1
|
Rios ACH, Nasner SLC, Londoño-Gil M, Gonzalez-Herrera LG, Lopez-Herrera A, Flórez JCR. Genome-wide association study for reproduction traits in Colombian Creole Blanco Orejinegro cattle. Trop Anim Health Prod 2023; 55:429. [PMID: 38044379 DOI: 10.1007/s11250-023-03847-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 11/27/2023] [Indexed: 12/05/2023]
Abstract
The profitability of the beef cattle production system relies heavily on reproductive traits. Unfortunately, certain traits, such as age at first calving (AFC), calving interval (CI), and gestation length (GL), can pose challenges in traditional breeding programs because of their low heritability (0.01-0.12) and sex-limited characteristics. Another important aspect is the conservation of the genetic resources of animals adapted to the Colombian regions, which implies the preservation and rational use of the creole breeds in the country market. Therefore, this study aimed to identify genomic regions in the creole cattle breed Blanco Orejinegro (BON) that influence the reproductive traits in females. The dataset comprised 439 animals and 118,116 single-nucleotide polymorphisms' (SNPs) markers. The GS3 program was used to identify the SNP effects employing the BAYES Cπ methodology. The number of SNPs with effect for AFC was 25, 1527 for CI, and 23 for GL. Some of the genes found associated with reproductive and growth traits as well as immune response and environmental adaptation ECE1, EPH, EPHB2, SMARCAL1, IGFBP5, IGFBP2, FCGRT, EGFR, MUL1, PINK1, STPG1, CNGB1, TGFB1, OXTR, IL22RA1, MYOM3, OXTR, CNR2, HIVEP3, CTPS1, CXCL8, FCGRT, MREG, TMEM169, PECR, and MC1R. Our results evidenced a high contribution of the genetic architecture of the Colombian creole cattle breed Blanco Orejinegro that may impact should be included in implementing genetic improvement and conservation programs.
Collapse
Affiliation(s)
- Ana Cristina Herrera Rios
- Grupo de Investigación Biodiversidad y Genética Molecular (BIOGEM), Universidad Nacional de Colombia Sede Medellín, Carrera 65 N 59A-110, 050034, Medellín, Colombia.
- Grupo de Investigación Nutri-Solla, SOLLA S.A., Cra 42 #33-80, Itagüí, Antioquia, Colombia.
| | - Sindy Liliana Caivio Nasner
- Grupo de Investigación Biomolecular y Pecuaria BIOPEC, Universidad Tecnológica de Pereira, Cra. 27 N10-02, 660003, Pereira, Risaralda, Colombia
| | - Marisol Londoño-Gil
- Grupo de Investigación Biodiversidad y Genética Molecular (BIOGEM), Universidad Nacional de Colombia Sede Medellín, Carrera 65 N 59A-110, 050034, Medellín, Colombia
| | - Luis Gabriel Gonzalez-Herrera
- Grupo de Investigación Biodiversidad y Genética Molecular (BIOGEM), Universidad Nacional de Colombia Sede Medellín, Carrera 65 N 59A-110, 050034, Medellín, Colombia
| | - Albeiro Lopez-Herrera
- Grupo de Investigación Biodiversidad y Genética Molecular (BIOGEM), Universidad Nacional de Colombia Sede Medellín, Carrera 65 N 59A-110, 050034, Medellín, Colombia
| | - Juan Carlos Rincón Flórez
- Grupo de Investigación Biodiversidad y Genética Molecular (BIOGEM), Universidad Nacional de Colombia Sede Medellín, Carrera 65 N 59A-110, 050034, Medellín, Colombia
- Grupo de Investigación Biodiversidad y Genética Molecular (BIOGEM), Universidad Nacional de Colombia Sede Palmira, Carrera 32 N 12 - 00, PC 763352, Palmira, Colombia
| |
Collapse
|
2
|
Khan IM, Liu H, Zhuang J, Khan NM, Zhang D, Chen J, Xu T, Avalos LFC, Zhou X, Zhang Y. Circular RNA Expression and Regulation Profiling in Testicular Tissues of Immature and Mature Wandong Cattle ( Bos taurus). Front Genet 2021; 12:685541. [PMID: 34880896 PMCID: PMC8647812 DOI: 10.3389/fgene.2021.685541] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 10/13/2021] [Indexed: 11/13/2022] Open
Abstract
Wandong cattle are an autochthonous Chinese breed used extensively for beef production. The breed tolerates extreme weather conditions and raw feed and is resistant to tick-borne diseases. However, the genetic basis of testis development and sperm production as well as breeding management is not well established in local cattle. Therefore, improving the reproductive efficiency of bulls via genetic selection is crucial as a single bull can breed thousands of cows through artificial insemination (AI). Testis development and spermatogenesis are regulated by hundreds of genes and transcriptomes. However, circular RNAs (circRNAs) are the key players in many biological developmental processes that have not been methodically described and compared between immature and mature stages in Bovine testes. In this study, we performed total RNA-seq and comprehensively analyzed the circRNA expression profiling of the testis samples of six bulls at 3 years and 3 months of developmental age. In total, 17,013 circRNAs were identified, of which 681 circRNAs (p-adjust < 0.05) were differentially expressed (DE). Among these DE circRNAs, 579 were upregulated and 103 were downregulated in calf and bull testes. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses revealed that the identified target genes were classified into three broad functional categories, including biological process, cellular component, and molecular function, and were enriched in the lysine degradation, cell cycle, and cell adhesion molecule pathways. The binding interactions between DE circRNAs and microRNAs (miRNAs) were subsequently constructed using bioinformatics approaches. The source genes ATM, CCNA1, GSK3B, KMT2C, KMT2E, NSD2, SUCLG2, QKI, HOMER1, and SNAP91 were found to be actively associated with bull sexual maturity and spermatogenesis. In addition, a real-time quantitative polymerase chain reaction (RT-qPCR) analysis showed a strong correlation with the sequencing data. Moreover, the developed model of Bovine testes in the current study provides a suitable framework for understanding the mechanism of circRNAs in the development of testes and spermatogenesis.
Collapse
Affiliation(s)
- Ibrar Muhammad Khan
- Anhui Provincial Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Hongyu Liu
- Anhui Provincial Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Jingyi Zhuang
- Anhui Provincial Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Nazir Muhammad Khan
- Department of Zoology, University of Science and Technology, Bannu, Pakistan
| | - Dandan Zhang
- Anhui Provincial Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Jingmeng Chen
- Anhui Provincial Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Tengteng Xu
- Anhui Provincial Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Lourdes Felicidad Córdova Avalos
- Anhui Provincial Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Xinqi Zhou
- Anhui Provincial Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Yunhai Zhang
- Anhui Provincial Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| |
Collapse
|
3
|
Narud B, Khezri A, Zeremichael TT, Stenseth EB, Heringstad B, Johannisson A, Morrell JM, Collas P, Myromslien FD, Kommisrud E. Sperm chromatin integrity and DNA methylation in Norwegian Red bulls of contrasting fertility. Mol Reprod Dev 2021; 88:187-200. [PMID: 33634579 DOI: 10.1002/mrd.23461] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/18/2021] [Accepted: 02/10/2021] [Indexed: 12/28/2022]
Abstract
In this study, the complexity of chromatin integrity was investigated in frozen-thawed semen samples from 37 sires with contrasting fertility, expressed as 56-day non-return rates (NR56). Protamine deficiency, thiols, and disulfide bonds were assessed and compared with previously published data for DNA fragmentation index (DFI) and high DNA stainability (HDS). In addition, in vitro embryo development and sperm DNA methylation were assessed using semen samples from 16 of these bulls. The percentages of DFI and HDS were negatively associated with NR56 and cleavage rate and positively associated with sperm protamine deficiency (p < 0.05). Significant differences in cleavage and blastocyst rates were observed between bulls of high and low NR56. However, once fertilization occurred, further development into blastocysts was not associated with NR56. The differential methylation analysis showed that spermatozoa from bulls of low NR56 were hypermethylated compared to bulls of high NR56. Pathway analysis showed that genes annotated to differentially methylated cytosines could participate in different biological pathways and have important biological roles related to bull fertility. In conclusion, sperm cells from Norwegian Red bulls of inferior fertility have less compact chromatin structure, higher levels of DNA damage, and are hypermethylated compared with bulls of superior fertility.
Collapse
Affiliation(s)
- Birgitte Narud
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.,Department of Biotechnology, Inland Norway University of Applied Sciences, Hamar, Norway
| | - Abdolrahman Khezri
- Department of Biotechnology, Inland Norway University of Applied Sciences, Hamar, Norway
| | | | - Else-Berit Stenseth
- Department of Biotechnology, Inland Norway University of Applied Sciences, Hamar, Norway
| | - Bjørg Heringstad
- Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Anders Johannisson
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Jane M Morrell
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Philippe Collas
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.,Department of Immunology and Transfusion Medicine, Oslo University Hospital, Oslo, Norway
| | | | - Elisabeth Kommisrud
- Department of Biotechnology, Inland Norway University of Applied Sciences, Hamar, Norway
| |
Collapse
|
4
|
Song Y, Qi X, Kang J, Wang X, Ou N, Zhu J, Wang S, Liu X. Identification of new biomarkers in immune microenvironment of testicular germ cell tumour. Andrologia 2021; 53:e13986. [PMID: 33544925 DOI: 10.1111/and.13986] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 12/24/2020] [Accepted: 01/06/2021] [Indexed: 12/24/2022] Open
Abstract
To seek novel prognostic biomarkers for testicular germ cell tumour (TGCT) and investigate the tumour immune microenvironment, we identified critical differentially expressed genes (DEGs) by overlapping GSE1818 dataset from Gene Expression Omnibus (GEO). Protein-protein interaction (PPI) network was used to investigate key modules and hub genes. Functional enrichment analysis was performed to investigate the underlying molecular functions of the DEGs in TGCT development and progression. The following survival analysis based on The Cancer Genome Atlas (TCGA) TGCT dataset indicated that AKAP4, SPA17 and TNP1 are correlated with TGCT prognosis. Immunohistochemistry and quantitative real-time polymerase chain reaction verified the down-regulation of the 3 hub genes in TGCT. Gene set enrichment analysis was conducted to further explore the role of the 3 hub genes in TGCT respectively. In addition, TGCT samples had high infiltration of CD8+ T cells, M0 and M1 macrophage cells, and resting myeloid dendritic cells in immune microenvironment. We also constructed the microRNA-gene regulatory networks to identify the key upstream microRNAs in TGCT. In conclusion, our findings indicated that AKAP4, SPA17 and TNP1 are promising biomarkers of TGCT. AKAP4 and TNP1 might regulate immune cells infiltration in immune microenvironment.
Collapse
Affiliation(s)
- Yuxuan Song
- Department of Urology, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiangjie Qi
- Department of Urology, Linzi District People's Hospital, Zibo, China
| | - Jiaqi Kang
- Department of Urology, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiao Wang
- Department of Urology, Tianjin Medical University General Hospital, Tianjin, China
| | - Ningjing Ou
- Department of Urology, Tianjin Medical University General Hospital, Tianjin, China
| | - Jun Zhu
- Department of Urology, Tianjin Medical University General Hospital, Tianjin, China
| | - Shangren Wang
- Department of Urology, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiaoqiang Liu
- Department of Urology, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
5
|
Greither T, Schumacher J, Dejung M, Behre HM, Zischler H, Butter F, Herlyn H. Fertility Relevance Probability Analysis Shortlists Genetic Markers for Male Fertility Impairment. Cytogenet Genome Res 2020; 160:506-522. [PMID: 33238277 DOI: 10.1159/000511117] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 06/26/2020] [Indexed: 12/27/2022] Open
Abstract
Impairment of male fertility is one of the major public health issues worldwide. Nevertheless, genetic causes of male sub- and infertility can often only be suspected due to the lack of reliable and easy-to-use routine tests. Yet, the development of a marker panel is complicated by the large quantity of potentially predictive markers. Actually, hundreds or even thousands of genes could have fertility relevance. Thus, a systematic method enabling a selection of the most predictive markers out of the many candidates is required. As a criterion for marker selection, we derived a gene-specific score, which we refer to as fertility relevance probability (FRP). For this purpose, we first categorized 2,753 testis-expressed genes as either candidate markers or non-candidates, according to phenotypes in male knockout mice. In a parallel approach, 2,502 genes were classified as candidate markers or non-candidates based on phenotypes in men. Subsequently, we conducted logistic regression analyses with evolutionary rates of genes (dN/dS), transcription levels in testis relative to other organs, and connectivity of the encoded proteins in a protein-protein interaction network as covariates. In confirmation of the procedure, FRP values showed the expected pattern, thus being overall higher in genes with known relevance for fertility than in their counterparts without corresponding evidence. In addition, higher FRP values corresponded with an increased dysregulation of protein abundance in spermatozoa of 37 men with normal and 38 men with impaired fertility. Present analyses resulted in a ranking of genes according to their probable predictive power as candidate markers for male fertility impairment. Thus, AKAP4, TNP1, DAZL, BRDT, DMRT1, SPO11, ZPBP, HORMAD1, and SMC1B are prime candidates toward a marker panel for male fertility impairment. Additional candidate markers are DDX4, SHCBP1L, CCDC155, ODF1, DMRTB1, ASZ1, BOLL, FKBP6, SLC25A31, PRSS21, and RNF17. FRP inference additionally provides clues for potential new markers, thereunder TEX37 and POU4F2. The results of our logistic regression analyses are freely available at the PreFer Genes website (https://prefer-genes.uni-mainz.de/).
Collapse
Affiliation(s)
- Thomas Greither
- Center for Reproductive Medicine and Andrology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Julia Schumacher
- Anthropology, Institute of Organismic and Molecular Evolution (iomE), Johannes Gutenberg University Mainz, Mainz, Germany
| | - Mario Dejung
- Quantitative Proteomics, Institute of Molecular Biology (IMB) Mainz, Mainz, Germany
| | - Hermann M Behre
- Center for Reproductive Medicine and Andrology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Hans Zischler
- Anthropology, Institute of Organismic and Molecular Evolution (iomE), Johannes Gutenberg University Mainz, Mainz, Germany
| | - Falk Butter
- Quantitative Proteomics, Institute of Molecular Biology (IMB) Mainz, Mainz, Germany
| | - Holger Herlyn
- Anthropology, Institute of Organismic and Molecular Evolution (iomE), Johannes Gutenberg University Mainz, Mainz, Germany,
| |
Collapse
|
6
|
Cai Y, Lei X, Chen Z, Mo Z. The roles of cirRNA in the development of germ cells. Acta Histochem 2020; 122:151506. [PMID: 32008790 DOI: 10.1016/j.acthis.2020.151506] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/27/2019] [Accepted: 01/02/2020] [Indexed: 12/12/2022]
Abstract
Circular RNA (CircRNA), a type of endogenous non-coding RNAs (ncRNAs), is generally generated from precursor mRNA (pre-mRNA) by canonical splicing and head-to-tail back splicing. The structure without a polyA tail renders circRNA highly insensitive to ribonuclease. Simultaneously, the distribution of circRNAs is tissue and developmental stage-specific. There are five potential biological functions of circRNAs: 1) promote transcription of their parental genes; 2) function as a miRNA sponge; 3) RNA binding protein (RBP) sponge; 4) encode protein; 5) act as an mRNA trap. Recently, circRNA has attracted attention because studies have shown that circRNAs are associated with follicular development, ovarian senescence, spermatogenesis, and germ cell development process, suggesting that circRNAs may function in germ cells regulation. The investigation of circRNAs in germ cells will provide an excellent opportunity to understand its potential molecular basis, and potentially improving reproduction status in human. In this article, the relationship between circRNA and germ cell development will be discussed.
Collapse
Affiliation(s)
- Yaqin Cai
- Clinical Anatomy & Reproductive Medicine Application Institute, Department of Histology and Embryology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China; Institute of Basic Medical Sciences, Center for Diabetic Systems Medicine (Guangxi Key Laboratory of Excellence), Guilin Medical University, Guangxi, Guilin, 541100, China
| | - Xiaocan Lei
- Clinical Anatomy & Reproductive Medicine Application Institute, Department of Histology and Embryology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Zhuo Chen
- Hunan Province Innovative Training Base for Medical Postgraduates, University of South China and Yueyang Women & Children's Medical Center, Institute of Reproductive Medicine, Yueyang, Hunan, 416000, China
| | - Zhongcheng Mo
- Institute of Basic Medical Sciences, Center for Diabetic Systems Medicine (Guangxi Key Laboratory of Excellence), Guilin Medical University, Guangxi, Guilin, 541100, China; Hunan Province Innovative Training Base for Medical Postgraduates, University of South China and Yueyang Women & Children's Medical Center, Institute of Reproductive Medicine, Yueyang, Hunan, 416000, China.
| |
Collapse
|
7
|
Chen M, Wang J, Liu N, Cui W, Dong W, Xing B, Pan C. Pig SOX9: Expression profiles of Sertoli cell (SCs) and a functional 18 bp indel affecting testis weight. Theriogenology 2019; 138:94-101. [PMID: 31319268 DOI: 10.1016/j.theriogenology.2019.07.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 07/03/2019] [Accepted: 07/08/2019] [Indexed: 12/27/2022]
Abstract
Sex determining region Y-box 9 (SOX9), an important member of the SRY- type HMGbox (SOX) gene family, plays an important role in the regulation of mammalian reproduction, including sex differentiation during the embryonic development stage and spermatogenesis after birth. To explore the roles of polymorphism and expression of the SOX9 gene in the development of testes, we analyzed the indel of SOX9 in pigs and the corresponding expression level of the SOX9 gene in 7-day and 5-month-old porcine Sertoli cells. Results revealed that the DD haplotype of SOX9 gene as well as the ID genotype were significantly associated with larger testicular weight, while the II haplotype was closely related to the smaller testicular weight. More importantly, the SOX9 gene expression of ID genotyped group was significantly higher than that in II genotyped group. Our results first revealed that the indel polymorphism and expression of SOX9 were significantly associated with pig reproduction traits indicating the critical roles of SOX9 gene in testes development. The study provides a new clue for understanding the regulation of animal reproductive activities.
Collapse
Affiliation(s)
- Mingyue Chen
- College of Animal Science and Technology, Northwest A&F University, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, 712100, China.
| | - Jing Wang
- Henan Key Laboratory of Farm Animal Breeding and Nutritional Regulation, Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, No.116 Huayuan road, Zhengzhou, 450002, People's Republic of China.
| | - Nuan Liu
- College of Animal Science and Technology, Northwest A&F University, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, 712100, China.
| | - Wenbo Cui
- College of Animal Science and Technology, Northwest A&F University, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, 712100, China.
| | - Wuzi Dong
- College of Animal Science and Technology, Northwest A&F University, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, 712100, China.
| | - Baosong Xing
- Henan Key Laboratory of Farm Animal Breeding and Nutritional Regulation, Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, No.116 Huayuan road, Zhengzhou, 450002, People's Republic of China.
| | - Chuanying Pan
- College of Animal Science and Technology, Northwest A&F University, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
8
|
Yang C, Wang J, Liu J, Sun Y, Guo Y, Jiang Q, Ju Z, Gao Q, Wang X, Huang J, Wang C. Functional haplotypes of ARID4A affect promoter activity and semen quality of bulls. Anim Reprod Sci 2018; 197:257-267. [PMID: 30195942 DOI: 10.1016/j.anireprosci.2018.08.038] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 08/08/2018] [Accepted: 08/28/2018] [Indexed: 02/02/2023]
Abstract
The AT-rich interaction domain 4 A (ARID4A) has an important role in regulating Sertoli cell function and male fertility. Its molecular mechanisms, however, remain largely unknown. In this study, two single nucleotide polymorphisms (SNPs) (g.53 G > T, ss 1966531596, and g.826 G > A, rs 210809648) were identified in the promoter region of ARID4A in 215 Chinese Holstein bulls using polymerase chain reaction (PCR)-restriction fragment length polymorphism and created restriction site-PCR. Results revealed that bulls with g.53 G > T-GG and g.826 G > A-G G genotype exhibited higher sperm deformity rate than those with g.53 G > T-TT and g.826 G > A-AA genotype (P < 0.01). Furthermore, three haplotypes (H1 (GG), H3 (TG), H4 (TA)) and six haplotype combinations (H1H1, H1H3, H1H4, H3H3, H3H4, H4H4) were obtained. The bulls with H4H4 exhibited lower sperm deformity rate than those with H1H1 and H1H3 (P < 0.05). In addition, results of bioinformatics analysis revealed that ARID4A has two promoters and that two SNPs of ARID4A are located in transcription factor binding sites. Compared with g.53 G > T-G and g.826 G > A-G allele, there was a greater fluorescence intensity in g.53 G > T-T and g.826 G > A-A allele by transient transfection in MLTC-1 cells and the luciferase report assay. qRT-PCR indicated the ARID4A expression was greater in bull spermatozoa with H4H4 haplotype combination than those with H1H1 haplotype combination (P < 0.05). Results of the present study indicate that g.53 G > T and g.826 G > A are functional mutations that are involved in regulation of ARID4A gene expression by affecting promoter activity and thus semen quality of Chinese Holstein bulls.
Collapse
Affiliation(s)
- Chunhong Yang
- Dairy Cattle Research Center, Shandong Academy of Agricultural Sciences, Jinan 250131, PR China
| | - Jinpeng Wang
- Dairy Cattle Research Center, Shandong Academy of Agricultural Sciences, Jinan 250131, PR China
| | - Juan Liu
- Dairy Cattle Research Center, Shandong Academy of Agricultural Sciences, Jinan 250131, PR China
| | - Yan Sun
- Dairy Cattle Research Center, Shandong Academy of Agricultural Sciences, Jinan 250131, PR China
| | - Yijun Guo
- Dairy Cattle Research Center, Shandong Academy of Agricultural Sciences, Jinan 250131, PR China; College of Life Science, Shandong Normal University, Jinan, PR China
| | - Qiang Jiang
- Dairy Cattle Research Center, Shandong Academy of Agricultural Sciences, Jinan 250131, PR China
| | - Zhihua Ju
- Dairy Cattle Research Center, Shandong Academy of Agricultural Sciences, Jinan 250131, PR China
| | - Qican Gao
- Dairy Cattle Research Center, Shandong Academy of Agricultural Sciences, Jinan 250131, PR China; College of Life Science, Shandong Normal University, Jinan, PR China
| | - Xiuge Wang
- Dairy Cattle Research Center, Shandong Academy of Agricultural Sciences, Jinan 250131, PR China
| | - Jinming Huang
- Dairy Cattle Research Center, Shandong Academy of Agricultural Sciences, Jinan 250131, PR China
| | - Changfa Wang
- Dairy Cattle Research Center, Shandong Academy of Agricultural Sciences, Jinan 250131, PR China.
| |
Collapse
|
9
|
Gao Y, Wu M, Fan Y, Li S, Lai Z, Huang Y, Lan X, Lei C, Chen H, Dang R. Identification and characterization of circular RNAs in Qinchuan cattle testis. ROYAL SOCIETY OPEN SCIENCE 2018; 5:180413. [PMID: 30109096 PMCID: PMC6083711 DOI: 10.1098/rsos.180413;180413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 06/21/2018] [Indexed: 05/27/2023]
Abstract
Circular RNA (circRNA) is a new class of non-coding RNA that has recently attracted researchers' interest. Studies have demonstrated that circRNA can function as microRNA sponges or competing endogenous RNAs. Although circRNA has been explored in some species and tissues, the genetic basis of testis development and spermatogenesis in cattle remains unknown. We performed ribo-depleted total RNA-Seq to detect circRNA expression profiles of neonatal (one week old) and adult (4 years old) Qinchuan cattle testes. We obtained 91 112 596 and 80 485 868 clean reads and detected 21 753 circRNAs. A total of 4248 circRNAs were significantly differentially expressed between neonatal and adult cattle testes. Among these circRNAs, 2225 were upregulated, and 2023 were downregulated in adult cattle testis. Genomic feature, length distribution and other characteristics of the circRNAs in cattle testis were studied. Moreover, Gene Ontology and KEGG pathway analyses were performed for source genes of circRNAs. These source genes were mainly involved in tight junction, adherens junction, TGFβ signalling pathway and reproduction, such as PIWIL1, DPY19L2, SLC26A8, IFT81, SMC1B, IQCG and TTLL5. CircRNA expression patterns were validated by RT-qPCR. Our discoveries provide a solid foundation for the identification and characterization of key circRNAs involved in testis development or spermatogenesis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Ruihua Dang
- Author for correspondence: Ruihua Dang e-mail:
| |
Collapse
|
10
|
Gao Y, Wu M, Fan Y, Li S, Lai Z, Huang Y, Lan X, Lei C, Chen H, Dang R. Identification and characterization of circular RNAs in Qinchuan cattle testis. ROYAL SOCIETY OPEN SCIENCE 2018; 5:180413. [PMID: 30109096 PMCID: PMC6083711 DOI: 10.1098/rsos.180413] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 06/21/2018] [Indexed: 06/08/2023]
Abstract
Circular RNA (circRNA) is a new class of non-coding RNA that has recently attracted researchers' interest. Studies have demonstrated that circRNA can function as microRNA sponges or competing endogenous RNAs. Although circRNA has been explored in some species and tissues, the genetic basis of testis development and spermatogenesis in cattle remains unknown. We performed ribo-depleted total RNA-Seq to detect circRNA expression profiles of neonatal (one week old) and adult (4 years old) Qinchuan cattle testes. We obtained 91 112 596 and 80 485 868 clean reads and detected 21 753 circRNAs. A total of 4248 circRNAs were significantly differentially expressed between neonatal and adult cattle testes. Among these circRNAs, 2225 were upregulated, and 2023 were downregulated in adult cattle testis. Genomic feature, length distribution and other characteristics of the circRNAs in cattle testis were studied. Moreover, Gene Ontology and KEGG pathway analyses were performed for source genes of circRNAs. These source genes were mainly involved in tight junction, adherens junction, TGFβ signalling pathway and reproduction, such as PIWIL1, DPY19L2, SLC26A8, IFT81, SMC1B, IQCG and TTLL5. CircRNA expression patterns were validated by RT-qPCR. Our discoveries provide a solid foundation for the identification and characterization of key circRNAs involved in testis development or spermatogenesis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Ruihua Dang
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, People's Republic of China
| |
Collapse
|
11
|
Review: Sperm-oocyte interactions and their implications for bull fertility, with emphasis on the ubiquitin-proteasome system. Animal 2018; 12:s121-s132. [PMID: 29477154 DOI: 10.1017/s1751731118000253] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Fertilization is an intricate cascade of events that irreversibly alter the participating male and female gamete and ultimately lead to the union of paternal and maternal genomes in the zygote. Fertilization starts with sperm capacitation within the oviductal sperm reservoir, followed by gamete recognition, sperm-zona pellucida interactions and sperm-oolemma adhesion and fusion, followed by sperm incorporation, oocyte activation, pronuclear development and embryo cleavage. At fertilization, bull spermatozoon loses its acrosome and plasma membrane components and contributes chromosomes, centriole, perinuclear theca proteins and regulatory RNAs to the zygote. While also incorporated in oocyte cytoplasm, structures of the sperm tail, including mitochondrial sheath, axoneme, fibrous sheath and outer dense fibers are degraded and recycled. The ability of some of these sperm contributed components to give rise to functional zygotic structures and properly induce embryonic development may vary between bulls, bearing on their reproductive performance, and on the fitness, health, fertility and production traits of their offspring. Proper functioning, recycling and remodeling of gamete structures at fertilization is aided by the ubiquitin-proteasome system (UPS), the universal substrate-specific protein recycling pathway present in bovine and other mammalian oocytes and spermatozoa. This review is focused on the aspects of UPS relevant to bovine fertilization and bull fertility.
Collapse
|
12
|
Yang W, Tang K, Wang Y, Zan L. MiR-27a-5p Increases Steer Fat Deposition Partly by Targeting Calcium-sensing Receptor (CASR). Sci Rep 2018; 8:3012. [PMID: 29445089 PMCID: PMC5813002 DOI: 10.1038/s41598-018-20168-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 01/15/2018] [Indexed: 12/18/2022] Open
Abstract
Castration increases fat deposition, improving beef quality in cattle. Here, the steer group exhibited a significantly higher intramuscular fat (IMF) content than the bull group. To determine the potential roles of microRNAs (miRNAs) in castration-induced fat deposition, differential expression patterns of miRNA in liver tissue were investigated in bulls and steers. A total of 7,827,294 clean reads were obtained from the bull liver library, and 8,312,483 were obtained from the steer liver library; 452 conserved bovine miRNAs and 20 novel miRNAs were identified. The results showed that the expression profiles of miRNA in liver tissue were changed by castration, and 12 miRNAs that were differentially expressed between bulls and steers were identified. Their target genes were majorly involved in the metabolic, PI3K-Akt, and MAPK signaling pathways. Furthermore, six differentially expressed miRNAs were validated by quantitative real-time PCR, and luciferase reporter assays verified that calcium-sensing receptor (CASR) was the direct target of miR-27a-5p. Meantime, we found that the expression level of CASR was significantly higher in steers than in bulls, and revealed that CASR gene silencing in bovine hepatocytes significantly inhibited triacylglycerol (TAG) accumulation and reduced secretion of very low density lipoprotein (VLDL). These results obtained in the liver indicate that miR-27a-5p may increase fat deposition partly by targeting CASR in steers.
Collapse
Affiliation(s)
- Wucai Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Keqiong Tang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yaning Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Linsen Zan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
13
|
Liu S, Yin H, Li C, Qin C, Cai W, Cao M, Zhang S. Genetic effects of PDGFRB and MARCH1 identified in GWAS revealing strong associations with semen production traits in Chinese Holstein bulls. BMC Genet 2017; 18:63. [PMID: 28673243 PMCID: PMC5496367 DOI: 10.1186/s12863-017-0527-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 06/19/2017] [Indexed: 11/11/2022] Open
Abstract
Background Using a genome-wide association study strategy, our previous study discovered 19 significant single-nucleotide polymorphisms (SNPs) related to semen production traits in Chinese Holstein bulls. Among them, three SNPs were within or close to the phosphodiesterase 3A (PDE3A), membrane associated ring-CH-type finger 1 (MARCH1) and platelet derived growth factor receptor beta (PDGFRB) genes. The present study was designed with the objectives of identifying genetic polymorphism of the PDE3A, PDGFRB and MARCH1 genes and their effects on semen production traits in a Holstein bull population. Results A total of 20 SNPs were detected and genotyped in 730 bulls. Association analyses using de-regressed estimated breeding values of each semen production trait revealed four statistically significant SNPs for one or more semen production traits (P < 0.05): one SNP was located downstream of PDGFRB and three SNPs were located in the promoter of MARCH1. Interestingly, for MARCH1, haplotype-based analysis revealed significant associations of haplotypes with semen volume per ejaculate. Furthermore, high expression of the MARCH1 gene was observed in sperm cells. One SNP (rs43445726) in the regulatory region of MARCH1 had a significant effect on gene expression. Conclusion Our study demonstrated the significant associations of genetic variants of the PDGFRB and MARCH1 genes with semen production traits. The identified SNPs may serve as genetic markers to optimize breeding programs for semen production traits in Holstein bull populations. Electronic supplementary material The online version of this article (doi:10.1186/s12863-017-0527-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shuli Liu
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, Key Laboratory of Animal Genetics and Breeding of Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, 100193, China
| | - Hongwei Yin
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, Key Laboratory of Animal Genetics and Breeding of Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, 100193, China
| | - Cong Li
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, Key Laboratory of Animal Genetics and Breeding of Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, 100193, China
| | - Chunhua Qin
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, Key Laboratory of Animal Genetics and Breeding of Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, 100193, China
| | - Wentao Cai
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, Key Laboratory of Animal Genetics and Breeding of Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, 100193, China
| | - Mingyue Cao
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, Key Laboratory of Animal Genetics and Breeding of Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, 100193, China
| | - Shengli Zhang
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, Key Laboratory of Animal Genetics and Breeding of Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
14
|
Liu J, Sun Y, Yang C, Zhang Y, Jiang Q, Huang J, Ju Z, Wang X, Zhong J, Wang C. Functional SNPs of INCENP Affect Semen Quality by Alternative Splicing Mode and Binding Affinity with the Target Bta-miR-378 in Chinese Holstein Bulls. PLoS One 2016; 11:e0162730. [PMID: 27669152 PMCID: PMC5036895 DOI: 10.1371/journal.pone.0162730] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 08/26/2016] [Indexed: 12/22/2022] Open
Abstract
Inner centromere protein (INCENP) plays an important role in mitosis and meiosis as the main member of chromosomal passenger protein complex (CPC). To investigate the functional markers of the INCENP gene associated with semen quality, the single nucleotide polymorphisms (SNPs) g.19970 A>G and g.34078 T>G were identified and analyzed. The new splice variant INCENP-TV is characterized by the deletion of exon 12. The g.19970 A>G in the exonic splicing enhancer (ESE) motif region results in an aberrant splice variant by constructing two minigene expression vectors using the pSPL3 exon capturing vector and transfecting vectors into MLTC-1 cells. INCENP-TV was more highly expressed than INCENP-reference in adult bull testes. The g.34078 T>G located in the binding region of bta-miR-378 could affect the expression of INCENP, which was verified by luciferase assay. To analyze comprehensively the correlation of SNPs with sperm quality, haplotype combinations constructed by g.19970 A>G and g.34078 T>G, as well as g.-692 C>T and g.-556 G>T reported in our previous studies, were analyzed. The bulls with H1H12 and H2H2 exhibited a higher ejaculate volume than those with H2H10 and H9H12, respectively (P < 0.05). Bulls with H11H11 and H2H10 exhibited higher initial sperm motility than those with H2H2 (P < 0.05). The expression levels of INCENP in bulls with H1H12 and H11H11 were significantly higher than those in bulls with H9H12 (P < 0.05), as determined by qRT-PCR. Findings suggest that g.19970 A>G and g.34078 T>G in INCENP both of which appear to change the molecular and biological characteristics of the mRNA transcribed from the locus may serve as a biomarkers of male bovine fertility by affecting alternative splicing mode and binding affinity with the target bta-miR-378.
Collapse
Affiliation(s)
- Juan Liu
- Dairy Cattle Research Center, Shandong Academy of Agricultural Science, Jinan, P. R. China
- College of Agronomic Sciences in Shandong Agricultural University, Taian, China
| | - Yan Sun
- Dairy Cattle Research Center, Shandong Academy of Agricultural Science, Jinan, P. R. China
| | - Chunhong Yang
- Dairy Cattle Research Center, Shandong Academy of Agricultural Science, Jinan, P. R. China
| | - Yan Zhang
- Dairy Cattle Research Center, Shandong Academy of Agricultural Science, Jinan, P. R. China
| | - Qiang Jiang
- Dairy Cattle Research Center, Shandong Academy of Agricultural Science, Jinan, P. R. China
| | - Jinming Huang
- Dairy Cattle Research Center, Shandong Academy of Agricultural Science, Jinan, P. R. China
| | - Zhihua Ju
- Dairy Cattle Research Center, Shandong Academy of Agricultural Science, Jinan, P. R. China
| | - Xiuge Wang
- Dairy Cattle Research Center, Shandong Academy of Agricultural Science, Jinan, P. R. China
| | - Jifeng Zhong
- Dairy Cattle Research Center, Shandong Academy of Agricultural Science, Jinan, P. R. China
| | - Changfa Wang
- Dairy Cattle Research Center, Shandong Academy of Agricultural Science, Jinan, P. R. China
- * E-mail:
| |
Collapse
|
15
|
An X, Song Y, Bu S, Ma H, Gao K, Hou J, Wang S, Lei Z, Cao B. Association of polymorphisms at the microRNA binding site of the caprine KITLG 3'-UTR with litter size. Sci Rep 2016; 6:25691. [PMID: 27168023 PMCID: PMC4863368 DOI: 10.1038/srep25691] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 04/21/2016] [Indexed: 01/23/2023] Open
Abstract
This study identified three novel single nucleotide polymorphisms (SNPs) (c.1389C > T, c.1457A > C and c.1520G > A) in the caprine KITLG 3'-UTR through DNA sequencing. The three SNP loci were closely linked in Guanzhong dairy (GD) goats. Two alleles of the c.1457A > C SNP introduced two miRNA sites (chi-miR-204-5p and chi-miR-211). Individuals with combined genotype TT-CC-AA had a higher litter size compared with those with combined genotypes CC-AA-GG, TC-CC-GA and CC-AC-GG (P < 0.05). Luciferase assays showed that chi-miR-204-5p and chi-miR-211 suppressed luciferase expression in the presence of allele 1457A compared with negative control (NC) and allele 1457C (P < 0.05). Western blot revealed that KITLG significantly decreased in the granulosa cells (GCs) of genotype AA compared with that in the GCs of genotype CC and NC (P < 0.05). The KITLG mRNA levels of the CC-AA-GG carriers significantly decreased compared with those of the TT-CC-AA, TC-CC-GA and CC-AC-GG carriers. In addition, cell proliferation was reduced in haplotype C-A-G GCs compared with that in haplotype T-C-A GCs. These results suggest that SNPs c.1389C > T, c.1457A > C and c.1520G > A account for differences in the litter size of GD goats because chi-miR-204-5p and chi-miR-211 could change the expression levels of the KITLG gene and reduce GC proliferation.
Collapse
Affiliation(s)
- Xiaopeng An
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Yuxuan Song
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Shuhai Bu
- College of Life Science, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Haidong Ma
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Kexin Gao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Jinxing Hou
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Shan Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Zhang Lei
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Binyun Cao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| |
Collapse
|
16
|
Effect of human recombinant granulocyte colony-stimulating factor on rat busulfan-induced testis injury. J Mol Histol 2015; 47:59-67. [DOI: 10.1007/s10735-015-9647-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Accepted: 12/15/2015] [Indexed: 02/08/2023]
|