1
|
Fudvoye J, Lopez-Rodriguez D, Glachet C, Franssen D, Terwagne Q, Lavergne A, Donneau AF, Munaut C, Dehan P, Lomniczi A, Parent AS. Developmental exposure to an environmentally relevant dose of Bisphenol S impairs postnatal growth and disrupts placental transcriptional profile in female rat. Reprod Toxicol 2025; 132:108854. [PMID: 39933604 DOI: 10.1016/j.reprotox.2025.108854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 02/06/2025] [Accepted: 02/07/2025] [Indexed: 02/13/2025]
Abstract
Because of its possible adverse effects on human health and its ubiquitous nature, Bisphenol A (BPA) is gradually being replaced by presumably safer alternatives like Bisphenol S (BPS). However, data regarding the effects of developmental exposure to BPS on pregnancy and fetal outcomes are very scarce. Here we show that perinatal exposure to BPS at a very low dose significantly impairs postnatal growth and affects the placental transcriptome in rats. Oral exposure one week before mating and during gestation and lactation to a very low dose of BPS (25 ng/kg/day) is associated with impaired postnatal growth without significant difference in fetal weight on gestational day 18 in females. In contrast, in males, exposure to BPS 25 decreased fetal weight on gestational day 18 but growth restriction did not persist into adulthood. In female, exposure to this very low dose of BPS decreased the placental mRNA expression of fucosyltransferase2 (Fut2), pregnancy-specific glycoprotein 22 (Psg22), Wnt family member 7b (Wnt7b) which are involved in early placental development. Placental DNA methylation of steroid receptor coactivator 2 (src2), a key mediator of steroid induced decidualization, was significantly reduced, while placental src2 mRNA expression was unaffected. These results suggest that early exposure to a very low dose of BPS has long term consequences on growth trajectory and is associated with placental dysregulation.
Collapse
Affiliation(s)
- J Fudvoye
- GIGA Neurosciences, Neuroendocrinology Unit, University of Liège, Belgium; Department of Pediatrics, University Hospital Liège, Belgium.
| | - D Lopez-Rodriguez
- GIGA Neurosciences, Neuroendocrinology Unit, University of Liège, Liège, Belgium
| | - C Glachet
- GIGA Neurosciences, Neuroendocrinology Unit, University of Liège, Liège, Belgium
| | - D Franssen
- GIGA Neurosciences, Neuroendocrinology Unit, University of Liège, Liège, Belgium
| | - Q Terwagne
- GIGA Neurosciences, Neuroendocrinology Unit, University of Liège, Liège, Belgium
| | - A Lavergne
- Genomics Platform, GIGA Institute, University of Liège, Liège, Belgium
| | - A F Donneau
- Department of Public Health, University of Liège, Liège, Belgium
| | - C Munaut
- Laboratory of Tumor and Development Biology, GIGA-R, University of Liège, Liège, Belgium
| | - P Dehan
- Experimental Pathology, University of Liège, Liège, Liège, Belgium
| | - A Lomniczi
- Department of Physiology and Biophysics, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - A S Parent
- GIGA Neurosciences, Neuroendocrinology Unit, University of Liège, Belgium; Department of Pediatrics, University Hospital Liège, Belgium
| |
Collapse
|
2
|
Wu Z, Ma X, Wang J. NCOA3 knockdown delays human embryo development. Heliyon 2024; 10:e37639. [PMID: 39315150 PMCID: PMC11417216 DOI: 10.1016/j.heliyon.2024.e37639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/17/2024] [Accepted: 09/06/2024] [Indexed: 09/25/2024] Open
Abstract
Embryonic development is a precisely controlled sequential process influenced by complex external and internal factors; therefore, this process holds paramount significance in the context of in vitro fertilization and embryo transfer (IVF-ET), with internal oocyte and embryo quality being pivotal in determining its success. Nuclear receptor coactivator 3 (NCOA3), a member of the p160 nuclear receptor coactivators family, has been extensively studied in tumorigenesis and reportedly plays a crucial role in maintaining pluripotency in mouse embryonic stem cells (ESCs). However, its functions in human embryo development remain largely unexplored. In this study, we collected human samples, including oocytes, zygotes, and embryos, from patients at the First Affiliated Hospital of Zhengzhou University to investigate whether NCOA3 regulates human embryonic development. To this end, we employed various assays, including immunofluorescence, quantitative real-time PCR (qPCR), microinjection, and RNA sequencing. Our findings suggested that NCOA3 expression level was low in inferior embryos (with >50 % fragmentation), and its presence is closely related to the expression of the pluripotency factor NANOG. Deletion of NCOA3 delays human embryonic development. Single-oocyte RNA sequencing revealed that NCOA3 primarily participates in metabolic alterations in oocytes. In sum, these findings elucidate the pivotal roles of NCOA3 in human embryonic development-NCOA3 deletion compromise the developmental potential of embryos. These mechanistic insights into the role of NCOA3 in human embryonic development not only advances our understanding of the intricate molecular mechanisms involved but also holds potential implications for improving assisted reproductive technologies (ART) and addressing developmental disorders in human embryos.
Collapse
Affiliation(s)
- Zhaoting Wu
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Xueshan Ma
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
- Department of Reproduction and Genetics, The Affiliated Taian City Central Hospital of Qingdao University, Taian, 271000, China
| | - Jingyu Wang
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, 300070, China
| |
Collapse
|
3
|
Dias Da Silva I, Wuidar V, Zielonka M, Pequeux C. Unraveling the Dynamics of Estrogen and Progesterone Signaling in the Endometrium: An Overview. Cells 2024; 13:1236. [PMID: 39120268 PMCID: PMC11312103 DOI: 10.3390/cells13151236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/25/2024] [Accepted: 07/19/2024] [Indexed: 08/10/2024] Open
Abstract
The endometrium is crucial for the perpetuation of human species. It is a complex and dynamic tissue lining the inner wall of the uterus, regulated throughout a woman's life based on estrogen and progesterone fluctuations. During each menstrual cycle, this multicellular tissue undergoes cyclical changes, including regeneration, differentiation in order to allow egg implantation and embryo development, or shedding of the functional layer in the absence of pregnancy. The biology of the endometrium relies on paracrine interactions between epithelial and stromal cells involving complex signaling pathways that are modulated by the variations of estrogen and progesterone levels across the menstrual cycle. Understanding the complexity of estrogen and progesterone receptor signaling will help elucidate the mechanisms underlying normal reproductive physiology and provide fundamental knowledge contributing to a better understanding of the consequences of hormonal imbalances on gynecological conditions and tumorigenesis. In this narrative review, we delve into the physiology of the endometrium, encompassing the complex signaling pathways of estrogen and progesterone.
Collapse
Grants
- J.0165.24, 7.6529.23, J.0153.22, 7.4580.21F, 7.6518.21, J.0131.19 Fund for Scientific Research
- FSR-F-2023-FM, FSR-F-2022-FM, FSR-F-2021-FM, FSR-F-M-19/6761 University of Liège
- 2020, 2021, 2022 Fondation Léon Fredericq
Collapse
Affiliation(s)
| | | | | | - Christel Pequeux
- Tumors and Development, Estrogen-Sensitive Tissues and Cancer Team, GIGA-Cancer, Laboratory of Biology, University of Liège, 4000 Liège, Belgium; (I.D.D.S.); (V.W.); (M.Z.)
| |
Collapse
|
4
|
Segovia D, Tepes PS. p160 nuclear receptor coactivator family members and their role in rare fusion‑driven neoplasms (Review). Oncol Lett 2024; 27:210. [PMID: 38572059 PMCID: PMC10988192 DOI: 10.3892/ol.2024.14343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 02/22/2024] [Indexed: 04/05/2024] Open
Abstract
Gene fusions with translocations involving nuclear receptor coactivators (NCoAs) are relatively common among fusion-driven malignancies. NCoAs are essential mediators of environmental cues and can modulate the transcription of downstream target genes upon binding to activated nuclear receptors. Therefore, fusion proteins containing NCoAs can become strong oncogenic drivers, affecting the cell transcriptional profile. These tumors show a strong dependency on the fusion oncogene; therefore, the direct pharmacological targeting of the fusion protein becomes an attractive strategy for therapy. Currently, different combinations of chemotherapy regimens are used to treat a variety of NCoA-fusion-driven tumors, but given the frequent tumor reoccurrence, more efficient treatment strategies are needed. Specific approaches directed towards inhibition or silencing of the fusion gene need to be developed while minimizing the interference with the original genes. This review highlights the relevant literature describing the normal function and structure of NCoAs and their oncogenic activity in NCoA-gene fusion-driven cancers, and explores potential strategies that could be effective in targeting these fusions.
Collapse
Affiliation(s)
- Danilo Segovia
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
- Stony Brook University, Stony Brook, NY 11794, USA
| | - Polona Safaric Tepes
- Robert S. Boas Center for Genomics and Human Genetics, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA
| |
Collapse
|
5
|
Maurya VK, Szwarc MM, Lonard DM, Kommagani R, Wu SP, O’Malley BW, DeMayo FJ, Lydon JP. Steroid receptor coactivator-2 drives epithelial reprogramming that enables murine embryo implantation. FASEB J 2023; 37:e23313. [PMID: 37962238 PMCID: PMC10655894 DOI: 10.1096/fj.202301581r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 10/19/2023] [Accepted: 11/01/2023] [Indexed: 11/15/2023]
Abstract
Although we have shown that steroid receptor coactivator-2 (SRC-2), a member of the p160/SRC family of transcriptional coregulators, is essential for decidualization of both human and murine endometrial stromal cells, SRC-2's role in the earlier stages of the implantation process have not been adequately addressed. Using a conditional SRC-2 knockout mouse (SRC-2d/d ) in timed natural pregnancy studies, we show that endometrial SRC-2 is required for embryo attachment and adherence to the luminal epithelium. Implantation failure is associated with the persistent expression of Mucin 1 and E-cadherin on the apical surface and basolateral adherens junctions of the SRC-2d/d luminal epithelium, respectively. These findings indicate that the SRC-2d/d luminal epithelium fails to exhibit a plasma membrane transformation (PMT) state known to be required for the development of uterine receptivity. Transcriptomics demonstrated that the expression of genes involved in steroid hormone control of uterine receptivity were significantly disrupted in the SRC-2d/d endometrium as well as genes that control epithelial tight junctional biology and the emergence of the epithelial mesenchymal transition state, with the latter sharing similar biological properties with PMT. Collectively, these findings uncover a new role for endometrial SRC-2 in the induction of the luminal epithelial PMT state, which is a prerequisite for the development of uterine receptivity and early pregnancy establishment.
Collapse
Affiliation(s)
- Vineet K. Maurya
- Department of Molecular and Cellular Biology, Center for Coregulator Research
| | - Maria M. Szwarc
- Department of Molecular and Cellular Biology, Center for Coregulator Research
| | - David M. Lonard
- Department of Molecular and Cellular Biology, Center for Coregulator Research
| | - Ramakrishna Kommagani
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, USA
| | - San Pin Wu
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Bert W. O’Malley
- Department of Molecular and Cellular Biology, Center for Coregulator Research
| | - Francesco J. DeMayo
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - John P. Lydon
- Department of Molecular and Cellular Biology, Center for Coregulator Research
| |
Collapse
|
6
|
Li R, Wang T, Marquardt RM, Lydon JP, Wu SP, DeMayo FJ. TRIM28 modulates nuclear receptor signaling to regulate uterine function. Nat Commun 2023; 14:4605. [PMID: 37528140 PMCID: PMC10393996 DOI: 10.1038/s41467-023-40395-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 07/20/2023] [Indexed: 08/03/2023] Open
Abstract
Estrogen and progesterone, acting through their cognate receptors the estrogen receptor α (ERα) and the progesterone receptor (PR) respectively, regulate uterine biology. Using rapid immunoprecipitation and mass spectrometry (RIME) and co-immunoprecipitation, we identified TRIM28 (Tripartite motif containing 28) as a protein which complexes with ERα and PR in the regulation of uterine function. Impairment of TRIM28 expression results in the inability of the uterus to support early pregnancy through altered PR and ERα action in the uterine epithelium and stroma by suppressing PR and ERα chromatin binding. Furthermore, TRIM28 ablation in PR-expressing uterine cells results in the enrichment of a subset of TRIM28 positive and PR negative pericytes and epithelial cells with progenitor potential. In summary, our study reveals the important roles of TRIM28 in regulating endometrial cell composition and function in women, and also implies its critical functions in other hormone regulated systems.
Collapse
Affiliation(s)
- Rong Li
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Tianyuan Wang
- Integrative Bioinformatics, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Ryan M Marquardt
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - John P Lydon
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - San-Pin Wu
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Francesco J DeMayo
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA.
| |
Collapse
|
7
|
Sahoo DK, Chainy GBN. Hormone-linked redox status and its modulation by antioxidants. VITAMINS AND HORMONES 2023; 121:197-246. [PMID: 36707135 DOI: 10.1016/bs.vh.2022.10.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Hormones have been considered as key factors involved in the maintenance of the redox status of the body. We are making considerable progress in understanding interactions between the endocrine system, redox status, and oxidative stress with the dynamics of life, which encompasses fertilization, development, growth, aging, and various pathophysiological states. One of the reasons for changes in redox states of vertebrates leading to oxidative stress scenario is the disruption of the endocrine system. Comprehending the dynamics of hormonal status to redox state and oxidative stress in living systems is challenging. It is more difficult to come to a unifying conclusion when some hormones exhibit oxidant properties while others have antioxidant features. There is a very limited approach to correlate alteration in titers of hormones with redox status and oxidative stress with growth, development, aging, and pathophysiological stress. The situation is further complicated when considering various tissues and sexes in vertebrates. This chapter discusses the beneficial impacts of hormones with antioxidative properties, such as melatonin, glucagon, insulin, estrogens, and progesterone, which protect cells from oxidative damage and reduce pathophysiological effects. Additionally, we discuss the protective effects of antioxidants like vitamins A, E, and C, curcumin, tempol, N-acetyl cysteine, α-lipoic acid, date palm pollen extract, resveratrol, and flavonoids on oxidative stress triggered by hormones such as aldosterone, glucocorticoids, thyroid hormones, and catecholamines. Inflammation, pathophysiology, and the aging process can all be controlled by understanding how antioxidants and hormones operate together to maintain cellular redox status. Identifying the hormonal changes and the action of antioxidants may help in developing new therapeutic strategies for hormonal imbalance-related disorders.
Collapse
Affiliation(s)
- Dipak Kumar Sahoo
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa States University, Ames, IA, United States.
| | - Gagan B N Chainy
- Department of Biotechnology, Utkal University, Bhubaneswar, Odisha, India
| |
Collapse
|
8
|
Kawasaki T, Takeda Y, Edahiro R, Shirai Y, Nogami-Itoh M, Matsuki T, Kida H, Enomoto T, Hara R, Noda Y, Adachi Y, Niitsu T, Amiya S, Yamaguchi Y, Murakami T, Kato Y, Morita T, Yoshimura H, Yamamoto M, Nakatsubo D, Miyake K, Shiroyama T, Hirata H, Adachi J, Okada Y, Kumanogoh A. Next-generation proteomics of serum extracellular vesicles combined with single-cell RNA sequencing identifies MACROH2A1 associated with refractory COVID-19. Inflamm Regen 2022; 42:53. [PMID: 36451245 PMCID: PMC9709739 DOI: 10.1186/s41232-022-00243-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/18/2022] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND The coronavirus disease 2019 (COVID-19) pandemic is widespread; however, accurate predictors of refractory cases have not yet been established. Circulating extracellular vesicles, involved in many pathological processes, are ideal resources for biomarker exploration. METHODS To identify potential serum biomarkers and examine the proteins associated with the pathogenesis of refractory COVID-19, we conducted high-coverage proteomics on serum extracellular vesicles collected from 12 patients with COVID-19 at different disease severity levels and 4 healthy controls. Furthermore, single-cell RNA sequencing of peripheral blood mononuclear cells collected from 10 patients with COVID-19 and 5 healthy controls was performed. RESULTS Among the 3046 extracellular vesicle proteins that were identified, expression of MACROH2A1 was significantly elevated in refractory cases compared to non-refractory cases; moreover, its expression was increased according to disease severity. In single-cell RNA sequencing of peripheral blood mononuclear cells, the expression of MACROH2A1 was localized to monocytes and elevated in critical cases. Consistently, single-nucleus RNA sequencing of lung tissues revealed that MACROH2A1 was highly expressed in monocytes and macrophages and was significantly elevated in fatal COVID-19. Moreover, molecular network analysis showed that pathways such as "estrogen signaling pathway," "p160 steroid receptor coactivator (SRC) signaling pathway," and "transcriptional regulation by STAT" were enriched in the transcriptome of monocytes in the peripheral blood mononuclear cells and lungs, and they were also commonly enriched in extracellular vesicle proteomics. CONCLUSIONS Our findings highlight that MACROH2A1 in extracellular vesicles is a potential biomarker of refractory COVID-19 and may reflect the pathogenesis of COVID-19 in monocytes.
Collapse
Affiliation(s)
- Takahiro Kawasaki
- grid.136593.b0000 0004 0373 3971Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Osaka, 565-0871 Japan ,grid.136593.b0000 0004 0373 3971Laboratory of Immunopathology, World Premier International Immunology Frontier Research Center (WPI-IFReC), Osaka University, Osaka, 565-0871 Japan
| | - Yoshito Takeda
- grid.136593.b0000 0004 0373 3971Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Osaka, 565-0871 Japan
| | - Ryuya Edahiro
- grid.136593.b0000 0004 0373 3971Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Osaka, 565-0871 Japan ,grid.136593.b0000 0004 0373 3971Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yuya Shirai
- grid.136593.b0000 0004 0373 3971Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Osaka, 565-0871 Japan ,grid.136593.b0000 0004 0373 3971Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan
| | - Mari Nogami-Itoh
- grid.482562.fLaboratory of Bioinformatics, Artificial Intelligence Center for Health and Biomedical Research, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085 Japan
| | - Takanori Matsuki
- grid.416803.80000 0004 0377 7966Department of Respiratory Medicine, National Hospital Organization Osaka Toneyama Medical Center, 5-1-1 Toneyama, Toyonaka, Osaka 560-8552 Japan
| | - Hiroshi Kida
- grid.416803.80000 0004 0377 7966Department of Respiratory Medicine, National Hospital Organization Osaka Toneyama Medical Center, 5-1-1 Toneyama, Toyonaka, Osaka 560-8552 Japan
| | - Takatoshi Enomoto
- grid.136593.b0000 0004 0373 3971Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Osaka, 565-0871 Japan
| | - Reina Hara
- grid.136593.b0000 0004 0373 3971Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Osaka, 565-0871 Japan
| | - Yoshimi Noda
- grid.136593.b0000 0004 0373 3971Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Osaka, 565-0871 Japan
| | - Yuichi Adachi
- grid.136593.b0000 0004 0373 3971Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Osaka, 565-0871 Japan
| | - Takayuki Niitsu
- grid.136593.b0000 0004 0373 3971Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Osaka, 565-0871 Japan
| | - Saori Amiya
- grid.136593.b0000 0004 0373 3971Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Osaka, 565-0871 Japan
| | - Yuta Yamaguchi
- grid.136593.b0000 0004 0373 3971Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Osaka, 565-0871 Japan
| | - Teruaki Murakami
- grid.136593.b0000 0004 0373 3971Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Osaka, 565-0871 Japan
| | - Yasuhiro Kato
- grid.136593.b0000 0004 0373 3971Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Osaka, 565-0871 Japan
| | - Takayoshi Morita
- grid.136593.b0000 0004 0373 3971Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Osaka, 565-0871 Japan
| | - Hanako Yoshimura
- grid.136593.b0000 0004 0373 3971Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Osaka, 565-0871 Japan
| | - Makoto Yamamoto
- grid.136593.b0000 0004 0373 3971Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Osaka, 565-0871 Japan
| | - Daisuke Nakatsubo
- grid.136593.b0000 0004 0373 3971Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Osaka, 565-0871 Japan
| | - Kotaro Miyake
- grid.136593.b0000 0004 0373 3971Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Osaka, 565-0871 Japan
| | - Takayuki Shiroyama
- grid.136593.b0000 0004 0373 3971Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Osaka, 565-0871 Japan
| | - Haruhiko Hirata
- grid.136593.b0000 0004 0373 3971Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Osaka, 565-0871 Japan
| | - Jun Adachi
- grid.482562.fLaboratory of Proteomics for Drug Discovery, Center for Drug Design Research, National Institute of Biomedical Innovation, Health and Nutrition, 7-6-8, Saito-Asagi, Ibaraki City, Osaka, 567-0085 Japan
| | - Yukinori Okada
- grid.136593.b0000 0004 0373 3971Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan
| | - Atsushi Kumanogoh
- grid.136593.b0000 0004 0373 3971Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Osaka, 565-0871 Japan ,grid.136593.b0000 0004 0373 3971Laboratory of Immunopathology, World Premier International Immunology Frontier Research Center (WPI-IFReC), Osaka University, Osaka, 565-0871 Japan ,grid.136593.b0000 0004 0373 3971Center for Infectious Diseases for Education and Research (CiDER), Osaka University, Suita, Osaka Japan ,grid.136593.b0000 0004 0373 3971Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Japan ,grid.480536.c0000 0004 5373 4593Japan Agency for Medical Research and Development-Core Research for Evolutionary Medical Science and Technology (AMED-CREST), Japan Agency for Medical Research and Development, Tokyo, Japan ,grid.136593.b0000 0004 0373 3971Center for Advanced Modalities and DDS (CAMaD), Osaka University, Osaka, Japan
| |
Collapse
|
9
|
Maurya VK, Szwarc MM, Lonard DM, Gibbons WE, Wu SP, O’Malley BW, DeMayo FJ, Lydon JP. Decidualization of human endometrial stromal cells requires steroid receptor coactivator-3. FRONTIERS IN REPRODUCTIVE HEALTH 2022; 4:1033581. [PMID: 36505394 PMCID: PMC9730893 DOI: 10.3389/frph.2022.1033581] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/07/2022] [Indexed: 11/25/2022] Open
Abstract
Steroid receptor coactivator-3 (SRC-3; also known as NCOA3 or AIB1) is a member of the multifunctional p160/SRC family of coactivators, which also includes SRC-1 and SRC-2. Clinical and cell-based studies as well as investigations on mice have demonstrated pivotal roles for each SRC in numerous physiological and pathophysiological contexts, underscoring their functional pleiotropy. We previously demonstrated the critical involvement of SRC-2 in murine embryo implantation as well as in human endometrial stromal cell (HESC) decidualization, a cellular transformation process required for trophoblast invasion and ultimately placentation. We show here that, like SRC-2, SRC-3 is expressed in the epithelial and stromal cellular compartments of the human endometrium during the proliferative and secretory phase of the menstrual cycle as well as in cultured HESCs. We also found that SRC-3 depletion in cultured HESCs results in a significant attenuation in the induction of a wide-range of established biomarkers of decidualization, despite exposure of these cells to a deciduogenic stimulus and normal progesterone receptor expression. These molecular findings are supported at the cellular level by the inability of HESCs to morphologically transform from a stromal fibroblastoid cell to an epithelioid decidual cell when endogenous SRC-3 levels are markedly reduced. To identify genes, signaling pathways and networks that are controlled by SRC-3 and potentially important for hormone-dependent decidualization, we performed RNA-sequencing on HESCs in which SRC-3 levels were significantly reduced at the time of administering the deciduogenic stimulus. Comparing HESC controls with HESCs deficient in SRC-3, gene enrichment analysis of the differentially expressed gene set revealed an overrepresentation of genes involved in chromatin remodeling, cell proliferation/motility, and programmed cell death. These predictive bioanalytic results were confirmed by the demonstration that SRC-3 is required for the expansion, migratory and invasive activities of the HESC population, cellular properties that are required in vivo in the formation or functioning of the decidua. Collectively, our results support SRC-3 as an important coregulator in HESC decidualization. Since perturbation of normal homeostatic levels of SRC-3 is linked with common gynecological disorders diagnosed in reproductive age women, this endometrial coregulator-along with its new molecular targets described here-may open novel clinical avenues in the diagnosis and/or treatment of a non-receptive endometrium, particularly in patients presenting non-aneuploid early pregnancy loss.
Collapse
Affiliation(s)
- Vineet K. Maurya
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
| | - Maria M. Szwarc
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
| | - David M. Lonard
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
| | - William E. Gibbons
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX, United States
| | - San-Pin Wu
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC, United States
| | - Bert W. O’Malley
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
| | - Francesco J. DeMayo
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC, United States
| | - John P. Lydon
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States,Correspondence: John P. Lydon
| |
Collapse
|
10
|
Shi XQ, Chen G, Tan JQ, Li Z, Chen SM, He JH, Zhang L, Xu HX. Total alkaloid fraction of Leonurus japonicus Houtt. Promotes angiogenesis and wound healing through SRC/MEK/ERK signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2022; 295:115396. [PMID: 35598796 DOI: 10.1016/j.jep.2022.115396] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/12/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Leonurus japonicus Houtt., also known as motherwort, is a traditional Chinese medicine that was first identified in Shennong Bencao Jing, the first and essential pharmacy monograph in China. L. japonicus has been regarded as a good gynecological medicine since ancient times. It has been widely used in clinical settings for treatment of gynecological diseases and postnatal rehabilitation with good efficacy and low adverse effects. AIM OF THE STUDY The main purpose of this study was to determine the angiogenic and wound healing effects of total alkaloid fraction from L. japonicus Houtt. (TALH) in vivo and in vitro. In addition, the main bioactive components of total alkaloids were to be identified and analyzed in this study. MATERIALS AND METHODS First, the UHPLC/Q-TOF-MS method was used to identify and quantify the major components in the TALH extract. The wound healing activity was evaluated in vivo using a rat full-thickness cutaneous wound model. Histological study of wound healing in rat model was performed via immunohistochemistry and immunofluorescence. Cell proliferation was determined by MTT assay. Wound healing and transwell assays were used for detection of cell migration. The effect on tube formation was determined by tube formation assay in HUVECs. Western blot and RT-PCR were used to detect the expressions of relative proteins and genes respectively. Knock-down of SRC by siRNA was done to verify the crucial role of SRC in promotion of angiogenesis induced by TALH. RESULTS Seven characteristic peaks were recognized in the UHPLC/Q-TOF-MS spectrum, while four of the main components were quantified. The wound model in rats showed that treatment of TALH promoted wound healing by stimulating cellular proliferation and collagen deposition. In vitro experiments showed that co-treatment of TALH and VEGF increased cell proliferation, migration and tube formation in HUVECs. Mechanistic studies suggested that the co-treatment increased gene expressions of SRC, MEK1/2 and ERK1/2, as well as the phosphorylation levels of these proteins. Furthermore, the effect of co-treatment was attenuated after SRC knockdown, suggesting that SRC plays an important role in angiogenesis and wound healing induced by TALH and VEGF co-treatment. CONCLUSION Our results showed that TALH was one of the main active components of L. japonicus that promoted angiogenesis and wound healing by regulating the SRC/MEK/ERK pathway. Our study provided scientific basis for better clinical application of L. japonicas.
Collapse
Affiliation(s)
- Xiao-Qin Shi
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, PR China; Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, 201203, PR China
| | - Gan Chen
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, PR China; Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, 201203, PR China
| | - Jia-Qi Tan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, PR China; Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, 201203, PR China
| | - Zhuo Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, PR China; Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, 201203, PR China
| | - Si-Min Chen
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, PR China; Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, 201203, PR China
| | - Jia-Hui He
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, PR China; Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, 201203, PR China
| | - Li Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, PR China; Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, 201203, PR China.
| | - Hong-Xi Xu
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
11
|
Xu R, Shao L, Zhang W, Yang ZL. Uterine tumor resembling ovarian sex-cord tumor: case report and review of the literature. ASIAN BIOMED 2022; 16:145-150. [PMID: 37551382 PMCID: PMC10321160 DOI: 10.2478/abm-2022-0018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Background We report the clinicopathological characteristics, immunohistochemical features, ultrastructure, tissue source, differential diagnosis, treatment, and prognosis of a patient with a uterine tumor resembling ovarian sex-cord tumor (UTROSCT). Case report A 40-year-old woman had a uterine myoma with enlargement for 2.5 years. An ultrasound examination showed a mixed echogenic mass at the posterior wall of the uterus and a dark cyst in the right adnexal area, which suggested a suspected uterine myoma with liquefaction and a suspected chocolate cyst. The patient underwent transabdominal tumor resection with removal of the right adnexal mass. Through postoperative pathological examination, the patient was diagnosed with UTROSCT. No recurrence was observed after a follow-up of 1 year. Conclusion Although UTROSCT is usually benign, it can relapse or metastasize, and patients with UTROSCT need comprehensive diagnosis and treatment.
Collapse
Affiliation(s)
- Rong Xu
- Department of Obstetrics and Gynecology, Nanjing Lishui People's Hospital, Nanjing, Jiangsu211200, China
| | - Liping Shao
- Department of Obstetrics and Gynecology, Nanjing Lishui People's Hospital, Nanjing, Jiangsu211200, China
| | - Wenling Zhang
- Department of Pathology, Nanjing Lishui People's Hospital, Nanjing, Jiangsu211200, China
| | - Zhi-Long Yang
- Department of General Surgery, Nanjing Lishui People's Hospital, Nanjing, Jiangsu211200, China
| |
Collapse
|
12
|
Qi W, Rosikiewicz W, Yin Z, Xu B, Jiang H, Wan S, Fan Y, Wu G, Wang L. Genomic profiling identifies genes and pathways dysregulated by HEY1-NCOA2 fusion and shines a light on mesenchymal chondrosarcoma tumorigenesis. J Pathol 2022; 257:579-592. [PMID: 35342947 PMCID: PMC9539848 DOI: 10.1002/path.5899] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 02/09/2022] [Accepted: 03/23/2022] [Indexed: 11/25/2022]
Abstract
Mesenchymal chondrosarcoma is a rare, high‐grade, primitive mesenchymal tumor. It accounts for around 2–10% of all chondrosarcomas and mainly affects adolescents and young adults. We previously described the HEY1–NCOA2 as a recurrent gene fusion in mesenchymal chondrosarcoma, an important breakthrough for characterizing this disease; however, little study had been done to characterize the fusion protein functionally, in large part due to a lack of suitable models for evaluating the impact of HEY1–NCOA2 expression in the appropriate cellular context. We used iPSC‐derived mesenchymal stem cells (iPSC‐MSCs), which can differentiate into chondrocytes, and generated stable transduced iPSC‐MSCs with inducible expression of HEY1–NCOA2 fusion protein, wildtype HEY1 or wildtype NCOA2. We next comprehensively analyzed both the DNA binding properties and transcriptional impact of HEY1–NCOA2 expression by integrating genome‐wide chromatin immunoprecipitation sequencing (ChIP‐seq) and expression profiling (RNA‐seq). We demonstrated that HEY1–NCOA2 fusion protein preferentially binds to promoter regions of canonical HEY1 targets, resulting in transactivation of HEY1 targets, and significantly enhances cell proliferation. Intriguingly, we identified that both PDGFB and PDGFRA were directly targeted and upregulated by HEY1‐NCOA2; and the fusion protein, but not wildtype HEY1 or NCOA2, dramatically increased the level of phospho‐AKT (Ser473). Our findings provide a rationale for exploring PDGF/PI3K/AKT inhibition in treating mesenchymal chondrosarcoma. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Wenqing Qi
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Wojciech Rosikiewicz
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Zhaohong Yin
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Beisi Xu
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Huihong Jiang
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Shibiao Wan
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Yiping Fan
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Gang Wu
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, United States.,Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Lu Wang
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, United States
| |
Collapse
|
13
|
EMORI C, KANKE T, ITO H, AKIMOTO Y, FUJII W, NAITO K, SUGIURA K. Expression and regulation of estrogen receptor 2 and its coregulators in mouse granulosa cells. J Reprod Dev 2022; 68:137-143. [PMID: 35046244 PMCID: PMC8979806 DOI: 10.1262/jrd.2021-114] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cooperative effects of estrogen and oocyte-derived paracrine factors (ODPFs) play critical roles in the normal development of ovarian follicles; however, the mechanism underlying this
cooperation has not been well studied. The present study aimed to determine whether ODPFs affect estrogen signaling by regulating the expression of estrogen receptor (ESR) and its
coregulators in mouse granulosa cells. Some transcripts encoding ESR coregulators were differentially expressed between cumulus and mural granulosa cells (MGCs). The transcript levels of ESR
coregulators, including nuclear receptor corepressor 1 and activator 2, in cumulus cells were significantly suppressed by ODPFs; however, they increased when cumulus cell-oocyte complexes
were treated with the transforming growth factor beta receptor I inhibitor, SB431542. Moreover, MGCs exhibited significantly higher ESR2 protein and transcript levels than those in cumulus
cells. ODPFs promoted Esr2 expression in cumulus cells but had no effect on that in MGCs. Overall, regulation of the expression of ESR2 and its coregulators in cumulus cells
by oocytes seems to be one of the mechanisms underlying estrogen-oocyte cooperation in well-developed antral follicles in mice.
Collapse
Affiliation(s)
- Chihiro EMORI
- Laboratory of Applied Genetics, Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Takuya KANKE
- Laboratory of Applied Genetics, Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Haruka ITO
- Laboratory of Applied Genetics, Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Yuki AKIMOTO
- Laboratory of Applied Genetics, Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Wataru FUJII
- Laboratory of Applied Genetics, Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Kunihiko NAITO
- Laboratory of Applied Genetics, Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Koji SUGIURA
- Laboratory of Applied Genetics, Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| |
Collapse
|
14
|
Meng Z, Wang X, Zhang D, Lan Z, Cai X, Bian C, Zhang J. Steroid receptor coactivator-1: The central intermediator linking multiple signals and functions in the brain and spinal cord. Genes Dis 2021; 9:1281-1289. [PMID: 35873031 PMCID: PMC9293692 DOI: 10.1016/j.gendis.2021.06.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 05/31/2021] [Accepted: 06/21/2021] [Indexed: 11/28/2022] Open
Abstract
The effects of steroid hormones are believed to be mediated by their nuclear receptors (NRs). The p160 coactivator family, including steroid receptor coactivator-1 (SRC-1), 2 and 3, has been shown to physically interact with NRs to enhance their transactivational activities. Among which SRC-1 has been predominantly localized in the central nervous system including brain and spinal cord. It is not only localized in neurons but also detectable in neuroglial cells (mainly localized in the nuclei but also detectable in the extra-nuclear components). Although the expression of SRC-1 is regulated by many steroids, it is also regulated by some non-steroidal factors such as injury, sound and light. Functionally, SRC-1 has been implied in normal function such as development and ageing, learning and memory, central regulation on reproductive behaviors, motor and food intake. Pathologically, SRC-1 may play a role in the regulation of neuropsychiatric disorders (including stress, depression, anxiety, and autism spectrum disorder), metabolite homeostasis and obesity as well as tumorigenesis. Under most conditions, the related mechanisms are far from elucidation; although it may regulate spatial memory through Rictor/mTORC2-actin polymerization related synaptic plasticity. Several inhibitors and stimulator of SRC-1 have shown anti-cancer potentials, but whether these small molecules could be used to modulate ageing and central disorder related neuropathology remain unclear. Therefore, to elucidate when and how SRC-1 is turned on and off under different stimuli is very interesting and great challenge for neuroscientists.
Collapse
Affiliation(s)
- Zhaoyou Meng
- Department of Neurobiology, Army Medical University, Chongqing 400038, PR China
| | - Xiaoya Wang
- Department of Neurosurgery, Nanchong Central Hospital, the Second Clinical Medical College, North Sichuan Medical College, Nanchong, Sichuan 637000, PR China
| | - Dongmei Zhang
- Department of Dermatology, Southwest Hospital, Army Medical University, Chongqing 400038, PR China
| | - Zhen Lan
- Department of Neurobiology, Army Medical University, Chongqing 400038, PR China
| | - Xiaoxia Cai
- Department of Neurobiology, Army Medical University, Chongqing 400038, PR China
- School of Life Sciences, Southwest University, Chongqing 400715, PR China
| | - Chen Bian
- School of Psychology, Amy Medical University, Chongqing 400038, PR China
- Corresponding author.
| | - Jiqiang Zhang
- Department of Neurobiology, Army Medical University, Chongqing 400038, PR China
- Corresponding author.
| |
Collapse
|
15
|
Maurya VK, DeMayo FJ, Lydon JP. Illuminating the "Black Box" of Progesterone-Dependent Embryo Implantation Using Engineered Mice. Front Cell Dev Biol 2021; 9:640907. [PMID: 33898429 PMCID: PMC8058370 DOI: 10.3389/fcell.2021.640907] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 03/11/2021] [Indexed: 02/04/2023] Open
Abstract
Synchrony between progesterone-driven endometrial receptivity and the arrival of a euploid blastocyst is essential for embryo implantation, a prerequisite event in the establishment of a successful pregnancy. Advancement of embryo implantation within the uterus also requires stromal fibroblasts of the endometrium to transform into epithelioid decidual cells, a progesterone-dependent cellular transformation process termed decidualization. Although progesterone is indispensable for these cellular processes, the molecular underpinnings are not fully understood. Because human studies are restricted, much of our fundamental understanding of progesterone signaling in endometrial periimplantation biology comes from in vitro and in vivo experimental systems. In this review, we focus on the tremendous progress attained with the use of engineered mouse models together with high throughput genome-scale analysis in disclosing key signals, pathways and networks that are required for normal endometrial responses to progesterone during the periimplantation period. Many molecular mediators and modifiers of the progesterone response are implicated in cross talk signaling between epithelial and stromal cells of the endometrium, an intercellular communication system that is critical for the ordered spatiotemporal control of embryo invasion within the maternal compartment. Accordingly, derailment of these signaling systems is causally linked with infertility, early embryo miscarriage and gestational complications that symptomatically manifest later in pregnancy. Such aberrant progesterone molecular responses also contribute to endometrial pathologies such as endometriosis, endometrial hyperplasia and cancer. Therefore, our review makes the case that further identification and functional analysis of key molecular mediators and modifiers of the endometrial response to progesterone will not only provide much-needed molecular insight into the early endometrial cellular changes that promote pregnancy establishment but lend credible hope for the development of more effective mechanism-based molecular diagnostics and precision therapies in the clinical management of female infertility, subfertility and a subset of gynecological morbidities.
Collapse
Affiliation(s)
- Vineet K Maurya
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, United States
| | - Francesco J DeMayo
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Durham, NC, United States
| | - John P Lydon
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, United States
| |
Collapse
|
16
|
Rohira AD, Lonard DM, O’Malley BW. Emerging roles of steroid receptor coactivators in stromal cell responses. J Endocrinol 2021; 248:R41-R50. [PMID: 33337343 PMCID: PMC7925431 DOI: 10.1530/joe-20-0511] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 12/16/2020] [Indexed: 12/17/2022]
Abstract
Tissue parenchyma is the functional unit of an organ and all of the remaining cells within that organ collectively make up the tissue stroma. The stroma includes fibroblasts, endothelial cells, immune cells, and nerves. Interactions between stromal and epithelial cells are essential for tissue development and healing after injury. These interactions are governed by growth factors, inflammatory cytokines and hormone signaling cascades. The steroid receptor coactivator (SRC) family of proteins includes three transcriptional coactivators that facilitate the assembly of multi-protein complexes to induce gene expression in response to activation of many cellular transcription factor signaling cascades. They are ubiquitously expressed and are especially critical for the developmental function of steroid hormone responsive tissues. The SRCs are overexpressed in multiple cancers including breast, ovarian, prostate and endometrial cancers. In this review, we focus on the role of the SRCs in regulating the functions of stromal cell components responsible for angiogenesis, inflammation and cell differentiation.
Collapse
Affiliation(s)
- Aarti D. Rohira
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030
| | - David M. Lonard
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030
| | - Bert W O’Malley
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030
- Corresponding author: Bert W. O’Malley, Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, Tel: 713-798-6205, Fax: 713-798-1275,
| |
Collapse
|
17
|
Grither WR, Dickson BC, Fuh KC, Hagemann IS. Detection of a somatic GREB1-NCOA1 gene fusion in a uterine tumor resembling ovarian sex cord tumor (UTROSCT). Gynecol Oncol Rep 2020; 34:100636. [PMID: 32964092 PMCID: PMC7490989 DOI: 10.1016/j.gore.2020.100636] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/24/2020] [Accepted: 08/30/2020] [Indexed: 02/07/2023] Open
Abstract
Uterine tumor resembling ovarian sex cord tumor is a rare mesenchymal neoplasm. UTROSCT harbors recurrent rearrangements between NCOA1-3 and ESR1 or GREB1. RNA-sequencing can identify these rearrangements to support the diagnosis.
Uterine tumor resembling ovarian sex cord tumor (UTROSCT) is a rare uterine neoplasm of uncertain malignant potential. We present the case of a 69-year-old woman who underwent hysterectomy for postmenopausal bleeding and was found to have a myometrial UTROSCT. RNA-sequencing identified a somatic GREB1–NCOA1 fusion, supporting the diagnosis. Next-generation sequencing is increasingly being adopted in diagnostic pathology laboratories. This report highlights the value of RNA-sequencing in identifying rare fusion events to support pathologic diagnoses.
Collapse
Affiliation(s)
- Whitney R Grither
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, USA
| | - Brendan C Dickson
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, ON, Canada
| | - Katherine C Fuh
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, USA
| | - Ian S Hagemann
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, USA.,Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
18
|
Uterine Tumor Resembling Ovarian Sex Cord Tumor (UTROSCT): A Morphologic and Molecular Study of 26 Cases Confirms Recurrent NCOA1-3 Rearrangement. Am J Surg Pathol 2020; 44:30-42. [PMID: 31464709 DOI: 10.1097/pas.0000000000001348] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Uterine tumor resembling ovarian sex cord tumor (UTROSCT) is a rare mesenchymal neoplasm, of uncertain biological potential, that was recently reported to exhibit recurrent gene fusions involving NCOA2-3. The purpose of this study was to, using a larger sample size, better characterize the histopathologic and molecular diversity of UTROSCT. Twenty-six cases of UTROSCT from 5 institutions were selected for further study. Fluorescence in situ hybridization for NCOA1, NCOA2, NCOA3, ESR1 and GREB1, and targeted RNA sequencing was performed on 17 and 8 UTROSCTs, respectively. Eight cases underwent massively parallel sequencing to detect single nucleotide variants (SNV), copy number variations, and structural variants using a targeted hybrid-capture based assay. NCOA1-3 rearrangement was identified in 81.8% (18/22) of cases. The most common fusion was ESR1-NCOA3, occurring in 40.9% (9/22). GREB1-NCOA1 (n=4), ESR1-NCOA2 (n=3), and GREB1-NCOA2 (n=1) rearrangements were also identified. No recurrent SNVs were identified and no tumor had SNVs in FOXL2, DICER1, STK11, or AKT1, which can be seen in ovarian sex cord-stromal tumors. Copy number variations were infrequent. Clinical follow-up was available for 11 cases with a mean follow-up interval of 94.4 (range, 1 to 319) months. Only one case had a recurrence 66 months after the initial diagnosis and this was the single case with a GREB1-NCOA2 fusion. This study reports the morphologic spectrum of UTROSCT and confirms the recently reported recurrent NCOA2-3 gene fusions, in addition to identifying novel rearrangements involving NCOA1 in these tumors.
Collapse
|
19
|
Fractalkine Regulates HEC-1A/JEG-3 Interaction by Influencing the Expression of Implantation-Related Genes in an In Vitro Co-Culture Model. Int J Mol Sci 2020; 21:ijms21093175. [PMID: 32365902 PMCID: PMC7246682 DOI: 10.3390/ijms21093175] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/24/2020] [Accepted: 04/29/2020] [Indexed: 12/15/2022] Open
Abstract
Embryo implantation is a complex process regulated by a network of biological molecules. Recently, it has been described that fractalkine (CX3CL1, FKN) might have an important role in the feto-maternal interaction during gestation since the trophoblast cells express fractalkine receptor (CX3CR1) and the endometrium cells secrete fractalkine. CX3CR1 controls three major signalling pathways, PLC-PKC pathway, PI3K/AKT/NFκB pathway and Ras-mitogen-activated protein kinases (MAPK) pathways regulating proliferation, growth, migration and apoptosis. In this study, we focused on the molecular mechanisms of FKN treatment influencing the expression of implantation-related genes in trophoblast cells (JEG-3) both in mono-and in co-culture models. Our results reveal that FKN acted in a concentration and time dependent manner on JEG-3 cells. FKN seemed to operate as a positive regulator of implantation via changing the action of progesterone receptor (PR), activin receptor and bone morphogenetic protein receptor (BMPR). FKN modified also the expression of matrix metalloproteinase 2 and 9 controlling invasion. The presence of HEC-1A endometrial cells in the co-culture contributed to the effect of fractalkine on JEG-3 cells regulating implantation. The results suggest that FKN may contribute to the successful attachment and implantation of embryo.
Collapse
|
20
|
Jin J, Cheng S, Wang Y, Wang T, Zeng D, Li Z, Li X, Wang J. SRC3 expressed in bone marrow mesenchymal stem cells promotes the development of multiple myeloma. Acta Biochim Biophys Sin (Shanghai) 2019; 51:1258-1266. [PMID: 31769473 DOI: 10.1093/abbs/gmz130] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 09/30/2019] [Accepted: 09/30/2019] [Indexed: 12/13/2022] Open
Abstract
SRC3 plays critical roles in various biological processes of diseases, including proliferation, apoptosis, migration, and cell cycle arrest. However, the effect of SRC3 expression in mesenchymal stem cells (MSCs) on multiple myeloma (MM) is not clear yet. In our study, MSCs (MSC-SRC3, MSC-SRC3-/-) and MM cells were co-cultured in a direct or indirect way. The proliferation of MM cells was studied by CCK-8 and colony formation assays. The apoptosis and cell cycle of MM cells were detected by flow cytometry. In addition, the expressions of proteins in MM cells were detected by western blot analysis and the secretions of cytokines were measured by ELISA. Our data showed that the expression of SRC3 in bone marrow mesenchymal stem cells (BM-MSCs) could promote cell proliferation and colony formation of MM cells through accelerating the transformation of the G1/S phase, no matter what kind of culture method was adopted. Meanwhile, SRC3 expressed in BM-MSCs could inhibit the apoptosis of MM cells through the caspase apoptosis pathway and mitochondrial apoptosis pathway. Moreover, SRC3 could enhance the adhesion ability of MM cells through up-regulating the expression of adhesion molecules including CXCL4, ICAM1, VLA4, and syndecan-1. SRC3 also played a regulatory role in the progress of MM through the NF-κB and PI-3K/Akt pathways. SRC3 expressed in MSCs was found to promote the growth and survival of MM cells, while SRC3 silencing in MSCs could inhibit the development of MM. These results would be useful for developing a more effective new strategy for MM treatment.
Collapse
Affiliation(s)
- Jie Jin
- Department of Hematology, the Third affiliated Daping Hospital, Army Medical University, Chongqing 400038, China
| | - Shidi Cheng
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, College of Preventive Medicine, Army Medical University, Chongqing 400038, China
| | - Yu Wang
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, College of Preventive Medicine, Army Medical University, Chongqing 400038, China
| | - Tao Wang
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, College of Preventive Medicine, Army Medical University, Chongqing 400038, China
| | - Dongfeng Zeng
- Department of Hematology, the Third affiliated Daping Hospital, Army Medical University, Chongqing 400038, China
| | - Zheng Li
- Department of Hematology, the Third affiliated Daping Hospital, Army Medical University, Chongqing 400038, China
| | - Xiang Li
- Department of Hematology, the Third affiliated Daping Hospital, Army Medical University, Chongqing 400038, China
| | - Jin Wang
- Department of Hematology, the Third affiliated Daping Hospital, Army Medical University, Chongqing 400038, China
| |
Collapse
|
21
|
Lipka A, Paukszto L, Majewska M, Jastrzebski JP, Panasiewicz G, Szafranska B. De novo characterization of placental transcriptome in the Eurasian beaver (Castor fiber L.). Funct Integr Genomics 2019; 19:421-435. [PMID: 30778795 PMCID: PMC6456477 DOI: 10.1007/s10142-019-00663-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 04/17/2018] [Accepted: 02/04/2019] [Indexed: 12/11/2022]
Abstract
Our pioneering data provide the first comprehensive view of placental transcriptome of the beaver during single and multiple gestation. RNA-Seq and a de novo approach allowed global pattern identification of C. fiber placental transcriptome. Non-redundant beaver transcriptome comprised 211,802,336 nt of placental transcripts, grouped into 128,459 contigs and clustered into 83,951 unigenes. An Ensembl database search revealed 14,487, 14,994, 15,004, 15,267 and 15,892 non-redundant homologs for Ictidomys tridecemlineatus, Rattus norvegicus, Mus musculus, Homo sapiens and Castor canadensis, respectively. Due to expression levels, the identified transcripts were divided into two sets: non-redundant and highly expressed (FPKM > 2 in at least three examined samples), analysed simultaneously. Among 17,009 highly expressed transcripts, 12,147 had BLASTx hits. GO annotations (175,882) were found for 4301 transcripts that were assigned to biological process (16,386), cellular component (9149) and molecular function (8338) categories; 666 unigenes were also classified into 122 KEGG pathways. Comprehensive analyses were performed for 411 and 3078 highly expressed transcripts annotated with a list of processes linked to ‘placenta’ (31 GO terms) or ‘embryo’ (324 GO terms), respectively. Among transcripts with entire CDS annotation, 281 (placenta) and 34 (embryo) alternative splicing events were identified. A total of 8499 putative SNVs (~ 6.2 SNV/transcript and 1.7 SNV/1 kb) were predicted with 0.1 minimum frequency and maximum variant quality (p value 10e−9). Our results provide a broad-based characterization of the global expression pattern of the beaver placental transcriptome. Enhancement of transcriptomic resources for C. fiber should improve understanding of crucial pathways relevant to proper placenta development and successful reproduction.
Collapse
Affiliation(s)
- Aleksandra Lipka
- Department of Gynecology and Obstetrics, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, Niepodległości Str 44, 10-045, Olsztyn, Poland.
| | - Lukasz Paukszto
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego Str 1A, 10-719, Olsztyn, Poland
| | - Marta Majewska
- Department of Human Physiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, Warszawska Str 30, 10-082, Olsztyn, Poland
| | - Jan Pawel Jastrzebski
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego Str 1A, 10-719, Olsztyn, Poland
| | - Grzegorz Panasiewicz
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego Str 1A, 10-719 Olsztyn, Poland
| | - Bozena Szafranska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego Str 1A, 10-719 Olsztyn, Poland
| |
Collapse
|
22
|
Szwarc MM, Hai L, Gibbons WE, White LD, Mo Q, Kommagani R, Lanz RB, DeMayo FJ, O’Malley BW, Lydon JP. Retinoid signaling controlled by SRC-2 in decidualization revealed by transcriptomics. Reproduction 2018; 156:387-395. [PMID: 30325183 PMCID: PMC6208442 DOI: 10.1530/rep-18-0282] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Establishment of a successful pregnancy requires not only implantation of a healthy embryo into a receptive uterus but also progesterone receptor (PGR)-dependent transformation of endometrial stromal cells (ESCs) into specialized decidual cells. Decidual cells support the developing embryo and are critical for placentation. We have previously shown that a known transcriptional coregulator of the PGR, steroid receptor coactivator-2 (SRC-2), is a critical driver of endometrial decidualization in both human and mouse endometrium. However, the full spectrum of genes transcriptionally controlled by SRC-2 in decidualizing ESCs has not been identified. Therefore, using an RNA- and chromatin immunoprecipitation-sequencing approach, we have identified the transcriptome of decidualizing human ESCs (hESCs) that requires SRC-2. We revealed that the majority of hESC genes regulated by SRC-2 are associated with decidualization. Over 50% of SRC-2-regulated genes are also controlled by the PGR. While ontology analysis showed that SRC-2-dependent genes are functionally linked to signaling processes known to underpin hESC decidualization, cell membrane processes were significantly enriched in this analysis. Follow-up studies showed that retinoid signaling is dependent on SRC-2 during hESC decidualization. Specifically, SRC-2 is required for full induction of the retinol transporter, stimulated by retinoic acid 6 (STRA6), which is essential for hESC decidualization. Together our findings show that a critical subset of genes transcriptionally reprogramed by PGR during hESC decidualization requires SRC-2. Among the multiple genes, pathways and networks that are dependent on SRC-2 during hESC decidualization, first-line analysis supports a critical role for this coregulator in maintaining retinoid signaling during progesterone-driven decidualization.
Collapse
Affiliation(s)
- Maria M. Szwarc
- Department of Molecular & Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas, 77030
| | - Lan Hai
- Department of Molecular & Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas, 77030
| | - William E. Gibbons
- Department of Obstetrics & Gynecology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas, 77030
| | - Lisa D. White
- Genomic & RNA Profiling Core Facility, Departments of Molecular & Human Genetics and Molecular & Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas, 77030
| | - Qianxing Mo
- Department of Medicine and Dan L. Duncan Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, Texas, 77030
| | - Ramakrishna Kommagani
- Department of Obstetrics & Gynecology, Washington University School of Medicine, St. Louis, MO, 63110
| | - Rainer B. Lanz
- Department of Molecular & Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas, 77030
| | - Francesco J. DeMayo
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, 27709
| | - Bert W. O’Malley
- Department of Molecular & Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas, 77030
| | - John P. Lydon
- Department of Molecular & Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas, 77030
| |
Collapse
|
23
|
Fujita K, Nonomura N. Role of Androgen Receptor in Prostate Cancer: A Review. World J Mens Health 2018; 37:288-295. [PMID: 30209899 PMCID: PMC6704300 DOI: 10.5534/wjmh.180040] [Citation(s) in RCA: 281] [Impact Index Per Article: 40.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 06/18/2018] [Accepted: 06/18/2018] [Indexed: 12/15/2022] Open
Abstract
Androgen receptor (AR) is a steroid receptor transcriptional factor for testosterone and dihydrotestosterone consisting of four main domains, the N-terminal domain, DNA-binding domain, hinge region, and ligand-binding domain. AR plays pivotal roles in prostate cancer, especially castration-resistant prostate cancer (CRPC). Androgen deprivation therapy can suppress hormone-naïve prostate cancer, but prostate cancer changes AR and adapts to survive under castration levels of androgen. These mechanisms include AR point mutations, AR overexpression, changes of androgen biosynthesis, constitutively active AR splice variants without ligand binding, and changes of androgen cofactors. Studies of AR in CRPC revealed that AR was still active in CRPC, and it remains as a potential target to treat CRPC. Enzalutamide is a second-generation antiandrogen effective in patients with CRPC before and after taxane-based chemotherapy. However, CRPC is still incurable and can develop drug resistance. Understanding the mechanisms of this resistance can enable new-generation therapies for CRPC. Several promising new AR-targeted therapies have been developed. Apalutamide is a new Food and Drug Administration-approved androgen agonist binding to the ligand-binding domain, and clinical trials of other new AR-targeted agents binding to the ligand-binding domain or N-terminal domain are underway. This review focuses on the functions of AR in prostate cancer and the development of CRPC and promising new agents against CRPC.
Collapse
Affiliation(s)
- Kazutoshi Fujita
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Japan.
| | - Norio Nonomura
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Japan
| |
Collapse
|
24
|
Beta-Estradiol Regulates Voltage-Gated Calcium Channels and Estrogen Receptors in Telocytes from Human Myometrium. Int J Mol Sci 2018; 19:ijms19051413. [PMID: 29747396 PMCID: PMC5983827 DOI: 10.3390/ijms19051413] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 04/14/2018] [Accepted: 05/02/2018] [Indexed: 12/18/2022] Open
Abstract
Voltage-gated calcium channels and estrogen receptors are essential players in uterine physiology, and their association with different calcium signaling pathways contributes to healthy and pathological conditions of the uterine myometrium. Among the properties of the various cell subtypes present in human uterine myometrium, there is increasing evidence that calcium oscillations in telocytes (TCs) contribute to contractile activity and pregnancy. Our study aimed to evaluate the effects of beta-estradiol on voltage-gated calcium channels and estrogen receptors in TCs from human uterine myometrium and to understand their role in pregnancy. For this purpose, we employed patch-clamp recordings, ratiometric Fura-2-based calcium imaging analysis, and qRT-PCR techniques for the analysis of cultured human myometrial TCs derived from pregnant and non-pregnant uterine samples. In human myometrial TCs from both non-pregnant and pregnant uterus, we evidenced by qRT-PCR the presence of genes encoding for voltage-gated calcium channels (Cav3.1, Ca3.2, Cav3.3, Cav2.1), estrogen receptors (ESR1, ESR2, GPR30), and nuclear receptor coactivator 3 (NCOA3). Pregnancy significantly upregulated Cav3.1 and downregulated Cav3.2, Cav3.3, ESR1, ESR2, and NCOA3, compared to the non-pregnant condition. Beta-estradiol treatment (24 h, 10, 100, 1000 nM) downregulated Cav3.2, Cav3.3, Cav1.2, ESR1, ESR2, GRP30, and NCOA3 in TCs from human pregnant uterine myometrium. We also confirmed the functional expression of voltage-gated calcium channels by patch-clamp recordings and calcium imaging analysis of TCs from pregnant human myometrium by perfusing with BAY K8644, which induced calcium influx through these channels. Additionally, we demonstrated that beta-estradiol (1000 nM) antagonized the effect of BAY K8644 (2.5 or 5 µM) in the same preparations. In conclusion, we evidenced the presence of voltage-gated calcium channels and estrogen receptors in TCs from non-pregnant and pregnant human uterine myometrium and their gene expression regulation by beta-estradiol in pregnant conditions. Further exploration of the calcium signaling in TCs and its modulation by estrogen hormones will contribute to the understanding of labor and pregnancy mechanisms and to the development of effective strategies to reduce the risk of premature birth.
Collapse
|
25
|
Bartosch C, Lopes JM, Jerónimo C. Epigenetics in endometrial carcinogenesis - part 2: histone modifications, chromatin remodeling and noncoding RNAs. Epigenomics 2017; 9:873-892. [PMID: 28523964 DOI: 10.2217/epi-2016-0167] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Carcinogenesis is a multistep multifactorial process that involves the accumulation of genetic and epigenetic alterations. In the past two decades, there has been an exponential growth of knowledge establishing the importance of epigenetic changes in cancer. Our work focused on reviewing the main role of epigenetics in the pathogenesis of endometrial carcinoma, highlighting the reported results concerning each epigenetic mechanistic layer. In a previous review, we assessed DNA methylation alterations. The present review examines the contribution of histone modifications, chromatin remodeling and noncoding RNA alterations for endometrial carcinogenesis.
Collapse
Affiliation(s)
- Carla Bartosch
- Department of Pathology, Portuguese Oncology Institute of Porto (IPO-Porto), Porto, Portugal.,Cancer Biology & Epigenetics Group, Research Center (CI-IPOP), Portuguese Oncology Institute of Porto, Porto, Portugal.,Department of Pathology & Oncology, Medical Faculty, University of Porto, Porto, Portugal.,Porto Comprehensive Cancer Center (P.ccc), Porto, Portugal
| | - José Manuel Lopes
- Department of Pathology & Oncology, Medical Faculty, University of Porto, Porto, Portugal.,Department of Pathology, Centro Hospitalar São João (CHSJ), Porto, Portugal.,IPATIMUP (Institute of Molecular Pathology & Immunology, University of Porto); I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Carmen Jerónimo
- Cancer Biology & Epigenetics Group, Research Center (CI-IPOP), Portuguese Oncology Institute of Porto, Porto, Portugal.,Porto Comprehensive Cancer Center (P.ccc), Porto, Portugal.,Department of Pathology & Molecular Immunology, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| |
Collapse
|
26
|
Wu SP, DeMayo FJ. Progesterone Receptor Signaling in Uterine Myometrial Physiology and Preterm Birth. Curr Top Dev Biol 2017; 125:171-190. [PMID: 28527571 DOI: 10.1016/bs.ctdb.2017.03.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Myometrium holds the structural integrity for the uterus and generates force for parturition with its primary component, the smooth muscle cells. The progesterone receptor mediates progesterone-dependent signaling and connects to a network of pathways for regulation of contractility and inflammatory responses in myometrium. Dysfunctional progesterone signaling has been linked to pregnancy complications including preterm birth. In the present review, we summarize recent findings on modifiers and effectors of the progesterone receptor signaling. Discussions include novel conceptual discoveries and new development in legacy pathways such as the signal transducers NF-κB, ZEB, microRNA, and the unfolded protein response pathways. We also discuss the impact of progesterone receptor isoform composition and ligand accessibility in modification of the progesterone receptor genomic actions.
Collapse
Affiliation(s)
- San-Pin Wu
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institute of Health, Research Triangle Park, NC, United States
| | - Francesco J DeMayo
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institute of Health, Research Triangle Park, NC, United States.
| |
Collapse
|
27
|
Pavek P. Pregnane X Receptor (PXR)-Mediated Gene Repression and Cross-Talk of PXR with Other Nuclear Receptors via Coactivator Interactions. Front Pharmacol 2016; 7:456. [PMID: 27932985 PMCID: PMC5122737 DOI: 10.3389/fphar.2016.00456] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 11/14/2016] [Indexed: 12/13/2022] Open
Abstract
Pregnane X receptor is a ligand-activated nuclear receptor (NR) that mainly controls inducible expression of xenobiotics handling genes including biotransformation enzymes and drug transporters. Nowadays it is clear that PXR is also involved in regulation of intermediate metabolism through trans-activation and trans-repression of genes controlling glucose, lipid, cholesterol, bile acid, and bilirubin homeostasis. In these processes PXR cross-talks with other NRs. Accumulating evidence suggests that the cross-talk is often mediated by competing for common coactivators or by disruption of coactivation and activity of other transcription factors by the ligand-activated PXR. In this respect mainly PXR-CAR and PXR-HNF4α interference have been reported and several cytochrome P450 enzymes (such as CYP7A1 and CYP8B1), phase II enzymes (SULT1E1, Gsta2, Ugt1a1), drug and endobiotic transporters (OCT1, Mrp2, Mrp3, Oatp1a, and Oatp4) as well as intermediate metabolism enzymes (PEPCK1 and G6Pase) have been shown as down-regulated genes after PXR activation. In this review, I summarize our current knowledge of PXR-mediated repression and coactivation interference in PXR-controlled gene expression regulation.
Collapse
Affiliation(s)
- Petr Pavek
- Department of Pharmacology and Toxicology and Centre for Drug Development, Faculty of Pharmacy in Hradec Kralove, Charles University in Prague Hradec Kralove, Czechia
| |
Collapse
|
28
|
Wang S, Huang G, Hu Q, Zou Q. A network-based method for the identification of putative genes related to infertility. Biochim Biophys Acta Gen Subj 2016; 1860:2716-24. [PMID: 27102279 DOI: 10.1016/j.bbagen.2016.04.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 04/02/2016] [Accepted: 04/08/2016] [Indexed: 01/18/2023]
Abstract
BACKGROUND Infertility has become one of the major health problems worldwide, with its incidence having risen markedly in recent decades. There is an urgent need to investigate the pathological mechanisms behind infertility and to design effective treatments. However, this is made difficult by the fact that various biological factors have been identified to be related to infertility, including genetic factors. METHODS A network-based method was established to identify new genes potentially related to infertility. A network constructed using human protein-protein interactions based on previously validated infertility-related genes enabled the identification of some novel candidate genes. These genes were then filtered by a permutation test and their functional and structural associations with infertility-related genes. RESULTS Our method identified 23 novel genes, which have strong functional and structural associations with previously validated infertility-related genes. CONCLUSIONS Substantial evidence indicates that the identified genes are strongly related to dysfunction of the four main biological processes of fertility: reproductive development and physiology, gametogenesis, meiosis and recombination, and hormone regulation. GENERAL SIGNIFICANCE The newly discovered genes may provide new directions for investigating infertility. This article is part of a Special Issue entitled "System Genetics" Guest Editor: Dr. Yudong Cai and Dr. Tao Huang.
Collapse
Affiliation(s)
- ShaoPeng Wang
- College of Life Science, Shanghai University, Shanghai 200444, China.
| | - GuoHua Huang
- College of Life Science, Shanghai University, Shanghai 200444, China.
| | - Qinghua Hu
- School of Computer Science and Technology, Tianjin University, Tianjin 300072, China; State Key Laboratory of System Bioengineering of the Ministry of Education, Tianjin University, Tianjin 300072, China.
| | - Quan Zou
- School of Computer Science and Technology, Tianjin University, Tianjin 300072, China; State Key Laboratory of Medicinal Chemical Biology, NanKai University, Tianjin 300071, China.
| |
Collapse
|
29
|
Diao H, Li R, El Zowalaty AE, Xiao S, Zhao F, Dudley EA, Ye X. Deletion of Lysophosphatidic Acid Receptor 3 (Lpar3) Disrupts Fine Local Balance of Progesterone and Estrogen Signaling in Mouse Uterus During Implantation. Biol Reprod 2015; 93:123. [PMID: 26447143 DOI: 10.1095/biolreprod.115.131110] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 10/06/2015] [Indexed: 12/11/2022] Open
Abstract
Lpar3 encodes LPA3, the third G protein-coupled receptor for lysophosphatidic acid (LPA). Lpar3(-/-) female mice had delayed embryo implantation. Their serum progesterone and estrogen levels were comparable with control on Gestation Day 3.5 (D3.5) at 1100 h. There was reduced cell proliferation in D3.5 and D4.5 Lpar3(-/-) stroma. Progesterone receptor (PGR) disappeared from D4.5 Lpar3(+/+) uterine luminal epithelium (LE) but remained highly expressed in D4.5 Lpar3(-/-) LE. Pgr and PGR- target genes but not estrogen receptor alpha (ERalpha [Esr1]) or ESR target genes, were upregulated in D4.5 Lpar3(-/-) LE. It was hypothesized that suppression of PGR activity in LE could restore on-time uterine receptivity in Lpar3(-/-) mice. A low dose of RU486 (5 μg/mouse) given on D3.5 at 900 h rescued delayed implantation in all pregnant Lpar3(-/-) females and significantly increased number of implantation sites compared to vehicle-treated pregnant Lpar3(-/-) females detected on D4.5. E2 (25 ng/mouse) had a similar effect as 5 μg RU486 on embryo implantation in Lpar3(-/-) females. However, when the ovaries were removed on late D2.5 to create an experimentally induced delayed implantation model, 25 ng E2 activated implantation in Lpar3(+/+) but not Lpar3(-/-) females detected on D4.5. These results demonstrate that deletion of Lpar3 leads to an increased ratio of progesterone signaling/estrogen signaling that can be optimized by low doses of RU486 or E2 to restore on-time implantation in Lpar3(-/-) females.
Collapse
Affiliation(s)
- Honglu Diao
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, Georgia Reproductive Medical Center, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Rong Li
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, Georgia Interdisciplinary Toxicology Program, University of Georgia, Athens, Georgia
| | - Ahmed E El Zowalaty
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, Georgia Interdisciplinary Toxicology Program, University of Georgia, Athens, Georgia
| | - Shuo Xiao
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, Georgia Interdisciplinary Toxicology Program, University of Georgia, Athens, Georgia
| | - Fei Zhao
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, Georgia Interdisciplinary Toxicology Program, University of Georgia, Athens, Georgia
| | - Elizabeth A Dudley
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, Georgia Interdisciplinary Toxicology Program, University of Georgia, Athens, Georgia
| | - Xiaoqin Ye
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, Georgia Interdisciplinary Toxicology Program, University of Georgia, Athens, Georgia
| |
Collapse
|