1
|
Katiyar R, Gonmei C, Deori S, Singh M, Abedin SN, Rautela R, Singh NS, Chakravarty H, Das M, Choudhury BU, Mishra VK. Effect of heat stress on pig production and its mitigation strategies: a review. Trop Anim Health Prod 2025; 57:139. [PMID: 40117038 DOI: 10.1007/s11250-025-04387-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 03/07/2025] [Indexed: 03/23/2025]
Abstract
Heat stress (HS) poses a significant challenge to pig production worldwide, with far-reaching consequences for productivity, reproduction, and overall animal welfare. Stress, broadly defined as the nonspecific physiological response to environmental demands, disrupts homeostasis, leading to health imbalances, behavioral changes, and reduced productive efficiency. Pigs are particularly susceptible to HS due to their limited thermoregulatory capacity, influenced by a low density of functional sweat glands and a thick subcutaneous fat layer. Rising global temperatures have exacerbated HS-induced economic losses in the swine industry, manifesting as decreased growth rates, poor reproductive performance, reduced feed efficiency, increased morbidity, and mortality. HS impairs pig production by diminishing feed intake and nutrient availability, which leads to reduced growth, suboptimal carcass quality, and compromised reproduction. Sows experience increased anestrus, extended weaning-to-estrus intervals, and smaller litter sizes, while boars exhibit reduced semen quality and fertility. The genetic selection for higher productivity has inadvertently lowered heat tolerance, as metabolic heat production increases with improved production traits. Furthermore, inadequate environmental management in pig housing exacerbates the impact of HS. Variations in heat tolerance among pigs underscore the importance of understanding genetic, physiological, and environmental factors influencing their response to HS. Research reveals genetic differences in thermotolerance, offering potential avenues for selective breeding to improve resilience. Effective management strategies, including nutritional adjustments, environmental modifications, and genetic selection, are crucial for mitigating the negative effects of HS and enhancing pig productivity. This review highlights the multifaceted impacts of HS on swine production, explores the physiological and reproductive consequences, and discusses adaptive and ameliorative measures to address these challenges, with a focus on maintaining sustainable pig production in the face of climatic changes.
Collapse
Affiliation(s)
- Rahul Katiyar
- ICAR Research Complex for NEH Region, Umiam, Meghalaya, India.
| | | | - Sourabh Deori
- ICAR Research Complex for NEH Region, Umiam, Meghalaya, India.
| | - Mahak Singh
- ICAR Research Complex for NEH Region, Nagaland Centre, Medziphema, Nagaland, India.
| | | | - Rupali Rautela
- ICAR-Central Institute for Research on Buffaloes, Hisar, Haryana, India
| | | | | | - Meena Das
- ICAR Research Complex for NEH Region, Umiam, Meghalaya, India
| | - B U Choudhury
- ICAR Research Complex for NEH Region, Tripura Centre, Lembucherra, Tripura, India
| | | |
Collapse
|
2
|
Zhou LT, Gokyer D, Madkins K, Beestrum M, Horton DE, Duncan FE, Babayev E. The Effects of Heat Stress on the Ovary, Follicles and Oocytes: A Systematic Review. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.04.626831. [PMID: 39677695 PMCID: PMC11643117 DOI: 10.1101/2024.12.04.626831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Climate change is driving significant environmental changes with profound implications for human health, including fertility. While the detrimental effects of heat on spermatogenesis are well-documented, the impact of elevated temperatures on ovaries and female fertility remains less explored. This review systematically examines the literature on heat stress (HS) effects on mammalian ovaries, follicles, and oocytes. Evidence from mammalian models indicates that HS significantly impairs ovarian function, disrupting hormone profiles, reducing ovarian size and weight, altering histology, decreasing granulosa cell viability, and compromising oocyte quality. Efforts to develop strategies and substances to mitigate these adverse effects are ongoing, but further research into the underlying mechanisms is urgently needed.
Collapse
Affiliation(s)
- Luhan T. Zhou
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Dilan Gokyer
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Krystal Madkins
- Galter Health Sciences Library & Learning Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Molly Beestrum
- Galter Health Sciences Library & Learning Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Daniel E. Horton
- Department of Earth, Environmental, and Planetary Sciences, Northwestern University, Evanston, Illinois, USA
| | - Francesca E. Duncan
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Elnur Babayev
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Department of Obstetrics and Gynecology, Northwestern Medicine Center for Fertility and Reproductive Medicine, Chicago, Illinois, USA
| |
Collapse
|
3
|
Zhu Z, Wu J, Wen Y, Wu X, Bao H, Wang M, Kang K. Advances in the Effects of Heat Stress on Ovarian Granulosa Cells: Unveiling Novel Ferroptosis Pathways. Vet Sci 2024; 11:464. [PMID: 39453056 PMCID: PMC11511475 DOI: 10.3390/vetsci11100464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/19/2024] [Accepted: 09/26/2024] [Indexed: 10/26/2024] Open
Abstract
Heat stress has been one of the key research areas for researchers due to the wide-ranging effects and complex mechanisms of action of its stress product reactive oxygen species (ROS). The aim of this paper is to comprehensively review and summarize the effects of heat stress on ovarian granulosa cells and their mechanism of action. We systematically reviewed the effects of heat stress on ovarian granulosa cells, including intracellular steroid hormone changes, oxidative stress, apoptosis, and mitochondrial function. Meanwhile, this paper discusses in detail several major mechanisms by which heat stress induces apoptosis in ovarian granulosa cells, such as through the activation of apoptosis-related genes, induction of endoplasmic reticulum stress, and the mitochondrial pathway. In addition, we analyzed the mechanism of ferroptosis in ovarian granulosa cells under heat stress conditions, summarized the potential association between heat stress and ferroptosis in light of the existing literature, and explored the key factors in the mechanism of action of heat stress, such as the signaling pathways of Nrf2/Keap1, HSPs, and JNK, and analyzed their possible roles in the process of ferroptosis. Finally, this paper provides an outlook on the future research direction, describing the possible interaction between heat stress and ferroptosis, with a view to providing a theoretical basis for further understanding and revealing the complex mechanism of ferroptosis occurrence in ovarian granulosa cells under heat stress.
Collapse
Affiliation(s)
- Zhen Zhu
- Department of Animal Science, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (Z.Z.); (J.W.)
| | - Jiang Wu
- Department of Animal Science, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (Z.Z.); (J.W.)
| | - Yuguo Wen
- Department of Animal Science, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (Z.Z.); (J.W.)
| | - Xiaocheng Wu
- Department of Animal Science, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (Z.Z.); (J.W.)
| | - Huimingda Bao
- Department of Animal Science, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (Z.Z.); (J.W.)
| | - Min Wang
- Department of Animal Science, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (Z.Z.); (J.W.)
| | - Kai Kang
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| |
Collapse
|
4
|
Bortolozzo FP, Zanin GP, Christ TS, Rech RD, da Rosa Ulguim R, Mellagi APG. Artificial insemination and optimization of the use of seminal doses in swine. Anim Reprod Sci 2024; 269:107501. [PMID: 38782677 DOI: 10.1016/j.anireprosci.2024.107501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 05/14/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024]
Abstract
The optimization of processes associated with artificial insemination (AI) is of great importance for the success of the pig industry. Over the last two decades, great reproductive performance has been achieved, making further significant progress limited. Optimizing the AI program, however, is essential to the pig industry's sustainability. Thus, the aim is not only to reduce the number of sperm cells used per estrous sow but also to improve some practical management in sow farms and boar studs to transform the high reproductive performance to a more efficient program. As productivity is mainly influenced by the number of inseminated sows, guaranteeing a constant breeding group and with healthy animals is paramount. In the AI studs, all management must ensure conditions to the health of the boars. Some strategies have been proposed and discussed to achieve these targets. A constant flow of high-quality and well-managed breeding groups, quality control of semen doses produced, more reliable technology in the laboratory routine, removal of less fertile boars, the use of intrauterine AI, the use of a single AI with control of estrus and ovulation (fixed-time AI), estrus detection based on artificial intelligence technologies, and optimization regarding the use of semen doses from high genetic-indexed boars are some strategies in which improvement is sought. In addition to these new approaches, we must revisit the processes used in boar studs, semen delivery network, and sow farm management for a more efficient AI program. This review discusses the challenges and opportunities in adopting some technologies to achieve satisfactory reproductive performance and efficiency.
Collapse
Affiliation(s)
- Fernando Pandolfo Bortolozzo
- Department of Animal Medicine, Veterinary Faculty, Federal University of Rio Grande do Sul, Avenida Bento Gonçalves, Avenida Bento Gonçalves, 9090, Porto Alegre, RS CEP 91540-000, Brazil.
| | - Gabriela Piovesan Zanin
- Department of Animal Medicine, Veterinary Faculty, Federal University of Rio Grande do Sul, Avenida Bento Gonçalves, Avenida Bento Gonçalves, 9090, Porto Alegre, RS CEP 91540-000, Brazil
| | - Thaís Spohr Christ
- Department of Animal Medicine, Veterinary Faculty, Federal University of Rio Grande do Sul, Avenida Bento Gonçalves, Avenida Bento Gonçalves, 9090, Porto Alegre, RS CEP 91540-000, Brazil
| | - Rodrigo Dalmina Rech
- Department of Animal Medicine, Veterinary Faculty, Federal University of Rio Grande do Sul, Avenida Bento Gonçalves, Avenida Bento Gonçalves, 9090, Porto Alegre, RS CEP 91540-000, Brazil
| | - Rafael da Rosa Ulguim
- Department of Animal Medicine, Veterinary Faculty, Federal University of Rio Grande do Sul, Avenida Bento Gonçalves, Avenida Bento Gonçalves, 9090, Porto Alegre, RS CEP 91540-000, Brazil
| | - Ana Paula Gonçalves Mellagi
- Department of Animal Medicine, Veterinary Faculty, Federal University of Rio Grande do Sul, Avenida Bento Gonçalves, Avenida Bento Gonçalves, 9090, Porto Alegre, RS CEP 91540-000, Brazil
| |
Collapse
|
5
|
Jiang Y, Liu X, Shang Y, Li J, Gao B, Ren Y, Meng X. Physiological and Transcriptomic Analyses Provide Insights into Nitrite Stress Responses of the Swimming Crab Portunus trituberculatus. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2024; 26:1040-1052. [PMID: 39115588 DOI: 10.1007/s10126-024-10353-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 07/26/2024] [Indexed: 10/17/2024]
Abstract
Nitrite is a common environmental pollutant in intensive aquaculture systems. In this study, physiological and transcriptomic analyses were performed to investigate nitrite stress responses in the swimming crab Portunus trituberculatus, an important aquaculture species in China. The results revealed that nitrite can affect neurotransmitter signaling via the expression of neurotransmitter receptors such as octopamine receptor (OAR) and 5-hydroxytryptamine receptor (5-HTR), and depress ecdysteroid signaling by downregulating ecdysteroid receptor (EcR) as well as its downstream transcription factors in hepatopancreas. In addition, nitrite suppressed the expression of hemocyanins, the oxygen-transporting protein, which at least partly contributed to tissue hypoxia, resulting in a switchover of energy metabolism from aerobic to anaerobic pathway. To meet the energy demand, glycogens and lipids were mobilized and transported to the hemolymph, and the catabolism of amino acids and fatty acids was enhanced to provide energy for hepatopancreas. β-oxidation of fatty acids, the major process by which fatty acids are oxidized to generate energy, seems to occur mainly not in mitochondria but in peroxisomes. Although the cellular protective mechanisms, including antioxidant defense, heat shock response (HSR), unfolded protein response (UPR), and autophagy, were activated, nitrite-induced cellular stress overwhelmed the repairing capacity and caused significant increase in the levels of apoptosis. These results indicated that nitrite stress influences neurotransmitter and endocrine signaling, disturbs energy metabolism, damages cellular components, and induces apoptosis in P. trituberculatus. The findings of this study provide new insights into nitrite stress response in the swimming crab and provide valuable information for aquaculture management of this species.
Collapse
Affiliation(s)
- Yi Jiang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao, 266237, China
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Xiaochen Liu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Yan Shang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Jitao Li
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao, 266237, China
| | - Baoquan Gao
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao, 266237, China
| | - Yichao Ren
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China.
| | - Xianliang Meng
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China.
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao, 266237, China.
| |
Collapse
|
6
|
Roach CM, Mayorga EJ, Baumgard LH, Ross JW, Keating AF. Heat stress alters the ovarian proteome in prepubertal gilts. J Anim Sci 2024; 102:skae053. [PMID: 38605681 PMCID: PMC11025630 DOI: 10.1093/jas/skae053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/27/2024] [Indexed: 04/13/2024] Open
Abstract
Heat stress (HS) occurs when exogenous and metabolic heat accumulation exceeds heat dissipation; a thermal imbalance that compromises female reproduction. This study investigated the hypothesis that HS alters the ovarian proteome and negatively impacts proteins engaged with insulin signaling, inflammation, and ovarian function. Prepubertal gilts (n = 19) were assigned to one of three environmental groups: thermal neutral with ad libitum feed intake (TN; n = 6), thermal neutral pair-fed (PF; n = 6), or HS (n = 7). For 7 d, HS gilts were exposed to 12-h cyclic temperatures of 35.0 ± 0.2 °C and 32.2 ± 0.1 °C, while TN and PF gilts were housed at 21.0 ± 0.1 °C. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) was performed on ovarian protein homogenates. Relative to TN gilts, 178 proteins were altered (P ≤ 0.05, log2foldchange ≥ 1) by HS, with 76 increased and 102 decreased. STRING gene ontology classified and identified 45 biological processes including those associated with chaperone protein refolding, cytoplasmic translational initiation, and immune activation; with a protein-protein interaction web network of 158 nodes and 563 edges connected based on protein function (FDR ≤ 0.05). Relative to PF, HS altered 330 proteins (P ≤ 0.05, log2foldchange ≥ 1), with 151 increased and 179 decreased. Fifty-seven biological pathways associated with protein function and assembly, RNA processing, and metabolic processes were identified, with a protein-protein interaction network of 303 nodes and 1,606 edges. Comparing HS with both the TN and PF treatments, 72 ovarian proteins were consistently altered by HS with 68 nodes and 104 edges, with biological pathways associated with translation and gene expression. This indicates that HS alters the ovarian proteome and multiple biological pathways and systems in prepubertal gilts; changes that potentially contribute to female infertility.
Collapse
Affiliation(s)
- Crystal M Roach
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Edith J Mayorga
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Lance H Baumgard
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Jason W Ross
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Aileen F Keating
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
7
|
Roach CM, Mayorga EJ, Baumgard LH, Ross JW, Keating AF. Zearalenone exposure differentially affects the ovarian proteome in pre-pubertal gilts during thermal neutral and heat stress conditions. J Anim Sci 2024; 102:skae115. [PMID: 38666409 PMCID: PMC11217906 DOI: 10.1093/jas/skae115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 04/23/2024] [Indexed: 07/04/2024] Open
Abstract
Zearalenone (ZEN), a nonsteroidal estrogenic mycotoxin, causes endocrine disruption and porcine reproductive dysfunction. Heat stress (HS) occurs when exogenous and metabolic heat accumulation exceeds heat dissipation. Independently, HS and ZEN both compromise swine reproduction; thus, the hypothesis investigated was two-pronged: that ZEN exposure would alter the ovarian proteome and that these effects would differ in thermal neutral (TN) and HS pigs. Pre-pubertal gilts (n = 38) were fed ad libitum and assigned to either (TN: 21.0 ± 0.1 °C) or HS (12 h cyclic temperatures of 35.0 ± 0.2 °C and 32.2 ± 0.1 °C). Within the TN group, a subset of pigs were pair-fed (PF) to the amount of feed that the HS gilts consumed to eliminate the confounding effects of dissimilar nutrient intake. All gilts orally received a vehicle control (CT) or ZEN (40 μg/kg/BW) resulting in six treatment groups: thermoneutral (TN) vehicle control (TC; n = 6); TN ZEN (TZ; n = 6); PF vehicle control (PC; n = 6); PF ZEN (PZ; n = 6); HS vehicle control (HC; n = 7); or HS ZEN (HZ; n = 7) for 7 d. When compared to the TC pigs, TZ pigs had 45 increased and 39 decreased proteins (P ≤ 0.05). In the HZ pigs, 47 proteins were increased and 61 were decreased (P ≤ 0.05). Exposure to ZEN during TN conditions altered sec61 translocon complex (40%), rough endoplasmic reticulum membrane (8.2%), and proteasome complex (5.4%), asparagine metabolic process (0.60%), aspartate family amino acid metabolic process (0.14%), and cellular amide metabolic process (0.02%) pathways. During HS, ZEN affected cellular pathways associated with proteasome core complex alpha subunit complex (0.23%), fibrillar collagen trimer (0.14%), proteasome complex (0.05%), and spliceosomal complex (0.03%). Thus, these data identify ovarian pathways altered by ZEN exposure and suggest that the molecular targets of ZEN differ in TN and HS pigs.
Collapse
Affiliation(s)
- Crystal M Roach
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Edith J Mayorga
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Lance H Baumgard
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Jason W Ross
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Aileen F Keating
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
8
|
Roach CM, Mayorga EJ, Baumgard LH, Ross JW, Keating AF. Phenotypic, endocrinological, and metabolic effects of zearalenone exposure and additive effect of heat stress in prepubertal female pigs. J Therm Biol 2024; 119:103742. [PMID: 38056360 DOI: 10.1016/j.jtherbio.2023.103742] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 09/25/2023] [Accepted: 10/21/2023] [Indexed: 12/08/2023]
Abstract
Independently, both heat stress (HS) and zearalenone (ZEN) compromise female reproduction, thus the hypothesis that ZEN would affect phenotypic, endocrine, and metabolic parameters in pigs with a synergistic and/or additive impact of HS was investigated. Prepubertal gilts (n = 6-7) were assigned to: thermoneutral (TN) vehicle control (TC; n = 6); TN ZEN (40 μg/kg; TZ; n = 6); pair-fed (PF; n = 6) vehicle control (PC; n = 6); PF ZEN (40 μg/kg; PZ; n = 6); HS vehicle control (HC; n = 7); and HS ZEN (40 μg/kg; HZ; n = 7) and experienced either constant 21.0 ± 0.10 °C (TN and PF) or 35.0 ± 0.2 °C (12 h) and 32.2 ± 0.1 °C (12 h) to induce HS for 7 d. Elevated rectal temperature (P < 0.01) and respiration rate (P < 0.01) confirmed induction of HS. Rectal temperature was decreased (P = 0.03) by ZEN. Heat stress decreased (P < 0.01) feed intake, body weight, and average daily gain, with absence of a ZEN effect (P > 0.22). White blood cells, hematocrit, and lymphocytes decreased (P < 0.04) with HS. Prolactin increased (P < 0.01) in PC and PZ and increased in HZ females (P < 0.01). 17β-estradiol reduced (P < 0.01) in HC and increased in TZ females (P = 0.03). Serum metabolites were altered by both HS and ZEN. Neither HS nor ZEN impacted ovary weight, uterus weight, teat size or vulva area in TN and PF treatments, although ZEN increased vulva area (P = 0.02) in HS females. Thus, ZEN and HS, independently and additively, altered blood composition, impacted the serum endocrine and metabolic profile and increased vulva size in prepubertal females, potentially contributing to infertility.
Collapse
Affiliation(s)
- Crystal M Roach
- Department of Animal Science, Iowa State University, Ames, IA, 50011, USA
| | - Edith J Mayorga
- Department of Animal Science, Iowa State University, Ames, IA, 50011, USA
| | - Lance H Baumgard
- Department of Animal Science, Iowa State University, Ames, IA, 50011, USA
| | - Jason W Ross
- Department of Animal Science, Iowa State University, Ames, IA, 50011, USA
| | - Aileen F Keating
- Department of Animal Science, Iowa State University, Ames, IA, 50011, USA.
| |
Collapse
|
9
|
Bhaumik S, Lockett J, Cuffe J, Clifton VL. Glucocorticoids and Their Receptor Isoforms: Roles in Female Reproduction, Pregnancy, and Foetal Development. BIOLOGY 2023; 12:1104. [PMID: 37626990 PMCID: PMC10452123 DOI: 10.3390/biology12081104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/04/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023]
Abstract
Alterations in the hypothalamic-pituitary-adrenal (HPA) axis and associated changes in circulating levels of glucocorticoids are integral to an organism's response to stressful stimuli. Glucocorticoids acting via glucocorticoid receptors (GRs) play a role in fertility, reproduction, placental function, and foetal development. GRs are ubiquitously expressed throughout the female reproductive system and regulate normal reproductive function. Stress-induced glucocorticoids have been shown to inhibit reproduction and affect female gonadal function by suppressing the hypothalamic-pituitary-gonadal (HPG) axis at each level. Furthermore, during pregnancy, a mother's exposure to prenatal stress or external glucocorticoids can result in long-lasting alterations to the foetal HPA and neuroendocrine function. Several GR isoforms generated via alternative splicing or translation initiation from the GR gene have been identified in the mammalian ovary and uterus. The GR isoforms identified include the splice variants, GRα and GRβ, and GRγ and GR-P. Glucocorticoids can exert both stimulatory and inhibitory effects and both pro- and anti-inflammatory functions in the ovary, in vitro. In the placenta, thirteen GR isoforms have been identified in humans, guinea pigs, sheep, rats, and mice, indicating they are conserved across species and may be important in mediating a differential response to stress. Distinctive responses to glucocorticoids, differential birth outcomes in pregnancy complications, and sex-based variations in the response to stress could all potentially be dependent on a particular GR expression pattern. This comprehensive review provides an overview of the structure and function of the GR in relation to female fertility and reproduction and discusses the changes in the GR and glucocorticoid signalling during pregnancy. To generate this overview, an extensive non-systematic literature search was conducted across multiple databases, including PubMed, Web of Science, and Google Scholar, with a focus on original research articles, meta-analyses, and previous review papers addressing the subject. This review integrates the current understanding of GR variants and their roles in glucocorticoid signalling, reproduction, placental function, and foetal growth.
Collapse
Affiliation(s)
- Sreeparna Bhaumik
- Mater Research Institute, Faculty of Medicine, The University of Queensland, Brisbane 4067, Australia; (S.B.); (J.L.)
| | - Jack Lockett
- Mater Research Institute, Faculty of Medicine, The University of Queensland, Brisbane 4067, Australia; (S.B.); (J.L.)
- Department of Diabetes and Endocrinology, Princess Alexandra Hospital, Metro South Health, Brisbane 4102, Australia
| | - James Cuffe
- School of Biomedical Sciences, The University of Queensland, Brisbane 4067, Australia;
| | - Vicki L. Clifton
- Mater Research Institute, Faculty of Medicine, The University of Queensland, Brisbane 4067, Australia; (S.B.); (J.L.)
| |
Collapse
|
10
|
González-Alvarez ME, Roach CM, Keating AF. Scrambled eggs-Negative impacts of heat stress and chemical exposures on ovarian function in swine. Mol Reprod Dev 2023; 90:503-516. [PMID: 36652419 DOI: 10.1002/mrd.23669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 12/20/2022] [Accepted: 12/29/2022] [Indexed: 01/19/2023]
Abstract
Exposure to environmental toxicants and hyperthermia can hamper reproduction in female mammals including swine. Phenotypic manifestations include poor quality oocytes, endocrine disruption, infertility, lengthened time to conceive, pregnancy loss, and embryonic defects. The ovary has the capacity for toxicant biotransformation, regulated in part by the phosphatidylinositol-3 kinase signaling pathway. The impacts of exposure to mycotoxins and pesticides on swine reproduction and the potential for an emerging chemical class of concern, the per- and polyfluoroalkylated substances, to hamper porcine reproduction are reviewed. The negative impairments of heat stress (HS) on swine reproductive outcomes are also described and the cumulative effect of environmental exposures, such as HS, when present in conjunction with a toxicant is considered.
Collapse
Affiliation(s)
- M Estefanía González-Alvarez
- Department of Animal Science and Interdepartmental Toxicology Graduate Program, Iowa State University, Ames, Iowa, USA
| | - Crystal M Roach
- Department of Animal Science and Interdepartmental Toxicology Graduate Program, Iowa State University, Ames, Iowa, USA
| | - Aileen F Keating
- Department of Animal Science and Interdepartmental Toxicology Graduate Program, Iowa State University, Ames, Iowa, USA
| |
Collapse
|
11
|
Brito AA, da Silva NAM, Alvarenga Dias ALN, Nascimento MRBDM. Heat wave exposure impairs reproductive performance in primiparous sows and gilts in a tropical environment. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2022; 66:2417-2424. [PMID: 36264504 DOI: 10.1007/s00484-022-02365-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 08/16/2022] [Accepted: 09/09/2022] [Indexed: 06/16/2023]
Abstract
We studied the effects of heat waves (HW), defined as three consecutive days with an ambient temperature ≥ 25 °C and a temperature and humidity index (THI) > 74, on the reproductive performance of sows. Meteorological data were obtained from the National Institute of Meteorology and reproductive data from a commercial farm with 51,578 inseminations and 49,103 pregnancies from September 5, 2013, to July 12, 2019. Sows were divided into the following groups according to the parity order: group 1 (sows that did not experience HW on the day of insemination) and group 2 (sows exposed to HW on the day of insemination). The percentage of days that pregnant sows were exposed to HW was calculated as 0 to 25% (1), 26 to 50% (2), 51 to 75% (3), and > 75% (4). Out of a total of 2137 days, there were 160 HW and more than 10 HW per month, except in May, June, and July. Gilts in group 2 showed a decrease in the percentage of gestation (98.21% and 98.78%, respectively, P = 0.0267) and the percentage of births compared with those in group 1 (95.53% and 96.61, respectively, P = 0.0065). Primiparous sows in group 2 had a higher percentage of abortions than gilts in group 1 (3.20% and 2.42%, respectively; P = 0.0334). Sows exposed to more than 50% HW during gestation produced more mummified piglets than sows exposed to less than 50% HW. The number of stillborn piglets was higher in sows exposed to temperatures above 25% HW during gestation. The occurrence of heat waves in gilts and primiparous sows impairs reproductive performance.
Collapse
Affiliation(s)
- Amanda Aparecida Brito
- Faculty of Veterinary Medicine (FAMEV), Federal University of Uberlândia (UFU), Uberlândia, Minas Gerais, Brazil
| | | | | | | |
Collapse
|
12
|
Dou J, Luo H, Sammad A, Lou W, Wang D, Schenkel F, Yu Y, Fang L, Wang Y. Epigenomics of rats' liver and its cross-species functional annotation reveals key regulatory genes underlying short term heat-stress response. Genomics 2022; 114:110449. [PMID: 35985612 DOI: 10.1016/j.ygeno.2022.110449] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/28/2022] [Accepted: 08/12/2022] [Indexed: 11/04/2022]
Abstract
Molecular responses to heat stress are multifaceted and under a complex cellular post-transcriptional control. This study explores the epigenetic and transcriptional alterations induced by heat stress (42 °C for 120 min) in the liver of rats, by integrating ATAC-seq, RNA-Seq, and WGBS information. Out of 2586 differential ATAC-seq peaks induced by heat stress, 36 up-regulated and 22 down-regulated transcript factors (TFs) are predicted, such as Cebpα, Foxa2, Foxo4, Nfya and Sp3. Furthermore, 150,189 differentially methylated regions represent 2571 differentially expressed genes (DEGs). By integrating all data, 45 DEGs are concluded as potential heat stress response markers in rats. To comprehensively annotate and narrow down predicted markers, they are integrated with GWAS results of heat stress parameters in cows, and PheWAS data in humans. Besides better understanding of heat stress responses in mammals, INSR, MAPK8, RHPN2 and BTBD7 are proposed as candidate markers for heat stress in mammals.
Collapse
Affiliation(s)
- Jinhuan Dou
- Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA, National Engineering Laboratory of Animal Breeding, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Hanpeng Luo
- Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA, National Engineering Laboratory of Animal Breeding, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Abdul Sammad
- Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA, National Engineering Laboratory of Animal Breeding, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Wenqi Lou
- Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA, National Engineering Laboratory of Animal Breeding, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Di Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA, National Engineering Laboratory of Animal Breeding, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Flavio Schenkel
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, N1G 2W1 Guelph, Ontario, Canada
| | - Ying Yu
- Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA, National Engineering Laboratory of Animal Breeding, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Lingzhao Fang
- MRC Human Genetics Unit at the Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom.
| | - Yachun Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA, National Engineering Laboratory of Animal Breeding, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
13
|
Adur MK, Seibert JT, Romoser MR, Bidne KL, Baumgard LH, Keating AF, Ross JW. Porcine endometrial heat shock proteins are differentially influenced by pregnancy status, heat stress, and altrenogest supplementation during the peri-implantation period. J Anim Sci 2022; 100:6620802. [PMID: 35772767 PMCID: PMC9246672 DOI: 10.1093/jas/skac129] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/08/2022] [Indexed: 12/11/2022] Open
Abstract
Heat stress (HS) deleteriously affects multiple components of porcine reproduction and is causal to seasonal infertility. Environment-induced hyperthermia causes a HS response (HSR) typically characterized by increased abundance of intracellular heat shock proteins (HSP). Gilts exposed to HS during the peri-implantation period have compromised embryo survival, however if (or how) HS disrupts the porcine endometrium is not understood. Study objectives were to evaluate the endometrial HSP abundance in response to HS during this period and assess the effect of oral progestin (altrenogest; ALT) supplementation. Postpubertal gilts (n = 42) were artificially inseminated during behavioral estrus (n = 28) or were kept cyclic (n = 14), and randomly assigned to thermal neutral (TN; 21 ± 1 °C) or diurnal HS (35 ± 1 °C for 12 h/31.6 ± 1 °C for 12 h) conditions from day 3 to 12 postestrus (dpe). Seven of the inseminated gilts from each thermal treatment group received ALT (15 mg/d) during this period. Using quantitative PCR, transcript abundance of HSP family A (Hsp70) member 1A (HSPA1A, P = 0.001) and member 6 (HSPA6, P < 0.001), and HSP family B (small) member 8 (HSB8, P = 0.001) were increased while HSP family D (Hsp60) member 1 (HSPD1, P = 0.01) was decreased in the endometrium of pregnant gilts compared to the cyclic gilts. Protein abundance of HSPA1A decreased (P = 0.03) in pregnant gilt endometrium due to HS, while HSP family B (small) member 1 (HSPB1) increased (P = 0.01) due to HS. Oral ALT supplementation during HS reduced the transcript abundance of HSP90α family class B member 1 (HSP90AB1, P = 0.04); but HS increased HSP90AB1 (P = 0.001), HSPA1A (P = 0.02), and HSPA6 (P = 0.04) transcript abundance irrespective of ALT. ALT supplementation decreased HSP90α family class A member 1 (HSP90AA1, P = 0.001) protein abundance, irrespective of thermal environment, whereas ALT only decreased HSPA6 (P = 0.02) protein abundance in TN gilts. These results indicate a notable shift of HSP in the porcine endometrium during the peri-implantation period in response to pregnancy status and heat stress.
Collapse
Affiliation(s)
- Malavika K Adur
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Jacob T Seibert
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Matthew R Romoser
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Katie L Bidne
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Lance H Baumgard
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Aileen F Keating
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Jason W Ross
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
14
|
Roach CM, Bidne KL, Romoser MR, Ross JW, Baumgard LH, Keating AF. Impact of heat stress on prolactin-mediated ovarian JAK-STAT signaling in postpubertal gilts. J Anim Sci 2022; 100:6620801. [PMID: 35772766 PMCID: PMC9246670 DOI: 10.1093/jas/skac118] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/08/2022] [Indexed: 12/20/2022] Open
Abstract
Heat stress (HS) compromises almost every aspect of animal agriculture including reproduction. In pigs, this infecundity is referred to as seasonal infertility (SI), a phenotype including ovarian dysfunction. In multiple species, HS-induced hyperprolactinemia has been described; hence, our study objectives were to characterize and compare HS effects on circulating prolactin (PRL) and ovarian Janus kinase/signal transducer and activator of transcription (JAK-STAT) signaling during the follicular (FOL) or luteal (LUT) phases of the estrous cycle in postpubertal gilts. Gilts were estrus synchronized using altrenogest and environmental treatments began immediately after altrenogest withdrawal. For the FOL study: postpubertal gilts were allocated to constant thermoneutral (TN; n = 6; 20 ± 1.2 °C) or cyclical HS (n = 6; 25 to 32 ± 1.2 °C) conditions for 5 d. In the LUT study: postpubertal gilts were assigned to either TN (n = 7; 20 ± 2.6 °C) or cyclical HS (n = 7; 32 to 35 ± 2.6 °C) conditions from 2 to 12 days postestrus (dpe). Blood was collected by jugular venipuncture for PRL quantification on day 5 in the FOL and on day 0 and day 12 in the LUT gilts. Ovaries and corpora lutea (CL) were obtained from euthanized FOL and LUT gilts on day 5 and day 12, respectively. Western blotting was performed to quantify prolactin receptor (PRLR) and JAK/STAT pathway protein abundance. In the FOL phase, no difference (P = 0.20) in circulating PRL between thermal groups was observed. There was no effect (P ≥ 0.34) of HS on PRLR, signal transducer and activator of transcription 3 (STAT3), signal transducer and activator of transcription 5α (STAT5α), and phosphorylated signal transducer and activator of transcription α/β tyrosine 694/699 (pSTAT5α/βTyr694/699) abundance and Janus kinase 2 (JAK2), phosphorylated janus kinase 2 tyrosine 1007/1008 (pJAK2Tyr1007/1008), STAT1, phosphorylated signal transducer and activator of transcription 1 tyrosine 701 (pSTAT1Tyr701), phosphorylated signal transducer and activator of transcription 1 serine 727 (pSTAT1Ser727), and phosphorylated signal transducer and activator of transcription 3 tyrosine 705 (pSTAT3Tyr705) were undetectable in FOL gilt ovaries. Ovarian pSTAT5α/βTyr694/699 abundance tended to moderately increase (4%; P = 0.07) in FOL gilts by HS. In the LUT phase, circulating PRL increased progressively from 2 to 12 dpe, but no thermal treatment-induced difference (P = 0.37) was noted. There was no effect (P ≥ 0.16) of HS on CL abundance of PRLR, pJAK2Tyr1007/1008, JAK2, STAT1, pSTAT1Tyr701, pSTAT1Ser727, pSTAT3Tyr705, STAT5α, or pSTAT5α/βTyr694/699. In LUT phase, CL STAT3 abundance was increased (11%; P < 0.03) by HS. There was no impact of HS (P ≥ 0.76) on levels of pJAK2Tyr1007/1008 and pSTAT5α/βTyr694/699 in LUT gilts; however, the CL pSTAT3Tyr705:STAT3 ratio tended to be decreased (P = 0.10) due to HS. These results indicate an HS-induced estrous cycle-stage-dependent effect on the ovarian JAK/STAT pathway, establishing a potential role for this signaling pathway as a potential contributor to SI.
Collapse
Affiliation(s)
- Crystal M Roach
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Katie L Bidne
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Matthew R Romoser
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Jason W Ross
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Lance H Baumgard
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Aileen F Keating
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
15
|
Yan L, Hu M, Gu L, Lei M, Chen Z, Zhu H, Chen R. Effect of Heat Stress on Egg Production, Steroid Hormone Synthesis, and Related Gene Expression in Chicken Preovulatory Follicular Granulosa Cells. Animals (Basel) 2022; 12:ani12111467. [PMID: 35681931 PMCID: PMC9179568 DOI: 10.3390/ani12111467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/01/2022] [Accepted: 06/04/2022] [Indexed: 02/05/2023] Open
Abstract
Simple Summary The debilitating effects of heat stress on poultry production have been well documented. Heat stress already results in severe economic loss worldwide. Regarding the decline in the reproductive performance of heat-stressed hens, the exact mechanisms involved are still unknown. The present study was conducted to elucidate the molecular mechanisms underlying heat-stress-induced abnormal egg production in laying hens. Our results confirmed that laying hens reared under heat stress had impaired laying performance. Follicular granulosa cells cultured in vitro are sensitive to the effects of heat stress, showing an increase in apoptosis and cellular ultrastructural changes. These effects appeared in the form of heat-stress-elevated progesterone, with the increased expression of steroidogenic acute regulatory protein, cytochrome P450 family 11 subfamily A member 1, and 3b-hydroxysteroid dehydrogenase, along with inhibited estradiol synthesis through the decreased expression of follicle-stimulating hormone receptor and the cytochrome P450 family 19 subfamily A member 1. Collectively, laying hens exposed to high temperatures showed damage to granulosa cells that brought about a decline in egg production. This study provides a molecular mechanism for the abnormal laying performance of hens subjected to heat stress, which may help when developing novel strategies to reverse the adverse impact. Abstract This study was conducted to elucidate the molecular mechanisms underlying heat stress (HS)-induced abnormal egg-laying in laying hens. Hy-Line brown laying hens were exposed to HS at 32 °C or maintained at 22 °C (control) for 14 days. In addition, granulosa cells (GCs) from preovulatory follicles were subjected to normal (37 °C) or high (41 °C or 43 °C) temperatures in vitro. Proliferation, apoptosis, and steroidogenesis were investigated, and the expression of estrogen and progesterone synthesis-related genes was detected. The results confirmed that laying hens reared under HS had impaired laying performance. HS inhibited proliferation, increased apoptosis, and altered the GC ultrastructure. HS also elevated progesterone secretion by increasing the expression of steroidogenic acute regulatory protein (StAR), cytochrome P450 family 11 subfamily A member 1 (CYP11A1), and 3b-hydroxysteroid dehydrogenase (3β-HSD). In addition, HS inhibited estrogen synthesis in GCs by decreasing the expression of the follicle-stimulating hormone receptor (FSHR) and cytochrome P450 family 19 subfamily A member 1 (CYP19A1). The upregulation of heat shock 70 kDa protein (HSP70) under HS was also observed. Collectively, laying hens exposed to high temperatures experienced damage to follicular GCs and steroidogenesis dysfunction, which reduced their laying performance. This study provides a molecular mechanism for the abnormal laying performance of hens subjected to HS.
Collapse
Affiliation(s)
- Leyan Yan
- Key Laboratory for Crop and Animal Integrated Farming, Ministry of Agriculture and Rural Affairs, Animal Husbandry Institute, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (L.Y.); (M.H.); (M.L.); (Z.C.)
| | - Mengdie Hu
- Key Laboratory for Crop and Animal Integrated Farming, Ministry of Agriculture and Rural Affairs, Animal Husbandry Institute, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (L.Y.); (M.H.); (M.L.); (Z.C.)
| | - Lihong Gu
- Institute of Animal Science and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou 571100, China;
| | - Mingming Lei
- Key Laboratory for Crop and Animal Integrated Farming, Ministry of Agriculture and Rural Affairs, Animal Husbandry Institute, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (L.Y.); (M.H.); (M.L.); (Z.C.)
| | - Zhe Chen
- Key Laboratory for Crop and Animal Integrated Farming, Ministry of Agriculture and Rural Affairs, Animal Husbandry Institute, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (L.Y.); (M.H.); (M.L.); (Z.C.)
| | - Huanxi Zhu
- Key Laboratory for Crop and Animal Integrated Farming, Ministry of Agriculture and Rural Affairs, Animal Husbandry Institute, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (L.Y.); (M.H.); (M.L.); (Z.C.)
- Correspondence: (H.Z.); (R.C.)
| | - Rong Chen
- Key Laboratory for Crop and Animal Integrated Farming, Ministry of Agriculture and Rural Affairs, Animal Husbandry Institute, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (L.Y.); (M.H.); (M.L.); (Z.C.)
- Correspondence: (H.Z.); (R.C.)
| |
Collapse
|
16
|
Nery da Silva A, Alves L, Osowski GV, Sabei L, Ferraz PA, Pugliesi G, Marques MG, Zanella R, Zanella AJ. Housing Conditions and a Challenge with Lipopolysaccharide on the Day of Estrus Can Influence Gene Expression of the Corpus Luteum in Gilts. Genes (Basel) 2022; 13:genes13050769. [PMID: 35627154 PMCID: PMC9141224 DOI: 10.3390/genes13050769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/20/2022] [Accepted: 04/22/2022] [Indexed: 11/17/2022] Open
Abstract
The corpus luteum (CL) is a temporary endocrine gland that plays a decisive role in the reproductive physiology of gilts. Recently, it has been suggested that exogenous factors may compromise the normal functioning of the CL. In the present study, we aimed to understand to what extent an acute and systemic challenge with lipopolysaccharide (LPS) on the day of estrus could compromise gene expression of gilts’ CLs housed in different welfare conditions. For this, we housed 42 gilts in three different housing systems: crates, indoor group pens, and outdoor housing. Then, we challenged six females from each group with LPS and eight with saline (SAL) on the day of estrus. After slaughtering the gilts on the fifth day after the challenge, ovaries were collected for gene expression analysis by RT-qPCR. Housing system and LPS challenge did not have a significant interaction for any genes evaluated; thus, their effects were studied separately. We identified significant (p < 0.05) downregulation of the angiogenic genes VEGF and FTL1 among LPS-challenged animals. Meanwhile, we also observed upregulation of HSD3B1 gene among LPS-challenged animals. We found that STAR and LHCGR genes were differentially expressed depending on the housing system, which indicates that the environment may affect adaptation capabilities. Our results indicate that an acute health challenge on the estrus day alters CL gene expression; however, the role of the housing system remains uncertain.
Collapse
Affiliation(s)
- Arthur Nery da Silva
- Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga 05508-070, SP, Brazil; (A.N.d.S.); (L.A.); (G.V.O.); (L.S.)
| | - Luana Alves
- Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga 05508-070, SP, Brazil; (A.N.d.S.); (L.A.); (G.V.O.); (L.S.)
| | - Germana Vizzotto Osowski
- Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga 05508-070, SP, Brazil; (A.N.d.S.); (L.A.); (G.V.O.); (L.S.)
| | - Leandro Sabei
- Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga 05508-070, SP, Brazil; (A.N.d.S.); (L.A.); (G.V.O.); (L.S.)
| | - Priscila Assis Ferraz
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga 05508-070, SP, Brazil; (P.A.F.); (G.P.)
| | - Guilherme Pugliesi
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga 05508-070, SP, Brazil; (P.A.F.); (G.P.)
| | - Mariana Groke Marques
- Embrapa Suínos e Aves, Concórdia 89715-899, SC, Brazil;
- Programa de Pós-Graduação em Produção e Sanidade Animal, Instituto Federal Catarinense—IFC, Concórdia 89703-720, SC, Brazil
| | - Ricardo Zanella
- School of Agronomy and Veterinary Medicine, University of Passo Fundo, Passo Fundo 99052-900, RS, Brazil;
| | - Adroaldo José Zanella
- Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga 05508-070, SP, Brazil; (A.N.d.S.); (L.A.); (G.V.O.); (L.S.)
- Correspondence:
| |
Collapse
|
17
|
Yang C, Huang XB, Chen SJ, Li XJ, Fu XL, Xu DN, Tian YB, Liu WJ, Huang YM. The effect of heat stress on proliferation, synthesis of steroids, and gene expression of duck granulosa cells. Anim Sci J 2021; 92:e13617. [PMID: 34405917 DOI: 10.1111/asj.13617] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/06/2021] [Accepted: 07/29/2021] [Indexed: 12/30/2022]
Abstract
Granulosa cells (GCs) play an important role in the development of follicles. In this study, we investigate the impact of heat stress at 41°C and 43°C on duck GCs' proliferation and steroids secretion. And, the transcriptomic responses to heat treatment were examined using RNA-sequencing analysis. Digital gene expression profiling was used to screen and identify differentially expressed genes (fold change ≥ 2 and Q value < 0.05). Further, the differential expression genes (DEGs) were classified into GO categories and KEGG pathways. The results show that duck GCs blocked in the G1 phase were increased on exposure to heat stress. Meanwhile, the expression of proliferative genes, which were essential for the transition from G1 to S phase, was inhibited. At the same time, heat stress inhibited the estradiol synthesis of GCs by decreasing CYP11A1 and CYP19A1 gene expression. A total of 241 DEGs including 181 upregulated and 60 downregulated ones were identified. Transcriptome result shows that heat shock protein and CXC chemokines gene were significantly activated during heat stress. While collagenases (MMP1 and MMP13) and strome lysins (MMP3) were downregulated. And, the hedgehog signaling pathway may be a prosurvival adaptive response under heat stress. These results offer a basis for better understanding the molecular mechanism underlying lay-eggs-less in ducks under heat stress.
Collapse
Affiliation(s)
- Chen Yang
- Zhong-kai University of Agriculture and Engineering, Guangzhou, China.,Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangzhou, China
| | - Xue-Bing Huang
- Zhong-kai University of Agriculture and Engineering, Guangzhou, China.,Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangzhou, China.,Institute of Animal Science, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Shi-Jian Chen
- Zhong-kai University of Agriculture and Engineering, Guangzhou, China.,Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangzhou, China
| | - Xiu-Jin Li
- Zhong-kai University of Agriculture and Engineering, Guangzhou, China.,Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangzhou, China
| | - Xin-Liang Fu
- Zhong-kai University of Agriculture and Engineering, Guangzhou, China.,Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangzhou, China
| | - Dan-Ning Xu
- Zhong-kai University of Agriculture and Engineering, Guangzhou, China.,Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangzhou, China
| | - Yun-Bo Tian
- Zhong-kai University of Agriculture and Engineering, Guangzhou, China.,Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangzhou, China
| | - Wen-Jun Liu
- Zhong-kai University of Agriculture and Engineering, Guangzhou, China.,Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangzhou, China
| | - Yun-Mao Huang
- Zhong-kai University of Agriculture and Engineering, Guangzhou, China.,Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangzhou, China
| |
Collapse
|
18
|
Gingrich J, Pu Y, Upham BL, Hulse M, Pearl S, Martin D, Avery A, Veiga-Lopez A. Bisphenol S enhances gap junction intercellular communication in ovarian theca cells. CHEMOSPHERE 2021; 263:128304. [PMID: 33155548 PMCID: PMC7726030 DOI: 10.1016/j.chemosphere.2020.128304] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 09/04/2020] [Accepted: 09/10/2020] [Indexed: 05/08/2023]
Abstract
Gap junction intercellular communication (GJIC) is necessary for ovarian function, and it is temporospatially regulated during follicular development and ovulation. At outermost layer of the antral follicle, theca cells provide structural, steroidogenic, and vascular support. Inter- and extra-thecal GJIC is required for intrafollicular trafficking of signaling molecules. Because GJIC can be altered by hormones and endocrine disrupting chemicals (EDCs), we tested if any of five common EDCs (bisphenol A (BPA), bisphenol S (BPS), bisphenol F (BPF), perfluorooctanesulfonic acid (PFOS), and triphenyltin chloride (TPT)) can interfere with theca cell GJIC. Since most chemicals are reported to repress GJIC, we hypothesized that all chemicals tested, within environmentally relevant human exposure concentrations, will inhibit theca cell GJICs. To evaluate this hypothesis, we used a scrape loading/dye transfer assay. BPS, but no other chemical tested, enhanced GJIC in a dose- and time-dependent manner in ovine primary theca cells. A signal-protein inhibitor approach was used to explore the GJIC-modulatory pathways involved. Phospholipase C and mitogen-activated protein kinase (MAPK) inhibitors significantly attenuated BPS-induced enhanced GJIC. Human theca cells were used to evaluate translational relevance of these findings. Human primary theca cells had a ∼40% increase in GJIC in response to BPS, which was attenuated with a MAPK inhibitor, suggestive of a conserved mechanism. Upregulation of GJIC could result in hyperplasia of the theca cell layer or prevent ovulation by holding the oocyte in meiotic arrest. Further studies are necessary to understand in vitro to in vivo translatability of these findings on follicle development and fertility outcomes.
Collapse
Affiliation(s)
- Jeremy Gingrich
- Department of Animal Science, Michigan State University, East Lansing, MI, 48824, USA; Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, 48824, USA
| | - Yong Pu
- Department of Animal Science, Michigan State University, East Lansing, MI, 48824, USA
| | - Brad L Upham
- Department of Pediatrics and Human Development, Michigan State University, East Lansing, MI, 48824, USA
| | - Madeline Hulse
- Department of Obstetrics and Gynecology, Sparrow Health System, Lansing, MI, 48912, USA
| | - Sarah Pearl
- Department of Obstetrics and Gynecology, Sparrow Health System, Lansing, MI, 48912, USA
| | - Denny Martin
- Department of Obstetrics and Gynecology, Sparrow Health System, Lansing, MI, 48912, USA
| | - Anita Avery
- Department of Obstetrics and Gynecology, Sparrow Health System, Lansing, MI, 48912, USA; Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Almudena Veiga-Lopez
- Department of Animal Science, Michigan State University, East Lansing, MI, 48824, USA; Department of Pathology, College of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA.
| |
Collapse
|
19
|
Ganesan S, McGuire BC, Keating AF. Absence of glyphosate-induced effects on ovarian folliculogenesis and steroidogenesis. Reprod Toxicol 2020; 96:156-164. [PMID: 32592754 PMCID: PMC8500328 DOI: 10.1016/j.reprotox.2020.06.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/05/2020] [Accepted: 06/20/2020] [Indexed: 01/01/2023]
Abstract
Glyphosate (GLY) is an herbicidal active ingredient and both in vitro and in vivo studies suggest that GLY alters ovarian function. To determine if a chronic GLY exposure model affected steroidogenesis or folliculogenesis in vivo, postnatal day 42 C57BL6 female mice were orally delivered vehicle control (saline) or GLY (2 mg/Kg) from a pipette tip five days per week for either five or ten weeks. Mice were euthanized at the pro-estrus stage of the estrous cycle. GLY exposure did not impact body weight gain, organ weights, or healthy follicle numbers. In addition, GLY exposure did not affect abundance of ovarian mRNA encoding kit ligand (Kitlg), KIT proto-oncogene receptor tyrosine kinase (c-Kit), insulin receptor (Insr), insulin receptor substrate (Irs1 or Irs2) and protein thymoma viral proto-oncogene 1 (AKT) or phosphorylated AKT. Ovarian mRNA or protein abundance of Star, 3β-hydroxysteroid dehydrogenase (Hsd3b1), Cyp11a1 or Cyp19a were also not altered by GLY. Circulating 17β-estradiol and progesterone concentration were unaffected by GLY exposure. In conclusion, chronic GLY exposure for five or ten weeks did not affect the ovarian endpoints examined herein.
Collapse
Affiliation(s)
- Shanthi Ganesan
- Department of Animal Science, Iowa State University, Ames, IA, 50011, USA
| | - Bailey C McGuire
- Department of Animal Science, Iowa State University, Ames, IA, 50011, USA
| | - Aileen F Keating
- Department of Animal Science, Iowa State University, Ames, IA, 50011, USA.
| |
Collapse
|
20
|
Mayorga EJ, Ross JW, Keating AF, Rhoads RP, Baumgard LH. Biology of heat stress; the nexus between intestinal hyperpermeability and swine reproduction. Theriogenology 2020; 154:73-83. [PMID: 32531658 DOI: 10.1016/j.theriogenology.2020.05.023] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 05/15/2020] [Accepted: 05/17/2020] [Indexed: 02/06/2023]
Abstract
Unfavorable weather conditions are one of the largest constraints to maximizing farm animal productivity. Heat stress (HS), in particular, compromises almost every metric of profitability and this is especially apparent in the grow-finish and reproductive aspects of the swine industry. Suboptimal production during HS was traditionally thought to result from hypophagia. However, independent of inadequate nutrient consumption, HS affects a plethora of endocrine, physiological, metabolic, circulatory, and immunological variables. Whether these changes are homeorhetic strategies to survive the heat load or are pathological remains unclear, nor is it understood if they temporally occur by coincidence or if they are chronologically causal. However, mounting evidence suggest that the origin of the aforementioned changes lie at the gastrointestinal tract. Heat stress compromises intestinal barrier integrity, and increased appearance of luminal contents in circulation causes local and systemic inflammatory responses. The resulting immune activation is seemingly the epicenter to many, if not most of the negative consequences HS has on reproduction, growth, and lactation. Interestingly, thermoregulatory and production responses to HS are only marginally related. In other words, increased body temperature indices poorly predict decreases in productivity. Further, HS induced malnutrition is also a surprisingly inaccurate predictor of productivity. Thus, selecting animals with a "heat tolerant" phenotype based solely or separately on thermoregulatory capacity or production may not ultimately increase resilience. Describing the physiology and mechanisms that underpin how HS jeopardizes animal performance is critical for developing approaches to ameliorate current production issues and requisite for generating future strategies (genetic, managerial, nutritional, and pharmaceutical) aimed at optimizing animal well-being, and improving the sustainable production of high-quality protein for human consumption.
Collapse
Affiliation(s)
- E J Mayorga
- Department of Animal Science, Iowa State University, Ames, IA, 50011, USA
| | - J W Ross
- Department of Animal Science, Iowa State University, Ames, IA, 50011, USA
| | - A F Keating
- Department of Animal Science, Iowa State University, Ames, IA, 50011, USA
| | - R P Rhoads
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - L H Baumgard
- Department of Animal Science, Iowa State University, Ames, IA, 50011, USA.
| |
Collapse
|
21
|
Bidne KL, Kvidera SS, Ross JW, Baumgard LH, Keating AF. Impact of repeated lipopolysaccharide administration on ovarian signaling during the follicular phase of the estrous cycle in post-pubertal pigs. J Anim Sci 2020; 96:3622-3634. [PMID: 29982469 DOI: 10.1093/jas/sky226] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 06/26/2018] [Indexed: 12/18/2022] Open
Abstract
Increased circulating lipopolysaccharide (LPS) results from heat stress (HS) and bacterial infection, both of which are associated with reduced female fertility. Specific effects of low-level, repeated LPS exposure on the ovary are unclear, as many studies utilize a bolus model and/or high dosage paradigm. To better understand the effects of chronic LPS exposure on ovarian signaling and function, post-pubertal gilts (n = 20) were orally administered altrenogest for 14 d to synchronize the beginning of the follicular phase of the ovarian cycle. For 5 d after synchronization, gilts (163 ± 3 kg) received IV administration of LPS (0.1 µg/kg BW, n = 10) or saline (CT, n = 10) 4× daily. Blood samples were obtained on days 1, 3, and 5 of LPS treatment. Follicular fluid was aspirated from dominant follicles on day 5, and whole ovarian homogenate was used for transcript and protein abundance analysis via quantitative real-time PCR and western blotting, respectively. There were no treatment differences detected in rectal temperature on any day (P ≥ 0.5). Administering LPS increased plasma insulin (P < 0.01), LPS-binding protein (LBP; P < 0.01), and glucose (P = 0.08) on day 1, but no treatment differences thereafter were observed (P = 0.66). There were no treatment differences in follicular fluid concentration of LBP or 17β-estradiol (P = 0.42). Gilts treated with LPS had increased abundance of ovarian TLR4 protein (P = 0.01), but protein kinase B (AKT) and phosphorylated AKT (pAKT) were unchanged and no effect of LPS on components of the phosphatidylinositol 3 kinase (PI3K) pathway were observed. There was no impact of LPS on ovarian abundance of STAR or CYP19A1, nor ESR1, LDLR, CYP19A1, CYP17A1, or 3BHSD. In conclusion, repeated, low-level LPS administration alters inflammatory but not steroidogenic or PI3K signaling in follicular phase gilt ovaries.
Collapse
Affiliation(s)
- Katie L Bidne
- Department of Animal Science, Iowa State University, Ames, IA
| | - Sara S Kvidera
- Department of Animal Science, Iowa State University, Ames, IA
| | - Jason W Ross
- Department of Animal Science, Iowa State University, Ames, IA
| | | | | |
Collapse
|
22
|
Bidne KL, Romoser MR, Ross JW, Baumgard LH, Keating AF. Heat stress during the luteal phase decreases luteal size but does not affect circulating progesterone in gilts1. J Anim Sci 2020; 97:4314-4322. [PMID: 31372640 DOI: 10.1093/jas/skz251] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 07/31/2019] [Indexed: 01/06/2023] Open
Abstract
Heat stress (HS) occurs when heat dissipation mechanisms are insufficient to maintain euthermia, and it is associated with seasonal infertility (SI), which manifests as smaller litters, longer wean-to-estrus interval, increased abortions, and reduced conception rates. To understand HS-induced mechanisms underlying SI, crossbred post-pubertal gilts (167 ± 10 kg; n = 14) experienced either thermal neutral (TN, 20 ± 1 °C, n = 7) or cyclical HS (35 ± 1 °C for 12 h and 31.6 °C for 12 h, n = 7) conditions from 2 to 12 d post-estrus (dpe). Estrous cycles were synchronized via altrenogest administration for 14 d, phenotypic manifestation of estrus was observed and gilts were assigned to experimental treatment. Gilts were limit fed 2.7 kg daily with ad libitum water access. Blood was collected at 0, 4, 8, and 12 dpe via jugular venipuncture and animals were humanely euthanized at 12 dpe. The corpora lutea (CL) width were measured via digital calipers on both ovaries, and CL from one ovary were excised, weighed, and protein and steroid abundance analyzed via western blotting and ELISA, respectively. Relative to TN, HS increased (P < 0.01) rectal temperature and respiration rates and reduced (P < 0.01) feed intake. The CL from HS ovaries were reduced in diameter (P < 0.05) and weight (P < 0.01) relative to those from TN animals. No difference (P = 0.38) in CL or serum progesterone concentrations between groups was observed at any time point, though at 12 dpe the serum progesterone:CL weight was increased (P < 0.10) by HS. No treatment differences (P = 0.84) in circulating insulin were observed. Luteal protein abundance of steroid acute regulatory protein, 3 beta-hydroxysteroid, or prostaglandin F2α receptor were not different between treatments (P = 0.73). Taken together, these data demonstrate that the CL mass is HS sensitive, but this phenotype does not appear to be explained by the metrics evaluated herein. Regardless, HS-induced decreased CL size may have important implications to pig SI and warrants additional attention.
Collapse
Affiliation(s)
- Katie L Bidne
- Department of Animal Science, Iowa State University, Ames, IA
| | | | - Jason W Ross
- Department of Animal Science, Iowa State University, Ames, IA
| | | | | |
Collapse
|
23
|
Seibert JT, Adur MK, Schultz RB, Thomas PQ, Kiefer ZE, Keating AF, Baumgard LH, Ross JW. Differentiating between the effects of heat stress and lipopolysaccharide on the porcine ovarian heat shock protein response1. J Anim Sci 2019; 97:4965-4973. [PMID: 31782954 PMCID: PMC6915215 DOI: 10.1093/jas/skz343] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 11/27/2019] [Indexed: 11/14/2022] Open
Abstract
Heat stress (HS) negatively affects both human and farm-animal health and undermines efficiency in a variety of economically important agricultural variables, including reproduction. HS impairs the intestinal barrier, allowing for translocation of the resident microflora and endotoxins, such as lipopolysaccharide (LPS), from the gastrointestinal lumen into systemic circulation. While much is known about the cellular function of heat shock proteins (HSPs) in most tissues, the in vivo ovarian HSP response to stressful stimuli remains ill-defined. The purpose of this study was to compare the effects of HS or LPS on ovarian HSP expression in pigs. We hypothesized that ovarian HSPs are responsive to both HS and LPS. Altrenogest (15 mg/d) was administered per os for estrus synchronization (14 d) prior to treatment and three animal paradigms were used: (i) gilts were exposed to cyclical HS (31 ± 1.4 °C) or thermoneutral (TN; 20 ± 0.5 °C) conditions immediately following altrenogest withdrawal for 5 d during follicular development; (ii) gilts were subjected to repeated (4×/d) saline (CON) or LPS (0.1 μg/kg BW) i.v. infusion immediately following altrenogest withdrawal for 5 d; and (iii) gilts were subjected to TN (20 ± 1 °C) or cyclical HS (31 to 35 °C) conditions 2 d post estrus (dpe) until 12 dpe during the luteal phase. While no differences were detected for transcript abundances of the assessed ovarian HSP, the protein abundance of specific HSP was influenced by stressors during the follicular and luteal phases. HS during the follicular phase tended (P < 0.1) to increase ovarian protein abundance of HSP90AA1 and HSPA1A, and increased (P ≤ 0.05) HSF1, HSPD1, and HSPB1 compared with TN controls, while HS decreased HSP90AB1 (P = 0.01). Exposure to LPS increased (P < 0.05) HSP90AA1 and HSPA1A and tended (P < 0.1) to increase HSF1 and HSPB1 compared with CON gilts, while HSP90AB1 and HSPD1 were not affected by LPS. HS during the luteal phase increased (P < 0.05) abundance of HSPB1 in corpora lutea (CL), decreased (P < 0.05) CL HSP90AB1, but did not impact HSF1, HSPD1, HSP90AA1, or HSPA1A abundance. Thus, these data support that HS and LPS similarly regulate expression of specific ovarian HSP, which suggest that HS effects on the ovary are in part mediated by LPS.
Collapse
Affiliation(s)
- Jacob T Seibert
- Department of Animal Science, Iowa State University, Ames, IA
| | - Malavika K Adur
- Department of Animal Science, Iowa State University, Ames, IA
| | | | - Porsha Q Thomas
- Department of Animal Science, Iowa State University, Ames, IA
| | - Zoe E Kiefer
- Department of Animal Science, Iowa State University, Ames, IA
| | | | | | - Jason W Ross
- Department of Animal Science, Iowa State University, Ames, IA
| |
Collapse
|
24
|
Dickson MJ, Hager CL, Al-Shaibi A, Thomas PQ, Baumgard LH, Ross JW, Keating AF. Impact of heat stress during the follicular phase on porcine ovarian steroidogenic and phosphatidylinositol-3 signaling. J Anim Sci 2018; 96:2162-2174. [PMID: 29684161 DOI: 10.1093/jas/sky144] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Environmental conditions that impede heat dissipation and increase body temperature cause heat stress (HS). The study objective was to evaluate impacts of HS on the follicular phase of the estrous cycle. Postpubertal gilts (126.0 ± 21.6 kg) were orally administered altrenogest to synchronize estrus, and subjected to either 5 d of thermal-neutral (TN; 20.3 ± 0.5 °C; n = 6) or cyclical HS (25.4 - 31.9 °C; n = 6) conditions during the follicular phase preceding behavioral estrus. On d 5, blood samples were obtained, gilts were euthanized, and ovaries collected. Fluid from dominant follicles was aspirated and ovarian protein homogenates prepared for protein abundance analysis. HS decreased feed intake (22%; P = 0.03) and while plasma insulin levels did not differ, the insulin:feed intake ratio was increased 3-fold by HS (P = 0.02). Insulin receptor protein abundance was increased (29%; P < 0.01), but insulin receptor substrate 1, total and phosphorylated protein kinase B, superoxide dismutase 1, and acyloxyacyl hydrolase protein abundance were unaffected by HS (P > 0.05). Plasma and follicular fluid 17β-estradiol, progesterone, and lipopolysaccharide-binding protein concentrations as well as abundance of steroid acute regulatory protein, cytochrome P450 19A1, and multidrug resistance-associated protein 1 were not affected by HS (P > 0.05). HS increased estrogen sulfotransferase protein abundance (44%; P = 0.02), toll-like receptor 4 (36%; P = 0.05), and phosphorylated REL-associated protein (31%; P = 0.02). Regardless of treatment, toll-like receptor 4 protein was localized to mural granulosa cells in the porcine ovary. In conclusion, HS altered ovarian signaling in postpubertal gilts during their follicular phase in ways that likely contributes to seasonal infertility.
Collapse
Affiliation(s)
| | - Candice L Hager
- Iowa State University Department of Animal Science, Ames, IA
| | - Ahmad Al-Shaibi
- Iowa State University Department of Animal Science, Ames, IA
| | - Porsha Q Thomas
- Iowa State University Department of Animal Science, Ames, IA
| | | | - Jason W Ross
- Iowa State University Department of Animal Science, Ames, IA
| | | |
Collapse
|
25
|
Ross JW, Hale BJ, Seibert JT, Romoser MR, Adur MK, Keating AF, Baumgard LH. Physiological mechanisms through which heat stress compromises reproduction in pigs. Mol Reprod Dev 2018; 84:934-945. [PMID: 28667793 DOI: 10.1002/mrd.22859] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 06/06/2017] [Indexed: 12/31/2022]
Abstract
Seasonal variations in environmental temperatures impose added stress on domestic species bred for economically important production traits. These heat-mediated stressors vary on a seasonal, daily, or spatial scale, and negatively impact behavior and reduce feed intake and growth rate, which inevitably lead to reduced herd productivity. The seasonal infertility observed in domestic swine is primarily characterized by depressed reproductive performance, which manifests as delayed puberty onset, reduced farrowing rates, and extended weaning-to-estrus intervals. Understanding the effects of heat stress at the organismal, cellular, and molecular level is a prerequisite to identifying mitigation strategies that should reduce the economic burden of compromised reproduction. In this review, we discuss the effect of heat stress on an animal's ability to maintain homeostasis in multiple systems via several hypothalamic-pituitary-end organ axes. Additionally, we discuss our understanding of epigenetic programming and how hyperthermia experienced in utero influences industry-relevant postnatal phenotypes. Further, we highlight the recent recognized mechanisms by which distant tissues and organs may molecularly communicate via extracellular vesicles, a potentially novel mechanism contributing to the heat-stress response.
Collapse
Affiliation(s)
- Jason W Ross
- Department of Animal Science, Iowa State University, Ames, Iowa
| | - Benjamin J Hale
- Department of Animal Science, Iowa State University, Ames, Iowa
| | - Jacob T Seibert
- Department of Animal Science, Iowa State University, Ames, Iowa
| | | | - Malavika K Adur
- Department of Animal Science, Iowa State University, Ames, Iowa
| | | | | |
Collapse
|
26
|
Zhang J, Ye J, Yuan C, Fu Q, Zhang F, Zhu X, Wang L, Gao P, Shu G, Jiang Q, Wang S. Exogenous H 2 S exerts biphasic effects on porcine mammary epithelial cells proliferation through PI3K/Akt-mTOR signaling pathway. J Cell Physiol 2018; 233:7071-7081. [PMID: 29744857 DOI: 10.1002/jcp.26630] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 03/30/2018] [Indexed: 12/24/2022]
Abstract
This study aimed to investigate the effects of exogenous H2 S on the proliferation of porcine mammary gland epithelial cells (PMECs) and explore the underlying mechanisms. We found that exposure of PMECs to NaHS, at concentrations ranging from 10 to 200 µM, stimulated cell proliferation. However, high concentration of NaHS (600 µM) inhibited PMECs proliferation. Accordingly, 10 µM NaHS significantly increased the percentage of cells undergoing DNA replication, elevated the mRNA and/or protein expression of Cyclin A2, Cyclin D1/3, Cyclin E2 and PCNA, and decreased p21 mRNA expression. In contrast, 600 µM NaHS elicited the opposite effects to that of 10 µM NaHS. In addition, PI3 K/Akt and mTOR signaling pathways were activated or inhibited in response to 10 or 600 µM NaHS, respectively. Furthermore, the promotion of PMECs proliferation, the change of proliferative genes expression, and the activation of mTOR signaling pathway induced by 10 µM NaHS were effectively blocked by PI3 K inhibitor Wortmannin. Similarly, inhibition of mTOR with Rapamycin totally abolished the 10 µM NaHS-induced stimulation of PMECs proliferation and alteration of proliferative genes expression, with no influence on PI3 K/Akt signaling pathway. Moreover, constitutive activation of Akt pathway via transfection of Akt-CA completely eliminated the inhibition of PMECs proliferation and mTOR signaling pathway, and the change of proliferative genes expression induced by 600 µM NaHS. In conclusion, our findings provided evidence that exogenous H2 S supplied by NaHS exerted biphasic effects on PMECs proliferation, with stimulation at lower doses and suppression at high dose, through the intracellular PI3 K/Akt-mTOR signaling pathway.
Collapse
Affiliation(s)
- Jing Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, P. R. China.,National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, P. R. China
| | - Jiayi Ye
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, P. R. China.,National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, P. R. China
| | - Cong Yuan
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, P. R. China.,National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, P. R. China
| | - Qin Fu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, P. R. China.,National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, P. R. China
| | - Fenglin Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, P. R. China.,National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, P. R. China
| | - Xiaotong Zhu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, P. R. China.,National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, P. R. China
| | - Lina Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, P. R. China.,National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, P. R. China
| | - Ping Gao
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, P. R. China.,National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, P. R. China
| | - Gang Shu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, P. R. China.,National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, P. R. China
| | - Qingyan Jiang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, P. R. China.,National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, P. R. China
| | - Songbo Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, P. R. China.,National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, P. R. China
| |
Collapse
|
27
|
Ganesan S, Volodina O, Pearce SC, Gabler NK, Baumgard LH, Rhoads RP, Selsby JT. Acute heat stress activated inflammatory signaling in porcine oxidative skeletal muscle. Physiol Rep 2018; 5:5/16/e13397. [PMID: 28830980 PMCID: PMC5582270 DOI: 10.14814/phy2.13397] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 07/24/2017] [Accepted: 07/27/2017] [Indexed: 11/24/2022] Open
Abstract
Despite well-studied clinical manifestations, intracellular mechanisms of prolonged hyperthermic injury remain unclear, especially in skeletal muscle. Given muscle's large potential to impact systemic inflammation and metabolism, the response of muscle cells to heat-mediated injury warrants further investigation. We have previously reported increased activation of NF-κB signaling and increased NF-κB and AP-1-driven transcripts in oxidative skeletal muscle following 12 h of heat stress. The purpose of this investigation was to examine early heat stress-induced inflammatory signaling in skeletal muscle. We hypothesized that heat stress would increase NF-κB and AP-1 signaling in oxidative skeletal muscle. To address this hypothesis, 32 gilts were randomly assigned to one of four treatment groups (n = 8/group): control (0 h: 21°C) or exposed to heat stress conditions (37°C) for 2 h (n = 8), 4 h (n = 8), or 6 h (n = 8). Immediately following environmental exposure pigs were euthanized and the red portion of the semitendinosus muscle (STR) was harvested. We found evidence of NF-κB pathway activation as indicated by increased protein abundance of NF-κB activator IKK-α following 4 h and increased total NF-κB protein abundance following 6 h of heat stress. Heat stress also stimulated AP-1 signaling as AP-1 protein abundance was increased in nuclear fractions following 4 h of heat stress. Interleukin-6 protein abundance and activation of the JAK/STAT pathway were decreased in heat stressed muscle. These data indicate that heat stress activated inflammatory signaling in the porcine STR muscle via the AP-1 pathway and early activation of the NF-κB pathway.
Collapse
Affiliation(s)
- Shanthi Ganesan
- Department of Animal Science, Iowa State University, Ames, Iowa
| | - Olga Volodina
- Department of Animal Science, Iowa State University, Ames, Iowa
| | - Sarah C Pearce
- Department of Animal Science, Iowa State University, Ames, Iowa
| | | | | | - Robert P Rhoads
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, Virginia
| | - Joshua T Selsby
- Department of Animal Science, Iowa State University, Ames, Iowa
| |
Collapse
|
28
|
Cesconeto RJ, Joost S, McManus CM, Paiva SR, Cobuci JA, Braccini J. Landscape genomic approach to detect selection signatures in locally adapted Brazilian swine genetic groups. Ecol Evol 2017; 7:9544-9556. [PMID: 29187988 PMCID: PMC5696410 DOI: 10.1002/ece3.3323] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 07/17/2017] [Accepted: 07/18/2017] [Indexed: 11/27/2022] Open
Abstract
Samples of 191 animals from 18 different Brazilian locally adapted swine genetic groups were genotyped using Illumina Porcine SNP60 BeadChip in order to identify selection signatures related to the monthly variation of Brazilian environmental variables. Using BayeScan software, 71 SNP markers were identified as FST outliers and 60 genotypes (58 markers) were found by Samβada software in 371 logistic models correlated with 112 environmental variables. Five markers were identified in both methods, with a Kappa value of 0.073 (95% CI: 0.011-0.134). The frequency of these markers indicated a clear north-south country division that reflects Brazilian environmental differences in temperature, solar radiation, and precipitation. Global spatial territory correlation for environmental variables corroborates this finding (average Moran's I = 0.89, range from 0.55 to 0.97). The distribution of alleles over the territory was not strongly correlated with the breed/genetic groups. These results are congruent with previous mtDNA studies and should be used to direct germplasm collection for the National gene bank.
Collapse
Affiliation(s)
| | - Stéphane Joost
- Laboratory of Geographic Information Systems (LASIG)School of Architecture, Civil and Environmental Engineering (ENAC)Ecole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| | | | | | - Jaime Araujo Cobuci
- Universidade Federal do Rio Grande do SulPorto AlegreRio Grande do SulBrazil
| | - Jose Braccini
- Universidade Federal do Rio Grande do SulPorto AlegreRio Grande do SulBrazil
| |
Collapse
|
29
|
Stress and the HPA Axis: Balancing Homeostasis and Fertility. Int J Mol Sci 2017; 18:ijms18102224. [PMID: 29064426 PMCID: PMC5666903 DOI: 10.3390/ijms18102224] [Citation(s) in RCA: 160] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 10/17/2017] [Accepted: 10/21/2017] [Indexed: 12/25/2022] Open
Abstract
An organism’s reproductive fitness is sensitive to the environment, integrating cues of resource availability, ecological factors, and hazards within its habitat. Events that challenge the environment of an organism activate the central stress response system, which is primarily mediated by the hypothalamic–pituitary–adrenal (HPA) axis. The regulatory functions of the HPA axis govern the cardiovascular and metabolic system, immune functions, behavior, and reproduction. Activation of the HPA axis by various stressors primarily inhibits reproductive function and is able to alter fetal development, imparting a biological record of stress experienced in utero. Clinical studies and experimental data indicate that stress signaling can mediate these effects through direct actions in the brain, gonads, and embryonic tissues. This review focuses on the mechanisms by which stress activation of the HPA axis impacts fertility and fetal development.
Collapse
|
30
|
Johnson J, Martin K, Pohler K, Stewart K. Effects of rapid temperature fluctuations prior to breeding on reproductive efficiency in replacement gilts. J Therm Biol 2016; 61:29-37. [DOI: 10.1016/j.jtherbio.2016.08.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 08/11/2016] [Accepted: 08/11/2016] [Indexed: 01/26/2023]
|
31
|
Ross JW, Hale BJ, Gabler NK, Rhoads RP, Keating AF, Baumgard LH. Physiological consequences of heat stress in pigs. ANIMAL PRODUCTION SCIENCE 2015. [DOI: 10.1071/an15267] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Heat stress negatively influences the global pork industry and undermines genetic, nutritional, management and pharmaceutical advances in management, feed and reproductive efficiency. Specifically, heat stress-induced economic losses result from poor sow performance, reduced and inconsistent growth, decreased carcass quality, mortality, morbidity, and processing issues caused by less rigid adipose tissue (also known as flimsy fat). When environmental conditions exceed the pig’s thermal neutral zone, nutrients are diverted from product synthesis (meat, fetus, milk) to body temperature maintenance thereby compromising efficiency. Unfortunately, genetic selection for both increased litter size and leaner phenotypes decreases pigs’ tolerance to heat, as enhanced fetal development and protein accretion results in increased basal heat production. Additionally, research has demonstrated that in utero heat stress negatively and permanently alters post-natal body temperature and body composition and both variables represent an underappreciated consequence of heat stress. Advances in management (i.e. cooling systems) have partially alleviated the negative impacts of heat stress, but productivity continues to decline during the warm summer months. The detrimental effects of heat stress on animal welfare and production will likely become more of an issue in regions most affected by continued predictions for climate change, with some models forecasting extreme summer conditions in key animal-producing areas of the globe. Therefore, heat stress is likely one of the primary factors limiting profitable animal protein production and will certainly continue to compromise food security (especially in emerging countries) and regionalise pork production in developed countries. Thus, there is an urgent need to have a better understanding of how heat stress reduces animal productivity. Defining the biology of how heat stress jeopardises animal performance is critical in developing approaches (genetic, managerial, nutritional and pharmaceutical) to ameliorate current production issues and improve animal wellbeing and performance.
Collapse
|