing technologies has enabled the identification of several genes known to be involved in different mechanisms associated with reproduction that so far have only been studied in vertebrates and other model invertebrate species. In order to further investigate the genes involved in Litopenaeus vannamei reproduction, cDNA and SSH libraries derived from female eyestalk and gonad were produced, allowing the identification of expressed sequences tags (ESTs) that potentially have a role in the regulation of gonadal maturation. In the present study, different transcripts involved in reproduction were identified and a number of them were characterized as full-length. These transcripts were evaluated in males and females in order to establish their tissue expression profiles during developmental stages (juvenile, subadult and adult), and in the case of females, their possible association with gonad maturation was assessed through expression analysis of vitellogenin. The results indicated that the expression of vitellogenin receptor (vtgr) and minichromosome maintenance (mcm) family members in the female gonad suggest an important role during previtellogenesis. Additionally, the expression profiles of genes such as famet, igfbp and gpcr in brain tissues suggest an interaction between the insulin/insulin-like growth factor signaling pathway (IIS) and methyl farnesoate (MF) biosynthesis for control of reproduction. Furthermore, the specific expression pattern of farnesoic acid O-methyltransferase suggests that final synthesis of MF is carried out in different target tissues, where it is regulated by esterase enzymes under a tissue-specific hormonal control. Finally, the presence of a vertebrate type steroid receptor in hepatopancreas and intestine besides being highly expressed in female gonads, suggest a role of that receptor during sexual maturation.
Collapse
Affiliation(s)
- Claudia Ventura-López
- Centro de Investigaciones Biológicas del Noroeste, S.C. (CIBNOR), Av. Instituto Politécnico Nacional No.195, Col. Playa Palo de Santa Rita, La Paz, Baja California Sur 23096, Mexico.
| | - Pavel E Galindo-Torres
- Centro de Investigaciones Biológicas del Noroeste, S.C. (CIBNOR), Av. Instituto Politécnico Nacional No.195, Col. Playa Palo de Santa Rita, La Paz, Baja California Sur 23096, Mexico.
| | - Fabiola G Arcos
- Centro de Investigaciones Biológicas del Noroeste, S.C. (CIBNOR), Av. Instituto Politécnico Nacional No.195, Col. Playa Palo de Santa Rita, La Paz, Baja California Sur 23096, Mexico.
| | - Clara Galindo-Sánchez
- Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Carretera Ensenada-Tijuana No. 3918, Zona Playitas, Ensenada, Baja California CP 22860, Mexico.
| | - Ilie S Racotta
- Centro de Investigaciones Biológicas del Noroeste, S.C. (CIBNOR), Av. Instituto Politécnico Nacional No.195, Col. Playa Palo de Santa Rita, La Paz, Baja California Sur 23096, Mexico.
| | - Cristina Escobedo-Fregoso
- Consejo Nacional de Ciencia y Tecnología (CONACYT) - Centro de Investigaciones Biológicas del Noroeste, S.C. (CIBNOR), Av. Instituto Politécnico Nacional 195, Col. Playa Palo de Santa Rita, La Paz, Baja California Sur C.P. 23096, Mexico.
| | - Raúl Llera-Herrera
- Consejo Nacional de Ciencia y Tecnología (CONACYT) - Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD) Unidad Mazatlán, Av. Sábalo-Cerritos s/n. Estero del Yugo, Mazatlán, Sinaloa 82000, Mexico.
| | - Ana M Ibarra
- Centro de Investigaciones Biológicas del Noroeste, S.C. (CIBNOR), Av. Instituto Politécnico Nacional No.195, Col. Playa Palo de Santa Rita, La Paz, Baja California Sur 23096, Mexico.
| |
Collapse
|
26
|
Kitano H, Nagano N, Sakaguchi K, Matsuyama M. Two vitellogenins in the loliginid squid Uroteuthis edulis: Identification and specific expression in ovarian follicles. Mol Reprod Dev 2017; 84:363-375. [PMID: 28218427 DOI: 10.1002/mrd.22786] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 02/16/2017] [Indexed: 11/08/2022]
Abstract
Vitellogenenesis is a physiological process common in oviparous animals. The molecular profile, modifications, and utilization of vitellogenin (VTG), a precursor of yolk protein, have been characterized in various taxa to understand oogenesis within different modes of reproduction. Hormonal regulation of VTGs has been investigated in invertebrates, such as insects and crustaceans; conversely, little is known for cephalopods. In this study, we isolated two VTG genes (ue-VTG1 and ue-VTG2) from the loliginid swordtip squid, Uroteuthis edulis, via a comprehensive survey of a transcriptome database and subsequent cDNA cloning. Structural analysis of the two ue-VTGs revealed their unique features, namely the absence of two domains usually found in VTGs from other organisms: the von Willebrand factor D domain (vWD) and the domain of unknown function 1943 (DUF1943). Levels of ue-VTG1 and ue-VTG2 transcripts in the ovary, specifically in follicular cells, increased during the late-vitellogenic phase, suggesting that yolk accumulation progresses via paracrine interactions involving follicular cells and oocytes. N-terminal amino acid sequencing of biochemically purified yolk protein revealed its origins from these two VTGs, indicating that both are functional precursors of yolk protein. These results provide information that is essential to understanding the physiological pathway of yolk synthesis, accumulation, and storage in loliginid squids.
Collapse
Affiliation(s)
- Hajime Kitano
- Department of Joint Research, Faculty of Agriculture, Fisheries Research Institute of Karatsu, Kyushu University, Karatsu, Saga, Japan
| | - Naoki Nagano
- Department of Joint Research, Faculty of Agriculture, Fisheries Research Institute of Karatsu, Kyushu University, Karatsu, Saga, Japan
| | - Keishi Sakaguchi
- Department of Joint Research, Faculty of Agriculture, Fisheries Research Institute of Karatsu, Kyushu University, Karatsu, Saga, Japan
| | - Michiya Matsuyama
- Department of Bioresource Sciences, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| |
Collapse
|
27
|
S V, C J, K C S, Jose S, Jose B, Philip R, I S BS. Regulating gonad inhibition and vitellogenin/vitellin induction in Penaeus monodon using mature GIH fusion protein and polyclonal antisera. Comp Biochem Physiol A Mol Integr Physiol 2016; 203:167-178. [PMID: 27642094 DOI: 10.1016/j.cbpa.2016.09.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 09/09/2016] [Accepted: 09/13/2016] [Indexed: 11/30/2022]
Abstract
Gonad inhibiting hormone (GIH), type II class of the CHH family neuropeptides, is released by the neurohaemal XO-SG complex of the eyestalk. The inhibitory function of GIH has a pivotal role in gonad development and reproduction. In this study, we report the expression and production of a thioredoxin-fused mature GIH protein (mf-PmGIH) of Penaeus monodon in a bacterial system and its use as antigen to raise polyclonal antiserum (anti-mf-PmGIH). The mature GIH gene of 237bp that codes for 79 amino acids, was cloned into the Escherichia coli thioredoxin gene fusion expression system. The expression vector construct (mf-PmGIH+pEt32a+) upon induction produced 32.16kDa mature GIH fusion protein (mf-PmGIH)·The purified fusion protein was used as exogenous GIH and as antigen to raise polyclonal antisera. The fusion protein when injected into juvenile shrimp significantly reduced vitellogenin/vitellin levels by 31.55% within 72h in comparison to the controls showing the gonad inhibiting property. Vitellogenin/vitellin levels were significantly induced by 74.10% within 6h when polyclonal antiserum (anti-mf-PmGIH - 1:500) was injected in P. monodon. Anti-mf-PmGIH immunolocalized GIH producing neurosecretory cells in the eyestalk of P. monodon. The present manuscript reports an innovative means of gonad inhibition and vitellogenin/vitellin induction with thioredoxin fused GIH and antisera developed.
Collapse
Affiliation(s)
- Vrinda S
- National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Cochin 682 016, India
| | - Jasmin C
- National Institute of Oceanography, RC Cochin, Dr. Salim Ali Road, Cochin 682 018, India
| | - Sivakumar K C
- Bioinformatics Facility, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695 014, India
| | - Seena Jose
- National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Cochin 682 016, India
| | - Blessy Jose
- National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Cochin 682 016, India
| | - Rosamma Philip
- Department of Marine Biology, Microbiology and Biochemistry, Cochin University of Science and Technology, Cochin 682 016, India
| | - Bright Singh I S
- National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Cochin 682 016, India.
| |
Collapse
|
28
|
Ventura-López C, Gómez-Anduro G, Arcos FG, Llera-Herrera R, Racotta IS, Ibarra AM. A novel CHH gene from the Pacific white shrimp Litopenaeus vannamei was characterized and found highly expressed in gut and less in eyestalk and other extra-eyestalk tissues. Gene 2016; 582:148-60. [PMID: 26861611 DOI: 10.1016/j.gene.2016.02.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Revised: 01/07/2016] [Accepted: 02/04/2016] [Indexed: 01/08/2023]
Abstract
The crustacean hyperglycemic hormone (CHH) family is an important group of neuropeptides involved in controlling growth, reproduction, and stress response in decapod species. In this study, a new gene containing 4 exons-3 introns flanked by canonical 5'-GT-AG-3' intron splice-site junctions was isolated from Litopenaeus vannamei. Two full length transcripts of this CHH were isolated from eyestalk and pericardial tissue of males and females using rapid amplification of cDNA ends (RACE). Transcripts sequences were 1578bp in length in males pericardial tissues and in males and females eyestalk with 100% identity, but the transcript isolated from females pericardial tissues was shorter (974bp). The differences in transcripts length is a result of two polyadenylation sites present in the 3'UTR resulting in two transcription termination signals. Transcript sequences encoded one unique protein that can be classified as type I CHH subfamily because of the 4 exons and 3 introns structure, although the CPRP region is not-well conserved and there is no amidation in the C-terminal of the deduced amino acid sequence. Furthermore, there is a glycine inserted in the mature peptide not at position 12 as in type II CHHs but after amino acid 31 and the phylogenetic analysis did not group the peptide within type I, but closer to type II CHHs. We demonstrated by endpoint-PCR, qPCR, and in situ hybridization (ISH), that this gene is expressed in neuroendocrine organs known to express CHHs in penaeid shrimp, including X-organ and optic nerve in eyestalk, supraesophageal ganglion (SoG), but it is also expressed in other organs as gill, gut, pericardial cavity, as well as in terminal ampoule or spermatophore and vas deferens of males.
Collapse
Affiliation(s)
- Claudia Ventura-López
- Centro de Investigaciones Biológicas del Noroeste, S.C. (CIBNOR), Av. Instituto Politécnico Nacional No.195, Col. Playa Palo de Santa Rita, C.P. 23096, La Paz, Baja California Sur, Mexico.
| | - Gracia Gómez-Anduro
- Centro de Investigaciones Biológicas del Noroeste, S.C. (CIBNOR), Av. Instituto Politécnico Nacional No.195, Col. Playa Palo de Santa Rita, C.P. 23096, La Paz, Baja California Sur, Mexico.
| | - Fabiola G Arcos
- Centro de Investigaciones Biológicas del Noroeste, S.C. (CIBNOR), Av. Instituto Politécnico Nacional No.195, Col. Playa Palo de Santa Rita, C.P. 23096, La Paz, Baja California Sur, Mexico.
| | - Raúl Llera-Herrera
- Centro de Investigaciones Biológicas del Noroeste, S.C. (CIBNOR), Av. Instituto Politécnico Nacional No.195, Col. Playa Palo de Santa Rita, C.P. 23096, La Paz, Baja California Sur, Mexico.
| | - Ilie S Racotta
- Centro de Investigaciones Biológicas del Noroeste, S.C. (CIBNOR), Av. Instituto Politécnico Nacional No.195, Col. Playa Palo de Santa Rita, C.P. 23096, La Paz, Baja California Sur, Mexico.
| | - Ana M Ibarra
- Centro de Investigaciones Biológicas del Noroeste, S.C. (CIBNOR), Av. Instituto Politécnico Nacional No.195, Col. Playa Palo de Santa Rita, C.P. 23096, La Paz, Baja California Sur, Mexico.
| |
Collapse
|
29
|
Feijó RG, Braga AL, Lanes CFC, Figueiredo MA, Romano LA, Klosterhoff MC, Nery LEM, Maggioni R, Wasielesky W, Marins LF. Silencing of Gonad-Inhibiting Hormone Transcripts in Litopenaeus vannamei Females by use of the RNA Interference Technology. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2016; 18:117-123. [PMID: 26573611 DOI: 10.1007/s10126-015-9676-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 10/06/2015] [Indexed: 06/05/2023]
Abstract
The method usually employed to stimulate gonadal maturation and spawning of captive shrimp involves unilateral eyestalk ablation, which results in the removal of the endocrine complex responsible for gonad-inhibiting hormone (GIH) synthesis and release. In the present study, RNAi technology was used to inhibit transcripts of GIH in Litopenaeus vannamei females. The effect of gene silencing on gonad development was assessed by analyzing the expression of GIH and vitellogenin, respectively, in the eyestalk and ovaries of L. vannamei females, following ablation or injection with dsRNA-GIH, dsRNA-IGSF4D (non-related dsRNA), or saline solution. Histological analyses were performed to determine the stage of gonadal development and to assess the diameter of oocytes throughout the experimental procedure. Only oocytes at pre-vitellogenesis and primary vitellogenesis stages were identified in females injected with dsRNA-GIH, dsRNA-IGSF4D, or saline solution. Oocytes at all developmental stages were observed in eyestalk-ablated females, with predominance of later stages, such as secondary vitellogenesis and mature oocytes. Despite achieving 64, 73, and 71% knockdown of eyestalk GIH mRNA levels by 15, 30, and 37 days post-injection (dpi), respectively, in dsRNA-GIH-injected females, the expected increase in ovary vitellogenin mRNA expression was only observed on the 37th dpi. This is the first report of the use of RNAi technology to develop an alternative method to eyestalk ablation in captive L. vannamei shrimps.
Collapse
Affiliation(s)
- Rubens G Feijó
- Molecular Biology Laboratory, Biological Sciences Institute (ICB), Federal University of Rio Grande-FURG, Rio Grande, RS, 96203-900, Brazil
| | - André L Braga
- Marine Station of Aquaculture, Oceanography Institute, Federal University of Rio Grande, Rio Grande, RS, 96 201-900, Brazil
| | - Carlos F C Lanes
- Molecular Biology Laboratory, Biological Sciences Institute (ICB), Federal University of Rio Grande-FURG, Rio Grande, RS, 96203-900, Brazil
| | - Márcio A Figueiredo
- Molecular Biology Laboratory, Biological Sciences Institute (ICB), Federal University of Rio Grande-FURG, Rio Grande, RS, 96203-900, Brazil
| | - Luis A Romano
- Marine Station of Aquaculture, Oceanography Institute, Federal University of Rio Grande, Rio Grande, RS, 96 201-900, Brazil
| | - Marta C Klosterhoff
- Marine Station of Aquaculture, Oceanography Institute, Federal University of Rio Grande, Rio Grande, RS, 96 201-900, Brazil
| | - Luis E M Nery
- Molecular Biology Laboratory, Biological Sciences Institute (ICB), Federal University of Rio Grande-FURG, Rio Grande, RS, 96203-900, Brazil
| | - Rodrigo Maggioni
- Center of Studies and Diagnosis of Aquatic Organism Diseases (CEDECAM), Marine Sciences Institute, Federal University of Ceara, Fortaleza, CE, 60165-081, Brazil
| | - Wilson Wasielesky
- Marine Station of Aquaculture, Oceanography Institute, Federal University of Rio Grande, Rio Grande, RS, 96 201-900, Brazil
| | - Luis F Marins
- Molecular Biology Laboratory, Biological Sciences Institute (ICB), Federal University of Rio Grande-FURG, Rio Grande, RS, 96203-900, Brazil.
| |
Collapse
|
30
|
Zeng H, Bao C, Huang H, Ye H, Li S. The mechanism of regulation of ovarian maturation by red pigment concentrating hormone in the mud crab Scylla paramamosain. Anim Reprod Sci 2015; 164:152-61. [PMID: 26679434 DOI: 10.1016/j.anireprosci.2015.11.025] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 11/18/2015] [Accepted: 11/30/2015] [Indexed: 11/25/2022]
Abstract
In this study a full-length cDNA (Sp-RPCH) was cloned from the eyestalk ganglia of the mud crab Scylla paramamosain. Sp-RPCH is 660 base pairs in length and its open reading frame encodes a precursor that is predicted to be processed into a 25-residue signal peptide, a mature red pigment concentrating hormone (RPCH, an octapeptide), and a 75-residue precursor-related peptide. Phylogenetic analysis indicates that it clusters with other crustacean RPCHs and belongs to the adipokinetic hormone/RPCH peptide superfamily. Sp-RPCH gene expression was detected, using an end-point polymerase chain reaction (PCR), not only in the eyestalk ganglia but also in the brain and thoracic ganglia. Quantified using a real-time PCR, Sp-RPCH gene expression levels in the three tissues fluctuated along a cycle of ovarian maturation, with the levels progressively increased from stages I to IV, after which the expression levels decreased (although they remained significantly higher than stage I levels) when the ovary reached the mature stage (stage V). It was demonstrated using a patch clamp analysis that synthetic RPCH was able to evoke a Ca(2+) current in dissociated brain neurons and synthetic RPCH significantly increased the mean oocyte diameter of the ovarian tissues co-cultured with the eyestalk ganglia, brain, or thoracic ganglia; the stimulatory effect of RPCH was absent when the nervous tissues were not included in the ovarian incubation. Animals administrated with RPCH had significantly higher levels of gonad-somatic index, hepatopancreas-somatic index, and vitellogenin gene expression, when compared to control animals receiving a saline injection. The combined results clearly show that RPCH is involved in ovarian maturation in the mud crab; the stimulatory effects of RPCH are likely mediated by its actions on the release from the nervous tissues of factor(s) that directly regulate vitellogenesis in the ovary and hepatopancreas.
Collapse
Affiliation(s)
- Hui Zeng
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Chenchang Bao
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Huiyang Huang
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Haihui Ye
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; Collaborative Innovation Center for Development and Utilization of Marine Biological Resources, Xiamen 361102, China.
| | - Shaojing Li
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| |
Collapse
|
31
|
Luo X, Chen T, Zhong M, Jiang X, Zhang L, Ren C, Hu C. Differential regulation of hepatopancreatic vitellogenin (VTG) gene expression by two putative molt-inhibiting hormones (MIH1/2) in Pacific white shrimp (Litopenaeus vannamei). Peptides 2015; 68:58-63. [PMID: 25447412 DOI: 10.1016/j.peptides.2014.11.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 11/04/2014] [Accepted: 11/04/2014] [Indexed: 11/25/2022]
Abstract
Molt-inhibiting hormone (MIH), a peptide member of the crustacean hyperglycemic hormone (CHH) family, is commonly considered as a negative regulator during the molt cycle in crustaceans. Phylogenetic analysis of CHH family peptides in penaeidae shrimps suggested that there is no significant differentiation between MIH and vitellogenesis-inhibiting hormone (VIH, another peptide member of CHH family), by far the most potent negative regulator of crustacean vitellogenesis known. Thus, MIH may also play a role in regulating vitellogenesis. In this study, two previously reported putative MIHs (LivMIH1 and LivMIH2) in the Pacific white shrimp (Litopenaeus vannamei) were expressed in Escherichia coli, purified by immobilized metal ion affinity chromatography (IMAC) and further confirmed by western blot. Regulation of vitellogenin (VTG) mRNA expression by recombinant LivMIH1 and LivMIH2 challenge was performed by both in vitro hepatopancreatic primary cells culture and in vivo injection approaches. In in vitro primary culture of shrimp hepatopancreatic cells, only LivMIH2 but not LivMIH1 administration could improve the mRNA expression of VTG. In in vivo injection experiments, similarly, only LivMIH2 but not LivMIH1 could stimulate hepatopancreatic VTG gene expression and induce ovary maturation. Our study may provide evidence for one isoform of MIH (MIH2 in L. vannamei) may serve as one of the mediators of the physiological progress of molting and vitellogenesis. Our study may also give new insight in CHH family peptides regulating reproduction in crustaceans, in particular penaeidae shrimps.
Collapse
Affiliation(s)
- Xing Luo
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; University of Chinese Academy of Sciences, Beijing, China.
| | - Ting Chen
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.
| | - Ming Zhong
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; University of Chinese Academy of Sciences, Beijing, China.
| | - Xiao Jiang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.
| | - Lvping Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.
| | - Chunhua Ren
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.
| | - Chaoqun Hu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.
| |
Collapse
|
32
|
Qiao H, Xiong Y, Zhang W, Fu H, Jiang S, Sun S, Bai H, Jin S, Gong Y. Characterization, expression, and function analysis of gonad-inhibiting hormone in Oriental River prawn, Macrobrachium nipponense and its induced expression by temperature. Comp Biochem Physiol A Mol Integr Physiol 2015; 185:1-8. [PMID: 25770669 DOI: 10.1016/j.cbpa.2015.03.005] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 02/27/2015] [Accepted: 03/05/2015] [Indexed: 10/23/2022]
Abstract
Gonad-inhibiting hormone (GIH) is a member of crustacean hyperglycemic hormone family and plays a major role in regulating reproduction in crustaceans. In this study, a full-length cDNA of GIH of Oriental River prawn, Macrobrachium nipponense (Mn-GIH) was cloned from the eyestalk. A 1350 bp full-length Mn-GIH cDNA harbored 336 bp of an open reading frame encoding signal peptide of 112 amino acid residues. Sequence analysis revealed that the overall cDNA sequence and specific functional sites of Mn-GIH were highly conserved with those in other crustacean species. Expression analysis by quantitative real-time PCR demonstrated its tissue-specific, larval developmental stage-specific, and ovary developmental stage-specific expression pattern, respectively. The RNAi by GIH-ds-RNA in vivo injection was effective in this study and resulted a 50% (day 1), 83% (day 5) and 63% (day 9) down-regulation compared to control. The obvious changes of gonad somatic index (GSI) rate also provided strong evidence to the inhibition effects of GIH on ovary maturation and spawning. Four temperature gradients (12 °C ± 1 °C, 17 °C ± 1 °C, 22 °C ± 1 °C, 27 °C ± 1 °C) were set to imitate the temperature in breeding and non-breeding seasons. The observed expression profiles suggest that Mn-GIH did not display a high level expression as supposed to maintain an immature ovary state under low temperature (12 °C). The results indicated that GIH was probably activated to concentrating and working by a proper temperature before reaching to breeding season.
Collapse
Affiliation(s)
- Hui Qiao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Yiwei Xiong
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Wenyi Zhang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Hongtuo Fu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| | - Sufei Jiang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Shengming Sun
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Hongkun Bai
- Wuxi Fishery College Nanjing Agricultural University, Wuxi 214081, China
| | - Shubo Jin
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Yongsheng Gong
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| |
Collapse
|
33
|
Chen T, Wong NK, Jiang X, Luo X, Zhang L, Yang D, Ren C, Hu C. Nitric oxide as an antimicrobial molecule against Vibrio harveyi infection in the hepatopancreas of Pacific white shrimp, Litopenaeus vannamei. FISH & SHELLFISH IMMUNOLOGY 2015; 42:114-120. [PMID: 25449376 DOI: 10.1016/j.fsi.2014.10.042] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 10/22/2014] [Accepted: 10/31/2014] [Indexed: 06/04/2023]
Abstract
Nitric oxide (NO) is a key effector molecule produced in the innate immune systems of many species for antimicrobial defense. However, how NO production is regulated during bacterial infection in invertebrates, especially crustaceans, remains poorly understood. Vibrio harveyi, a Gram-negative marine pathogen, is among the most prevalent and serious threats to the world's shrimp culture industry. Its virulence typically manifests itself through shrimp hepatopancreas destruction. In the current study, we found that NO generated by an in vitro donor system (NOC-18) could rapidly and effectively kill V. harveyi. In addition, injection of heat-killed V. harveyi increased the concentration of NO/nitrite and the mRNA expression of nitric oxide synthase (NOS) in the hepatopancreas of Pacific white shrimp (Litopenaeus vannamei), the commercially most significant shrimp species. Live V. harveyi challenge also induced NO/nitrite production and NOS gene expression in primary L. vannamei hepatopancreatic cells in a time- and dose-dependent manner. Co-incubation of l-NAME, an inhibitor selective for mammalian constitutive NOSs, dose-dependently blocked V. harveyi-induced NO/nitrite production, without affecting V. harveyi-induced NOS mRNA expression. Furthermore, l-NAME treatment significantly increased the survival rate of infecting V. harveyi in cultured primary hepatopancreatic cells of L. vannamei. As a whole, we have demonstrated that endogenous NO produced by L. vannamei hepatopancreatic cells occurs in enzymatically regulated manners and is sufficient to act as a bactericidal molecule for V. harveyi clearance.
Collapse
Affiliation(s)
- Ting Chen
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Key Laboratory of Applied Marine Biology of Guangdong Province and Chinese Academy of Sciences (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.
| | - Nai-Kei Wong
- Department of Chemistry, University of Hong Kong, Hong Kong, China.
| | - Xiao Jiang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Key Laboratory of Applied Marine Biology of Guangdong Province and Chinese Academy of Sciences (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.
| | - Xing Luo
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Key Laboratory of Applied Marine Biology of Guangdong Province and Chinese Academy of Sciences (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; University of Chinese Academy of Sciences, Beijing, China.
| | - Lvping Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Key Laboratory of Applied Marine Biology of Guangdong Province and Chinese Academy of Sciences (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.
| | - Dan Yang
- Department of Chemistry, University of Hong Kong, Hong Kong, China.
| | - Chunhua Ren
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Key Laboratory of Applied Marine Biology of Guangdong Province and Chinese Academy of Sciences (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.
| | - Chaoqun Hu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Key Laboratory of Applied Marine Biology of Guangdong Province and Chinese Academy of Sciences (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.
| |
Collapse
|
34
|
Kong HJ, Kim JL, Moon JY, Kim WJ, Kim HS, Park JY, Cho HK, An CM. Characterization, expression profile, and promoter analysis of the Rhodeus uyekii vitellogenin Ao1 gene. Int J Mol Sci 2014; 15:18804-18. [PMID: 25329620 PMCID: PMC4227248 DOI: 10.3390/ijms151018804] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 09/24/2014] [Accepted: 10/11/2014] [Indexed: 11/16/2022] Open
Abstract
The fish Vitellogenin (Vg) gene has been applied as a biomarker for exposure to estrogenic compounds in the aquatic environment. In this study, we cloned and characterized Vg cDNA from the Korean rose bitterling Rhodeus uyekii (Ru-Vg). The Ru-Vg cDNA encodes a 1424-amino-acid polypeptide that belongs to the VgAo1 family and contains a putative signal peptide, lipovitellin I, phosvitin, and lipovitellin II, but does not contain the vWFD domain or the C-terminal peptide. The deduced Ru-Vg protein has high amino acid identity (73.97%–32.17%) with fish Vg proteins. Pairwise alignment and phylogenetic analysis revealed that Ru-Vg is most closely related to Acheilognathus yamatsutae Vg. Ru-Vg transcripts were detected using quantitative polymerase chain reaction in all tissues tested, with the highest level of expression observed in the ovary. Ru-Vg mRNA was upregulated in R. uyekii hepatopancreas cells in response to treatment with 17β-estradiol (E2) or 17α-ethinylestradiol (EE2). Luciferase reporter expression, driven by the 5'-regulatory region of the Ru-Vg gene spanning from −1020 bp to the start codon was induced by the estrogen receptor and was synergistically activated by treatment with E2 or EE2. These results suggest that R. uyekii and the Ru-Vg gene may be useful as biomarkers for exposure to E2 or EE2.
Collapse
Affiliation(s)
- Hee Jeong Kong
- Biotechnology Research Division, National Fisheries Research and Development Institute, Busan 619-705, Korea.
| | - Ju Lan Kim
- Biotechnology Research Division, National Fisheries Research and Development Institute, Busan 619-705, Korea.
| | - Ji Young Moon
- Biotechnology Research Division, National Fisheries Research and Development Institute, Busan 619-705, Korea.
| | - Woo-Jin Kim
- Biotechnology Research Division, National Fisheries Research and Development Institute, Busan 619-705, Korea.
| | - Hyung Soo Kim
- Biotechnology Research Division, National Fisheries Research and Development Institute, Busan 619-705, Korea.
| | - Jung Youn Park
- Biotechnology Research Division, National Fisheries Research and Development Institute, Busan 619-705, Korea.
| | - Hyun Kook Cho
- Department of Molecular Biology, Pusan National University, Busan 609-735, Korea.
| | - Cheul Min An
- Biotechnology Research Division, National Fisheries Research and Development Institute, Busan 619-705, Korea.
| |
Collapse
|