1
|
Liu ZH, Xie QQ, Huang JL. Stromal vascular fraction: Mechanisms and application in reproductive disorders. World J Stem Cells 2025; 17:101097. [PMID: 39866896 PMCID: PMC11752457 DOI: 10.4252/wjsc.v17.i1.101097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 12/02/2024] [Accepted: 12/20/2024] [Indexed: 01/20/2025] Open
Abstract
Stromal vascular fraction (SVF) is a complex mixture derived from adipose tissue, consisting of a variety of cells. Due to its potential for tissue repair, immunomodulation, and support of angiogenesis, SVF represents a promising frontier in regenerative medicine and offers potential therapy for a range of disease conditions. In this article, we delve into the mechanisms through which SVF exerts its effects and explore its potential applications in treating both male and female reproductive disorders, including erectile dysfunction, testicular injury, stress urinary incontinence and intrauterine adhesion.
Collapse
Affiliation(s)
- Zhi-Han Liu
- Department of Clinical Medicine, School of Queen Mary, Nanchang University, Nanchang 330000, Jiangxi Province, China
| | - Qi-Qi Xie
- Center for Reproductive Medicine, Jiangxi Key Laboratory of Reproductive Health, Jiangxi Maternal and Child Health Hospital, Jiangxi Branch of National Clinical Research Center for Obstetrics and Gynecology, Nanchang Medical College, Nanchang 330000, Jiangxi Province, China
| | - Jia-Lyu Huang
- Center for Reproductive Medicine, Jiangxi Maternal and Child Health Hospital, Jiangxi Branch of National Clinical Research Center for Obstetrics and Gynecology, Nanchang Medical College, Nanchang 330008, Jiangxi Province, China.
| |
Collapse
|
2
|
Sonawane T, Kashte S, Khera S, Bahulkar A, Cuddapah C, Kadam S. Interrogating erectile dysfunction and evaluating novel therapeutic frontiers, with emphasis on stem cell strategies. J Assist Reprod Genet 2024; 41:2037-2051. [PMID: 39023828 PMCID: PMC11339218 DOI: 10.1007/s10815-024-03165-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 06/02/2024] [Indexed: 07/20/2024] Open
Abstract
Male infertility arises from a complex interplay of factors affecting reproductive organs and various physiological pathways. Among these, erectile dysfunction (ED), a widespread global issue, plays a key role. While existing ED treatments address some aspects, achieving complete reversibility and avoiding side effects remains a challenge. In this context, stem cell therapy emerges as a promising, potentially transformative approach. Preliminary evidence from preclinical animal models and clinical trials highlights stem cell therapy's remarkable efficacy and effectiveness for ED. This novel strategy offers several advantages, including enhanced effectiveness and a reported absence of adverse side effects. This review delves into the causes of male infertility, with a particular focus on ED and its pathophysiology. We explore the current treatment landscape, highlighting therapy's existing strategies' limitations and stem cell therapy's unique potential. By examining relevant preclinical and clinical studies, we provide a comprehensive picture of this innovative approach and its promising future in restoring men's fertility and quality of life.
Collapse
Affiliation(s)
- Tareeka Sonawane
- Amity Institute of Biotechnology, Amity University, Bhatan, Post-Somathne, Panvel, Mumbai, 410206, India
| | - Shivaji Kashte
- Center For Interdisciplinary Research, D Y Patil Education Society, Kasaba Bawada, Kolhapur, 416006, India
| | - Simran Khera
- Amity Institute of Biotechnology, Amity University, Bhatan, Post-Somathne, Panvel, Mumbai, 410206, India
| | - Ashutosh Bahulkar
- Department of Obstetrics and Gynecology, Krishna Institute of Medical Sciences, Malkapur, Karad, Dist. Satara, Maharashtra , 415539, India
| | | | - Sachin Kadam
- Sophisticated Analytical and Technical Help Institute, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
| |
Collapse
|
3
|
Giagulli VA, Lisco G, De Tullio A, Guastamacchia E, Triggiani V, Jirillo E. The pathogenic role of the immune system in erectile dysfunction and Peyronie's disease: focusing on immunopathophysiology and potential therapeutic strategies. Sex Med Rev 2024; 12:210-220. [PMID: 38196188 DOI: 10.1093/sxmrev/qead055] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/25/2023] [Accepted: 10/09/2023] [Indexed: 01/11/2024]
Abstract
INTRODUCTION Erectile dysfunction (ED) represents the major cause of male sexual dysfunction, which is often associated with obesity, diabetes mellitus, atherosclerotic cardiovascular disease, and cigarette smoking. Peyronie's disease is a chronic disorder associated with irreversible fibrotic damage of the tunica albuginea leading to ED, painful erection, coital disturbance, and physical and social complaints. Both conditions are characterized by chronic inflammation, oxidative stress, and significant changes in intracavernous hydrodynamics. In this scenario, oxidized lipoproteins, M1-polarized macrophages, proinflammatory cytokines (such as the tumor necrosis factor α), endothelial nitric oxide synthase, penile smooth muscle cells, and toll-like receptors represent the main triggers of the inflammatory process in ED. Phosphodiesterase-5 inhibitors are the most common treatment for ED. This treatment is used intermittently, as it is conceived as a symptomatic and not curative therapy. Moreover, not all patients respond to phosphodiesterase-5 inhibitors (35%-85%), particularly those with dysmetabolic phenotypes. Additional or alternative treatments are therefore desirable, mostly in refractory cases. OBJECTIVES In this review, we describe the immune-mediated pathogenesis of ED and Peyronie's disease (PD). In our literature search we placed particular emphasis on potentially practical therapeutic approaches, including natural products (such as polyphenols), due to their anti-inflammatory and antioxidant activities, stem cell therapy, and platelet-derived preparations. METHODS We searched PubMed/MEDLINE, Web of Science, Scopus, Cochrane Library, Google Scholar, and institutional websites. Original studies, narrative reviews, systematic reviews, and meta-analyses written in English were searched, screened, and selected. RESULTS In animal models of ED and PD, therapeutic approaches, including anti-inflammatory and antioxidant agents, stem cell therapy, and platelet-derived preparations, have provided positive results, including improved penile function, reduced inflammation and oxidative stress, and promotion of tissue repair. However, clinical evidence of improvement in human patients is still insufficient. CONCLUSION Promising results for treating ED and PD have been shown in preclinical and pilot clinical studies, but specific clinical trials are needed to validate the efficacy of these therapeutic approaches in men with ED.
Collapse
Affiliation(s)
- Vito Angelo Giagulli
- Interdisciplinary Department of Medicine-Section of Internal Medicine, Geriatrics, Endocrinology, and Rare Diseases, School of Medicine, University of Bari "Aldo Moro", Policlinico, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Giuseppe Lisco
- Interdisciplinary Department of Medicine-Section of Internal Medicine, Geriatrics, Endocrinology, and Rare Diseases, School of Medicine, University of Bari "Aldo Moro", Policlinico, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Anna De Tullio
- Interdisciplinary Department of Medicine-Section of Internal Medicine, Geriatrics, Endocrinology, and Rare Diseases, School of Medicine, University of Bari "Aldo Moro", Policlinico, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Edoardo Guastamacchia
- Interdisciplinary Department of Medicine-Section of Internal Medicine, Geriatrics, Endocrinology, and Rare Diseases, School of Medicine, University of Bari "Aldo Moro", Policlinico, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Vincenzo Triggiani
- Interdisciplinary Department of Medicine-Section of Internal Medicine, Geriatrics, Endocrinology, and Rare Diseases, School of Medicine, University of Bari "Aldo Moro", Policlinico, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Emilio Jirillo
- Interdisciplinary Department of Medicine-Section of Internal Medicine, Geriatrics, Endocrinology, and Rare Diseases, School of Medicine, University of Bari "Aldo Moro", Policlinico, Piazza Giulio Cesare 11, 70124 Bari, Italy
| |
Collapse
|
4
|
Mikłosz A, Chabowski A. Efficacy of adipose-derived mesenchymal stem cell therapy in the treatment of chronic micro- and macrovascular complications of diabetes. Diabetes Obes Metab 2024; 26:793-808. [PMID: 38073423 DOI: 10.1111/dom.15375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/23/2023] [Accepted: 11/05/2023] [Indexed: 02/06/2024]
Abstract
Diabetes mellitus is a highly prevalent disease characterized by hyperglycaemia that damages the vascular system, leading to micro- (retinopathy, neuropathy, nephropathy) and macrovascular diseases (cardiovascular disease). There are also secondary complications of diabetes (cardiomyopathy, erectile dysfunction or diabetic foot ulcers). Stem cell-based therapies have become a promising tool targeting diabetes symptoms and its chronic complications. Among all stem cells, adipose-derived mesenchymal stem cells (ADMSCs) are of great importance because of their abundance, non-invasive isolation and no ethical limitations. Characteristics that make ADMSCs good candidates for cell-based therapy are their wide immunomodulatory properties and paracrine activities through the secretion of an array of growth factors, chemokines, cytokines, angiogenic factors and anti-apoptotic molecules. Besides, after transplantation, ADMSCs show great ex vivo expansion capacity and differentiation to other cell types, including insulin-producing cells, cardiomyocytes, chondrocytes, hepatocyte-like cells, neurons, endothelial cells, photoreceptor-like cells, or astrocytes. Preclinical studies have shown that ADMSC-based therapy effectively improved visual acuity, ameliorated polyneuropathy and foot ulceration, arrested the development and progression of diabetic kidney disease, or alleviated the diabetes-induced cardiomyocyte hypertrophy. However, despite the positive results obtained in animal models, there are still several challenges that need to be overcome before the results of preclinical studies can be translated into clinical applications. To date, there are several clinical trials or ongoing trials using ADMSCs in the treatment of diabetic complications, most of them in the treatment of diabetic foot ulcers. This narrative review summarizes the most recent outcomes on the usage of ADMSCs in the treatment of long-term complications of diabetes in both animal models and clinical trials.
Collapse
Affiliation(s)
- Agnieszka Mikłosz
- Department of Physiology, Medical University of Bialystok, Bialystok, Poland
| | - Adrian Chabowski
- Department of Physiology, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
5
|
Abuharb AI, Alzarroug AF, Algahtani SN, Alghamdi HK, Alosaimi FA, Alsuwayna N, Almughira AI. The Impact and Implications of Regenerative Medicine in Urology. Cureus 2024; 16:e52264. [PMID: 38352111 PMCID: PMC10863929 DOI: 10.7759/cureus.52264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/14/2024] [Indexed: 02/16/2024] Open
Abstract
Urology focuses on the treatment of genitourinary disorders through therapies ranging from lifestyle changes to advanced surgeries; the field has recently incorporated robotic and minimally invasive technologies that have improved patient outcomes and reduced hospital stays and complications. However, these methods still have certain limitations. Regenerative medicine, focusing on natural repair abilities, can be an effective and safer alternative. This review aims to examine the impact of regenerative medicine in urology. We adopted a systematic review design by following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. An exhaustive online literature search involving the databases PubMed, the Cochrane Central Register of Controlled Trials (CENTRAL), and Google Scholar was conducted spanning the period between January 2010 and October 2023. Data were extracted from studies on regenerative medicine in urology with a special focus on efficacy and safety. Data from 16 studies were analyzed, which showed that cell therapy, biological materials, and tissue engineering are generally used in the field of urinary diseases. The main applications include the regeneration of urinary tissue, the correction of urinary incontinence, the treatment of erectile dysfunction, the reconstruction of ureteric defects, and the formation of bladder tissue. The study findings generally lack definitive conclusions on effectiveness and safety. While our results indicate that regenerative medicine is successful on a subjective level, more clinical trials are needed to establish its effectiveness and safety.
Collapse
Affiliation(s)
- Abdullah I Abuharb
- College of Medicine, Imam Mohammad Ibn Saud Islamic University, Riyadh, SAU
| | | | - Saad N Algahtani
- College of Medicine, Imam Mohammad Ibn Saud Islamic University, Riyadh, SAU
| | - Hatan K Alghamdi
- College of Medicine, Imam Mohammad Ibn Saud Islamic University, Riyadh, SAU
| | - Fahad A Alosaimi
- College of Medicine, Imam Mohammad Ibn Saud Islamic University, Riyadh, SAU
| | - Nasser Alsuwayna
- College of Medicine, Imam Mohammad Ibn Saud Islamic University, Riyadh, SAU
| | | |
Collapse
|
6
|
Feng H, Liu Q, Deng Z, Li H, Zhang H, Song J, Liu X, Liu J, Wen B, Wang T. Human umbilical cord mesenchymal stem cells ameliorate erectile dysfunction in rats with diabetes mellitus through the attenuation of ferroptosis. Stem Cell Res Ther 2022; 13:450. [PMID: 36064453 PMCID: PMC9444126 DOI: 10.1186/s13287-022-03147-w] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 08/18/2022] [Indexed: 11/15/2022] Open
Abstract
Background Erectile dysfunction (ED), as one of the most prevalent consequences in male diabetic patients, has a serious impact on men's physical and mental health, and the treatment effect of diabetic mellitus erectile dysfunction (DMED) is often worse. Therefore, the development of a novel therapeutic approach is urgent. As stem cells with high differentiation potential, human umbilical cord mesenchymal stem cells (HUCMSCs) have been widely used in the treatment of diseases in other systems, and are expected to be a promising strategy for the treatment of DMED. In this study, we investigated the role of HUCMSCs in managing erectile function in rat models of type 1 diabetes mellitus (T1DM) and type 2 diabetes mellitus (T2DM) and compared the effects of two different injection methods. Methods T1DM and T2DM ED rats were given labelled HUCMSCs by corpus cavernosum injection and tail vein injection, respectively. ICP and MAP were monitored simultaneously by electrical stimulation four weeks after injection to indicate the erectile function of rats. To track the development and colonisation capabilities of stem cells, we performed EdU assay with penile tissue. The histological changes of the penis were observed by hematoxylin–eosin staining, and Masson’s trichrome staining was conducted to evaluate the smooth muscle content and the degree of fibrosis in the rat penis. Then, we employed specific kits to measure the level of NO, cGMP, MDA, SOD and Fe in penis. Electron transmission microscopy was implemented to observe morphology of mitochondria. Besides, western blot and immunofluorescence staining were performed to demonstrate the expression of ferroptosis-related genes. Results We found that HUCMSCs improved erectile function in T1DM and T2DM ED rats, with no difference in efficacy between corpus cavernosum injection and tail vein injection. The EdU assay revealed that only a tiny percentage of HUCMSCs colonised the corpus cavernosum, while smooth muscle in the penis expanded and collagen decreased following HUCMSC injection. Moreover, the levels of oxidative stress in the penis of the rats given HUCMSCs were dramatically reduced, as was the tissue iron content. HUCMSCs normalised mitochondrial morphology within corpus cavernosum smooth muscle cells (CCSMCs), which were characteristically altered by high glucose. Furthermore, the expression of ferroptosis inhibitory genes SLC7A11 and GPX4 was obviously elevated in CCSMCs after stem cell management, but the abundances of ACSL4, LPCAT3 and ALOX15 showed the polar opposite tendency. Conclusions HUCMSCs can effectively and safely alleviate erectile dysfunction in T1DM and T2DM ED rats, while restoring erectile function by attenuating diabetes-induced ferroptosis in CCSMCs. Additionally, this study provides significant evidence for the development of HUCMSCs as a viable therapeutic strategy for DMED. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-03147-w.
Collapse
Affiliation(s)
- Huan Feng
- Department of Urology, Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qi Liu
- Department of Urology, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, Guangdong, China
| | - Zhiyao Deng
- Department of Urology, Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, Guangdong, China
| | - Hao Li
- Department of Urology, Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Huajie Zhang
- Department of Urology, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, Guangdong, China
| | - Jingyu Song
- Department of Urology, Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaming Liu
- Department of Urology, Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jihong Liu
- Department of Urology, Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Bo Wen
- Department of Urology, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, Guangdong, China.
| | - Tao Wang
- Department of Urology, Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China. .,Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, Guangdong, China.
| |
Collapse
|
7
|
Gur S, Hellstrom WJ. Harnessing Stem Cell Potential for the Treatment of Erectile Function in Men with Diabetes Mellitus: From Preclinical/Clinical Perspectives to Penile Tissue Engineering. Curr Stem Cell Res Ther 2020; 15:308-320. [DOI: 10.2174/1574888x14666190828142045] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 07/10/2019] [Accepted: 08/06/2019] [Indexed: 12/20/2022]
Abstract
Background::
According to the World Health Organization, more than 150 million people
are diabetic, and this number will increase twofold by the year 2025. Diabetes-related complications
affect all body organ systems, including the penis. Diabetes-induced Erectile Dysfunction (ED) is
caused by neuropathy of the penile nerves and vasculopathy involving the smooth muscle and endothelium
of the corpus cavernosum.
Objective::
This study aims to present an overview of Stem Cell (SC) research in diabetic animal models
of ED, focusing on the function, signaling, and niches that have a prominent role in the regeneration
of cavernosal cells and penile tissues. We highlight common erectile pathologies caused by diabetes
and review relevant preclinical trials. We also discuss paracrine mechanisms of various SC therapies
involved in the repair of endothelial cells and cavernous nerves in these diabetic models.
Method::
A PubMed search was performed, with dates ranging from inception until Mar 31, 2019.
Results::
This review provides a comprehensive evaluation of the various strategies that have been
investigated for improving SC delivery methods, through preclinical literature and published clinical
trials regarding ED in men with diabetes. Various cell-type applications have benefited erectile function
in diabetic models of ED.
Conclusion::
This review examines the progress and remaining challenges in diabetes-related SC research
regarding ED. Moving forward, it is only with a combined effort of basic biology and translational
work that the potential of SC-based therapies in diabetes in ED can be realized.
Collapse
Affiliation(s)
- Serap Gur
- Department of Urology, Tulane University Health Sciences Center, New Orleans, LA, United States
| | - Wayne J.G. Hellstrom
- Department of Urology, Tulane University Health Sciences Center, New Orleans, LA, United States
| |
Collapse
|
8
|
Kim SW, Zhu GQ, Bae WJ. Mesenchymal Stem Cells Treatment for Erectile Dysfunction in Diabetic Rats. Sex Med Rev 2019; 8:114-121. [PMID: 31653438 DOI: 10.1016/j.sxmr.2019.09.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 09/03/2019] [Accepted: 09/15/2019] [Indexed: 01/06/2023]
Abstract
INTRODUCTION Aging men with diabetes mellitus are more easily suffering from erectile dysfunction (ED), which was poor to respond to drugs. Mesenchymal stem cell treatment (MSCT) offers us an alternative approach that might reverse diabetes mellitus erectile dysfunction (DMED). AIM The aim of this study was to review the current studies investigating mesenchymal stem cell approach in diabetic rat models of ED for future research. METHODS A medical literature search was performed in PubMed by using the keywords including erectile dysfunction, mesenchymal stem cells, diabetes mellitus, and rat model. MAIN OUTCOME MEASURE Representative studies on DMED rats treated by MSCT were reviewed. RESULTS Streptozocin-induced type 1 diabetes mellitus rats were used in most studies because of cost and convenience. With the development of stem cell treatment for DMED research, many kinds of stem cells were used in animal experiment, such as bone marrow-derived mesenchymal stem cells, adipose-derived stem cells, human umbilical cord blood mononuclear cells, muscle-derived stem cells, urine-derived stem cells, neural crest stem cells, and endothelial progenitor cells. Although diverse stem cells were applied for DMED treatment, the mechanism behind these approaches was identical, including improving vascular injury, recovering smooth muscle, restoring neuronal cells, inhibiting the generation of inflammatory cytokines, homing mesenchymal stem cells, and decreasing apoptosis in corpus cavernosum. Meanwhile, combination therapies, including MSCT with drug, herb, and low-energy extracorporeal shockwave treatment showed satisfactory results for ED. CONCLUSION It has been proved that MSCT is an effective and safe treatment for the DMED rats. What's more, MSCT might be a potential and promising approach for patients with DMED as a minimally invasive treatment. Combination of MSCT with various methods was proved to be a more efficient treatment and dependable option to make up for deficiencies of MSCT. Kim SW, Zhu GQ, Bae WJ. Mesenchymal Stem Cells Treatment for Erectile Dysfunction in Diabetic Rats. Sex Med Rev 2020;8:114-121.
Collapse
Affiliation(s)
- Sae Woong Kim
- Department of Urology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea; Catholic Integrative Medicine Research Institute, The Catholic University of Korea, Seoul, Republic of Korea
| | - Guan Qun Zhu
- Department of Urology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea; Catholic Integrative Medicine Research Institute, The Catholic University of Korea, Seoul, Republic of Korea
| | - Woong Jin Bae
- Department of Urology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea; Catholic Integrative Medicine Research Institute, The Catholic University of Korea, Seoul, Republic of Korea.
| |
Collapse
|
9
|
Haney NM, Gabrielson A, Kohn TP, Hellstrom WJG. The Use of Stromal Vascular Fraction in the Treatment of Male Sexual Dysfunction: A Review of Preclinical and Clinical Studies. Sex Med Rev 2018; 7:313-320. [PMID: 29960873 DOI: 10.1016/j.sxmr.2018.04.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 04/09/2018] [Accepted: 04/09/2018] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Stem cell therapy using stromal vascular fraction (SVF) is a promising treatment modality. SVF is comprised of a mixture of adipose-derived stem cells, endothelial precursor cells, and immune modulatory cells that act synergistically to facilitate angiogenesis and epithelial cell differentiation. This makes SVF an attractive option for men's sexual disorders that require reconstitution of vasculature and endothelial lining, namely erectile dysfunction (ED) and Peyronie's disease (PD). AIM The objective of this study was to compare and contrast the available literature regarding the use of SVF in the treatment of male sexual dysfunction. METHODS A literature review was performed in PubMed with the keywords "stromal vascular fraction" and/or "erectile dysfunction" and/or "Peyronie's disease" and/or "sexual dysfunction." MAIN OUTCOME MEASURES The main outcome measure for preclinical studies was erectile function, as measured by changes in intracavernous pressures, and results of histopathologic analysis of corporal tissue. Clinical endpoint analysis in humans included various patient questionnaires. RESULTS For ED, there were 5 preclinical studies included in the analysis, with 1 Phase 1 clinical trial in humans. Major limitations of both the preclinical and clinical studies included the absence of SVF component analysis, and short duration of follow-up. Despite a paucity of preclinical studies, there was a single clinical study assessing the efficacy of combination SVF and shock wave therapy in the treatment of PD. Limitations of this study included an absence of a control group and the use of subjective data. CONCLUSION Preclinical and clinical data in the use of SVF for the treatment of male sexual dysfunction is deficient. Even though multiple medicinal disciplines are studying the use of SVF on a myriad of pathologies, further investigative work elucidating the mechanism and potential adverse effects of SVF need to be performed before clinical trials are undertaken. Haney NM, Gabrielson A, Kohn TP, Hellstrom WJG. The Use of Stromal Vascular Fraction in the Treatment of Male Sexual Dysfunction: A Review of Preclinical and Clinical Studies. Sex Med Rev 2019;7:313-320.
Collapse
Affiliation(s)
- Nora M Haney
- Tulane University School of Medicine, Department of Urology, New Orleans, LA, USA
| | - Andrew Gabrielson
- Tulane University School of Medicine, Department of Urology, New Orleans, LA, USA
| | - Taylor P Kohn
- Baylor College of Medicine, Department of Urology, Houston, TX, USA
| | - Wayne J G Hellstrom
- Tulane University School of Medicine, Department of Urology, New Orleans, LA, USA.
| |
Collapse
|
10
|
Human and Autologous Adipose-derived Stromal Cells Increase Flap Survival in Rats Independently of Host Immune Response. Ann Plast Surg 2018; 80:181-187. [DOI: 10.1097/sap.0000000000001184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
Ginsenoside Rg1 and platelet-rich fibrin enhance human breast adipose-derived stem cell function for soft tissue regeneration. Oncotarget 2018; 7:35390-403. [PMID: 27191987 PMCID: PMC5085237 DOI: 10.18632/oncotarget.9360] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 04/11/2016] [Indexed: 02/01/2023] Open
Abstract
Adipose-derived stem cells (ASCs) can be used to repair soft tissue defects, wounds, burns, and scars and to regenerate various damaged tissues. The cell differentiation capacity of ASCs is crucial for engineered adipose tissue regeneration in reconstructive and plastic surgery. We previously reported that ginsenoside Rg1 (G-Rg1 or Rg1) promotes proliferation and differentiation of ASCs in vitro and in vivio. Here we show that both G-Rg1 and platelet-rich fibrin (PRF) improve the proliferation, differentiation, and soft tissue regeneration capacity of human breast adipose-derived stem cells (HBASCs) on collagen type I sponge scaffolds in vitro and in vivo. Three months after transplantation, tissue wet weight, adipocyte number, intracellular lipid, microvessel density, and gene and protein expression of VEGF, HIF-1α, and PPARγ were higher in both G-Rg1- and PRF-treated HBASCs than in control grafts. More extensive new adipose tissue formation was evident after treatment with G-Rg1 or PRF. In summary, G-Rg1 and/or PRF co-administration improves the function of HBASCs for soft tissue regeneration engineering.
Collapse
|
12
|
Das ND, Yin GN, Choi MJ, Song KM, Park JM, Limanjaya A, Ghatak K, Minh NN, Ock J, Park SH, Kim HM, Ryu JK, Suh JK. Effectiveness of Intracavernous Delivery of Recombinant Human Hepatocyte Growth Factor on Erectile Function in the Streptozotocin-Induced Diabetic Mouse. J Sex Med 2017; 13:1618-1628. [PMID: 27770854 DOI: 10.1016/j.jsxm.2016.09.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 09/06/2016] [Accepted: 09/10/2016] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Diabetic erectile dysfunction is a disease mostly of vascular origin and men with diabetic erectile dysfunction respond poorly to oral phosphodiesterase-5 inhibitors. Hepatocyte growth factor (HGF) is a pleiotropic factor that plays an essential role in the regulation of cell proliferation, survival, and angiogenesis. AIM To determine the effectiveness of recombinant human (rh)-HGF in restoring erectile function in diabetic mice. METHODS Four groups of mice were used: control non-diabetic mice and streptozotocin-induced diabetic mice receiving two successive intracavernous injections of phosphate buffered saline (days -3 and 0), a single intracavernous injection of rh-HGF (day 0), or two successive intracavernous injections of rh-HGF (days -3 and 0). We also examined the effect of rh-HGF in primary cultured mouse cavernous endothelial cells and in major pelvic ganglion culture in vitro, which was incubated under a normal-glucose (5 mmol/L) or a high-glucose (30 mmol/L) condition. MAIN OUTCOME MEASURES Two weeks after treatment, we measured erectile function by electrical stimulation of the cavernous nerve and the penis was harvested for histologic studies. RESULTS Repeated intracavernous injections of rh-HGF protein induced significant restoration of erectile function in diabetic mice (89-100% of control values), whereas a single intracavernous injection of rh-HGF protein elicited modest improvement. Rh-HGF significantly induced phosphorylation of its receptor c-Met, increased the content of endothelial cells and smooth muscle cells, and decreased the generation of reactive oxygen species (superoxide anion and peroxynitrite) and extravasation of oxidized low-density lipoprotein in diabetic mice. Under the high-glucose condition, rh-HGF protein also promoted tube formation in mouse cavernous endothelial cells and enhanced neurite sprouting in major pelvic ganglion culture in vitro. CONCLUSION The dual angiogenic and neurotrophic effects of HGF could open a new avenue through which diabetic erectile dysfunction can be treated.
Collapse
Affiliation(s)
- Nando Dulal Das
- National Research Center for Sexual Medicine and Department of Urology, Inha University School of Medicine, Incheon, Republic of Korea; Epigenetics Drug Discovery Unit, Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technologies, Suehiro-cho, Yokohama, Japan
| | - Guo Nan Yin
- National Research Center for Sexual Medicine and Department of Urology, Inha University School of Medicine, Incheon, Republic of Korea
| | - Min Ji Choi
- National Research Center for Sexual Medicine and Department of Urology, Inha University School of Medicine, Incheon, Republic of Korea
| | - Kang-Moon Song
- National Research Center for Sexual Medicine and Department of Urology, Inha University School of Medicine, Incheon, Republic of Korea
| | - Jin-Mi Park
- National Research Center for Sexual Medicine and Department of Urology, Inha University School of Medicine, Incheon, Republic of Korea
| | - Anita Limanjaya
- National Research Center for Sexual Medicine and Department of Urology, Inha University School of Medicine, Incheon, Republic of Korea
| | - Kalyan Ghatak
- National Research Center for Sexual Medicine and Department of Urology, Inha University School of Medicine, Incheon, Republic of Korea
| | - Nguyen Nhat Minh
- National Research Center for Sexual Medicine and Department of Urology, Inha University School of Medicine, Incheon, Republic of Korea
| | - Jiyeon Ock
- National Research Center for Sexual Medicine and Department of Urology, Inha University School of Medicine, Incheon, Republic of Korea
| | - Soo-Hwan Park
- National Research Center for Sexual Medicine and Department of Urology, Inha University School of Medicine, Incheon, Republic of Korea
| | - Ho Min Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Ji-Kan Ryu
- National Research Center for Sexual Medicine and Department of Urology, Inha University School of Medicine, Incheon, Republic of Korea
| | - Jun-Kyu Suh
- National Research Center for Sexual Medicine and Department of Urology, Inha University School of Medicine, Incheon, Republic of Korea.
| |
Collapse
|
13
|
Hou QL, Ge MY, Zhang CD, Tian DD, Wang LK, Tian HZ, Wang WH, Zhang WD. Adipose tissue-derived stem cell therapy for erectile dysfunction in rats: a systematic review and meta-analysis. Int Urol Nephrol 2017; 49:1127-1137. [PMID: 28417342 DOI: 10.1007/s11255-017-1590-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 04/09/2017] [Indexed: 01/10/2023]
Abstract
OBJECTIVE We aimed to systematically assess the effect of adipose tissue-derived stem cell (ADSC) therapy and its influential factors on the treatment of erectile dysfunction (ED) in rats. METHODS Two authors independently searched for published studies through PubMed and EMBASE from study inception until August 31, 2016. A meta-analysis was used to combine the effect estimate from the published studies. A subgroup analysis was performed to identify the effect of some influential factors. The pooled standardized mean differences (SMDs) with 95% confidence intervals (CIs) were calculated by a fixed-effects or random-effects model analysis. RESULTS Twenty studies with a total of 248 rats were included in this meta-analysis. The pooled analysis showed that ADSC therapy significantly increased the ratio of intracavernous pressure and mean arterial pressure (ICP/MAP; SMD 3.46, 95% CI 2.85-4.06; P < 0.001) compared to control therapy. The levels of neuronal nitric oxide synthase (nNOS; SMD 6.37, 95% CI 4.35-8.39; P < 0.001), the cavernous smooth muscle content (CSMC; SMD 3.65, 95% CI 2.65-4.65; P < 0.001), the ratio of cavernous smooth muscle and collagen (CSM/collagen; SMD 4.16, 95% CI 2.59-5.72; P < 0.001), and the cyclic guanosine monophosphate (cGMP; SMD 7.12, 95% CI 2.76-11.48; P = 0.001) were higher following ADSC therapy than following control therapy. Subgroup analysis showed that ADSCs modified by growth or neurotrophic factors significantly recovered erectile function (P < 0.001) compared with ADSC therapy. CONCLUSION The adequate data indicated that ADSC therapy recovered erectile function and regenerated cavernous structures in ED rats, and ADSCs modified by some growth and neurotrophic factors accelerated the recovery of erectile function and cavernous structures in ED rats.
Collapse
Affiliation(s)
- Quan-Liang Hou
- Department of Epidemiology, College of Public Heath, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Meng-Ying Ge
- Department of Epidemiology, College of Public Heath, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Cheng-da Zhang
- School of Public Health and Tropical Medicine, New Orleans, LA, 70112, USA
| | - Dan-Dan Tian
- Department of Epidemiology, College of Public Heath, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Lian-Ke Wang
- Department of Epidemiology, College of Public Heath, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Hui-Zi Tian
- Department of Epidemiology, College of Public Heath, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Wen-Hua Wang
- Department of Epidemiology, College of Public Heath, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Wei-Dong Zhang
- Department of Epidemiology, College of Public Heath, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| |
Collapse
|
14
|
Zhou L, Song Q, Shen J, Xu L, Xu Z, Wu R, Ge Y, Zhu J, Wu J, Dou Q, Jia R. Comparison of human adipose stromal vascular fraction and adipose-derived mesenchymal stem cells for the attenuation of acute renal ischemia/reperfusion injury. Sci Rep 2017; 7:44058. [PMID: 28276451 PMCID: PMC5343423 DOI: 10.1038/srep44058] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 02/03/2017] [Indexed: 02/06/2023] Open
Abstract
Stem cells therapy has been suggested as a promising option for the treatment of acute kidney injury (AKI). This study was performed to compare the abilities of xenogenic transplantation of human adipose stromal vascular fraction (SVF) and adipose-derived mesenchymal stem cells (AdMSCs) to facilitate the recovery of renal function and structure in a rat model of ischemia/reperfusion (IR) induced AKI. SVF or AdMSCs were transplanted to the injured kidney through intra-parenchymal injection. Significantly improved renal function and reduced tubular injury were observed in SVF and AdMSCs groups. Administration of SVF or AdMSCs contributed to significantly improved cell proliferation and markedly reduced cell apoptosis in parallel with reduced microvascular rarefaction in injured kidney. IR injury resulted in higher levels of inflammatory cytokines, whereas xenogenic transplantation of SVF or AdMSCs reduced but not induced inflammatory cytokines expression. Additionally, in vitro study showed that administration of SVF or AdMSCs could also significantly promote the proliferation and survival of renal tubular epithelial cells underwent hypoxia/reoxygenation injury through secreting various growth factors. However, cell proliferation was significantly promoted in SVF group than in AdMSCs group. In conclusion, our study demonstrated that administration of SVF or AdMSCs was equally effective in attenuating acute renal IR injury.
Collapse
Affiliation(s)
- Liuhua Zhou
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, No. 68 Changle Road, Nanjing, Jiangsu 210006, China.,Center for Renal Transplantation, Nanjing First Hospital, Nanjing Medical University, No. 68 Changle Road, Nanjing, Jiangsu 210006, China
| | - Qun Song
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, No. 68 Changle Road, Nanjing, Jiangsu 210006, China
| | - Jiangwei Shen
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, No. 68 Changle Road, Nanjing, Jiangsu 210006, China
| | - Luwei Xu
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, No. 68 Changle Road, Nanjing, Jiangsu 210006, China.,Center for Renal Transplantation, Nanjing First Hospital, Nanjing Medical University, No. 68 Changle Road, Nanjing, Jiangsu 210006, China
| | - Zheng Xu
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, No. 68 Changle Road, Nanjing, Jiangsu 210006, China.,Center for Renal Transplantation, Nanjing First Hospital, Nanjing Medical University, No. 68 Changle Road, Nanjing, Jiangsu 210006, China
| | - Ran Wu
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, No. 68 Changle Road, Nanjing, Jiangsu 210006, China.,Center for Renal Transplantation, Nanjing First Hospital, Nanjing Medical University, No. 68 Changle Road, Nanjing, Jiangsu 210006, China
| | - Yuzheng Ge
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, No. 68 Changle Road, Nanjing, Jiangsu 210006, China.,Center for Renal Transplantation, Nanjing First Hospital, Nanjing Medical University, No. 68 Changle Road, Nanjing, Jiangsu 210006, China
| | - Jiageng Zhu
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, No. 68 Changle Road, Nanjing, Jiangsu 210006, China.,Center for Renal Transplantation, Nanjing First Hospital, Nanjing Medical University, No. 68 Changle Road, Nanjing, Jiangsu 210006, China
| | - Jianping Wu
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, No. 68 Changle Road, Nanjing, Jiangsu 210006, China.,Center for Renal Transplantation, Nanjing First Hospital, Nanjing Medical University, No. 68 Changle Road, Nanjing, Jiangsu 210006, China
| | - Quanliang Dou
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, No. 68 Changle Road, Nanjing, Jiangsu 210006, China.,Center for Renal Transplantation, Nanjing First Hospital, Nanjing Medical University, No. 68 Changle Road, Nanjing, Jiangsu 210006, China
| | - Ruipeng Jia
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, No. 68 Changle Road, Nanjing, Jiangsu 210006, China.,Center for Renal Transplantation, Nanjing First Hospital, Nanjing Medical University, No. 68 Changle Road, Nanjing, Jiangsu 210006, China
| |
Collapse
|
15
|
Stem Cells in Male Sexual Dysfunction: Are We Getting Somewhere? Sex Med Rev 2016; 5:222-235. [PMID: 28041853 DOI: 10.1016/j.sxmr.2016.11.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 11/02/2016] [Accepted: 11/22/2016] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Stem cells for sexual disorders are steadily being introduced into clinical trials. Two conditions of importance are the main target for this line of treatment, especially when regarding the wide array of translational and basic science highlighting the potential advantages of regenerative therapy: erectile dysfunction (ED) and more recently Peyronie disease (PD). Cellular therapy offers a treatment modality that might reverse disease progression. It would be used in a curative setting, in contrast to other pharmaceutical agents that are currently available. AIM To review basic preclinical studies and recent clinical trials of stem cells on ED and PD. METHODS A search of the medical literature for the following terms was performed using PubMed: stem cells, cellular therapy, erectile dysfunction, Peyronie's disease, and clinical trial. MAIN OUTCOME MEASURES A non-systematic narrative review and critical reflection on preclinical and clinical studies administering stem cells for ED and PD in animal models and human subjects. RESULTS Numerous studies have confirmed the beneficial functional effects of stem cell injection in established animal models on ED and PD. Various stem cell types have been adopted, from embryonic to adult mesenchymal cell types. Each cell type offers distinctive advantages and disadvantages. Diverse administrations of stem cells were investigated, with insignificant variability in the ultimate results. Stem cells appear to have a pronounced paracrine effect, rather than the classic engraftment and differentiation hypothesis. Phase 1 clinical trials using stem cells have not reported any severe adverse events in animals. However, these results cannot be extrapolated to draw any conclusions about efficacy in human patients. CONCLUSION Stem cells have an established efficacy in preclinical studies and early clinical trials. Studies are currently being published demonstrating the safety of intrapenile injection of autologous bone marrow- and adipose tissue-derived stem cells. Soebadi MA, Milenkovic U, Weyne E, et al. Stem Cells in Male Sexual Dysfunction: Are We Getting Somewhere? Sex Med Rev 2017;5:222-235.
Collapse
|
16
|
Abstract
PURPOSE OF REVIEW To summarize recent literature on basic stem cell research in erectile dysfunction in cavernous nerve injury, aging, diabetes, and Peyronie's disease and to provide a perspective on clinical translation of these cellular therapies. RECENT FINDINGS Stem cell research has been concentrated on mesenchymal stem (stromal) cells from bone marrow and adipose tissue. Application of both cell types has produced positive effects on erectile function in various animal models of erectile dysfunction. In acute animal models, such as cavernous nerve injury-induced erectile dysfunction and chemically induced Peyronie's disease, engraftment and differentiation have not been observed, and stem cells are believed to interact with the host tissue in a paracrine fashion, whereas in chronic disease models some evidence suggests both engraftment and paracrine factors may support improved function. Clinical trials are now investigating therapeutic efficacy of cellular therapy, whereas the first safety studies in humans have recently been published. SUMMARY Evidence from preclinical studies has established stem cells as a potential curative treatment for erectile dysfunction and early phase clinical trials are currently performed.
Collapse
|
17
|
Peak TC, Anaissie J, Hellstrom WJG. Current Perspectives on Stem Cell Therapy for Erectile Dysfunction. Sex Med Rev 2016; 4:247-256. [PMID: 27871958 DOI: 10.1016/j.sxmr.2016.02.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 02/18/2016] [Accepted: 02/20/2016] [Indexed: 01/06/2023]
Abstract
INTRODUCTION Erectile dysfunction (ED) is a common sexual disorder that affects the lives of millions of male patients and their partners. Various medical and surgical therapies exist, with the most common being oral intake of phosphodiesterase 5 inhibitors. One therapeutic strategy in preclinical development to treat ED is stem cell transplantation. AIM To examine the studies that have investigated stem cells for the treatment of ED. METHODS A literature review was performed through PubMed focusing on stem cells and ED. MAIN OUTCOME MEASURES An assessment of different types of stem cells and how they may be applied therapeutically in the treatment of ED. RESULTS The stem cell types that have been investigated for the treatment of ED include bone marrow-derived mesenchymal, adipose-derived, muscle-derived, testes, urine-derived, neural crest, and endothelial progenitor. Depending on the cell type, research has demonstrated that with transplantation, stem cells exert a paracrine effect on penile tissue, and can differentiate into smooth muscle, endothelium, and neurons. CONCLUSION Multiple stem cell lines are currently being studied for their potential to treat ED. To date, stem cells have proven safe and effective in both animal and human models of ED. More research is needed to understand their full therapeutic potential.
Collapse
Affiliation(s)
- Taylor C Peak
- Tulane University School of Medicine, Department of Urology, New Orleans, LA, USA
| | - James Anaissie
- Tulane University School of Medicine, Department of Urology, New Orleans, LA, USA
| | - Wayne J G Hellstrom
- Tulane University School of Medicine, Department of Urology, New Orleans, LA, USA.
| |
Collapse
|
18
|
Effects of adipose-derived stem cells plus insulin on erectile function in streptozotocin-induced diabetic rats. Int Urol Nephrol 2016; 48:657-69. [DOI: 10.1007/s11255-016-1221-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 01/11/2016] [Indexed: 12/31/2022]
|
19
|
|
20
|
Xenotransplantation of human adipose-derived stem cells in the regeneration of a rabbit peripheral nerve. J Plast Reconstr Aesthet Surg 2015; 68:e189-97. [PMID: 26279394 DOI: 10.1016/j.bjps.2015.07.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 05/27/2015] [Accepted: 07/06/2015] [Indexed: 02/07/2023]
Abstract
UNLABELLED Adipose tissue-derived mesenchymal stem cells (AdMSCs) are useful in the regeneration of neural tissues. Furthermore, xenotransplantation of human adipose tissue-derived mesenchymal stem cells (hAdMSCs) into animal models has already been tested and the results encouraged us to study peripheral nerve regeneration in rabbits, in order to test the feasibility of a xenotransplantation of hAdMSCs. ANIMALS AND METHOD To promote end-to-end nerve fiber contacts of a 4-cm gap in the peroneal nerve of white New Zealand rabbits, an autologous vein conduit was used and three groups of animals were evaluated. In Group I, the gap was repaired with a vein conduit refilled with fibrin. Group II was similar, but the animals were treated with cyclosporine A. In Group III, a fibrin scaffold with hAdMSCs was placed inside the autologous vein conduit, and animals were treated with cyclosporine A. Neurofilament immunohistochemistry results showed 100% nerve regeneration at the vein guidance channel 90 days after the surgery in the hAdMSC-transplanted group but lesser neural regeneration in the neurofilaments of groups I and II. The analysis of variance (ANOVA) test showed statistically significant differences among all groups (p < 0.04). Group III exclusively tested positive for human monoclonal anti-mitochondrial antibody. Electron microscopy images showed tiny bundles, with a predominance of nonmyelinated axons. Myelinated axons caused irregular thickness of the myelin sheath, which was especially observed in group III. CONCLUSIONS Xenotransplantation of hAdMSCs into a fibrin scaffold promoted nerve regeneration through a vein conduit that connected a 4-cm gap created at the peroneal nerve of rabbits. Animals treated with hAdMSCs presented negative inflammatory response at the regenerated nerve gaps, but it was demonstrated that hAdMSCs were incorporated to the new nerve creating neural tissue and endothelial cells. However, hAdMSCs required immunosuppression with cyclosporine A to achieve axonal regeneration.
Collapse
|
21
|
You D, Jang MJ, Kim BH, Song G, Lee C, Suh N, Jeong IG, Ahn TY, Kim CS. Comparative study of autologous stromal vascular fraction and adipose-derived stem cells for erectile function recovery in a rat model of cavernous nerve injury. Stem Cells Transl Med 2015; 4:351-8. [PMID: 25792486 DOI: 10.5966/sctm.2014-0161] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The abilities of intracavernous injection of autologous stromal vascular fraction (SVF) and adipose-derived stem cells (ADSCs) to facilitate recovery of erectile function in a rat model of cavernous nerve (CN) injury were compared. Forty male Sprague-Dawley rats were randomly divided into four groups: sham and control groups (intracavernous injection of phosphate-buffered saline), SVF group (intracavernous injection of SVF), and ADSC group (intracavernous injection of ADSCs). Rats in the latter three groups underwent bilateral CN injury prior to injection. The evaluation of erectile function and histomorphometric studies were performed 4 weeks after injection. The ratio of maximal intracavernous pressure to mean arterial pressure was significantly lower in the control group than in the sham group (0.18 vs. 0.56, p < .001). Intracavernous injection of SVF (0.36, p = .035) significantly improved erectile function compared with that in the control group, whereas the ADSC group (0.35, p = .052) showed marginally significant improvement. The smooth muscle/collagen ratio, smooth muscle content, number of neuronal nitric-oxide synthase-positive nerve fibers, and expression of von Willebrand factor were significantly higher in the SVF and ADSC groups than in the control group. Expression of endothelial nitric-oxide synthase was significantly increased in the SVF group. The increases in the smooth muscle/collagen ratio and von Willebrand factor expression were larger in the SVF group than in the ADSC group. Intracavernous injection of SVF or ADSCs was equally effective in recovering penile erection in a rat model of CN injury.
Collapse
Affiliation(s)
- Dalsan You
- Department of Urology and Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea; Cell Therapy Center, Specific Laboratory and Test, Asan Medical Center, Seoul, Republic of Korea
| | - Myoung Jin Jang
- Department of Urology and Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea; Cell Therapy Center, Specific Laboratory and Test, Asan Medical Center, Seoul, Republic of Korea
| | - Bo Hyun Kim
- Department of Urology and Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea; Cell Therapy Center, Specific Laboratory and Test, Asan Medical Center, Seoul, Republic of Korea
| | - Geehyun Song
- Department of Urology and Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea; Cell Therapy Center, Specific Laboratory and Test, Asan Medical Center, Seoul, Republic of Korea
| | - Chunwoo Lee
- Department of Urology and Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea; Cell Therapy Center, Specific Laboratory and Test, Asan Medical Center, Seoul, Republic of Korea
| | - Nayoung Suh
- Department of Urology and Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea; Cell Therapy Center, Specific Laboratory and Test, Asan Medical Center, Seoul, Republic of Korea
| | - In Gab Jeong
- Department of Urology and Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea; Cell Therapy Center, Specific Laboratory and Test, Asan Medical Center, Seoul, Republic of Korea
| | - Tai Young Ahn
- Department of Urology and Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea; Cell Therapy Center, Specific Laboratory and Test, Asan Medical Center, Seoul, Republic of Korea
| | - Choung-Soo Kim
- Department of Urology and Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea; Cell Therapy Center, Specific Laboratory and Test, Asan Medical Center, Seoul, Republic of Korea
| |
Collapse
|
22
|
Stem cell treatment of erectile dysfunction. Adv Drug Deliv Rev 2015; 82-83:137-44. [PMID: 25446142 DOI: 10.1016/j.addr.2014.11.012] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Revised: 09/09/2014] [Accepted: 11/08/2014] [Indexed: 12/31/2022]
Abstract
Erectile Dysfunction (ED) is a common disease that typically affects older men. While oral type-5 phosphodieserase inhibitors (PDE5Is) represent a successful first-line therapy, many patients do not respond to this treatment leading researchers to look for alternative treatment modalities. Stem cell (SC) therapy is a promising new frontier for the treatment of those patients and many studies demonstrated its therapeutic effects. In this article, using a Medline database search of all relevant articles, we present a summary of the scientific principles behind SCs and their use for treatment of ED. We discuss specifically the different types of SCs used in ED, the methods of delivery tested, and the methods attempted to enhance SC therapy effect. In addition, we review the current preclinical literature on SC therapy for ED and present a summary of its findings in addition to the single clinical trial published.
Collapse
|
23
|
Song K, Jin H, Park J, Choi MJ, Kwon M, Kwon K, Batbold D, Yin GN, Kim WJ, Koh GY, Ryu J, Suh J. Intracavernous Delivery of Stromal Vascular Fraction Restores Erectile Function Through Production of Angiogenic Factors in a Mouse Model of Cavernous Nerve Injury. J Sex Med 2014; 11:1962-73. [DOI: 10.1111/jsm.12597] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|