1
|
Carvalheira LDR, Leite Albeny AC, Silva EBM, Borges ÁM. Heat shock on bovine embryos from day 2.5-3 selects the most competent for progression to the blastocyst stage. Theriogenology 2024; 230:21-27. [PMID: 39241577 DOI: 10.1016/j.theriogenology.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/30/2024] [Accepted: 09/01/2024] [Indexed: 09/09/2024]
Abstract
Heat shock can impair embryo formation, while growth factors, such as colony-stimulating factor 2 (CSF2), modulate embryonic development. This study evaluated the effect of heat shock between days 2.5 and 3, as well as the impact of CSF2 at day 5 on bovine embryos cultured in a serum-free in vitro medium. The focus was on blastocyst development, the number of blastomeres, DNA fragmentation (TUNEL-positive cells), and mitochondrial activity. Heat shock reduced the proportion of cleaved embryos that developed into blastocysts (P = 0.0603). The resultant blastocysts exhibited a reduced number and proportion of TUNEL-positive cells in the trophectoderm (P = 0.0270 and P = 0.0240, respectively) and in the entire embryo (P = 0.0029 and P = 0.0031, respectively). Additionally, mitochondrial activity was lower in blastocysts derived from heat-shocked embryos (P = 0.0150) and further reduced in embryos exposed to both heat shock and CSF2 (P = 0.0415). In conclusion, the exposure of cleaved embryos to heat shock reduced their development to the blastocyst stage. However, the resulting blastocysts showed decreased DNA fragmentation and mitochondrial activity.
Collapse
Affiliation(s)
- Luciano de Rezende Carvalheira
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, 31270-901, Belo Horizonte, Minas Gerais, Brazil.
| | - Ana Carolina Leite Albeny
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, 31270-901, Belo Horizonte, Minas Gerais, Brazil
| | - Eliane Beatriz Magalhães Silva
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, 31270-901, Belo Horizonte, Minas Gerais, Brazil
| | - Álan Maia Borges
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, 31270-901, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
2
|
Hansen PJ, Estrada-Cortés E, Amaral TF, Ramírez-Hernández R. Meta-analysis to determine efficacy of colony-stimulating factor 2 for improving pregnancy success after embryo transfer in cattle. Theriogenology 2024; 219:126-131. [PMID: 38428334 DOI: 10.1016/j.theriogenology.2024.02.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/19/2024] [Accepted: 02/22/2024] [Indexed: 03/03/2024]
Abstract
Results have been inconsistent as to whether addition of colony stimulating factor 2 (CSF2) to culture medium improves embryo competence for establishment of pregnancy in cattle and humans. The purpose of the current study was to use all available experiments in cattle concerning effects of CSF2 on pregnancy success after transfer into recipient cattle. The approach was to perform a meta-analysis of all published data sets as well as data from an unpublished experiment described for the first time here. Meta-analysis failed to support the hypothesis that addition of CSF2 to embryo culture medium improves competence of bovine blastocysts to increase pregnancy or calving rates after transfer into recipient females. Thus, its general use as a culture medium additive to increase pregnancy success after embryo transfer is not recommended.
Collapse
Affiliation(s)
- Peter J Hansen
- Department of Animal Sciences, D.H. Barron Reproductive and Perinatal Biology Research Program, and Genetics Institute, University of Florida, Gainesville, 32611-0910, FL, USA.
| | - Eliab Estrada-Cortés
- Department of Animal Sciences, D.H. Barron Reproductive and Perinatal Biology Research Program, and Genetics Institute, University of Florida, Gainesville, 32611-0910, FL, USA; Campo Experimental Centro Altos de Jalisco, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Tepatitlán de Morelos, Jalisco, 47600, Mexico
| | - Thiago F Amaral
- Department of Animal Sciences, D.H. Barron Reproductive and Perinatal Biology Research Program, and Genetics Institute, University of Florida, Gainesville, 32611-0910, FL, USA
| | - Rosabel Ramírez-Hernández
- Department of Animal Sciences, D.H. Barron Reproductive and Perinatal Biology Research Program, and Genetics Institute, University of Florida, Gainesville, 32611-0910, FL, USA
| |
Collapse
|
3
|
Hansen PJ. Review: Some challenges and unrealized opportunities toward widespread use of the in vitro-produced embryo in cattle production. Animal 2023; 17 Suppl 1:100745. [PMID: 37567654 PMCID: PMC10659117 DOI: 10.1016/j.animal.2023.100745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 02/05/2023] [Accepted: 02/06/2023] [Indexed: 08/13/2023] Open
Abstract
The embryo produced by in vitro oocyte maturation, fertilization, and embryonic development is an important resource for genetic improvement and has the potential to improve female fertility and to be programmed to produce offspring with superior ability for health and production. The cultured embryo is also an important component of several realized and potential technologies such as gene editing, somatic cell nuclear cloning, stem cell technologies and gamete generation in vitro. Full realization of the opportunities afforded by the in vitro-produced embryo will require overcoming some technical obstacles to cost-effective implementation of an embryo transfer program. Among the research goals for improving the penetration of embryo transfer in the cattle industry are development of methods to increase the supply of oocytes from genetically elite females, enhance the proportion of oocytes that become transferrable embryos, improve the fraction of embryos that establish pregnancy after transfer, reduce pregnancy wastage after pregnancy diagnosis, and identify culture conditions to optimize postnatal phenotype.
Collapse
Affiliation(s)
- Peter J Hansen
- Department of Animal Sciences, D.H. Barron Reproductive and Perinatal Biology Research Program, and Genetics Institute, University of Florida, Gainesville, FL 32611-0910, USA.
| |
Collapse
|
4
|
Zhang H, Li X, Zhang F, Li F, Jin H, Su Y, Li G. Serum C-reactive protein levels are associated with clinical pregnancy rate after in vitro fertilization among normal-weight women. Front Endocrinol (Lausanne) 2023; 14:934766. [PMID: 36742394 PMCID: PMC9893108 DOI: 10.3389/fendo.2023.934766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 01/05/2023] [Indexed: 01/21/2023] Open
Abstract
OBJECTIVE To assess whether low-grade inflammation, measured by serum high-sensitivity C-reactive protein (hsCRP) levels, is associated with in vitro fertilization (IVF) outcomes. DESIGN A retrospective study. SETTING University-affiliated IVF center. PATIENTS In the present study, 875 women of normal weight who underwent their first fresh embryo transfer (ET) cycles for IVF treatment were divided into three groups according to serum concentrations of hsCRP. INTERVENTIONS Serum from women undergoing IVF was collected on days 2-4 of a spontaneous menstrual cycle prior to the commencement of ovarian stimulation. MAIN OUTCOME MEASURES The IVF outcomes included implantation, biochemical pregnancy, clinical pregnancy, miscarriage and live birth rates. RESULTS The women were divided into three groups according to the baseline serum levels of hsCRP as follows: low hsCRP (<1 mg/L; n=517), medium hsCRP (1-3 mg/L; n= 270), high hsCRP (>3 mg/L; n=88). The maternal age was similar among the three groups. The women in the high and medium hsCRP group had significantly higher BMI compared with those in the low hsCRP group. The protocol of controlled ovarian hyperstimulation, the gonadotropin dose administered, the serum estradiol levels, progesterone levels and the endometrial thickness on the day of triggering, as well as the number of retrieved oocytes, fertilized oocytes and good quality embryos, and the oocyte maturation rate were similar among the three groups. Implantation, biochemical pregnancy and clinical miscarriage rates did not differ significantly were not significantly different among three groups. The clinical pregnancy rate was significantly lower in the high hsCRP group compared with that in the low hsCRP group (50.0% versus 63.4%; P<0.0167), which contributed to a significant decrease in birth rate (39.8% versus 53.8%; P<0.0167). High serum hsCRP levels was found to be a factor affecting live birth rate. CONCLUSIONS Among women of normal weight undergoing their first IVF treatment, it was found that low-grade inflammation was associated with reduced clinical pregnancy and live birth rates following fresh ET cycles.
Collapse
Affiliation(s)
- Huixia Zhang
- Centre for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xin Li
- Centre for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Fan Zhang
- Centre for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Fei Li
- Centre for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Haixia Jin
- Centre for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yingchun Su
- Centre for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Gang Li
- Centre for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Gang Li,
| |
Collapse
|
5
|
Amaral TF, de Grazia JGV, Martinhao LAG, De Col F, Siqueira LGB, Viana JHM, Hansen PJ. Actions of CSF2 and DKK1 on bovine embryo development and pregnancy outcomes are affected by composition of embryo culture medium. Sci Rep 2022; 12:7503. [PMID: 35525843 PMCID: PMC9079070 DOI: 10.1038/s41598-022-11447-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 04/25/2022] [Indexed: 12/29/2022] Open
Abstract
Procedures for in vitro embryo production in cattle have not been optimized. In the current experiment, we utilized a 3 × 3 factorial design to test whether the proportion of embryos becoming blastocysts in culture and the pregnancy rate after embryo transfer are affected by type of serum in the medium [no serum; 3% (v/v) KnockOut Serum Replacement (SR); 3% (v/v) fetal bovine serum (FBS)] and addition of specific embryokines [vehicle; 10 ng/mL colony stimulating factor 2 (CSF2); 100 ng/mL dickkopf related protein 1 (DKK1)] at day 5 of culture. Embryos were produced using abattoir-derived ovaries and Y-sorted semen from two Angus sires. The percent of putative zygotes and cleaved embryos becoming blastocysts was improved by SR and FBS. Pregnancy rate at day 30 was determined for 1426 Nelore recipients and calving rate for 266 recipients. In the absence of CSF2 or DKK1, pregnancy rates were lower for embryos cultured with SR or FBS. CSF2 and DKK1 reduced pregnancy rate for embryos cultured without serum but had no detrimental effect in the SR or FBS groups. Indeed, CSF2 blocked the negative effect of FBS on pregnancy rate. Data on birth weights were available for 67 bull calves. There were no effects of treatment. The sire used to produce embryos had significant and large effects on development to the blastocyst stage, pregnancy rate at day 30, calving rate and pregnancy loss between day 30 and calving. Results indicate that (1) SR and FBS can improve embryonic development in vitro while also compromising competence of embryos to survive after transfer, (2) actions of CSF2 and DKK1 depend upon other characteristics of the embryo production system, and (3) sire can have a large effect on embryonic development before and after transfer.
Collapse
Affiliation(s)
- Thiago F Amaral
- Department of Animal Sciences, D.H. Barron Reproductive and Perinatal Research Program, and Genetics Institute, University of Florida, Gainesville, FL, 32611-0910, USA
- Zoetis, Kalamazoo, MI, 49007, USA
| | | | - Luany Alves Galvao Martinhao
- FIVX Apoyar Biotech LTDA, Juiz de Fora, MG, Brazil
- Biological Science Institute, University of Brasilia, Brasilia, DF, Brazil
| | | | | | | | - Peter J Hansen
- Department of Animal Sciences, D.H. Barron Reproductive and Perinatal Research Program, and Genetics Institute, University of Florida, Gainesville, FL, 32611-0910, USA.
| |
Collapse
|
6
|
Drum JN, Madureira G, Rosa CO, Seneda MM, Wiltbank MC, Sartori R, Ortega MS. Male Embryos Produced in vitro Deviate From Their in vivo Counterparts in Placental Gene Expression on Day 32 of Pregnancy. FRONTIERS IN ANIMAL SCIENCE 2022. [DOI: 10.3389/fanim.2022.807217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
This study compared the gene expression of extraembryonic membranes (EEM) from in vitro produced (IVP) and in vivo (AI) derived pregnancies. A piece of conceptus (day 18) or chorioallantois (day 32) was used for DNA and RNA isolation and sex determination. Male and female ratios were analyzed by Chi-square. A total of three samples per sex and group (AI and IVP, days 18 and 32) were used for transcriptome analysis. Differentially expressed genes (DEGs) were determined using edgeR-robust. A false discovery rate (FDR) <0.05 was used for statistical significance. Sex ratio was similar on day 18 for AI and IVP groups. On day 32, the IVP group had a greater number of females than males (75 vs. 25%, P = 0.004). When comparing AI and IVP males vs. females, in both groups, genes upregulated in females on day 18 were related to placental function such as PAGs and TKDPs. On males on day 18, IFNT-related genes were upregulated. Comparing the techniques within sex, on day 18 female conceptuses, 50 genes were upregulated in IVP, and 21 in AI. IGF2, which is involved in placenta development, and APOA2, APOB, and APOE, involved in lipid metabolism, were upregulated in IVP conceptuses. On day 18, males had 15 upregulated genes in AI and 7 in IVP. On day 32, females had 21 upregulated genes in AI and 53 in IVP. Genes involved in lipid synthesis and metabolism were increased in the IVP group. Males on day 32 presented 899 DEGs, 564 upregulated in AI and 335 in IVP. Embryos from IVP had decreased expression of genes related to lipid and carbohydrate metabolism. Interestingly, pregnancy-associated glycoproteins (PAG) 7, 9, 10, and 19, were downregulated in IVP male. In conclusion, IVP-derived male embryos were more susceptible to alterations in gene expression and these effects extend to the peri-implantation period including genes associated with placental development and markers of placental function.
Collapse
|
7
|
van Duijn L, Rousian M, Laven JSE, Steegers-Theunissen RPM. Periconceptional maternal body mass index and the impact on post-implantation (sex-specific) embryonic growth and morphological development. Int J Obes (Lond) 2021; 45:2369-2376. [PMID: 34290384 DOI: 10.1038/s41366-021-00901-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 06/08/2021] [Accepted: 06/30/2021] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Women with obesity have an increased risk of pregnancy complications. Although complications generally present in the second and third trimester of pregnancy, most of them develop in the periconception period. Moreover, fetal sex also impacts pregnancy course and outcome. Therefore, our aim is to study (sex-specific) associations between periconceptional maternal body mass index (BMI) and embryonic growth and morphological development. METHODS A total of 884 women with singleton pregnancies were selected from the Rotterdam Periconception Cohort, comprising 15 women with underweight, 483 with normal weight, 231 with overweight and 155 with obesity. Longitudinal three-dimensional ultrasound examinations were performed at 7, 9, and 11 weeks of gestation for offline measurements of crown-rump length (CRL), embryonic volume (EV), and Carnegie stages. Analyses were adjusted for maternal age, parity, ethnicity, education, and periconceptional lifestyle. RESULTS A negative trend was observed for embryos of women with obesity (βEV -0.03, p = 0.086), whereas embryonic growth and developmental trajectories in women with overweight were comparable to those with normal weight. Maternal underweight was associated with faster morphological development (βCarnegie 0.78, p = 0.004). After stratification for fetal sex, it was demonstrated that female embryos of underweight women grow and morphologically develop faster than those of normal weight women (βEV 0.13, p = 0.008; βCarnegie 1.39, p < 0.001), whereas female embryos of women with obesity grow slower (βEV -0.05, p = 0.027). CONCLUSION We found that periconceptional maternal underweight is associated with faster embryonic growth, especially in females. In contrast, female embryos of women with obesity grow slower than female embryos of women with normal weight. This may be the result of altered female adaptation to the postnatal environment. Future research should focus on strategies for optimizing preconceptional maternal weight, to reduce BMI-related pregnancy complications and improve the health of future generations.
Collapse
Affiliation(s)
- Linette van Duijn
- Departments of Obstetrics and Gynecology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Melek Rousian
- Departments of Obstetrics and Gynecology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Joop S E Laven
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | | |
Collapse
|
8
|
Estrada-Cortés E, Jannaman EA, Block J, Amaral TF, Hansen PJ. Programming of postnatal phenotype caused by exposure of cultured embryos from Brahman cattle to colony-stimulating factor 2 and serum. J Anim Sci 2021; 99:6291391. [PMID: 34079989 DOI: 10.1093/jas/skab180] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 05/31/2021] [Indexed: 12/13/2022] Open
Abstract
Alterations in the environment of the preimplantation embryo can affect competence to establish pregnancy and phenotype of resultant calves. In this study, the bovine embryo produced in vitro was used to evaluate postnatal programming actions of the embryokine colony-stimulating factor 2 (CSF2) and serum, which is a common additive of culture media. Oocytes were collected by ovum pick up from Brahman donors and fertilized with semen from Brahman bulls. Embryos were randomly assigned to one of the three treatments: vehicle, CSF2 10 ng/mL, or 1% (v/v) serum. Treatments were added to the culture medium from day 5 to 7 after fertilization. Blastocysts were harvested on day 7 and transferred into crossbred recipients. Postnatal body growth and Longissimus dorsi muscle characteristics of the resultant calves were measured. The percent of cleaved embryos becoming blastocysts was increased by serum and, to a lesser extent, CSF2. Treatment did not affect survival after embryo transfer but gestation length was shortest for pregnancies established with serum-treated embryos. Treatment did not significantly affect postnatal body weight or growth. At 3 mo of age, CSF2 calves had lower fat content in the Longissimus dorsi muscle and less subcutaneous fat over the muscle than vehicle calves. There was a tendency for cross-sectional area of the muscle to be smaller for serum calves than vehicle calves. Results confirm the importance of the preimplantation period as a window to modulate postnatal phenotype of resultant calves. In particular, CSF2 exerted actions during the preimplantation period to program characteristics of accumulation of intramuscular and subcutaneous fat of resultant calves. The use of a low serum concentration in culture medium from day 5 to 7 of development can increase the yield of transferrable embryos without causing serious negative consequences for the offspring.
Collapse
Affiliation(s)
- Eliab Estrada-Cortés
- Department of Animal Sciences and D.H. Barron Reproductive and Perinatal Biology Research Program, Genetics Institute, University of Florida, Gainesville, FL 32611-0910, USA.,Campo Experimental Centro Altos de Jalisco, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Tepatitlán de Morelos, Jalisco, 47600, México
| | - Elizabeth A Jannaman
- Department of Animal Sciences and D.H. Barron Reproductive and Perinatal Biology Research Program, Genetics Institute, University of Florida, Gainesville, FL 32611-0910, USA
| | - Jeremy Block
- Department of Animal Science, University of Wyoming, Laramie, WY 82071, USA
| | - Thiago F Amaral
- Department of Animal Sciences and D.H. Barron Reproductive and Perinatal Biology Research Program, Genetics Institute, University of Florida, Gainesville, FL 32611-0910, USA
| | - Peter J Hansen
- Department of Animal Sciences and D.H. Barron Reproductive and Perinatal Biology Research Program, Genetics Institute, University of Florida, Gainesville, FL 32611-0910, USA
| |
Collapse
|
9
|
Ealy AD, Speckhart SL, Wooldridge LK. Cytokines That Serve as Embryokines in Cattle. Animals (Basel) 2021; 11:ani11082313. [PMID: 34438770 PMCID: PMC8388520 DOI: 10.3390/ani11082313] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/27/2021] [Accepted: 08/02/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary This review will explore how some cytokines also influence early embryonic development. We term these types of molecules as embryokines. Understanding how cytokines serve as embryokines could offer new opportunities to improve embryo development and the overall health of the embryo so that pregnancies will be retained after embryo transfer and so that viable offspring are produced. At least two cytokines may offer these benefits to bovine embryos produced in vitro. Additional cytokines also are identified in this review that may contain beneficial activities on bovine embryos. Abstract The term “embryokine” has been used to denote molecules produced by the endometrium, oviduct, or by embryo itself that will influence embryo development. Several cytokines have been identified as embryokines in cattle and other mammals. This review will describe how these cytokines function as embryokines, with special emphasis being placed on their actions on in vitro produced (IVP) bovine embryos. Embryokines are being explored for their ability to overcome the poor development rates of IVP embryos and to limit post-transfer pregnancy retention efficiencies that exist in IVP embryos. This review will focus on describing two of the best-characterized cytokines, colony-stimulating factor 2 and interleukin 6, for their ability to modify bovine embryo quality and confirmation, promote normal fetal development, and generate healthy calves. Additional cytokines will also be discussed for their potential to serve as embryokines.
Collapse
Affiliation(s)
- Alan D. Ealy
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA 24061, USA;
- Correspondence:
| | - Savannah L. Speckhart
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA 24061, USA;
| | | |
Collapse
|
10
|
Zolini AM, Block J, Rabaglino MB, Tríbulo P, Hoelker M, Rincon G, Bromfield JJ, Hansen PJ. Molecular fingerprint of female bovine embryos produced in vitro with high competence to establish and maintain pregnancy†. Biol Reprod 2021; 102:292-305. [PMID: 31616926 DOI: 10.1093/biolre/ioz190] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 08/06/2019] [Accepted: 10/01/2019] [Indexed: 12/11/2022] Open
Abstract
The objective was to identify the transcriptomic profile of in vitro-derived embryos with high competence to establish and maintain gestation. Embryos produced with X-sorted sperm were cultured from day 5 to day 7 in serum-free medium containing 10 ng/ml recombinant bovine colony-stimulating factor 2 (CSF2) or vehicle. The CSF2 was administered because this molecule can increase blastocyst competence for survival after embryo transfer. Blastocysts were harvested on day 7 of culture and manually bisected. One demi-embryo from a single blastocyst was transferred into a synchronized recipient and the other half was used for RNA-seq analysis. Using P < 0.01 and a fold change >2-fold or <0.5 fold as cutoffs, there were 617 differentially expressed genes (DEG) between embryos that survived to day 30 of gestation vs those that did not, 470 DEG between embryos that survived to day 60 and those that did not, 432 DEG between embryos that maintained pregnancy from day 30 to day 60 vs those where pregnancy failed after day 30, and 635 DEG regulated by CSF2. Pathways and ontologies in which DEG were overrepresented included many related to cellular responses to stress and cell survival. It was concluded that gene expression in the blastocyst is different between embryos that are competent to establish and maintain pregnancy vs those that are not. The relationship between expression of genes related to cell stress and subsequent embryonic survival probably reflects cellular perturbations caused by embryonic development taking place in the artificial environment associated with cell culture.
Collapse
Affiliation(s)
- A M Zolini
- Department of Animal Sciences, D.H. Barron Reproductive and Perinatal Biology Research Program, and Genetics Institute, University of Florida, Gainesville, Florida, USA
| | - J Block
- Zoetis Inc., Kalamazoo, Michigan, USA
| | - M B Rabaglino
- Department of Applied Mathematics and Computer Science, Instituto de Investigación en Ciencias de la Salud, CONICET, Córdoba, Argentina.,Quantitative Genetics, Bioinformatics and Computational Biology Group, Technical University of Denmark, Kongens Lyngby, Denmark
| | - P Tríbulo
- Department of Animal Sciences, D.H. Barron Reproductive and Perinatal Biology Research Program, and Genetics Institute, University of Florida, Gainesville, Florida, USA
| | - M Hoelker
- Department of Animal Breeding and Husbandry, Institute of Animal Science, University of Bonn, Bonn, Germany.,Teaching and Research Station Frankenforst, Faculty of Agriculture, University of Bonn, Königswinter, Germany.,Center of Integrated Dairy Research, University of Bonn, Bonn, Germany
| | - G Rincon
- Zoetis Inc., Kalamazoo, Michigan, USA
| | - J J Bromfield
- Department of Animal Sciences, D.H. Barron Reproductive and Perinatal Biology Research Program, and Genetics Institute, University of Florida, Gainesville, Florida, USA
| | - P J Hansen
- Department of Animal Sciences, D.H. Barron Reproductive and Perinatal Biology Research Program, and Genetics Institute, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
11
|
Canovas S, Ivanova E, Hamdi M, Perez-Sanz F, Rizos D, Kelsey G, Coy P. Culture Medium and Sex Drive Epigenetic Reprogramming in Preimplantation Bovine Embryos. Int J Mol Sci 2021; 22:ijms22126426. [PMID: 34204008 PMCID: PMC8232708 DOI: 10.3390/ijms22126426] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/04/2021] [Accepted: 06/08/2021] [Indexed: 01/25/2023] Open
Abstract
Assisted reproductive technologies impact transcriptome and epigenome of embryos and can result in long-term phenotypic consequences. Whole-genome DNA methylation profiles from individual bovine blastocysts in vivo- and in vitro-derived (using three sources of protein: reproductive fluids, blood serum and bovine serum albumin) were generated. The impact of in vitro culture on DNA methylation was analyzed, and sex-specific methylation differences at blastocyst stage were uncovered. In vivo embryos showed the highest levels of methylation (29.5%), close to those produced in vitro with serum, whilst embryos produced in vitro with reproductive fluids or albumin showed less global methylation (25-25.4%). During repetitive element analysis, the serum group was the most affected. DNA methylation differences between in vivo and in vitro groups were more frequent in the first intron than in CpGi in promoters. Moreover, hierarchical cluster analysis showed that sex produced a stronger bias in the results than embryo origin. For each group, distance between male and female embryos varied, with in vivo blastocyst showing a lesser distance. Between the sexually dimorphic methylated tiles, which were biased to X-chromosome, critical factors for reproduction, developmental process, cell proliferation and DNA methylation machinery were included. These results support the idea that blastocysts show sexually-dimorphic DNA methylation patterns, and the known picture about the blastocyst methylome should be reconsidered.
Collapse
Affiliation(s)
- Sebastian Canovas
- Physiology of Reproduction Group, Physiology Department, Mare Nostrum Campus, University of Murcia, 30100 Murcia, Spain;
- Biomedical Research Institute of Murcia, IMIB-Arrixaca-UMU, 30120 Murcia, Spain;
| | - Elena Ivanova
- Epigenetics Programme, The Babraham Institute, Cambridge CB22 3AT, UK; (E.I.); (G.K.)
| | - Meriem Hamdi
- Animal Reproduction Department, National Institute for Agriculture and Food Research and Technology, INIA, 28040 Madrid, Spain; (M.H.); (D.R.)
| | - Fernando Perez-Sanz
- Biomedical Research Institute of Murcia, IMIB-Arrixaca-UMU, 30120 Murcia, Spain;
| | - Dimitrios Rizos
- Animal Reproduction Department, National Institute for Agriculture and Food Research and Technology, INIA, 28040 Madrid, Spain; (M.H.); (D.R.)
| | - Gavin Kelsey
- Epigenetics Programme, The Babraham Institute, Cambridge CB22 3AT, UK; (E.I.); (G.K.)
| | - Pilar Coy
- Physiology of Reproduction Group, Physiology Department, Mare Nostrum Campus, University of Murcia, 30100 Murcia, Spain;
- Biomedical Research Institute of Murcia, IMIB-Arrixaca-UMU, 30120 Murcia, Spain;
- Correspondence:
| |
Collapse
|
12
|
Purdue-Smithe AC, Kim K, Nobles C, Schisterman EF, Schliep KC, Perkins NJ, Sjaarda LA, Freeman JR, Robinson SL, Radoc JG, Mills JL, Silver RM, Ye A, Mumford SL. The role of maternal preconception vitamin D status in human offspring sex ratio. Nat Commun 2021; 12:2789. [PMID: 33986298 PMCID: PMC8119683 DOI: 10.1038/s41467-021-23083-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 02/01/2021] [Indexed: 11/09/2022] Open
Abstract
Evolutionary theory suggests that some animal species may experience shifts in their offspring sex ratio in response to maternal health and environmental conditions, and in some unfavorable conditions, females may be less likely to bear sons. Experimental data in both animals and humans indicate that maternal inflammation may disproportionately impact the viability of male conceptuses; however, it is unknown whether other factors associated with both pregnancy and inflammation, such as vitamin D status, are associated with the offspring sex ratio. Here, we show that among 1,228 women attempting pregnancy, preconception 25-hydroxyvitamin D concentrations are positively associated with the live birth of a male infant, with notably stronger associations among women with elevated high sensitivity C-reactive protein, a marker of systemic low-grade inflammation. Our findings suggest that vitamin D may mitigate maternal inflammation that would otherwise be detrimental to the implantation or survival of male conceptuses in utero.
Collapse
Affiliation(s)
- Alexandra C Purdue-Smithe
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, US
| | - Keewan Kim
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, US
| | - Carrie Nobles
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, US
| | - Enrique F Schisterman
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, US
| | - Karen C Schliep
- Department of Obstetrics and Gynecology, University of Utah, Salt Lake City, UT, US
| | - Neil J Perkins
- Biostatistics and Bioinformatics Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, US
| | - Lindsey A Sjaarda
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, US
| | - Joshua R Freeman
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, US
| | - Sonia L Robinson
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, US
| | - Jeannie G Radoc
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, US
| | - James L Mills
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, US
| | - Robert M Silver
- Department of Obstetrics and Gynecology, University of Utah, Salt Lake City, UT, US
| | - Aijun Ye
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, US
| | - Sunni L Mumford
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, US.
| |
Collapse
|
13
|
Xiao Y, Sosa F, de Armas LR, Pan L, Hansen PJ. An improved method for specific-target preamplification PCR analysis of single blastocysts useful for embryo sexing and high-throughput gene expression analysis. J Dairy Sci 2021; 104:3722-3735. [PMID: 33455782 PMCID: PMC8050830 DOI: 10.3168/jds.2020-19497] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 10/19/2020] [Indexed: 12/15/2022]
Abstract
Gene expression analysis in preimplantation embryos has been used for answering fundamental questions related to development, prediction of pregnancy outcome, and other topics. Limited amounts of mRNA in preimplantation embryos hinders progress in studying the preimplantation embryo. Here, a method was developed involving direct synthesis and specific-target preamplification (STA) of cDNA for gene expression analysis in single blastocysts. Effective cell lysis and genomic DNA removal steps were incorporated into the method. In addition, conditions for real-time PCR of cDNA generated from these processes were improved. By using this system, reliable embryo sexing results based on expression of sex-chromosome linked genes was demonstrated. Calibration curve analysis of PCR results using the Fluidigm Biomark microfluidic platform (Fluidigm, South San Francisco, CA) was performed to evaluate 96 STA cDNA from single blastocysts. In total, 93.75% of the genes were validated. Robust amplification was detected even when STA cDNA from a single blastocyst was diluted 1,024-fold. Further analysis showed that within-assay variation increased when cycle threshold values exceeded 18. Overall, STA quantitative real-time PCR analysis was shown to be useful for analysis of gene expression of multiple specific targets in single blastocysts.
Collapse
Affiliation(s)
- Yao Xiao
- Department of Animal Sciences, D.H. Barron Reproductive and Perinatal Biology Research Program, University of Florida, Gainesville 32611-0910
| | - Froylan Sosa
- Department of Animal Sciences, D.H. Barron Reproductive and Perinatal Biology Research Program, University of Florida, Gainesville 32611-0910
| | - Lesley R de Armas
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33136
| | - Li Pan
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33136
| | - Peter J Hansen
- Department of Animal Sciences, D.H. Barron Reproductive and Perinatal Biology Research Program, University of Florida, Gainesville 32611-0910.
| |
Collapse
|
14
|
Xiao Y, Uh K, Negrón-Pérez VM, Haines H, Lee K, Hansen PJ. Regulation of gene expression in the bovine blastocyst by colony-stimulating factor 2 is disrupted by CRISPR/Cas9-mediated deletion of CSF2RA. Biol Reprod 2021; 104:995-1007. [PMID: 33524138 DOI: 10.1093/biolre/ioab015] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/28/2020] [Accepted: 01/28/2021] [Indexed: 12/23/2022] Open
Abstract
Colony-stimulating factor 2 (CSF2) functions in the reproductive tract to modulate the function of the preimplantation embryo. The β subunit of the CSF2 receptor (CSF2RB) is not expressed in the embryo, and signal transduction is therefore different than for myeloid cells where the receptor is composed of α (CSF2RA) and β subunits. Here, we produced embryos in which exons 5 and 6 of CSF2RA were disrupted using the CRISPR/Cas 9 system to test whether CSF2RA signaling was essential for actions of CSF2 in the bovine embryo. Wild-type and CSF2RA knockout embryos were treated with 10 ng/mL CSF2 or vehicle at day 5 of development. Blastocysts were harvested at day 8 to determine transcript abundance of 90 genes by real-time polymerase chain reaction (PCR). Responses in female blastocysts were examined separately from male blastocysts because actions of CSF2 are sex-dependent. For wild-type embryos, CSF2 altered expression of 10 genes in females and 20 in males. Only three genes were affected by CSF2 in a similar manner for both sexes. Disruption of CSF2RA prevented the effect of CSF2 on expression for 9 of 10 CSF2-regulated genes in females and 19 of 20 genes in males. The results confirm the importance of CSF2RA for regulation of gene expression by CSF2 in the blastocyst.
Collapse
Affiliation(s)
- Yao Xiao
- Department of Animal Sciences, D.H. Barron Reproductive and Perinatal Biology Research Program, and Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Kyungjun Uh
- Division of Animal Science, University of Missouri, Columbia, MO, USA.,Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Veronica M Negrón-Pérez
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA, USA.,Department of Animal Sciences, University of Puerto Rico, Mayagüez, PR, USA
| | - Hannah Haines
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Kiho Lee
- Division of Animal Science, University of Missouri, Columbia, MO, USA.,Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Peter J Hansen
- Department of Animal Sciences, D.H. Barron Reproductive and Perinatal Biology Research Program, and Genetics Institute, University of Florida, Gainesville, FL, USA
| |
Collapse
|
15
|
Sang L, Ortiz W, Xiao Y, Estrada-Cortes E, Jannaman EA, Hansen PJ. Actions of putative embryokines on development of the preimplantation bovine embryo to the blastocyst stage. J Dairy Sci 2020; 103:11930-11944. [PMID: 33041033 DOI: 10.3168/jds.2020-19068] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 07/29/2020] [Indexed: 12/15/2022]
Abstract
Once it enters the uterus at d 4 to 5 after ovulation, the preimplantation bovine embryo is controlled in its development by regulatory signaling molecules from the mother called embryokines. Here, several cell-signaling molecules whose genes are expressed in the endometrium during d 5 to 7 after estrus were tested for the ability to affect the competence of the embryo for further development and the characteristics of the resultant blastocysts. Molecules tested were C-natriuretic peptide (CNP), IL-8, bovine morphogenetic protein 4 (BMP-4), IL-6, and leukemia inhibitory factor (LIF). None of the cell-signaling molecules tested improved the competence of the embryo to become a blastocyst; in fact, BMP-4 decreased development. All molecules modified attributes of the blastocyst formed in culture. In particular, CNP increased the number of cells in the ICM, whereas IL-8 decreased inner cell mass cell numbers and tended to increase the proportion of blastocysts that were hatching or hatched. In addition, BMP-4 decreased the proportion of blastocysts that were hatching. Interleukin-6 and, to a lesser extent, LIF activated the Janus kinase (JAK)/signal transducer and activator of transcription 3 (STAT3) signaling pathway in the inner cell mass, and LIF increased the percent of cells in the blastocyst that were positive for both NANOG and phosphorylated (activated) STAT3. In conclusion, our results indicate that CNP, IL-8, IL-6, LIF, and BMP-4 can modify embryonic development of the cow in a manner that affects characteristics of the resultant blastocyst. Further research is required to understand how these changes in characteristics of the blastocyst would affect competence of the embryo to establish and maintain pregnancy.
Collapse
Affiliation(s)
- Lei Sang
- Department of Animal Sciences, D. H. Barron Reproductive and Perinatal Biology Research Program, and Genetics Institute, University of Florida, Gainesville 32611-0910; Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, 350013, China
| | - W Ortiz
- Department of Animal Sciences, D. H. Barron Reproductive and Perinatal Biology Research Program, and Genetics Institute, University of Florida, Gainesville 32611-0910
| | - Y Xiao
- Department of Animal Sciences, D. H. Barron Reproductive and Perinatal Biology Research Program, and Genetics Institute, University of Florida, Gainesville 32611-0910
| | - E Estrada-Cortes
- Department of Animal Sciences, D. H. Barron Reproductive and Perinatal Biology Research Program, and Genetics Institute, University of Florida, Gainesville 32611-0910; Campo Experimental Centro Altos de Jalisco, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Tepatitlán de Morelos, Jalisco, México 47600
| | - E A Jannaman
- Department of Animal Sciences, D. H. Barron Reproductive and Perinatal Biology Research Program, and Genetics Institute, University of Florida, Gainesville 32611-0910
| | - P J Hansen
- Department of Animal Sciences, D. H. Barron Reproductive and Perinatal Biology Research Program, and Genetics Institute, University of Florida, Gainesville 32611-0910.
| |
Collapse
|
16
|
Jannaman EA, Xiao Y, Hansen PJ. Actions of colony-stimulating factor 3 on the maturing oocyte and developing embryo in cattle. J Anim Sci 2020; 98:5818973. [PMID: 32277240 DOI: 10.1093/jas/skaa115] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 04/09/2020] [Indexed: 12/12/2022] Open
Abstract
Colony-stimulating factor 3 (CSF3), also known as granulocyte colony-stimulating factor, is used to reduce the incidence of mastitis in cattle. Here, we tested whether recombinant bovine CSF3 at 1, 10, or 100 ng/mL acts on the bovine oocyte during maturation or on the developing embryo to modify competence for development and characteristics of the resultant blastocyst. For experiment 1, oocytes were matured with or without CSF3. The resultant embryos were cultured in a serum-free medium for 7.5 d. There was no effect of CSF3 on cleavage or on development to the blastocyst stage except that 100 ng/mL reduced the percent of putative zygotes and cleaved embryos becoming blastocysts. Expression of transcripts for 93 genes in blastocysts was evaluated by RT-PCR using the Fluidigm platform. Transcript abundance was affected by one or more concentrations of CSF3 for four genes only (CYP11A1, NOTCH2, RAC1, and YAP1). For experiment 2, cumulus-oocyte complexes (COC) were fertilized with either X- or Y-sorted semen. Putative zygotes were cultured in medium containing CSF3 treatments added at the beginning of culture. There was no effect of CSF3, sex, or the interaction on the percent of putative zygotes that cleaved or on the percent of putative zygotes or cleaved embryos becoming a blastocyst. For experiment 3, CSF3 was added from day 4 to 7.5 of development. There was no effect of CSF3 on development to the blastocyst stage. Transcript abundance of 10 genes was increased by 100 ng/mL CSF3, including markers of epiblast (NANOG, SOX2), hypoblast (ALPL, FN1, KDM2B, and PDGFRA), epiblast and hypoblast (HNF4A) and trophectoderm (TJAP1). Results are indicative that concentrations of CSF3 higher than typical after therapeutic administration can reduce oocyte competence and act on the embryo to affect characteristics of the blastocyst.
Collapse
Affiliation(s)
- Elizabeth A Jannaman
- Department of Animal Sciences, D.H. Barron Reproductive and Perinatal Biology Research Program, and Genetics Institute, University of Florida, Gainesville, FL
| | - Yao Xiao
- Department of Animal Sciences, D.H. Barron Reproductive and Perinatal Biology Research Program, and Genetics Institute, University of Florida, Gainesville, FL
| | | |
Collapse
|
17
|
Rivera RM. Consequences of assisted reproductive techniques on the embryonic epigenome in cattle. Reprod Fertil Dev 2020; 32:65-81. [PMID: 32188559 DOI: 10.1071/rd19276] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Procedures used in assisted reproduction have been under constant scrutiny since their inception with the goal of improving the number and quality of embryos produced. However, invitro production of embryos is not without complications because many fertilised oocytes fail to become blastocysts, and even those that do often differ in the genetic output compared with their invivo counterparts. Thus only a portion of those transferred complete normal fetal development. An unwanted consequence of bovine assisted reproductive technology (ART) is the induction of a syndrome characterised by fetal overgrowth and placental abnormalities, namely large offspring syndrome; a condition associated with inappropriate control of the epigenome. Epigenetics is the study of chromatin and its effects on genetic output. Establishment and maintenance of epigenetic marks during gametogenesis and embryogenesis is imperative for the maintenance of cell identity and function. ARTs are implemented during times of vast epigenetic reprogramming; as a result, many studies have identified ART-induced deviations in epigenetic regulation in mammalian gametes and embryos. This review describes the various layers of epigenetic regulation and discusses findings pertaining to the effects of ART on the epigenome of bovine gametes and the preimplantation embryo.
Collapse
Affiliation(s)
- Rocío Melissa Rivera
- Division of Animal Science University of Missouri, Columbia, Missouri 65211, USA.
| |
Collapse
|
18
|
Xiong F, Sun Q, Li GG, Chen PL, Yao ZH, Wan CY, Zhong HX, Zeng Y. Initial serum HCG levels are higher in pregnant women with a male fetus after fresh or frozen single blastocyst transfer: A retrospective cohort study. Taiwan J Obstet Gynecol 2020; 58:833-839. [PMID: 31759537 DOI: 10.1016/j.tjog.2019.09.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2019] [Indexed: 12/28/2022] Open
Abstract
OBJECTIVE Substantial previous studies have almost reached an agreement on the gender effect on maternal serum human chorionic gonadotropin (MsHCG) in and after the late first trimester of pregnancy. However, there is little knowledge of the sex-related difference in MsHCG level at the preliminary stage of pregnancy. The purpose of this study is to reveal this difference in women after fresh or frozen single blastocyst transfer (SBT). MATERIALS AND METHODS A total of 252 fresh SBT cycles and 1486 frozen-thawed SBT cycles collected between June 1, 2014 and May 30, 2017 were retrospectively analyzed in our center. Patients with MsHCG level ≥5 IU/L on day 11 after transfer, achieving a singleton intrauterine pregnancy and subsequent live birth were included. We compared MsHCG levels between women gave birth to a male neonate and those gave birth to a female one in fresh or frozen SBT cycles, respectively. RESULTS A total of 136 neonates including 57 females and 79 males were born following fresh SBT. The male-female ratio was 1.39:1. The average MsHCG level of male fetuses was higher than that of female fetuses on day 11 after transfer (549.82 ± 253.24 IU/L versus 439.03 ± 198.41 IU/L, P < 0.05). Correspondingly, a total of 431 infants was born after frozen SBT, containing 188 females and 243 males. The male-female ratio was 1.29:1. Initial MsHCG level remained higher in women with a male neonate than the counterparts with a female neonate (894.43 ± 622.17 IU/L versus 758.05 ± 624.33 IU/L, P < 0.05). It was also found the pregnant women following frozen-thawed SBT exhibited higher initial MsHCG level than those following fresh SBT in whether male-bearing or female-bearing gestations. CONCLUSIONS MsHCG levels are higher in pregnant women with a male fetus than those with a female one on day 11 after fresh or frozen SBT. A sex-specific response to the stress in the process of in vitro embryo culture was suggested.
Collapse
Affiliation(s)
- Feng Xiong
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproductive Medicine and Genetics, Shenzhen Zhongshan Urology Hospital Fertility Center, Shenzhen, Guangdong, People's Republic of China
| | - Qing Sun
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproductive Medicine and Genetics, Shenzhen Zhongshan Urology Hospital Fertility Center, Shenzhen, Guangdong, People's Republic of China
| | - Guan-Gui Li
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproductive Medicine and Genetics, Shenzhen Zhongshan Urology Hospital Fertility Center, Shenzhen, Guangdong, People's Republic of China
| | - Pei-Lin Chen
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproductive Medicine and Genetics, Shenzhen Zhongshan Urology Hospital Fertility Center, Shenzhen, Guangdong, People's Republic of China
| | - Zhi-Hong Yao
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproductive Medicine and Genetics, Shenzhen Zhongshan Urology Hospital Fertility Center, Shenzhen, Guangdong, People's Republic of China
| | - Cai-Yun Wan
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproductive Medicine and Genetics, Shenzhen Zhongshan Urology Hospital Fertility Center, Shenzhen, Guangdong, People's Republic of China
| | - Hui-Xian Zhong
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproductive Medicine and Genetics, Shenzhen Zhongshan Urology Hospital Fertility Center, Shenzhen, Guangdong, People's Republic of China
| | - Yong Zeng
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproductive Medicine and Genetics, Shenzhen Zhongshan Urology Hospital Fertility Center, Shenzhen, Guangdong, People's Republic of China.
| |
Collapse
|
19
|
Sosa F, Block J, Xiao Y, Hansen PJ. Determinants of survival of the bovine blastocyst to cryopreservation stress: treatment with colony stimulating factor 2 during the morula-to-blastocyst transition and embryo sex. CABI AGRICULTURE AND BIOSCIENCE 2020; 1:12. [PMID: 33880450 PMCID: PMC8055050 DOI: 10.1186/s43170-020-00012-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
BACKGROUND Colony-stimulating factor 2 (CSF2) is an important maternal regulator of embryonic development. Earlier research indicates that CSF2 can regulate genes involved in cellular stress responses and block apoptosis. Here, we tested whether addition of 10 ng/mL CSF2 at day 5 of development would increase the survival of blastocysts harvested at day 7 and subjected to vitrification. Additional objectives were to determine whether embryo sex affected survival or whether effects of CSF2 interacted with sex. RESULTS Survival after vitrification was measured as the percent of warmed blastocysts that re-established a blastocoele after culture and that underwent hatching from the zona pellucida. In the first experiment, blastocysts were vitrified, warmed, cultured for 24 h, and DNA embryo sexing performed by PCR. There was no effect of CSF2, sex, or the interaction on the percent of blastocysts that re-expanded or that were hatching or hatched. In the second experiment, vitrified blastocysts were warmed and cultured for 24, 48, and 72 h. Treatment with CSF2 increased (P = 0.021) the percent of blastocysts that re-expanded as compared to the vehicle group (overall, 77.8 ± 4.7% vs 73.3 ± 4.7%). Percent re-expansion was highest at 24 h and declined slightly thereafter (P = 0.024). Although the interaction was not significant, the effect of CSF2 was greater at 48 and 72 h than at 24 h because CSF2 reduced the incidence of embryos collapsing after re-expansion. Furthermore, the proportion of re-expanded blastocysts at 24 h that experienced blastocoel collapse by 72 h was lower (P = 0.053) for CSF2 (3.6%; 7/195) than for vehicle (8.2%; 16/195). The percent of warmed blastocysts that were hatching or hatched increased with time (P < 0.0001) but there was no effect of CSF2 or the interaction with time on hatching. CONCLUSION Treatment with CSF2 from day 5 to 7 of development did not cause a significant effect on the percent of blastocysts that re-established the blastocoele after 24 h of culture but CSF2 reduced the collapse of the blastocoele that occurred for a portion of the embryos that had experienced re-expansion at 24 h. Thus, CSF2 can provide protection to a proportion of blastocysts from cryodamage caused by vitrification. Further work is needed to evaluate whether CSF2 increases survival of vitrified blastocysts after embryo transfer.
Collapse
Affiliation(s)
- Froylan Sosa
- Department of Animal Sciences, D.H. Barron Reproductive and Perinatal Biology Research Program, and Genetics Institute, University of Florida, Gainesville, FL 32611-0910, USA
| | | | - Yao Xiao
- Department of Animal Sciences, D.H. Barron Reproductive and Perinatal Biology Research Program, and Genetics Institute, University of Florida, Gainesville, FL 32611-0910, USA
| | - Peter J. Hansen
- Department of Animal Sciences, D.H. Barron Reproductive and Perinatal Biology Research Program, and Genetics Institute, University of Florida, Gainesville, FL 32611-0910, USA
- Correspondence:
| |
Collapse
|
20
|
Conditions of embryo culture from days 5 to 7 of development alter the DNA methylome of the bovine fetus at day 86 of gestation. J Assist Reprod Genet 2019; 37:417-426. [PMID: 31838628 DOI: 10.1007/s10815-019-01652-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 12/03/2019] [Indexed: 01/30/2023] Open
Abstract
PURPOSE We tested whether in vitro production (IVP) causes changes in DNA methylation in fetal liver and skeletal muscle and if exposure of cultured embryos to colony-stimulating factor 2 (CSF2) alters DNA methylation. METHODS Female fetuses were produced by artificial insemination or transfer of an IVP embryo. Embryos were treated from days 5 to 7 after fertilization with CSF2 or vehicle. DNA methylation in fetal liver and skeletal muscle was determined by post-bisulfite adaptor tagging-based sequencing. The degree of DNA methylation for CpG sites in 50-bp windows of the promoter region 500 bp upstream of the transcriptional start site was compared between treatments. RESULTS For liver, there were 12 genes (6% of those analyzed) in which DNA methylation was affected by treatment, with one 50-bp window per gene affected by treatment. For muscle, the degree of DNA methylation was affected by treatment for 32 windows (19% of the total windows analyzed) representing 28 distinct genes (23% of analyzed genes). For 19 of the 28 genes in muscle, the greatest deviation in DNA methylation was for the CSF2 group. CONCLUSION Results are consistent with alterations in the methylome being one of the mechanisms by which IVP can result in altered fetal development and postnatal function in the resultant offspring. In addition, results indicate that maternally derived cell-signaling molecules can regulate the pattern of DNA methylation.
Collapse
|
21
|
Carvalheira LDR, Tríbulo P, Borges ÁM, Hansen PJ. Sex affects immunolabeling for histone 3 K27me3 in the trophectoderm of the bovine blastocyst but not labeling for histone 3 K18ac. PLoS One 2019; 14:e0223570. [PMID: 31600298 PMCID: PMC6786533 DOI: 10.1371/journal.pone.0223570] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 09/18/2019] [Indexed: 11/29/2022] Open
Abstract
The mammalian embryo displays sexual dimorphism in the preimplantation period. Moreover, competence of the embryo to develop is dependent on the sire from which the embryo is derived and can be modified by embryokines produced by the endometrium such as colony stimulating factor 2 (CSF2). The preimplantation period is characterized by large changes in epigenetic modifications of DNA and histones. It is possible, therefore, that effects of sex, sire, and embryo regulatory molecules are mediated by changes in epigenetic modifications. Here it was tested whether global levels of two histone modifications in the trophectoderm of the bovine blastocyst were affected by sex, sire, and CSF2. It was found that amounts of immunolabeled H3K27me3 were greater (P = 0.030) for male embryos than female embryos. Additionally, labeling for H3K27me3 and H3K18ac depended upon the bull from which embryos were derived. Although CSF2 reduced the proportion of embryos developing to the blastocyst, there was no effect of CSF2 on labeling for H3K27me3 or H3K18ac. Results indicate that the blastocyst trophoctoderm can be modified epigenetically by embryo sex and paternal inheritance through alterations in histone epigenetic marks.
Collapse
Affiliation(s)
- Luciano de R. Carvalheira
- Department of Animal Sciences, D.H. Barron Reproductive and Perinatal Biology Research Program, and Genetics Institute, University of Florida, Gainesville, Florida, United States of America
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Paula Tríbulo
- Department of Animal Sciences, D.H. Barron Reproductive and Perinatal Biology Research Program, and Genetics Institute, University of Florida, Gainesville, Florida, United States of America
| | - Álan M. Borges
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Peter J. Hansen
- Department of Animal Sciences, D.H. Barron Reproductive and Perinatal Biology Research Program, and Genetics Institute, University of Florida, Gainesville, Florida, United States of America
- * E-mail:
| |
Collapse
|
22
|
Hansen PJ, Tríbulo P. Regulation of present and future development by maternal regulatory signals acting on the embryo during the morula to blastocyst transition - insights from the cow. Biol Reprod 2019; 101:526-537. [PMID: 31220231 PMCID: PMC8127039 DOI: 10.1093/biolre/ioz030] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 02/06/2019] [Accepted: 02/18/2019] [Indexed: 12/18/2022] Open
Abstract
The preimplantation embryo has a remarkable ability to execute its developmental program using regulatory information inherent within itself. Nonetheless, the uterine environment is rich in cell signaling molecules termed embryokines that act on the embryo during the morula-to-blastocyst transition, promoting blastocyst formation and programming the embryo for subsequent developmental events. Programming can not only affect developmental processes important for continuance of development in utero but also affect characteristics of the offspring during postnatal life. Given the importance of embryokines for regulation of embryonic development, it is likely that some causes of infertility involve aberrant secretion of embryokines by the uterus. Embryokines found to regulate development of the bovine embryo include insulin-like growth factor 1, colony stimulating factor 2 (CSF2), and dickkopf WNT signaling pathway inhibitor 1. Embryo responses to CSF2 exhibit sexual dimorphism, suggesting that sex-specific programming of postnatal function is caused by maternal signals acting on the embryo during the preimplantation period that regulate male embryos differently than female embryos.
Collapse
Affiliation(s)
- Peter J Hansen
- Department of Animal Sciences, D.H. Barron Reproductive and Perinatal Biology Research Program, and Genetics Institute, University of Florida, Gainesville, Florida, USA
| | - Paula Tríbulo
- Instituto de Reproducción Animal Córdoba (IRAC), Zona Rural General Paz, Córdoba, Argentina
| |
Collapse
|
23
|
Ealy AD, Wooldridge LK, McCoski SR. BOARD INVITED REVIEW: Post-transfer consequences of in vitro-produced embryos in cattle. J Anim Sci 2019; 97:2555-2568. [PMID: 30968113 DOI: 10.1093/jas/skz116] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 04/08/2019] [Indexed: 01/09/2023] Open
Abstract
In vitro embryo production (IVP) in cattle has gained worldwide interest in recent years, but the efficiency of using IVP embryos for calf production is far from optimal. This review will examine the pregnancy retention rates of IVP embryos and explore causes for pregnancy failures. Based on work completed over the past 25 yr, only 27% of cattle receiving IVP embryos will produce a live calf. Approximately 60% of these pregnancies fail during the first 6 wk of gestation. When compared with embryos generated by superovulation, pregnancy rates are 10% to 40% lower for cattle carrying IVP embryos, exemplifying that IVP embryos are consistently less competent than in vivo-generated embryos. Several abnormalities have been observed in the morphology of IVP conceptuses. After transfer, IVP embryos are less likely to undergo conceptus elongation, have reduced embryonic disk diameter, and have compromised yolk sac development. Marginal binucleate cell development, cotyledon development, and placental vascularization have also been documented, and these abnormalities are associated with altered fetal growth trajectories. Additionally, in vitro culture conditions increase the risk of large offspring syndrome. Further work is needed to decipher how the embryo culture environment alters post-transfer embryo development and survival. The risk of these neonatal disorders has been reduced by the use of serum-free synthetic oviductal fluid media formations and culture in low oxygen tension. However, alterations are still evident in IVP oocyte and embryo transcript abundances, timing of embryonic cleavage events and blastulation, incidence of aneuploidy, and embryonic methylation status. The inclusion of oviductal and uterine-derived embryokines in culture media is being examined as one way to improve the competency of IVP embryos. To conclude, the evidence presented herein clearly shows that bovine IVP systems still must be refined to make it an economical technology in cattle production systems. However, the current shortcomings do not negate its current value for certain embryo production needs and for investigating early embryonic development in cattle.
Collapse
Affiliation(s)
- Alan D Ealy
- Department of Animal & Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA
| | - Lydia K Wooldridge
- Department of Animal & Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA
| | - Sarah R McCoski
- Department of Animal & Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA
| |
Collapse
|
24
|
Tríbulo P, Rabaglino MB, Bo MB, Carvalheira LDR, Bishop JV, Hansen TR, Hansen PJ. Dickkopf-related protein 1 is a progestomedin acting on the bovine embryo during the morula-to-blastocyst transition to program trophoblast elongation. Sci Rep 2019; 9:11816. [PMID: 31413296 PMCID: PMC6694114 DOI: 10.1038/s41598-019-48374-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 07/19/2019] [Indexed: 12/16/2022] Open
Abstract
Progesterone regulates the endometrium to support pregnancy establishment and maintenance. In the ruminant, one action of progesterone early in pregnancy is to alter embryonic development and hasten the process of trophoblast elongation around day 14–15 of pregnancy, which is required for maternal recognition of pregnancy. Here we demonstrate that the WNT antagonist DKK1, whose expression is increased by progesterone treatment, can act on the bovine embryo during day 5 to 7.5 of development (the morula to blastocyst stage) to promote embryonic elongation on day 15 of pregnancy. Embryos were produced in vitro and exposed to 0 or 100 ng/ml recombinant human DKK1 from day 5 to 7.5 of culture. Blastocysts were transferred into synchronized recipient cows on day 7.5 (n = 23 for control and 17 for DKK1). On day 15, cows were slaughtered and embryos recovered by flushing the uterus. Embryo recovery was n = 11 for controls (48% recovery) and n = 11 for DKK1 (65% recovery). Except for two DKK1 embryos, all embryos were filamentous. Treatment with DKK1 increased (P = 0.007) the length of filamentous embryos from 43.9 mm to 117.4 mm and the intrauterine content of the maternal recognition of pregnancy signal IFNT (P = 0.01) from 4.9 µg to 16.6 µg. Determination of differentially expressed genes (DEG), using the R environment, revealed 473 DEG at p < 0.05 but none at FDR < 0.05, suggesting that DKK1 did not strongly modify the embryo transcriptome at the time it was measured. However, samples clustered apart in a multidimensional scaling analyisis. Weighted gene co-expression analysis of the transcriptome of filamentous embryos revealed a subset of genes that were related to embryo length, with identification of a significant module of genes in the DKK1 group only. Thus, several of the differences between DKK1 and control groups in gene expression were due to differences in embryo length. In conclusion, DKK1 can act on the morula-to-blastocyst stage embryo to modify subsequent trophoblast elongation. Higher pregnancy rates associated with transfer of DKK1-treated embryos may be due in part to enhancements of trophoblast growth and antiluteolytic signaling through IFNT secretion. Given that progesterone can regulate both timing of trophoblast elongation and DKK1 expression, DKK1 may be a mediator of progesterone effects on embryonic development.
Collapse
Affiliation(s)
- Paula Tríbulo
- Department of Animal Sciences, D.H. Barron Reproductive and Perinatal Biology Research Program, and Genetics Institute, University of Florida, Gainesville, FL, 32611-0910, USA
| | | | | | - Luciano de R Carvalheira
- Departamento de Clínica e Cirugia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Jeanette V Bishop
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523-1683, USA
| | - Thomas R Hansen
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523-1683, USA
| | - Peter J Hansen
- Department of Animal Sciences, D.H. Barron Reproductive and Perinatal Biology Research Program, and Genetics Institute, University of Florida, Gainesville, FL, 32611-0910, USA.
| |
Collapse
|
25
|
Levine LD, Holland TL, Kim K, Sjaarda LA, Mumford SL, Schisterman EF. The role of aspirin and inflammation on reproduction: the EAGeR trial 1. Can J Physiol Pharmacol 2018; 97:187-192. [PMID: 30562044 DOI: 10.1139/cjpp-2018-0368] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Inflammation has been linked to several complications in pregnancy, including pregnancy loss. Due to its anti-inflammatory properties, aspirin, a widely available and inexpensive therapy, has potential to help mitigate the negative effects of inflammation along the reproductive pathway. Therefore, the Effects of Aspirin in Gestation and Reproduction (EAGeR) trial was designed to elucidate whether preconception-initiated daily low-dose aspirin would increase the live birth rate in women with 1-2 prior pregnancy losses and no infertility diagnosis and attempting unassisted conception. Here, we present an overview of the collected findings. Low-dose aspirin was associated with an increased live birth rate among women with a single loss at <20 weeks gestation within the past year. When stratified by tertile of C-reactive protein (CRP), a biomarker of inflammation, treatment with aspirin restored a decrement in the live birth rate in women in the highest CRP tertile (relative risk 1.35, 95% confidence interval 1.08-1.67), increasing to similar rates as women of the lower and mid-CRP tertiles. The same effect modification by inflammation status was observed when examining the effect of low-dose aspirin on offspring sex ratio. These results suggest that inflammation plays an important role in reproduction, and that chronic, low-grade inflammation may be amenable to aspirin treatment.
Collapse
Affiliation(s)
- Lindsay D Levine
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.,Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tiffany L Holland
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.,Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Keewan Kim
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.,Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lindsey A Sjaarda
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.,Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sunni L Mumford
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.,Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Enrique F Schisterman
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.,Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
26
|
Effects of sex on response of the bovine preimplantation embryo to insulin-like growth factor 1, activin A, and WNT7A. BMC DEVELOPMENTAL BIOLOGY 2018; 18:16. [PMID: 30055575 PMCID: PMC6064047 DOI: 10.1186/s12861-018-0176-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 07/18/2018] [Indexed: 01/16/2023]
Abstract
BACKGROUND Alterations in maternal environment can sometimes affect embryonic development in a sexually-dimorphic manner. The objective was to determine whether preimplantation bovine embryos respond to three maternally-derived cell signaling molecules in a sex-dependent manner. RESULTS Actions of three embryokines known to increase competence of bovine embryos to develop to the blastocyst stage, insulin-like growth factor 1 (IGF1), activin A, and WNT member 7A (WNT7A), were evaluated for actions on embryos produced in vitro with X- or Y- sorted semen from the same bull. Each embryokine was tested in embryos produced by in vitro fertilization of groups of oocytes with either pooled sperm from two bulls or with sperm from individual bulls. Embryos were treated with IGF1, activin A, or WNT7A on day 5 of culture. All three embryokines increased the proportion of cleaved zygotes that developed to the blastocyst stage and the effect was similar for female and male embryos. As an additional test of sexual dimorphism, effects of IGF1 on blastocyst expression of a total of 127 genes were determined by RT-qPCR using the Fluidigm Delta Gene assay. Expression of 18 genes was affected by sex, expression of 4 genes was affected by IGF1 and expression of 3 genes was affected by the IGF1 by sex interaction. CONCLUSION Sex did not alter how IGF1, activin A or WNT7A altered developmental competence to the blastocyst stage. Thus, sex-dependent differences in regulation of developmental competence of embryos by maternal regulatory signals is not a general phenomenon. The fact that sex altered how IGF1 regulates gene expression is indicative that there could be sexual dimorphism in embryokine regulation of some aspects of embryonic function other than developmental potential to become a blastocyst.
Collapse
|
27
|
Tribulo P, Leão BCDS, Lehloenya KC, Mingoti GZ, Hansen PJ. Consequences of endogenous and exogenous WNT signaling for development of the preimplantation bovine embryo. Biol Reprod 2018; 96:1129-1141. [PMID: 28575156 PMCID: PMC5803770 DOI: 10.1093/biolre/iox048] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 05/26/2017] [Indexed: 02/06/2023] Open
Abstract
The specific role of WNT signaling during preimplantation development remains unclear. Here, we evaluated consequences of activation and inhibition of β-catenin (CTNNB1)-dependent and -independent WNT signaling in the bovine preimplantation embryo. Activation of CTNNB1-mediated WNT signaling by the agonist 2-amino-4-(3,4-(methylenedioxy)benzylamino)-6-(3-methoxyphenyl)pyrimidine (AMBMP) and a glycogen synthase kinase 3 inhibitor reduced development to the blastocyst stage. Moreover, the antagonist of WNT signaling, dickkopf-related protein 1 (DKK1), alleviated the negative effect of AMBMP on development via reduction of CTNNB1. Based on labeling for phospho c-Jun N-terminal kinase, there was no evidence that DKK1 activated the planar cell polarity (PCP) pathway. Inhibition of secretion of endogenous WNTs did not affect development but increased number of cells in the inner cell mass (ICM). In contrast, DKK1 did not affect number of ICM or trophectoderm (TE) cells, suggesting that embryo-derived WNTs regulate ICM proliferation through a mechanism independent of CTNNB1. In addition, DKK1 did not affect the number of cells positive for the transcription factor yes-associated protein 1 (YAP1) involved in TE formation. In fact, DKK1 decreased YAP1. In contrast, exposure of embryos to WNT family member 7A (WNT7A) improved blastocyst development, inhibited the PCP pathway, and did not affect amounts of CTNNB1. Results indicate that embryo-derived WNTs are dispensable for blastocyst formation but participate in regulation of ICM proliferation, likely through a mechanism independent of CTNNB1. The response to AMBMP and WNT7A leads to the hypothesis that maternally derived WNTs can play a positive or negative role in regulation of preimplantation development.
Collapse
Affiliation(s)
- Paula Tribulo
- Department of Animal Sciences, D.H. Barron Reproductive and Perinatal Biology Research Program, and Genetics Institute, University of Florida, Gainesville, Florida, USA
| | - Beatriz Caetano da Silva Leão
- School of Veterinary Medicine, Laboratory of Reproductive Physiology, UNESP-Universidade Estadual Paulista, Araçatuba, São Paulo, Brazil and Post-Graduation Program in Veterinary Medicine, School of Agrarian and Veterinarian Sciences, Department of Animal Reproduction, UNESP-Universidade Estadual Paulista, Jaboticabal, São Paulo, Brazil
| | - Khoboso C Lehloenya
- Department of Animal and Wildlife Sciences, University of Pretoria, Pretoria, South Africa
| | - Gisele Zoccal Mingoti
- School of Veterinary Medicine, Laboratory of Reproductive Physiology, UNESP-Universidade Estadual Paulista, Araçatuba, São Paulo, Brazil and Post-Graduation Program in Veterinary Medicine, School of Agrarian and Veterinarian Sciences, Department of Animal Reproduction, UNESP-Universidade Estadual Paulista, Jaboticabal, São Paulo, Brazil
| | - Peter J Hansen
- Department of Animal Sciences, D.H. Barron Reproductive and Perinatal Biology Research Program, and Genetics Institute, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
28
|
Moraes JGN, Behura SK, Geary TW, Hansen PJ, Neibergs HL, Spencer TE. Uterine influences on conceptus development in fertility-classified animals. Proc Natl Acad Sci U S A 2018; 115:E1749-E1758. [PMID: 29432175 PMCID: PMC5828633 DOI: 10.1073/pnas.1721191115] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
A major unresolved issue is how the uterus influences infertility and subfertility in cattle. Serial embryo transfer was previously used to classify heifers as high-fertile (HF), subfertile (SF), or infertile (IF). To assess pregnancy loss, two in vivo-produced embryos were transferred into HF, SF, and IF heifers on day 7, and pregnancy outcome was assessed on day 17. Pregnancy rate was substantially higher in HF (71%) and SF (90%) than IF (20%) heifers. Elongating conceptuses were about twofold longer in HF than SF heifers. Transcriptional profiling detected relatively few differences in the endometrium of nonpregnant HF, SF, and IF heifers. In contrast, there was a substantial difference in the transcriptome response of the endometrium to pregnancy between HF and SF heifers. Considerable deficiencies in pregnancy-dependent biological pathways associated with extracellular matrix structure and organization as well as cell adhesion were found in the endometrium of SF animals. Distinct gene expression differences were also observed in conceptuses from HF and SF animals, with many of the genes decreased in SF conceptuses known to be embryonic lethal in mice due to defects in embryo and/or placental development. Analyses of biological pathways, key players, and ligand-receptor interactions based on transcriptome data divulged substantial evidence for dysregulation of conceptus-endometrial interactions in SF animals. These results support the ideas that the uterus impacts conceptus survival and programs conceptus development, and ripple effects of dysregulated conceptus-endometrial interactions elicit loss of the postelongation conceptus in SF cattle during the implantation period of pregnancy.
Collapse
Affiliation(s)
- Joao G N Moraes
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211
| | - Susanta K Behura
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211
| | - Thomas W Geary
- Fort Keogh Livestock and Range Research Laboratory, United States Department of Agriculture Agricultural Research Service, Miles City, MT 59301
| | - Peter J Hansen
- Department of Animal Sciences, University of Florida, Gainesville, FL 32611
| | - Holly L Neibergs
- Department of Animal Sciences, Washington State University, Pullman, WA 99164
- Center for Reproductive Biology, Washington State University, Pullman, WA 99164
| | - Thomas E Spencer
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211;
| |
Collapse
|
29
|
Pérez-Cerezales S, Ramos-Ibeas P, Rizos D, Lonergan P, Bermejo-Alvarez P, Gutiérrez-Adán A. Early sex-dependent differences in response to environmental stress. Reproduction 2017; 155:R39-R51. [PMID: 29030490 DOI: 10.1530/rep-17-0466] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 10/09/2017] [Accepted: 10/12/2017] [Indexed: 12/14/2022]
Abstract
Developmental plasticity enables the appearance of long-term effects in offspring caused by exposure to environmental stressors during embryonic and foetal life. These long-term effects can be traced to pre- and post-implantation development, and in both cases, the effects are usually sex specific. During preimplantation development, male and female embryos exhibit an extensive transcriptional dimorphism mainly driven by incomplete X chromosome inactivation. These early developmental stages are crucial for the establishment of epigenetic marks that will be conserved throughout development, making it a particularly susceptible period for the appearance of long-term epigenetic-based phenotypes. Later in development, gonadal formation generates hormonal differences between the sexes, and male and female placentae exhibit different responses to environmental stressors. The maternal environment, including hormones and environmental insults during pregnancy, contributes to sex-specific placental development that controls genetic and epigenetic programming during foetal development, regulating sex-specific differences, including sex-specific epigenetic responses to environmental hazards, leading to long-term effects. This review summarizes several human and animal studies examining sex-specific responses to environmental stressors during both the periconception period (caused by differences in sex chromosome dosage) and placental development (caused by both sex chromosomes and hormones). The identification of relevant sex-dependent trajectories caused by sex chromosomes and/or sex hormones is essential to define diagnostic markers and prevention/intervention protocols.
Collapse
Affiliation(s)
| | | | | | - Pat Lonergan
- School of Agriculture and Food ScienceUniversity College Dublin, Dublin, Ireland
| | | | | |
Collapse
|
30
|
Connell MT, Sjaarda LA, Radin RG, Kuhr D, Mumford SL, Plowden TC, Silver RM, Schisterman EF. The Effects of Aspirin in Gestation and Reproduction (EAGeR) Trial: A Story of Discovery. Semin Reprod Med 2017; 35:344-352. [PMID: 29036741 PMCID: PMC6234510 DOI: 10.1055/s-0037-1606384] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Human reproduction is an inefficient process. There are several drivers of complications along the path to and during pregnancy, one of which is inflammation. Treatments to mitigate the deleterious effects of aberrant inflammation with something inexpensive and widely available like aspirin could have dramatic global impact. The Effects of Aspirin in Gestation and Reproduction (EAGeR) trial enrolled women aged 18 to 40 years with one to two prior pregnancy losses and no diagnosis of infertility. Patients were randomized to either low-dose aspirin or placebo. Here, we review the collective findings of the EAGeR trial to date and discuss several important lessons learned from the unique data resulting from this groundbreaking trial. Findings reported from this trial provide significant advances in the understanding of aspirin’s potential mechanisms in modulating reproductive processes and the role of inflammation in these processes. This review describes the collective findings of the EAGeR trial in the context of the existing literature regarding aspirin and inflammation in reproduction to inform relevant next steps in fertility and obstetric research, as well as potential implications for clinical care.
Collapse
Affiliation(s)
- Matthew T. Connell
- Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Marylan
- Program of Reproductive and Adult Endocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
| | - Lindsey A. Sjaarda
- Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Marylan
| | - Rose G. Radin
- Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Marylan
| | - Daniel Kuhr
- Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Marylan
| | - Sunni L. Mumford
- Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Marylan
| | - Torie C. Plowden
- Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Marylan
- Program of Reproductive and Adult Endocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
| | - Robert M. Silver
- Department of Obstetrics and Gynecology, University of Utah and Intermountain Healthcare, Salt Lake City, Utah
| | - Enrique F. Schisterman
- Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Marylan
| |
Collapse
|
31
|
Gómez E, Carrocera S, Martin D, Sánchez-Calabuig MJ, Gutiérrez-Adán A, Murillo A, Muñoz M. Hepatoma-derived growth factor: Protein quantification in uterine fluid, gene expression in endometrial-cell culture and effects on in vitro embryo development, pregnancy and birth. Theriogenology 2017; 96:118-125. [PMID: 28532827 DOI: 10.1016/j.theriogenology.2017.04.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Revised: 03/20/2017] [Accepted: 04/04/2017] [Indexed: 02/07/2023]
Abstract
Hepatoma-derived growth factor (HDGF) is present in the endometrium of cows and other mammals. Recombinant HDGF (rHDGF) improves bovine blastocyst development in vitro. However, specific culture conditions and essential aspects of HDGF uterine physiology are yet unknown. In this work we quantified total HDGF protein in uterine fluid (UF) by multiple reaction monitoring (MRM), and analyzed effects of rHDGF on specific embryonic stages with Day-6 bovine embryos cultured in vitro with and without BSA, and on pregnancy viability and calf phenotypes after embryo transfer to recipients. In addition, mRNA abundance of HDGF in endometrial cells co-cultured with one male or one female embryo was quantified. In the presence of BSA, rHDGF had no effect on blastocyst development; however, in BSA-free culture rHDGF mainly promoted development of early blastocysts in contrast with morulae. As the presence of HDGF contained in commercial BSA replacements was suspected, western blot confirmed HDGF identification in BSA both with and without fatty acids. Total HDGF quantified by MRM tended to increase in UF without vs. UF with embryos (P = 0.083). Pregnancy and birth rates, birth weight and calf measurements did not differ between embryos cultured with rHDGF and controls without rHDGF. However, HDGF abundance in cultured epithelial, endometrial cells tended to increase (P < 0.08) in culture with one male embryo. rHDGF acts selectively on specific embryonic stages, but care should be taken with specific macromolecular supplements in culture. The endometrial expression of HDGF can be regulated by the embryonic sex. The use of rHDGF is compatible with pregnancy and birth of normal calves.
Collapse
Affiliation(s)
- E Gómez
- Genética y Reproducción Animal, Centro de Biotecnología Animal, SERIDA, Camino de Rioseco, 1225, 33394 Gijón, Spain.
| | - S Carrocera
- Genética y Reproducción Animal, Centro de Biotecnología Animal, SERIDA, Camino de Rioseco, 1225, 33394 Gijón, Spain
| | - D Martin
- Genética y Reproducción Animal, Centro de Biotecnología Animal, SERIDA, Camino de Rioseco, 1225, 33394 Gijón, Spain
| | - M J Sánchez-Calabuig
- Facultad de Veterinaria, Departamento de Medicina y Cirugía Animal, Universidad Complutense, Av. Puerta de Hierro, s/n, 28040 Madrid, Spain
| | - A Gutiérrez-Adán
- Departamento de Reproducción Animal, INIA Avda. Puerta de Hierro, nº12, local 10, 28040 Madrid, Spain
| | - A Murillo
- Genética y Reproducción Animal, Centro de Biotecnología Animal, SERIDA, Camino de Rioseco, 1225, 33394 Gijón, Spain
| | - M Muñoz
- Genética y Reproducción Animal, Centro de Biotecnología Animal, SERIDA, Camino de Rioseco, 1225, 33394 Gijón, Spain
| |
Collapse
|
32
|
Wen Z, Pan Y, Cui Y, Peng X, Chen P, Fan J, Li G, Zhao T, Zhang J, Qin S, Yu S. Colony-stimulating factor 2 enhances the developmental competence of yak (Poephagus grunniens) preimplantation embryos by modulating the expression of heat shock protein 70 kDa 1A. Theriogenology 2017; 93:16-23. [PMID: 28257862 DOI: 10.1016/j.theriogenology.2017.01.034] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 10/25/2016] [Accepted: 01/19/2017] [Indexed: 11/18/2022]
Abstract
Colony-stimulating factor 2 (CSF2) is known to promote the development and survival of rodents and ruminants preimplantation embryos; however, the effect of CSF2 on yak embryos has not been reported. The objective of this study was to investigate the effects of CSF2 on the developmental competence of yak embryos cultured in vitro in modified synthetic oviduct fluid (mSOF) medium and on the expression pattern of heat shock protein 70 kDa 1A (HSPA1A). In each experiment, cumulus-oocyte complexes (COCs) were matured in vitro and fertilized with frozen-thawed semen. Zygotes were treated with varying concentrations of CSF2 (0, 10, 50, 100 ng/mL) until day 8 after fertilization. Embryo development was calculated as the percentage of oocytes that formed embryos at the 2-cell, 4-cell, 8-cell, 16-cell, morula and blastocyst stages. The total cell numbers (TCN) per blastocyst and their allocation to the inner cell mass (ICM) and trophectoderm (TE) lineages were determined using differential CDX2 staining. The expression of HSPA1A was examined by quantitative real-time PCR (qRT-PCR) and immunochemistry to determine the mRNA and protein levels. The results showed that treatment with 50 ng/mL CSF2 significantly (P < 0.05) increased the rate of blastocyst formation (19.01% versus 9.93%) and the TCN per blastocyst (96.94 versus 81.41) compared to the control group. However, no significant differences were observed in the other stages of development. qRT-PCR analysis confirmed that treatment with 50 ng/mL CSF2 significantly (P < 0.05) inhibited the expression of HSPA1A mRNA in blastocysts cultured in vitro relative to the control group, but there were no significant differences between the other treatment groups. Immunocytochemical analysis confirmed that HSPA1A protein accumulation was gradually reduced in yak blastocysts cultured in 0, 10, 100 or 50 ng/mL CSF2, however, no significant differences were observed between the 10 and 100 ng/mL treatments (P > 0.05). In conclusion, these findings demonstrate that CSF2 inhibits the expression of HSPA1A to facilitate yak blastocyst formation and increase cell numbers.
Collapse
Affiliation(s)
- Zexing Wen
- Gansu Province Livestock Embryo Engineering Research Center, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Yangyang Pan
- Gansu Province Livestock Embryo Engineering Research Center, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Yan Cui
- Gansu Province Livestock Embryo Engineering Research Center, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Xiumei Peng
- Gansu Province Livestock Embryo Engineering Research Center, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Ping Chen
- Gansu Province Livestock Embryo Engineering Research Center, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Jiangfeng Fan
- Gansu Province Livestock Embryo Engineering Research Center, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Guyue Li
- Gansu Province Livestock Embryo Engineering Research Center, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Tian Zhao
- Gansu Province Livestock Embryo Engineering Research Center, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Jian Zhang
- Gansu Province Livestock Embryo Engineering Research Center, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Shujian Qin
- Gansu Province Livestock Embryo Engineering Research Center, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Sijiu Yu
- Gansu Province Livestock Embryo Engineering Research Center, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China.
| |
Collapse
|
33
|
Kannampuzha-Francis J, Tribulo P, Hansen PJ. Actions of activin A, connective tissue growth factor, hepatocyte growth factor and teratocarcinoma-derived growth factor 1 on the development of the bovine preimplantation embryo. Reprod Fertil Dev 2017; 29:1329-1339. [DOI: 10.1071/rd16033] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 04/20/2016] [Indexed: 12/24/2022] Open
Abstract
The reproductive tract secretes bioactive molecules collectively known as embryokines that can regulate embryonic growth and development. In the present study we tested four growth factors expressed in the endometrium for their ability to modify the development of the bovine embryo to the blastocyst stage and alter the expression of genes found to be upregulated (bone morphogenetic protein 15 (BMP15) and keratin 8, type II (KRT8)) or downregulated (NADH dehydrogenase 1 (ND1) and S100 calcium binding protein A10 (S100A10)) in embryos competent to develop to term. Zygotes were treated at Day 5 with 0.01, 0.1 or 1.0 nM growth factor. The highest concentration of activin A increased the percentage of putative zygotes that developed to the blastocyst stage. Connective tissue growth factor (CTGF) increased the number of cells in the inner cell mass (ICM), decreased the trophectoderm : ICM ratio and increased blastocyst expression of KRT8 and ND1. The lowest concentration of hepatocyte growth factor (HGF) reduced the percentage of putative zygotes becoming blastocysts. Teratocarcinoma-derived growth factor 1 increased total cell number at 0.01 nM and expression of S100A10 at 1.0 nM, but otherwise had no effects. Results confirm the prodevelopmental actions of activin A and indicate that CTGF may also function as an embryokine by regulating the number of ICM cells in the blastocyst and altering gene expression. Low concentrations of HGF were inhibitory to development.
Collapse
|
34
|
Siqueira LGB, Hansen PJ. Sex differences in response of the bovine embryo to colony-stimulating factor 2. Reproduction 2016; 152:645-654. [PMID: 27601717 PMCID: PMC5097130 DOI: 10.1530/rep-16-0336] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 09/05/2016] [Indexed: 01/09/2023]
Abstract
We tested whether gene expression of the bovine morula is modified by CSF2 in a sex-dependent manner and if sex determines the effect of CSF2 on competence of embryos to become blastocysts. Embryos were produced in vitro using X- or Y-sorted semen and treated at Day 5 of culture with 10 ng/mL bovine CSF2 or control. In experiment 1, morulae were collected at Day 6 and biological replicates (n = 8) were evaluated for transcript abundance of 90 genes by RT-qPCR using the Fluidigm Delta Gene assay. Expression of more than one-third (33 of 90) of genes examined was affected by sex. The effect of CSF2 on gene expression was modified by sex (P < 0.05) for five genes (DDX3Y/DDX3X-like, NANOG, MYF6, POU5F1 and RIPK3) and tended (P < 0.10) to be modified by sex for five other genes (DAPK1, HOXA5, PPP2R3A, PTEN and TNFSF8). In experiment 2, embryos were treated at Day 5 with control or CSF2 and blastocysts were collected at Day 7 for immunolabeling to determine the number of inner cell mass (ICM) and trophectoderm (TE) cells. CSF2 increased the percent of putative zygotes that became blastocysts for females, but did not affect the development of males. There was no effect of CSF2 or interaction of CSF2 with sex on the total number of blastomeres in blastocysts or in the number of inner cell mass or trophectoderm cells. In conclusion, CSF2 exerted divergent responses on gene expression and development of female and male embryos. These results are evidence of sexually dimorphic responses of the preimplantation embryo to this embryokine.
Collapse
Affiliation(s)
- Luiz G B Siqueira
- Department of Animal SciencesD.H. Barron Reproductive and Perinatal Biology Research Program, and Genetics Institute, University of Florida, Gainesville, Florida, USA.,Embrapa Gado de LeiteJuiz de Fora, MG, Brazil
| | - Peter J Hansen
- Department of Animal SciencesD.H. Barron Reproductive and Perinatal Biology Research Program, and Genetics Institute, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
35
|
Forde N, Maillo V, O'Gaora P, Simintiras CA, Sturmey RG, Ealy AD, Spencer TE, Gutierrez-Adan A, Rizos D, Lonergan P. Sexually Dimorphic Gene Expression in Bovine Conceptuses at the Initiation of Implantation. Biol Reprod 2016; 95:92. [PMID: 27488033 PMCID: PMC5333939 DOI: 10.1095/biolreprod.116.139857] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 07/29/2016] [Indexed: 01/06/2023] Open
Abstract
In cattle, maternal recognition of pregnancy occurs on Day 16 via secretion of interferon tau (IFNT) by the conceptus. The endometrium can distinguish between embryos with different developmental competencies. In eutherian mammals, X-chromosome inactivation (XCI) is required to ensure an equal transcriptional level of most X-linked genes for both male and female embryos in adult tissues, but this process is markedly different in cattle than mice. We examined how sexual dimorphism affected conceptus transcript abundance and amino acid composition as well as the endometrial transcriptome during the peri-implantation period of pregnancy. Of the 5132 genes that were differentially expressed on Day 19 in male compared to female conceptuses, 2.7% were located on the X chromosome. Concentrations of specific amino acids were higher in the uterine luminal fluid of male compared to female conceptuses, while female conceptuses had higher transcript abundance of specific amino acid transporters (SLC6A19 and SLC1A35). Of note, the endometrial transcriptome was not different in cattle gestating a male or a female conceptus. These data support the hypothesis that, far from being a blastocyst-specific phenomenon, XCI is incomplete before and during implantation in cattle. Despite differences in transcript abundance and amino acid utilization in male versus female conceptuses, the sex of the conceptus itself does not elicit a different transcriptomic response in the endometrium.
Collapse
Affiliation(s)
- Niamh Forde
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland
| | | | - Peadar O'Gaora
- School of Biomolecular and Biomedical Sciences, University College Dublin, Belfield, Dublin, Ireland
| | - Constantine A Simintiras
- Center for Cardiovascular and Metabolic Research, Hull York Medical School, University of Hull, Hull, United Kingdom
| | - Roger G Sturmey
- Center for Cardiovascular and Metabolic Research, Hull York Medical School, University of Hull, Hull, United Kingdom
| | - Alan D Ealy
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia
| | - Thomas E Spencer
- Division of Animal Sciences, University of Missouri, Columbia, Missouri
| | | | | | - Patrick Lonergan
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland
| |
Collapse
|
36
|
Chen Z, Hagen DE, Wang J, Elsik CG, Ji T, Siqueira LG, Hansen PJ, Rivera RM. Global assessment of imprinted gene expression in the bovine conceptus by next generation sequencing. Epigenetics 2016; 11:501-16. [PMID: 27245094 PMCID: PMC4939914 DOI: 10.1080/15592294.2016.1184805] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Genomic imprinting is an epigenetic mechanism that leads to parental-allele-specific gene expression. Approximately 150 imprinted genes have been identified in humans and mice but less than 30 have been described as imprinted in cattle. For the purpose of de novo identification of imprinted genes in bovine, we determined global monoallelic gene expression in brain, skeletal muscle, liver, kidney and placenta of day ∼105 Bos taurus indicus × Bos taurus taurus F1 conceptuses using RNA sequencing. To accomplish this, we developed a bioinformatics pipeline to identify parent-specific single nucleotide polymorphism alleles after filtering adenosine to inosine (A-to-I) RNA editing sites. We identified 53 genes subject to monoallelic expression. Twenty three are genes known to be imprinted in the cow and an additional 7 have previously been characterized as imprinted in human and/or mouse that have not been reported as imprinted in cattle. Of the remaining 23 genes, we found that 10 are uncharacterized or unannotated transcripts located in known imprinted clusters, whereas the other 13 genes are distributed throughout the bovine genome and are not close to any known imprinted clusters. To exclude potential cis-eQTL effects on allele expression, we corroborated the parental specificity of monoallelic expression in day 86 Bos taurus taurus × Bos taurus taurus conceptuses and identified 8 novel bovine imprinted genes. Further, we identified 671 candidate A-to-I RNA editing sites and describe random X-inactivation in day 15 bovine extraembryonic membranes. Our results expand the imprinted gene list in bovine and demonstrate that monoallelic gene expression can be the result of cis-eQTL effects.
Collapse
Affiliation(s)
- Zhiyuan Chen
- a Division of Animal Sciences , University of Missouri , Columbia , MO , USA
| | - Darren E Hagen
- a Division of Animal Sciences , University of Missouri , Columbia , MO , USA
| | - Juanbin Wang
- b Department of Statistics , University of Missouri , Columbia , MO , USA
| | - Christine G Elsik
- a Division of Animal Sciences , University of Missouri , Columbia , MO , USA
| | - Tieming Ji
- b Department of Statistics , University of Missouri , Columbia , MO , USA
| | - Luiz G Siqueira
- c Department of Animal Sciences , University of Florida , Gainesville , FL , USA
| | - Peter J Hansen
- c Department of Animal Sciences , University of Florida , Gainesville , FL , USA
| | - Rocío M Rivera
- a Division of Animal Sciences , University of Missouri , Columbia , MO , USA
| |
Collapse
|
37
|
Ozawa M, Sakatani M, Dobbs KB, Kannampuzha-Francis J, Hansen PJ. Regulation of gene expression in the bovine blastocyst by colony stimulating factor 2. BMC Res Notes 2016; 9:250. [PMID: 27130208 PMCID: PMC4850677 DOI: 10.1186/s13104-016-2038-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 04/12/2016] [Indexed: 01/02/2023] Open
Abstract
Background Colony stimulating factor 2 can have multiple effects on the function of the preimplantation embryo that include increased potential to develop to the blastocyst stage, reduced apoptosis, and enhanced ability of inner cell mass (ICM) to remain pluripotent after culture. The objective of the current experiment was to identify genes regulated by CSF2 in the ICM and trophectoderm (TE) of the bovine blastocyst with the goal of identifying possible molecular pathways by which CSF2 increases developmental competence for survival. Embryos were produced in vitro and cultured from Day 6 to 8 in serum-free medium containing 10 ng/ml recombinant bovine CSF2 or vehicle. Blastocysts were harvested at Day 8 and ICM separated from TE by magnetic-activated cell sorting. RNA was purified and used to prepare amplified cDNA, which was then subjected to high-throughput sequencing using the SOLiD 4.0 system. Three pools of amplified cDNA were analyzed per treatment. Results The number of genes whose expression was regulated by CSF2, using P < 0.05 and >1.5-fold difference as cut-offs, was 945 in the ICM (242 upregulated by CSF2 and 703 downregulated) and 886 in the TE (401 upregulated by CSF2 and 485 downregulated). Only 49 genes were regulated in a similar manner by CSF2 in both cell types. The three significant annotation clusters in which genes regulated by ICM were overrepresented were related to membrane signaling. Genes downregulated by CSF2 in ICM were overrepresented in several pathways including those for ERK and AKT signaling. The only significant annotation cluster containing an overrepresentation of genes regulated by CSF2 in TE was for secreted or extracellular proteins. In addition, genes downregulated in TE were overrepresented in TGFβ and Nanog pathways. Conclusions Differentiation of the blastocyst is such that, by Day 8 after fertilization, the ICM and TE respond differently to CSF2. Analysis of the genes regulated by CSF2 in ICM and TE are suggestive that CSF2 reinforces developmental fate and function of both cell lineages. Electronic supplementary material The online version of this article (doi:10.1186/s13104-016-2038-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Manabu Ozawa
- Dept. of Animal Sciences, D.H. Barron Reproductive and Perinatal Biology Research Program and Genetics Institute, University of Florida, PO Box 110910, Gainesville, FL, 32611-0910, USA.,Laboratory of Developmental Genetics, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Miki Sakatani
- Kyushu-Okinawa Agricultural Research Center, National Agriculture and Food Research Organization, Kumamoto, Japan
| | - Kyle B Dobbs
- Dept. of Animal Sciences, D.H. Barron Reproductive and Perinatal Biology Research Program and Genetics Institute, University of Florida, PO Box 110910, Gainesville, FL, 32611-0910, USA.,Thermo Fisher Scientific, 5781 Van Allen Way, Carlsbad, CA, 92083, USA
| | - Jasmine Kannampuzha-Francis
- Dept. of Animal Sciences, D.H. Barron Reproductive and Perinatal Biology Research Program and Genetics Institute, University of Florida, PO Box 110910, Gainesville, FL, 32611-0910, USA
| | - Peter J Hansen
- Dept. of Animal Sciences, D.H. Barron Reproductive and Perinatal Biology Research Program and Genetics Institute, University of Florida, PO Box 110910, Gainesville, FL, 32611-0910, USA.
| |
Collapse
|
38
|
Hansen PJ, Dobbs KB, Denicol AC, Siqueira LGB. Sex and the preimplantation embryo: implications of sexual dimorphism in the preimplantation period for maternal programming of embryonic development. Cell Tissue Res 2016; 363:237-247. [PMID: 26391275 PMCID: PMC4703572 DOI: 10.1007/s00441-015-2287-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 08/18/2015] [Indexed: 12/29/2022]
Abstract
The developmental program of the embryo displays a plasticity that can result in long-acting effects that extend into postnatal life. In mammals, adult phenotype can be altered by changes in the maternal environment during the preimplantation period. One characteristic of developmental programming during this time is that the change in adult phenotype is often different for female offspring than for male offspring. In this paper, we propose the hypothesis that sexual dimorphism in preimplantation programming is mediated, at least in part, by sex-specific responses of embryos to maternal regulatory molecules whose secretion is dependent on the maternal environment. The strongest evidence for this idea comes from the study of colony-stimulating factor 2 (CSF2). Expression of CSF2 from the oviduct and endometrium is modified by environmental factors of the mother, in particular seminal plasma and obesity. Additionally, CSF2 alters several properties of the preimplantation embryo and has been shown to alleviate negative consequences of culture of mouse embryos on postnatal phenotype in a sex-dependent manner. In cattle, exposure of preimplantation bovine embryos to CSF2 causes sex-specific changes in gene expression, interferon-τ secretion and DNA methylation later in pregnancy (day 15 of gestation). It is likely that several embryokines can alter postnatal phenotype through actions directed towards the preimplantation embryo. Identification of these molecules and elucidation of the mechanisms by which sexually-disparate programming is established will lead to new insights into the control and manipulation of embryonic development.
Collapse
Affiliation(s)
- Peter J Hansen
- Department of Animal Sciences, University of Florida, PO Box 110910, Gainesville, FL, 32611-0910, USA.
| | - Kyle B Dobbs
- Department of Biology, Mugar 212-213, Northeastern University, 360 Huntington Avenue, Boston, MA, 02115, USA
| | - Anna C Denicol
- Department of Biology, Mugar 212-213, Northeastern University, 360 Huntington Avenue, Boston, MA, 02115, USA
| | - Luiz G B Siqueira
- Department of Animal Sciences, University of Florida, PO Box 110910, Gainesville, FL, 32611-0910, USA
- Embrapa Gado de Leite, Rua Eugenio do Nascimento, 610, Juiz de Fora, MG 36038-330, Brazil
| |
Collapse
|
39
|
Radin RG, Mumford SL, Silver RM, Lesher LL, Galai N, Faraggi D, Wactawski-Wende J, Townsend JM, Lynch AM, Simhan HN, Sjaarda LA, Perkins NJ, Zarek SM, Schliep KC, Schisterman EF. Sex ratio following preconception low-dose aspirin in women with prior pregnancy loss. J Clin Invest 2015; 125:3619-26. [PMID: 26280577 DOI: 10.1172/jci82357] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 07/09/2015] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Several lines of evidence suggest that male embryos may have greater vulnerability than female embryos to disordered inflammation; therefore, antiinflammatory drugs, such as low-dose aspirin (LDA), may alter the sex ratio. Here, we assessed the effect of LDA on male live birth and male offspring, incorporating pregnancy losses (n = 56) via genetic assessment, as part of a parallel-design, block-randomized, placebo-controlled trial of preconception LDA. METHODS Participants (615 treated with LDA, 613 treated with placebo) ranged in age from 18 to 40 years of age, with 1 to 2 prior pregnancy losses. We estimated the intention-to-treat (ITT) risk ratio (RR) and 95% CI and assessed interaction with baseline high-sensitivity C-reactive protein (hsCRP) serum concentration - a marker of systemic inflammation. RESULTS Among the 1,078 women who completed follow-up (535 treated with LDA, 543 treated with placebo), the male live birth ITT RR equaled 1.31 (95% CI: 1.07-1.59). With increasing tertile of hsCRP, the proportion of males at birth decreased in the placebo group, and the effect of LDA on male live birth increased (first tertile: 48% male in LDA vs. 52% in placebo, ITT RR = 0.97, 95% CI: 0.70-1.35; second tertile: 57% male in LDA vs. 43% in placebo, ITT RR = 1.36, 95% CI: 0.98-1.90; third tertile: 53% male in LDA vs. 35% in placebo, ITT RR = 1.70, 95% CI: 1.13-2.57; P interaction = 0.03). Analysis of pregnancy with male offspring yielded similar results. CONCLUSION Initiation of LDA prior to conception restored numbers of male live births and pregnancy with male offspring among women with 1 to 2 prior pregnancy losses. Moreover, our data suggest that LDA modulates inflammation that would otherwise reduce the conception or survival of male embryos. TRIAL REGISTRATION ClinicalTrials.gov NCT00467363. FUNDING Intramural Research Program of the Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health.
Collapse
|
40
|
Kannampuzha‐Francis J, Denicol AC, Loureiro B, Kaniyamattam K, Ortega MS, Hansen PJ. Exposure to colony stimulating factor 2 during preimplantation development increases postnatal growth in cattle. Mol Reprod Dev 2015; 82:892-7. [DOI: 10.1002/mrd.22533] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 07/27/2015] [Indexed: 11/05/2022]
Affiliation(s)
- Jasmine Kannampuzha‐Francis
- Department of Animal SciencesUniversity of Florida Gainesville Florida
- D. H. Barron Reproductive and Perinatal Biology Research ProgramUniversity of FloridaGainesvilleFlorida
| | - Anna C. Denicol
- Department of BiologyNortheastern UniversityBostonMassachusetts
| | - Barbara Loureiro
- School of Veterinary MedicineUniversidade Vila VelhaVila VelhaEspirito SantoBrazil
| | | | - M. Sofia Ortega
- Department of Animal SciencesUniversity of Florida Gainesville Florida
- D. H. Barron Reproductive and Perinatal Biology Research ProgramUniversity of FloridaGainesvilleFlorida
| | - Peter J. Hansen
- Department of Animal SciencesUniversity of Florida Gainesville Florida
- D. H. Barron Reproductive and Perinatal Biology Research ProgramUniversity of FloridaGainesvilleFlorida
- Genetics InstituteUniversity of FloridaGainesvilleFlorida
| |
Collapse
|
41
|
Denicol AC, Leão BCS, Dobbs KB, Mingoti GZ, Hansen PJ. Influence of Sex on Basal and Dickkopf-1 Regulated Gene Expression in the Bovine Morula. PLoS One 2015. [PMID: 26196299 PMCID: PMC4510475 DOI: 10.1371/journal.pone.0133587] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Sex affects function of the developing mammalian embryo as early as the preimplantation period. There were two goals of the current objective. The first was to determine the degree and nature of differences in gene expression between female and male embryos in the cow at the morula stage of development. The second objective was to determine whether DKK1, a molecule known to alter differentiation of the blastocyst, would affect gene expression differently for female and male morulae. In Experiment 1, female and male embryos were treated with DKK1 at Day 5 after insemination. Morulae were harvested 24 h after treatment, pooled in groups of 20 for microarray analysis and RNA subjected to analysis of gene expression by microarray hybridization. There were 662 differentially expressed genes between females and males and 128 of these genes had a fold change ≥ 1.5 between the two sexes. Of the genes upregulated in females, 49.5% were located in the X chromosome. Functional analysis predicted that cell survival was greater in female embryos. Experiment 2 involved a similar design except that transcripts for 12 genes previously reported to be affected by sex, DKK1 or the interaction were quantified by quantitative polymerase chain reaction. Expression of all genes tested that were affected by sex in experiment 1 was affected in a similar manner in Experiment 2. In contrast, effects of DKK1 on gene expression were largely not repeatable in Experiment 2. The exception was for the Hippo signaling gene AMOT, which was inhibited by DKK1. In Experiment 3, embryos produced by fertilization with unsorted sperm were treated with DKK1 at Day 5 and abundance of transcripts for CDX2, GATA6, and NANOG determined at Days 5, 6 and 7 after insemination. There was no effect of DKK1 on expression of any of the three genes. In conclusion, female and male bovine embryos have a different pattern of gene expression as early as the morula stage, and this is due to a large extent to expression of genes in the X chromosomes in females. Differential gene expression between female and male embryos is likely the basis for increased resistance to cell death signals in female embryos and disparity in responses of female and male embryos to changes in the maternal environment.
Collapse
Affiliation(s)
- Anna C Denicol
- Department of Animal Sciences, D.H. Barron Reproductive and Perinatal Biology Research Program, and Genetics Institute, University of Florida, Gainesville, Florida, United States of America
| | - Beatriz C S Leão
- Laboratory of Physiology of Reproduction, School of Veterinary Medicine, Universidade Estadual Paulista-UNESP, Araçatuba, SP, Brazil
| | - Kyle B Dobbs
- Department of Animal Sciences, D.H. Barron Reproductive and Perinatal Biology Research Program, and Genetics Institute, University of Florida, Gainesville, Florida, United States of America
| | - Gisele Z Mingoti
- Laboratory of Physiology of Reproduction, School of Veterinary Medicine, Universidade Estadual Paulista-UNESP, Araçatuba, SP, Brazil
| | - Peter J Hansen
- Department of Animal Sciences, D.H. Barron Reproductive and Perinatal Biology Research Program, and Genetics Institute, University of Florida, Gainesville, Florida, United States of America
| |
Collapse
|