1
|
Awad-Igbaria Y, Edelman D, Ianshin E, Abu-Ata S, Shamir A, Bornstein J, Palzur E. Inflammation-induced mast cell-derived nerve growth factor: a key player in chronic vulvar pain? Brain 2025; 148:331-346. [PMID: 39001871 DOI: 10.1093/brain/awae228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 05/18/2024] [Accepted: 06/13/2024] [Indexed: 07/15/2024] Open
Abstract
Provoked vulvodynia (PV) is characterized by localized chronic vulvar pain. It is associated with a history of recurrent inflammation, mast cell (MC) accumulation and neuronal sprouting in the vulva. However, the mechanism of how vulvar-inflammation promotes neuronal sprouting and gene-expression adaptation in the spinal cord, leading to hypersensitivity and painful sensations, is unknown. Here, we found that vulvar tissue from women with PV (n = 8) is characterized by MC accumulation and neuronal sprouting compared to women without PV (n = 4). In addition, we observed these changes in an animal study of PV. Thus, we found that repeated vulvar zymosan-inflammation challenges lead to long-lasting mechanical and thermal vulvar hypersensitivity, which is mediated by MC accumulation, neuronal sprouting, overexpression of the pain channels (TRPV1 and TRPA1) in vulvar neurons, as well as a long-term increase of gene expression related to neuroplasticity, neuroinflammation and nerve growth factor (NGF) in the spinal cord/dorsal root ganglia (DRG) (L6-S3). However, regulation of the NGF pathway by stabilization of MC activity with ketotifen fumarate (KF) during vulvar inflammation attenuates the local increase of NGF and histamine, as well as the elevated transcription of pro-inflammatory cytokines and NGF pathway in the spinal cord. Additionally, KF treatment during inflammation modulates MC accumulation, neuronal hyperinnervation and overexpression of the TRPV1 and TRPA1 channels in the vulvar neurons, consequently preventing the development of vulvar pain. A thorough examination of the NGF pathway during inflammation revealed that blocking NGF activity by using an NGF-non-peptide-inhibitor (Ro08-2750) regulates the upregulation of genes related to neuroplasticity and the NGF pathway in the spinal cord, as well as modulating neuronal sprouting and overexpression of the pain channels, resulting in a reduced level of vulvar hypersensitivity. On the other hand, stimulation of the NGF pathway in the vulvar promotes neuronal sprouting, overexpression of pain channels and increase of gene expression related to neuroplasticity, neuroinflammation and NGF in the spinal cord, resulting in long-lasting vulvar hypersensitivity. In conclusion, our findings suggest that vulvar allodynia induced by inflammation is mediated by MC accumulation, neuronal sprouting and neuromodulation in the vulvar. Additionally, chronic vulvar pain may involve a long-term adaptation in gene expression in the spinal cord, which probably plays a critical role in central sensitization and pain maintenance. Strikingly, regulating the NGF pathway during the critical period of inflammation prevents vulvar pain development via modulating the neuronal changes in the vestibule and spinal cord, suggesting a fundamental role for the NGF pathway in PV development.
Collapse
Affiliation(s)
- Yaseen Awad-Igbaria
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
- Research Institute of Galilee Medical Center, Nahariya 2201202, Israel
| | - Doron Edelman
- Department of Neurosurgery and Orthopedic Spine Surgery Division, University of Toronto, Toronto, ON M5S 3H2, Canada
| | - Elvira Ianshin
- Department of Pathology, Galilee Medical Center, Nahariya 2201202, Israel
| | - Saher Abu-Ata
- Psychobiology Research Laboratory, Mazor Mental Health Center, Akko 2412001, Israel
- Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Alon Shamir
- Psychobiology Research Laboratory, Mazor Mental Health Center, Akko 2412001, Israel
- Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Jacob Bornstein
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
- Research Institute of Galilee Medical Center, Nahariya 2201202, Israel
| | - Eilam Palzur
- Research Institute of Galilee Medical Center, Nahariya 2201202, Israel
| |
Collapse
|
2
|
Perelmuter S, Burns R, Shearer K, Grant R, Soogoor A, Jun S, Meurer JA, Krapf J, Rubin R. Genitourinary syndrome of lactation: a new perspective on postpartum and lactation-related genitourinary symptoms. Sex Med Rev 2024; 12:279-287. [PMID: 38757214 DOI: 10.1093/sxmrev/qeae034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/16/2024] [Accepted: 04/25/2024] [Indexed: 05/18/2024]
Abstract
BACKGROUND The genitourinary syndrome of menopause (GSM) is a well-documented condition characterized by a range of genitourinary symptoms in peri- and postmenopausal women. As with GSM, postpartum lactating women experience reduced estrogen and androgen levels. However, there is limited research on the impact of symptoms during the postpartum breastfeeding period. OBJECTIVES The aim was to review the literature for genitourinary health in the postpartum breastfeeding population and summarize key findings and potential treatments. METHODS We performed a comprehensive literature review in PubMed, Google Scholar, and Scopus from inception of database to November 2023 using the following keywords individually and in combination: "physiology of postpartum" or "physiology of lactogenesis" or "vulvovaginal health" or "vaginal atrophy" or "vaginal dryness" or "dyspareunia" or "urinary incontinence" or "lactation" or "breastfeeding" or "vaginal estrogen." All identified articles published in English were considered. Relevant studies were extracted, evaluated, and analyzed. The work presented in this article represents a summative review of the identified literature. RESULTS During lactation, high levels of prolactin inhibit estrogen and androgen secretion via negative feedback, which leads to an increased prevalence of vulvovaginal atrophy, vaginal dryness, dyspareunia, and urinary incontinence in lactating postpartum women. Despite these highly prevalent and potentially devastating symptoms, there is a lack of consistent screening at postpartum visits and no treatment guidelines available to health care providers. CONCLUSION Postpartum breastfeeding women experience similar physiology and symptoms to the postmenopausal phase, as seen in GSM. We propose the introduction of a novel term to describe the genitourinary changes seen in postpartum breastfeeding individuals: genitourinary syndrome of lactation. The diagnostic use of genitourinary syndrome of lactation will equip health care providers with an all-encompassing term to bring awareness to the symptoms experienced by postpartum breastfeeding individuals and lead to improved screening and treatment for the high numbers of individuals experiencing these genitourinary changes.
Collapse
Affiliation(s)
- Sara Perelmuter
- Weill Cornell Medical College, New York, NY 10021, United States
| | - Ramzy Burns
- Department of Urology, Indiana University, Indianapolis, IN 47405, United States
| | - Katie Shearer
- University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - Raeven Grant
- David Geffen School of Medicine, University of California, Los Angeles, CA 90095, United States
| | - Anantha Soogoor
- College of Osteopathic Medicine, William Carey University, Hattiesburg, MS 39401, United States
| | - Soyoun Jun
- Texas College of Osteopathic Medicine, University of North Texas Health Science Center, Fort Worth, TX 76107, United States
| | - Janine Alexis Meurer
- Jacobs School of Medicine and Biomedical Sciences, University at Buffalo School of Medicine and Biomedical Sciences, Buffalo, NY 14203, United States
| | - Jill Krapf
- Obstetrics and Gynecology, Center for Vulvovaginal Disorders, Washington, DC 20037, United States
| | - Rachel Rubin
- Department of Urology, Georgetown University, Washington, DC 20007, United States
| |
Collapse
|
3
|
Nakhleh-Francis Y, Awad-Igbaria Y, Sakas R, Bang S, Abu-Ata S, Palzur E, Lowenstein L, Bornstein J. Exploring Localized Provoked Vulvodynia: Insights from Animal Model Research. Int J Mol Sci 2024; 25:4261. [PMID: 38673846 PMCID: PMC11050705 DOI: 10.3390/ijms25084261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/07/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Provoked vulvodynia represents a challenging chronic pain condition, characterized by its multifactorial origins. The inherent complexities of human-based studies have necessitated the use of animal models to enrich our understanding of vulvodynia's pathophysiology. This review aims to provide an exhaustive examination of the various animal models employed in this research domain. A comprehensive search was conducted on PubMed, utilizing keywords such as "vulvodynia", "chronic vulvar pain", "vulvodynia induction", and "animal models of vulvodynia" to identify pertinent studies. The search yielded three primary animal models for vulvodynia: inflammation-induced, allergy-induced, and hormone-induced. Additionally, six agents capable of triggering the condition through diverse pathways were identified, including factors contributing to hyperinnervation, mast cell proliferation, involvement of other immune cells, inflammatory cytokines, and neurotransmitters. This review systematically outlines the various animal models developed to study the pathogenesis of provoked vulvodynia. Understanding these models is crucial for the exploration of preventative measures, the development of novel treatments, and the overall advancement of research within the field.
Collapse
Affiliation(s)
- Yara Nakhleh-Francis
- Department of Obstetrics and Gynecology, Galilee Medical Center, Nahariya 2210001, Israel; (S.B.); (L.L.); (J.B.)
- Research Institute of Galilee Medical Center, Nahariya 2210001, Israel; (Y.A.-I.); (R.S.); (S.A.-A.); (E.P.)
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| | - Yaseen Awad-Igbaria
- Research Institute of Galilee Medical Center, Nahariya 2210001, Israel; (Y.A.-I.); (R.S.); (S.A.-A.); (E.P.)
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| | - Reem Sakas
- Research Institute of Galilee Medical Center, Nahariya 2210001, Israel; (Y.A.-I.); (R.S.); (S.A.-A.); (E.P.)
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| | - Sarina Bang
- Department of Obstetrics and Gynecology, Galilee Medical Center, Nahariya 2210001, Israel; (S.B.); (L.L.); (J.B.)
- Research Institute of Galilee Medical Center, Nahariya 2210001, Israel; (Y.A.-I.); (R.S.); (S.A.-A.); (E.P.)
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| | - Saher Abu-Ata
- Research Institute of Galilee Medical Center, Nahariya 2210001, Israel; (Y.A.-I.); (R.S.); (S.A.-A.); (E.P.)
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| | - Eilam Palzur
- Research Institute of Galilee Medical Center, Nahariya 2210001, Israel; (Y.A.-I.); (R.S.); (S.A.-A.); (E.P.)
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| | - Lior Lowenstein
- Department of Obstetrics and Gynecology, Galilee Medical Center, Nahariya 2210001, Israel; (S.B.); (L.L.); (J.B.)
- Research Institute of Galilee Medical Center, Nahariya 2210001, Israel; (Y.A.-I.); (R.S.); (S.A.-A.); (E.P.)
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| | - Jacob Bornstein
- Department of Obstetrics and Gynecology, Galilee Medical Center, Nahariya 2210001, Israel; (S.B.); (L.L.); (J.B.)
- Research Institute of Galilee Medical Center, Nahariya 2210001, Israel; (Y.A.-I.); (R.S.); (S.A.-A.); (E.P.)
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| |
Collapse
|
4
|
Awad-Igbaria Y, Abu-Ata S, Nakhleh-Francis Y, Lowenstein L, Ginat K, Bornstein J, Palzur E, Shamir A. Exploring venlafaxine effects on chronic vulvar pain: Changes in mood and pain regulation networks. Neuropharmacology 2024; 243:109788. [PMID: 37984764 DOI: 10.1016/j.neuropharm.2023.109788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 11/09/2023] [Indexed: 11/22/2023]
Abstract
The etiology of idiopathic pain conditions, such as Provoked vulvodynia (PV), is multifactorial. The efficiency of venlafaxine, serotonin-noradrenaline reuptake inhibitor (SNRIs) in modulating vulvar pain led to the hypothesis that PV might involve central mechanisms. Here, we investigate whether vulvar pain is associated with gene-expression changes in mood, stress and pain systems, including amygdala (Amg), medial prefrontal cortex (mPFC), and periaqueductal gray matter (PAG). Additionally, we examined the analgesic and anxiolytic effects of venlafaxine. We found that the development of chronic vulvar pain in an animal model of PV is associated by overexpression of genes related to neuronal-activity and neuroinflammation in the Amg, mPFC, and PAG. Additionally, changes in the expression of GABA and serotonin synthesis, and reuptake were noted in the Amg and mPFC. Unsurprisingly, anxiety-like behavior and emotional-disorder were observed in rats with chronic vulvar pain. Nevertheless, treatment with venlafaxine (37.5 mg/kg) for one month significantly improves the vulvar hypersensitivity, as well as reduces the anxiety level. More critically, the long-term gene expression adaptation in serotonin receptor and synthesis, GABA synthesis, neuroplasticity, and neuroinflammation in the Amg, mPFC, and PAG, were modulated by venlafaxine in rats with vulvar pain. Our findings suggest that vulvar hypersensitivity induced by inflammation might associated with gene expression changes in brain areas that are involved in mood, stress and pain regulation. These changes probably play a role in central sensitization, and anxiety. Strikingly, enhancing the activity of serotonin and noradrenaline via venlafaxine treatment in rats with vulvar pain induces analgesic and anxiolytic effects.
Collapse
Affiliation(s)
- Yaseen Awad-Igbaria
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel; Research Institute of Galilee Medical Center, Nahariya, Israel.
| | - Saher Abu-Ata
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel; Research Institute of Galilee Medical Center, Nahariya, Israel
| | - Yara Nakhleh-Francis
- Research Institute of Galilee Medical Center, Nahariya, Israel; Department of Obstetrics and Gynecology, Galilee Medical Center, Nahariya, Israel
| | - Lior Lowenstein
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel; Research Institute of Galilee Medical Center, Nahariya, Israel; Department of Obstetrics and Gynecology, Galilee Medical Center, Nahariya, Israel
| | - Karen Ginat
- Psychobiology Research Laboratory, Mazor Mental Health Center, Akko, Israel
| | - Jacob Bornstein
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel; Research Institute of Galilee Medical Center, Nahariya, Israel
| | - Eilam Palzur
- Research Institute of Galilee Medical Center, Nahariya, Israel
| | - Alon Shamir
- Psychobiology Research Laboratory, Mazor Mental Health Center, Akko, Israel; Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
5
|
Awad-Igbaria Y, Dadon S, Shamir A, Livoff A, Shlapobersky M, Bornstein J, Palzur E. Characterization of Early Inflammatory Events Leading to Provoked Vulvodynia Development in Rats. J Inflamm Res 2022; 15:3901-3923. [PMID: 35845089 PMCID: PMC9286136 DOI: 10.2147/jir.s367193] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/16/2022] [Indexed: 11/23/2022] Open
Abstract
Background Provoked vulvodynia (PV) is the main cause of vulvar pain and dyspareunia. The etiology of PV has not yet been elucidated. However, PV is associated with a history of recurrent inflammation, and its often accompanied by increases in the numbers of mast cells (MCs) and sensory hyperinnervation in the vulva. Therefore, this study aimed to examine the role of MCs and the early inflammatory events in the development of chronic vulvar pain in a rat model of PV. Methods Mechanical and thermal vulvar sensitivity was measured for 5 months following zymosan vulvar challenges. Vulvar changes in glutamate and nerve growth factor (NGF) were analyzed using ELISA. Immunofluorescence (IF) staining of the vulvar section after 20, 81, and 160 days of the zymosan challenge were performed to test MCs accumulation, hyperinnervation, and expression of pain channels (transient receptor potential vanilloid/ankyrin-1-TRPV1 & TRPA1) in vulvar neurons. Changes in the development of vulvar pain were evaluated following the administration of the MCs stabilizer ketotifen fumarate (KF) during zymosan vulvar challenges. Results Zymosan-challenged rats developed significant mechanical and thermal vulvar sensitivity that persisted for over 160 days after the zymosan challenge. During inflammation, increased local concentrations of NGF and glutamate and a robust increase in MCs degranulation were observed in zymosan-challenged rats. In addition, zymosan-challenged rats displayed sensory hyperinnervation and an increase in the expression of TRPV1 and TRPA1. Treatment with KF attenuated the upregulated level of NGF during inflammation, modulated the neuronal modifications, reduced MCs accumulation, and enhanced mechanical hypersensitivity after repeated inflammation challenges. Conclusion The present findings suggest that vulvar hypersensitivity is mediated by MCs accumulation, nerve growth, and neuromodulation of TRPV1 and TRPA1. Hence, KF treatment during the critical period of inflammation contributes to preventing chronic vulvar pain development.
Collapse
Affiliation(s)
- Yaseen Awad-Igbaria
- Faculty of Medicine in the Galilee, Bar-Ilan University, Safed, Israel.,The Research Institute of Galilee Medical Center, Nahariya, Israel
| | - Shilo Dadon
- Faculty of Medicine in the Galilee, Bar-Ilan University, Safed, Israel.,The Research Institute of Galilee Medical Center, Nahariya, Israel
| | - Alon Shamir
- Psychobiology Research Laboratory, Mazor Mental Health Center, Akko, Israel.,The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Alejandro Livoff
- Pathology Department, Barzilai University Medical Center, Ashkelon, Israel
| | - Mark Shlapobersky
- Pathology Department, Barzilai University Medical Center, Ashkelon, Israel
| | - Jacob Bornstein
- Faculty of Medicine in the Galilee, Bar-Ilan University, Safed, Israel.,The Research Institute of Galilee Medical Center, Nahariya, Israel
| | - Eilam Palzur
- The Research Institute of Galilee Medical Center, Nahariya, Israel
| |
Collapse
|
6
|
Wei Y, Liang Y, Lin H, Dai Y, Yao S. Autonomic nervous system and inflammation interaction in endometriosis-associated pain. J Neuroinflammation 2020; 17:80. [PMID: 32145751 PMCID: PMC7060607 DOI: 10.1186/s12974-020-01752-1] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 02/20/2020] [Indexed: 12/13/2022] Open
Abstract
Endometriosis is a chronic inflammatory disease. Pain is the most common symptom in endometriosis. Endometriosis-associated pain is caused by inflammation, and is related to aberrant innervation. Although the specific mechanism between endometriosis-associated pain and the interaction of aberrant innervation and inflammation remains unclear, many studies have confirmed certain correlations between them. In addition, we found that some chronic inflammatory autoimmune diseases (AIDs) such as inflammatory bowel disease (IBD) and rheumatoid arthritis (RA) share similar characteristics: the changes in dysregulation of inflammatory factors as well as the function and innervation of the autonomic nervous system (ANS). The mechanisms underlying the interaction between the ANS and inflammation have provided new advances among these disorders. Therefore, the purpose of this review is to compare the changes in inflammation and ANS in endometriosis, IBD, and RA; and to explore the role and possible mechanism of sympathetic and parasympathetic nerves in endometriosis-associated inflammation by referring to IBD and RA studies to provide some reference for further endometriosis research and treatment.
Collapse
Affiliation(s)
- Yajing Wei
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Sun Yat-Sen University, No. 58, the 2nd Zhongshan Road, Yuexiu District, Guangzhou, 510080, Guangdong, China
| | - Yanchun Liang
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Sun Yat-Sen University, No. 58, the 2nd Zhongshan Road, Yuexiu District, Guangzhou, 510080, Guangdong, China
| | - Haishan Lin
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510089, China
| | - Yujing Dai
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510089, China
| | - Shuzhong Yao
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Sun Yat-Sen University, No. 58, the 2nd Zhongshan Road, Yuexiu District, Guangzhou, 510080, Guangdong, China.
| |
Collapse
|
7
|
The Vulvar Vestibule, a Small Tissue with a Central Position: Anatomy, Embryology, Pain Mechanisms, and Hormonal Associations. CURRENT SEXUAL HEALTH REPORTS 2019. [DOI: 10.1007/s11930-019-00193-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
8
|
Leusink P, van de Pasch S, Teunissen D, Laan ET, Lagro-Janssen AL. The Relationship Between Vulvovaginal Candidiasis and Provoked Vulvodynia: A Systematic Review. J Sex Med 2018; 15:1310-1321. [DOI: 10.1016/j.jsxm.2018.07.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 07/02/2018] [Accepted: 07/13/2018] [Indexed: 11/30/2022]
|
9
|
Chakrabarty A, Liao Z, Mu Y, Smith PG. Inflammatory Renin-Angiotensin System Disruption Attenuates Sensory Hyperinnervation and Mechanical Hypersensitivity in a Rat Model of Provoked Vestibulodynia. THE JOURNAL OF PAIN 2017; 19:264-277. [PMID: 29155208 DOI: 10.1016/j.jpain.2017.10.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Revised: 10/25/2017] [Accepted: 10/30/2017] [Indexed: 12/20/2022]
Abstract
Vestibulodynia is characterized by perivaginal mechanical hypersensitivity, hyperinnervation, and abundant inflammatory cells expressing renin-angiotensin system proteins. We developed a tractable rat model of vestibulodynia to further assess the contributions of the renin-angiotensin system. Complete Freund's adjuvant injected into the posterior vestibule induced marked vestibular hypersensitivity throughout a 7-day test period. Numbers of axons immunoreactive for PGP9.5, calcitonin gene-related peptide, and GFRα2 were increased. Numbers of macrophages and T cells were also increased whereas B cells were not. Renin-angiotensin-associated proteins were abundant, with T cells as well as macrophages contributing to increased renin and angiotensinogen. Media conditioned with inflamed vestibular tissue promoted neurite sprouting by rat dorsal root ganglion neurons in vitro, and this was blocked by the angiotensin II receptor type 2 receptor antagonist PD123319 or by an angiotensin II function blocking antibody. Sensory axon sprouting induced by inflamed tissue was dependent on activity of angiotensin-converting enzyme or chymase, but not cathepsin G. Thus, vestibular Complete Freund's adjuvant injection substantially recapitulates changes seen in patients with provoked vestibulodynia, and shows that manipulation of the local inflammatory renin-angiotensin system may be a useful therapeutic strategy. PERSPECTIVE This study provides evidence that inflammation of the rat vestibule induces a phenotype recapitulating behavioral and cytological features of human vestibulodynia. The model confirms a crucial role of the local inflammatory renin-angiotensin system in hypersensitivity and hyperinnervation. Targeting this system holds promise for developing new nonopioid analgesic treatment strategies.
Collapse
Affiliation(s)
- Anuradha Chakrabarty
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas
| | - Zhaohui Liao
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas
| | - Ying Mu
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas
| | - Peter G Smith
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas.
| |
Collapse
|
10
|
Liao Z, Chakrabarty A, Mu Y, Bhattacherjee A, Goestch M, Leclair CM, Smith PG. A Local Inflammatory Renin-Angiotensin System Drives Sensory Axon Sprouting in Provoked Vestibulodynia. THE JOURNAL OF PAIN 2017; 18:511-525. [PMID: 28062309 PMCID: PMC6261484 DOI: 10.1016/j.jpain.2016.12.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 12/01/2016] [Accepted: 12/12/2016] [Indexed: 12/24/2022]
Abstract
Vestibulodynia is a form of provoked vulvodynia characterized by profound tenderness, hyperinnervation, and frequently inflammation within well-defined areas of the human vestibule. Previous experiments in animal models show that inflammatory hypersensitivity and hyperinnervation occur in concert with establishment of a local renin-angiotensin system (RAS). Moreover, mechanical hypersensitivity and sensory axon sprouting are prevented by blocking effects of angiotensin II on angiotensin II receptor type 2 (AT2) receptors. This case-control study assessed whether a RAS contributes to hyperinnervation observed in human vestibulodynia. Vestibular biopsies from asymptomatic controls or patients' nontender areas showed moderate innervation and small numbers of inflammatory cells. In women with vestibulodynia, tender areas contained increased numbers of mechanoreceptive nociceptor axons, T-cells, macrophages, and B-cells, whereas mast cells were unchanged. RAS proteins were increased because of greater numbers of T cells and B cells expressing angiotensinogen, and increased renin-expressing T cells and macrophages. Chymase, which converts angiotensin I to angiotensin II, was present in constant numbers of mast cells. To determine if tender vestibular tissue generates angiotensin II that promotes axon sprouting, we conditioned culture medium with vestibular tissue. Rat sensory neurons cultured in control-conditioned medium showed normal axon outgrowth, whereas those in tender tissue-conditioned medium showed enhanced sprouting that was prevented by adding an AT2 antagonist or angiotensin II neutralizing antibody. Hypersensitivity in provoked vestibulodynia is therefore characterized by abnormal mechanonociceptor axon proliferation, which is attributable to inflammatory cell-derived angiotensin II (or a closely related peptide) acting on neuronal AT2 receptors. Accordingly, reducing inflammation or blocking AT2 represent rational strategies to mitigate this common pain syndrome. PERSPECTIVE This study provides evidence that local inflammation leads to angiotensin II formation, which acts on the AT2 to induce nociceptor axon sprouting in vulvodynia. Preventing inflammation and blocking AT2 therefore present potential pharmacological strategies for reducing vestibular pain.
Collapse
Affiliation(s)
- Zhaohui Liao
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas
| | - Anuradha Chakrabarty
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas
| | - Ying Mu
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas
| | - Aritra Bhattacherjee
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas
| | - Martha Goestch
- Department of Obstetrics and Gynecology, Oregon Health & Science University, Portland, Oregon
| | - Catherine M Leclair
- Department of Obstetrics and Gynecology, Oregon Health & Science University, Portland, Oregon
| | - Peter G Smith
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas.
| |
Collapse
|
11
|
Abstract
Vulvodynia refers to pain in the vulva of at least 3 months’ duration in the absence of a recognized underlying cause. Provoked, localized vestibulodynia is the term used to describe superficial pain confined to the vulvar vestibule, provoked by touch. This review will focus on provoked vestibulodynia with regard to its suggested causative factors and will discuss the role of inflammation, vulvovaginal infections, mucosal nerve fiber proliferation, hormonal associations, central pain mechanisms, pelvic floor muscle dysfunction, and genetic factors. Clinical observations, epidemiological studies, and data from basic research emphasize the heterogeneity of vulvar pain syndromes. There is a critical need to perform prospective, longitudinal studies that will allow better diagnostic criteria and subgrouping of patients that would lead to improvements in our understanding of provoked vestibulodynia and its treatment.
Collapse
Affiliation(s)
- Ahinoam Lev-Sagie
- Department of Obstetrics and Gynecology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Steven S Witkin
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|