1
|
Zhou S, Zhang Q, Xu J, Xiang R, Dong X, Zhou X, Liu Z. CAP superfamily proteins in human: a new target for cancer therapy. Med Oncol 2024; 41:306. [PMID: 39499355 DOI: 10.1007/s12032-024-02548-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 10/23/2024] [Indexed: 11/07/2024]
Abstract
The CAP (Cysteine-rich secretory protein, Antigen 5, and Pathogenesis-related protein 1) superfamily proteins (CAP proteins) are found in all kingdoms of life. The cysteine-rich secreted proteins are prevalent in human organs and tissues and serve as critical signaling molecules within cells, regulating a wide range of biochemical processes in the human body. Due to their involvement in numerous biological processes, CAP proteins have recently attracted significant attention, particularly in the context of tumorigenesis and cancer therapy. This review summarizes the expression patterns and roles of CAP proteins in various cancers. Additionally, it analyzes the mechanisms by which CAP proteins affect cancer cell proliferation and survival, regulate epithelial-mesenchymal transition, influence drug resistance, and regulate epigenetics. The review reveals that CAP proteins play distinct roles in various signaling pathways, such as the MAPK, PI3K-Akt, and p53 pathways, which are crucial for tumor progression. Furthermore, this review summarizes the tumor-inhibiting function of CAP proteins and their potential as cancer biomarkers. These findings suggest that CAP proteins represent a promising new target for innovative cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Shenao Zhou
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
- Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China
- Peptide and Small Molecule Drug R&D Platform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Qianqian Zhang
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
- Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China
- Peptide and Small Molecule Drug R&D Platform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Jiawei Xu
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
- Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China
- Peptide and Small Molecule Drug R&D Platform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Ruiqi Xiang
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
- Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China
- Peptide and Small Molecule Drug R&D Platform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Xiaoping Dong
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
- Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China
- Peptide and Small Molecule Drug R&D Platform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Xi Zhou
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China.
- Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China.
- Peptide and Small Molecule Drug R&D Platform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China.
| | - Zhonghua Liu
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China.
- Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China.
- Peptide and Small Molecule Drug R&D Platform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China.
| |
Collapse
|
2
|
Miya V, Kumar C, Breed AA, Idicula-Thomas S, Pathak BR. Mammalian cysteine-rich secretory proteins interact with plasma membrane Ca 2+ exporter PMCA4b. Andrology 2024; 12:1096-1110. [PMID: 37882330 DOI: 10.1111/andr.13549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 09/28/2023] [Accepted: 10/14/2023] [Indexed: 10/27/2023]
Abstract
BACKGROUND Mammalian cysteine-rich secretory proteins (CRISPs) are predominantly expressed in the male reproductive tract. Knockout mice lacking two or more CRISPs show defects in sperm transport, sperm-egg interaction and Ca2+ homeostasis. CRISPs play redundant and specific roles via their binding partners. To understand this, a comprehensive analysis of CRISP interactome needs to be undertaken. OBJECTIVES This study aimed to analyse CRISP4 binding partners on the plasma membrane of rat caudal spermatozoa. MATERIALS AND METHODS Total proteins from rat caudal spermatozoa were subjected to immunoprecipitation using anti-CRISP4 antibody followed by liquid chromatography-mass spectrophotometry analysis. Plasma membrane localised proteins were shortlisted, and a key target was validated by co-immunoprecipitation and co-localisation. Co-transfection followed by co-immunoprecipitation was carried out for studying the interaction of full-length as well as deletion mutants of CRISPs with human plasma membrane calcium ATPase, isoform b (hPMCA4b). Calcium assays were performed using Fura-2-AM. The cholesterol binding ability of different CRISPs was evaluated in silico. RESULTS The membrane-specific interactome of rat CRISP4 (rCRISP4) from caudal spermatozoa revealed PMCA4b as a novel binding partner, and their interaction was validated in rat spermatozoa. Human CRISP1 (hCRISP1) and hCRISP3 also interacted with PMCA4b via the N-terminal domain. Interestingly, hCRISP1 and rCRISP4 delayed PMCA4b-mediated calcium extrusion but hCRISP3 did not. In silico analysis demonstrated that hCRISP1 and rCRISP4 have higher binding affinity towards cholesterol than hCRISP3. The secretion profile of different CRISPs also showed that the ratio of secreted to cell-associated proteins was highest for hCRISP3. CONCLUSION Our study identifies PMCA4b as a target of multiple mammalian CRISPs and unravels a new role of CRISPs in regulating calcium homeostasis. Differences in the interaction of different CRISPs with cholesterol may regulate their enrichment in the lipid rafts and redistribution in the membrane post-capacitation, thereby affecting their interaction with PMCA4b.
Collapse
Affiliation(s)
- Vaidehi Miya
- Division of Cellular and Structural Biology, ICMR-National Institute for Research in Reproductive and Child Health, Parel, Mumbai, India
| | - Chandan Kumar
- Biomedical Informatics Centre, ICMR-National Institute for Research in Reproductive and Child Health, Parel, Mumbai, India
| | - Ananya A Breed
- Division of Cellular and Structural Biology, ICMR-National Institute for Research in Reproductive and Child Health, Parel, Mumbai, India
| | - Susan Idicula-Thomas
- Biomedical Informatics Centre, ICMR-National Institute for Research in Reproductive and Child Health, Parel, Mumbai, India
| | - Bhakti R Pathak
- Division of Cellular and Structural Biology, ICMR-National Institute for Research in Reproductive and Child Health, Parel, Mumbai, India
| |
Collapse
|
3
|
Bu Y, Wang P, Li S, Li L, Zhang S, Wei H. Semen Protein CRISP3 Promotes Reproductive Performance of Boars through Immunomodulation. Int J Mol Sci 2024; 25:2264. [PMID: 38396941 PMCID: PMC10889302 DOI: 10.3390/ijms25042264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/09/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
Semen proteins play an important role in male reproductive performance and sperm fertilization ability and can be used as potential biomarkers to evaluate male fertility. The role of cysteine-rich secretory protein 3 (CRISP3) in male reproduction remains unknown. This study aimed to investigate the role of CRISP3 in the reproductive performance of boars. Our results showed that the CRISP3 protein content was significantly and positively correlated with boar fertility, sow delivery rate, and litter size. CRISP3 is highly expressed in the bulbourethral gland of adult boars and is enriched in the seminal plasma. It is localized in the post-acrosomal region of the sperm head and migrates to the anterior end of the tail after capacitation. The CRISP3 recombinant protein did not affect sperm motility and cleavage rate, but it significantly downregulated the mRNA expression of inflammatory factors IL-α, IL-1β, and IL-6 and the protein expression of IL-α and IL-6 in lipopolysaccharide (LPS)-induced RAW264.7 cells, indicating that CRISP3 has an immunomodulatory function. In conclusion, our study suggests that semen CRISP3 protein levels positively correlate with reproductive performance, which may be achieved by regulating immune responses in the female reproductive tract.
Collapse
Affiliation(s)
| | | | | | | | - Shouquan Zhang
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangdong 510642, China; (Y.B.)
| | - Hengxi Wei
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangdong 510642, China; (Y.B.)
| |
Collapse
|
4
|
Geisert RD, Johns DN, Pfeiffer CA, Sullivan RM, Lucas CG, Simintiras CA, Redel BK, Wells KD, Spencer TE, Prather RS. Gene editing provides a tool to investigate genes involved in reproduction of pigs. Mol Reprod Dev 2023; 90:459-468. [PMID: 35736243 DOI: 10.1002/mrd.23620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 05/25/2022] [Accepted: 06/01/2022] [Indexed: 11/08/2022]
Abstract
CRISPR-Cas9 gene editing technology provides a method to generate loss-of-function studies to investigate, in vivo, the specific role of specific genes in regulation of reproduction. With proper design and selection of guide RNAs (gRNA) designed to specifically target genes, CRISPR-Cas9 gene editing allows investigation of factors proposed to regulate biological pathways involved with establishment and maintenance of pregnancy. The advantages and disadvantages of using the current gene editing technology in a large farm species is discussed. CRISPR-Cas9 gene editing of porcine conceptuses has generated new perspectives for the regulation of endometrial function during the establishment of pregnancy. The delicate orchestration of conceptus factors facilitates an endometrial proinflammatory response while regulating maternal immune cell migration and expansion at the implantation site is essential for establishment and maintenance of pregnancy. Recent developments and use of endometrial epithelial "organoids" to study endometrial function in vitro provides a future method to screen and target specific endometrial genes as an alternative to generating a gene edited animal model. With continuing improvements in gene editing technology, future researchers will be able to design studies to enhance our knowledge of mechanisms essential for early development and survival of the conceptus.
Collapse
Affiliation(s)
- Rodney D Geisert
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| | - Destiny N Johns
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| | - Caroline A Pfeiffer
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| | - Riley M Sullivan
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| | - Caroline G Lucas
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| | | | - Bethany K Redel
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| | - Kevin D Wells
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| | - Thomas E Spencer
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| | - Randall S Prather
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
5
|
Gonzalez SN, Sulzyk V, Weigel Muñoz M, Cuasnicu PS. Cysteine-Rich Secretory Proteins (CRISP) are Key Players in Mammalian Fertilization and Fertility. Front Cell Dev Biol 2021; 9:800351. [PMID: 34970552 PMCID: PMC8712725 DOI: 10.3389/fcell.2021.800351] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 11/15/2021] [Indexed: 11/20/2022] Open
Abstract
Mammalian fertilization is a complex process involving a series of successive sperm-egg interaction steps mediated by different molecules and mechanisms. Studies carried out during the past 30 years, using a group of proteins named CRISP (Cysteine-RIch Secretory Proteins), have significantly contributed to elucidating the molecular mechanisms underlying mammalian gamete interaction. The CRISP family is composed of four members (i.e., CRISP1-4) in mammals, mainly expressed in the male tract, present in spermatozoa and exhibiting Ca2+ channel regulatory abilities. Biochemical, molecular and genetic approaches show that each CRISP protein participates in more than one stage of gamete interaction (i.e., cumulus penetration, sperm-ZP binding, ZP penetration, gamete fusion) by either ligand-receptor interactions or the regulation of several capacitation-associated events (i.e., protein tyrosine phosphorylation, acrosome reaction, hyperactivation, etc.) likely through their ability to regulate different sperm ion channels. Moreover, deletion of different numbers and combination of Crisp genes leading to the generation of single, double, triple and quadruple knockout mice showed that CRISP proteins are essential for male fertility and are involved not only in gamete interaction but also in previous and subsequent steps such as sperm transport within the female tract and early embryo development. Collectively, these observations reveal that CRISP have evolved to perform redundant as well as specialized functions and are organized in functional modules within the family that work through independent pathways and contribute distinctly to fertility success. Redundancy and compensation mechanisms within protein families are particularly important for spermatozoa which are transcriptionally and translationally inactive cells carrying numerous protein families, emphasizing the importance of generating multiple knockout models to unmask the true functional relevance of family proteins. Considering the high sequence and functional homology between rodent and human CRISP proteins, these observations will contribute to a better understanding and diagnosis of human infertility as well as the development of new contraceptive options.
Collapse
Affiliation(s)
| | | | | | - Patricia S. Cuasnicu
- Instituto de Biología y Medicina Experimental (IByME-CONICET), Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
6
|
Johns DN, Lucas CG, Pfeiffer CA, Chen PR, Meyer AE, Perry SD, Spate LD, Cecil RF, Fudge MA, Samuel MS, Spinka CM, Liu H, Lucy MC, Wells KD, Prather RS, Spencer TE, Geisert RD. Conceptus interferon gamma is essential for establishment of pregnancy in the pig. Biol Reprod 2021; 105:1577-1590. [PMID: 34608481 DOI: 10.1093/biolre/ioab186] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/10/2021] [Accepted: 09/28/2021] [Indexed: 01/04/2023] Open
Abstract
Establishment and maintenance of pregnancy in the pig is a complex process that relies on conceptus regulation of the maternal proinflammatory response to endometrial attachment. Following elongation, pig conceptuses secrete interferon gamma (IFNG) during attachment to the endometrial luminal epithelium. The objective here was to determine if conceptus production of IFNG is important for early development and establishment of pregnancy. CRISPR/Cas9 gene editing and somatic cell nuclear transfer technologies were used to create an IFNG loss-of-function study in pigs. Wild-type (IFNG+/+) and null (IFNG-/-) fibroblast cells were used to create embryos through somatic cell nuclear transfer. IFNG expression was not detected in IFNG-/- conceptuses on either day 15 or day 17 of pregnancy. Ablation of conceptus IFNG production resulted in the reduction of stromal CD3+ and mast cells which localized to the site of conceptus attachment on day 15. The uteri of recipients with IFNG-/- conceptuses were inflamed, hyperemic and there was an abundance of erythrocytes in the uterine lumen associated with the degenerating conceptuses. The endometrial stromal extracellular matrix was altered in the IFNG-/- embryo pregnancies and there was an increased endometrial mRNA levels for collagen XVII (COL17A1), matrilin 1 (MATN1), secreted phosphoprotein 1 (SPP1) and cysteine-rich secretory protein 3 (CRISP3), which are involved with repair and remodeling of the extracellular matrix. These results indicate conceptus IFNG production is essential in modulating the endometrial proinflammatory response for conceptus attachment and survival in pigs.
Collapse
Affiliation(s)
- Destiny N Johns
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211
| | - Caroline G Lucas
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211
| | | | - Paula R Chen
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211
| | - Ashley E Meyer
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211
| | - Shelbi D Perry
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211
| | - Lee D Spate
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211
| | - Raissa F Cecil
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211
| | - Melissa A Fudge
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211
| | - Melissa S Samuel
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211
| | | | - Hongyu Liu
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211
| | - Matthew C Lucy
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211
| | - Kevin D Wells
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211
| | - Randall S Prather
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211
| | - Thomas E Spencer
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211
| | - Rodney D Geisert
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211
| |
Collapse
|
7
|
Lv Q, Wang L, Luo X, Chen X. Adult stem cells in endometrial regeneration: Molecular insights and clinical applications. Mol Reprod Dev 2021; 88:379-394. [PMID: 34014590 PMCID: PMC8362170 DOI: 10.1002/mrd.23476] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 03/23/2021] [Accepted: 04/22/2021] [Indexed: 02/06/2023]
Abstract
Endometrial damage is an important cause of female reproductive problems, manifested as menstrual abnormalities, infertility, recurrent pregnancy loss, and other complications. These conditions are collectively termed "Asherman syndrome" (AS) and are typically associated with recurrent induced pregnancy terminations, repeated diagnostic curettage and intrauterine infections. Cancer treatment also has unexpected detrimental side effects on endometrial function in survivors independently of ovarian effects. Endometrial stem cells act in the regeneration of the endometrium and in repair through direct differentiation or paracrine effects. Nonendometrial adult stem cells, such as bone marrow-derived mesenchymal stem cells and umbilical cord-derived mesenchymal stem cells, with autologous and allogenic applications, can also repair injured endometrial tissue in animal models of AS and in human studies. However, there remains a lack of research on the repair of the damaged endometrium after the reversal of tumors, especially endometrial cancers. Here, we review the biological mechanisms of endometrial regeneration, and research progress and challenges for adult stem cell therapy for damaged endometrium, and discuss the potential applications of their use for endometrial repair after cancer remission, especially in endometrial cancers. Successful application of such cells will improve reproductive parameters in patients with AS or cancer. Significance: The endometrium is the fertile ground for embryos, but damage to the endometrium will greatly impair female fertility. Adult stem cells combined with tissue engineering scaffold materials or not have made great progress in repairing the injured endometrium due to benign lesions. However, due to the lack of research on the repair of the damaged endometrium caused by malignant tumors or tumor therapies, the safety and effectiveness of such stem cell-based therapies need to be further explored. This review focuses on the molecular insights and clinical application potential of adult stem cells in endometrial regeneration and discusses the possible challenges or difficulties that need to be overcome in stem cell-based therapies for tumor survivors. The development of adult stem cell-related new programs will help repair damaged endometrium safely and effectively and meet fertility needs in tumor survivors.
Collapse
Affiliation(s)
- Qiaoying Lv
- Department of GynecologyObstetrics and Gynecology Hospital of Fudan UniversityShanghaiChina
| | - Lulu Wang
- Department of GynecologyObstetrics and Gynecology Hospital of Fudan UniversityShanghaiChina
| | - Xuezhen Luo
- Department of GynecologyObstetrics and Gynecology Hospital of Fudan UniversityShanghaiChina
| | - Xiaojun Chen
- Department of GynecologyObstetrics and Gynecology Hospital of Fudan UniversityShanghaiChina
| |
Collapse
|
8
|
A comparative analysis of the intrauterine transcriptome in fertile and subfertile mares using cytobrush sampling. BMC Genomics 2021; 22:377. [PMID: 34022808 PMCID: PMC8141133 DOI: 10.1186/s12864-021-07701-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 05/11/2021] [Indexed: 12/13/2022] Open
Abstract
Background Subfertility is a major problem in modern horse breeding. Especially, mares without clinical signs of reproductive diseases, without known uterine pathogens and no evidence of inflammation but not becoming pregnant after several breeding attempts are challenging for veterinarians. To obtain new insights into the cause of these fertility problems and aiming at improving diagnosis of subfertile mares, a comparative analysis of the intrauterine transcriptome in subfertile and fertile mares was performed. Uterine cytobrush samples were collected during estrus from 57 mares without clinical signs of uterine diseases. RNA was extracted from the cytobrush samples and samples from 11 selected subfertile and 11 fertile mares were used for Illumina RNA-sequencing. Results The cytobrush sampling was a suitable technique to isolate enough RNA of high quality for transcriptome analysis. Comparing subfertile and fertile mares, 114 differentially expressed genes (FDR = 10%) were identified. Metascape enrichment analysis revealed that genes with lower mRNA levels in subfertile mares were related to ‘extracellular matrix (ECM)’, ‘ECM-receptor interaction’, ‘focal adhesion’, ‘immune response’ and ‘cytosolic calcium ion concentration’, while DEGs with higher levels in subfertile mares were enriched for ‘monocarboxyl acid transmembrane transport activity’ and ‘protein targeting’. Conclusion Our study revealed significant differences in the uterine transcriptome between fertile and subfertile mares and provides leads for potential uterine molecular biomarkers of subfertility in the mare. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07701-3.
Collapse
|
9
|
Dinh HQ, Lin X, Abbasi F, Nameki R, Haro M, Olingy CE, Chang H, Hernandez L, Gayther SA, Wright KN, Aspuria PJ, Karlan BY, Corona RI, Li A, Rimel BJ, Siedhoff MT, Medeiros F, Lawrenson K. Single-cell transcriptomics identifies gene expression networks driving differentiation and tumorigenesis in the human fallopian tube. Cell Rep 2021; 35:108978. [PMID: 33852846 PMCID: PMC10108902 DOI: 10.1016/j.celrep.2021.108978] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 09/30/2020] [Accepted: 03/22/2021] [Indexed: 02/07/2023] Open
Abstract
The human fallopian tube harbors the cell of origin for the majority of high-grade serous "ovarian" cancers (HGSCs), but its cellular composition, particularly the epithelial component, is poorly characterized. We perform single-cell transcriptomic profiling of around 53,000 individual cells from 12 primary fallopian specimens to map their major cell types. We identify 10 epithelial subpopulations with diverse transcriptional programs. Based on transcriptional signatures, we reconstruct a trajectory whereby secretory cells differentiate into ciliated cells via a RUNX3high intermediate. Computational deconvolution of advanced HGSCs identifies the "early secretory" population as a likely precursor state for the majority of HGSCs. Its signature comprises both epithelial and mesenchymal features and is enriched in mesenchymal-type HGSCs (p = 6.7 × 10-27), a group known to have particularly poor prognoses. This cellular and molecular compendium of the human fallopian tube in cancer-free women is expected to advance our understanding of the earliest stages of fallopian epithelial neoplasia.
Collapse
Affiliation(s)
- Huy Q Dinh
- Center for Cancer Immunotherapy, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Xianzhi Lin
- Women's Cancer Research Program at the Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Forough Abbasi
- Women's Cancer Research Program at the Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Robbin Nameki
- Women's Cancer Research Program at the Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Marcela Haro
- Women's Cancer Research Program at the Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Claire E Olingy
- Center for Cancer Immunotherapy, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Heidi Chang
- Women's Cancer Research Program at the Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Lourdes Hernandez
- Women's Cancer Research Program at the Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Simon A Gayther
- Center for Bioinformatics and Functional Genomics, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Kelly N Wright
- Division of Minimally Invasive Gynecologic Surgery, Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Paul-Joseph Aspuria
- Women's Cancer Research Program at the Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Beth Y Karlan
- Women's Cancer Research Program at the Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Rosario I Corona
- Women's Cancer Research Program at the Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Andrew Li
- Women's Cancer Research Program at the Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - B J Rimel
- Women's Cancer Research Program at the Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Matthew T Siedhoff
- Division of Minimally Invasive Gynecologic Surgery, Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Fabiola Medeiros
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Kate Lawrenson
- Women's Cancer Research Program at the Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Center for Bioinformatics and Functional Genomics, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
10
|
Gaikwad AS, Hu J, Chapple DG, O'Bryan MK. The functions of CAP superfamily proteins in mammalian fertility and disease. Hum Reprod Update 2020; 26:689-723. [PMID: 32378701 DOI: 10.1093/humupd/dmaa016] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/11/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Members of the cysteine-rich secretory proteins (CRISPS), antigen 5 (Ag5) and pathogenesis-related 1 (Pr-1) (CAP) superfamily of proteins are found across the bacterial, fungal, plant and animal kingdoms. Although many CAP superfamily proteins remain poorly characterized, over the past decade evidence has accumulated, which provides insights into the functional roles of these proteins in various processes, including fertilization, immune defence and subversion, pathogen virulence, venom toxicology and cancer biology. OBJECTIVE AND RATIONALE The aim of this article is to summarize the current state of knowledge on CAP superfamily proteins in mammalian fertility, organismal homeostasis and disease pathogenesis. SEARCH METHODS The scientific literature search was undertaken via PubMed database on all articles published prior to November 2019. Search terms were based on following keywords: 'CAP superfamily', 'CRISP', 'Cysteine-rich secretory proteins', 'Antigen 5', 'Pathogenesis-related 1', 'male fertility', 'CAP and CTL domain containing', 'CRISPLD1', 'CRISPLD2', 'bacterial SCP', 'ion channel regulator', 'CatSper', 'PI15', 'PI16', 'CLEC', 'PRY proteins', 'ASP proteins', 'spermatogenesis', 'epididymal maturation', 'capacitation' and 'snake CRISP'. In addition to that, reference lists of primary and review article were reviewed for additional relevant publications. OUTCOMES In this review, we discuss the breadth of knowledge on CAP superfamily proteins with regards to their protein structure, biological functions and emerging significance in reproduction, health and disease. We discuss the evolution of CAP superfamily proteins from their otherwise unembellished prokaryotic predecessors into the multi-domain and neofunctionalized members found in eukaryotic organisms today. At least in part because of the rapid evolution of these proteins, many inconsistencies in nomenclature exist within the literature. As such, and in part through the use of a maximum likelihood phylogenetic analysis of the vertebrate CRISP subfamily, we have attempted to clarify this confusion, thus allowing for a comparison of orthologous protein function between species. This framework also allows the prediction of functional relevance between species based on sequence and structural conservation. WIDER IMPLICATIONS This review generates a picture of critical roles for CAP proteins in ion channel regulation, sterol and lipid binding and protease inhibition, and as ligands involved in the induction of multiple cellular processes.
Collapse
Affiliation(s)
- Avinash S Gaikwad
- School of Biological Sciences, Monash University, Clayton, Victoria, 3800, Australia
| | - Jinghua Hu
- School of Biological Sciences, Monash University, Clayton, Victoria, 3800, Australia
| | - David G Chapple
- School of Biological Sciences, Monash University, Clayton, Victoria, 3800, Australia
| | - Moira K O'Bryan
- School of Biological Sciences, Monash University, Clayton, Victoria, 3800, Australia
| |
Collapse
|
11
|
Yadama AP, Maiorino E, Carey VJ, McElrath TF, Litonjua AA, Loscalzo J, Weiss ST, Mirzakhani H. Early-pregnancy transcriptome signatures of preeclampsia: from peripheral blood to placenta. Sci Rep 2020; 10:17029. [PMID: 33046794 PMCID: PMC7550614 DOI: 10.1038/s41598-020-74100-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 09/25/2020] [Indexed: 12/13/2022] Open
Abstract
Several studies have linked maternal asthma, excess BMI, and low vitamin D status with increased risk of Preeclampsia (PE) development. Given prior evidence in the literature and our observations from the subjects in the Vitamin D Antenatal Asthma Reduction Trial (VDAART), we hypothesized that PE, maternal asthma, vitamin D insufficiency, and excess body mass index (BMI) might share both peripheral blood and placental gene signatures that link these conditions together. We used samples collected in the VDAART to investigate relationships between these four conditions and gene expression patterns in peripheral blood obtained at early pregnancy. We identified a core set of differentially expressed genes in all comparisons between women with and without these four conditions and confirmed them in two separate sets of samples. We confirmed the differential expression of the shared gene signatures in the placenta from an independent study of preeclampsia cases and controls and constructed the preeclampsia module using protein-protein interaction networks. CXC chemokine genes showed the highest degrees of connectivity and betweenness centrality in the peripheral blood and placental modules. The shared gene signatures demonstrate the biological pathways involved in preeclampsia at the pre-clinical stage and may be used for the prediction of preeclampsia.
Collapse
Affiliation(s)
- Aishwarya P Yadama
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Enrico Maiorino
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Vincent J Carey
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Thomas F McElrath
- Division of Maternal Fetal-Medicine, Department of Obstetrics and Gynecology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Augusto A Litonjua
- Division of Pediatric Pulmonary Medicine, Golisano Children's Hospital at University of Rochester Medical Center, Rochester, NY, USA
| | - Joseph Loscalzo
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Scott T Weiss
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Hooman Mirzakhani
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
12
|
Arévalo L, Brukman NG, Cuasnicú PS, Roldan ERS. Evolutionary analysis of genes coding for Cysteine-RIch Secretory Proteins (CRISPs) in mammals. BMC Evol Biol 2020; 20:67. [PMID: 32513118 PMCID: PMC7278046 DOI: 10.1186/s12862-020-01632-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Accepted: 05/25/2020] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Cysteine-RIch Secretory Proteins (CRISP) are expressed in the reproductive tract of mammalian males and are involved in fertilization and related processes. Due to their important role in sperm performance and sperm-egg interaction, these genes are likely to be exposed to strong selective pressures, including postcopulatory sexual selection and/or male-female coevolution. We here perform a comparative evolutionary analysis of Crisp genes in mammals. Currently, the nomenclature of CRISP genes is confusing, as a consequence of discrepancies between assignments of orthologs, particularly due to numbering of CRISP genes. This may generate problems when performing comparative evolutionary analyses of mammalian clades and species. To avoid such problems, we first carried out a study of possible orthologous relationships and putative origins of the known CRISP gene sequences. Furthermore, and with the aim to facilitate analyses, we here propose a different nomenclature for CRISP genes (EVAC1-4, "EVolutionarily-analyzed CRISP") to be used in an evolutionary context. RESULTS We found differing selective pressures among Crisp genes. CRISP1/4 (EVAC1) and CRISP2 (EVAC2) orthologs are found across eutherian mammals and seem to be conserved in general, but show signs of positive selection in primate CRISP1/4 (EVAC1). Rodent Crisp1 (Evac3a) seems to evolve under a comparatively more relaxed constraint with positive selection on codon sites. Finally, murine Crisp3 (Evac4), which appears to be specific to the genus Mus, shows signs of possible positive selection. We further provide evidence for sexual selection on the sequence of one of these genes (Crisp1/4) that, unlike others, is thought to be exclusively expressed in male reproductive tissues. CONCLUSIONS We found differing selective pressures among CRISP genes and sexual selection as a contributing factor in CRISP1/4 gene sequence evolution. Our evolutionary analysis of this unique set of genes contributes to a better understanding of Crisp function in particular and the influence of sexual selection on reproductive mechanisms in general.
Collapse
Affiliation(s)
- Lena Arévalo
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales (CSIC), c/José Gutiérrez Abascal 2, 28006 Madrid, Spain
- Institute of Pathology, Department of Developmental Pathology, University Hospital Bonn, Bonn, 53127 Germany
| | - Nicolás G. Brukman
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), C1428ADN Buenos Aires, Argentina
| | - Patricia S. Cuasnicú
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), C1428ADN Buenos Aires, Argentina
| | - Eduardo R. S. Roldan
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales (CSIC), c/José Gutiérrez Abascal 2, 28006 Madrid, Spain
| |
Collapse
|
13
|
Abstract
Seminal fluid is often assumed to have just one function in mammalian reproduction, delivering sperm to fertilize oocytes. But seminal fluid also transmits signaling agents that interact with female reproductive tissues to facilitate conception and .pregnancy. Upon seminal fluid contact, female tissues initiate a controlled inflammatory response that affects several aspects of reproductive function to ultimately maximize the chances of a male producing healthy offspring. This effect is best characterized in mice, where the female response involves several steps. Initially, seminal fluid factors cause leukocytes to infiltrate the female reproductive tract, and to selectively target and eliminate excess sperm. Other signals stimulate ovulation, induce an altered transcriptional program in female tract tissues that modulates embryo developmental programming, and initiate immune adaptations to promote receptivity to implantation and placental development. A key result is expansion of the pool of regulatory T cells that assist implantation by suppressing inflammation, mediating tolerance to male transplantation antigens, and promoting uterine vascular adaptation and placental development. Principal signaling agents in seminal fluid include prostaglandins and transforming growth factor-β. The balance of male signals affects the nature of the female response, providing a mechanism of ‟cryptic female choiceˮ that influences female reproductive investment. Male-female seminal fluid signaling is evident in all mammalian species investigated including human, and effects of seminal fluid in invertebrates indicate evolutionarily conserved mechanisms. Understanding the female response to seminal fluid will shed new light on infertility and pregnancy disorders and is critical to defining how events at conception influence offspring health.
Collapse
Affiliation(s)
- John E Schjenken
- Robinson Research Institute and Adelaide Medical School, University of Adelaide, Adelaide, Australia
| | - Sarah A Robertson
- Robinson Research Institute and Adelaide Medical School, University of Adelaide, Adelaide, Australia
| |
Collapse
|
14
|
Binder RL, Freedman MA, Sharma KB, Farage MA, Wang Y, Combs C, Moore D, Tiesman JP, Bascom CC, Isfort RJ, Warren R. Histological and Gene Expression Analysis of the Effects of Menopause Status and Hormone Therapy on the Vaginal Introitus and Labia Majora. J Clin Med Res 2019; 11:745-759. [PMID: 31803317 PMCID: PMC6879024 DOI: 10.14740/jocmr4006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 09/27/2019] [Indexed: 12/19/2022] Open
Abstract
Background The study aimed to determine the effect of menopausal status and hormone therapy on the introitus and labia majora at the levels of histology and gene expression. Methods Three cohorts of 10 women each (pre-menopause, post-menopause and post-menopause + hormone therapy) were selected based on the presentation of clinical atrophy and vaginal pH. Biopsies were obtained from the introitus (fourchette) and labia majora and processed for histology and gene expression analyses with microarrays. Other data collected included self-assessed symptoms, serum estradiol, testosterone, serum hormone binding globulin and the pH of the vagina and labia majora. Results The introitus appears exquisitely sensitive to hormone status. Dramatic changes were observed in histology including a thinning of the epithelium in post-menopausal subjects with vaginal atrophy. Furthermore, there was differential expression of many genes that may contribute to tissue remodeling in the atrophic introitus. Levels of expression of genes associated with wound healing, angiogenesis, cell migration/locomotion, dermal structure, apoptosis, inflammation, epithelial cell differentiation, fatty acid, carbohydrate and steroid metabolism were significantly different in the cohort exhibiting atrophy of the introitus. While changes were also observed at the labia, that site was considerably less sensitive to hormone status. The gene expression changes observed at the introitus in this study were very similar to those reported previously in the atrophic vagina providing further evidence that these changes are associated with atrophy. Conclusions The histological and gene expression changes occurring within the introitus after menopause may contribute to the constellation of symptoms that constitute the genitourinary syndrome of menopause.
Collapse
Affiliation(s)
| | - Murray A Freedman
- Obstetrics & Gynecology, Medical College of Georgia, Augusta, GA, USA
| | - Kailash B Sharma
- Obstetrics & Gynecology, Medical College of Georgia, Augusta, GA, USA
| | | | - Yu Wang
- The Procter & Gamble Company, Cincinnati, OH, USA
| | | | - David Moore
- The Procter & Gamble Company, Cincinnati, OH, USA
| | | | | | | | | |
Collapse
|
15
|
Assessment of potential biomarkers of pre-receptive and receptive endometrium in uterine fluid and a functional evaluation of the potential role of CSF3 in fertility. Cytokine 2018; 111:222-229. [PMID: 30195213 DOI: 10.1016/j.cyto.2018.08.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 07/30/2018] [Accepted: 08/24/2018] [Indexed: 01/11/2023]
Abstract
The endometrium lines a women's uterus becoming receptive, and allowing embryo implantation to occur, for just a few days during the post-ovulatory mid-secretory phase of each menstrual cycle. We investigated whether concentrations of proposed receptivity biomarkers (VEGF, IL8, FGF2, CSF3 sFlt-1, sGP130 and PlGF) secreted by the endometrium into the uterine cavity and forming the microenvironment for embryo implantation is altered among a population of age-matched women with unexplained (idiopathic) infertility compared to fertile women during the receptive mid-secretory phase (n = 16 fertile, 18 infertile) and the prior pre-receptive early secretory phase (n = 19 fertile, 18 infertile) of their cycle. In the mid-secretory cohort significantly elevated concentrations of five biomarkers; PlGF (p = 0.001), IL8 (p = 0.004), sGP130 (p = 0.009), sFlt-1 (p = 0.021), and CSF3 (p = 0.029) was present in uterine fluid of infertile women during the mid-secretory phase, but only CSF3 was significantly elevated in the pre-receptive early secretory phase (p = 0.006). In vitro studies of glycosylated and non-glycosylated forms of CSF3 at representative fertile (20 ng/mL) and infertile (70 ng/mL) effects on endometrium and embryo behaviour were performed. Non-glycosylated CSF3 at fertile concentrations significantly (p < 0.001) elevated endometrial epithelial cell proliferation however chronic treatment or elevated (infertile) concentrations of CSF3 in glycosylated form abrogated the positive effects. Both forms of CSF3 increased trophoblast cell invasion (p < 0.001) regardless of concentration. Mouse embryo outgrowth was significantly (p < 0.01) increased at fertile but not at infertile concentrations. The study confirmed potential utility of five biomarkers of endometrial receptivity for future application in the mid-secretory phase while highlighting CSF3 is elevated in the earlier pre-receptive phase. Our data provides evidence that CSF3 acts on both human endometrium and embryo in a manner that is concentration and glycosylation dependent.
Collapse
|
16
|
Inside the Endometrial Cell Signaling Subway: Mind the Gap(s). Int J Mol Sci 2018; 19:ijms19092477. [PMID: 30134622 PMCID: PMC6164241 DOI: 10.3390/ijms19092477] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 08/03/2018] [Accepted: 08/04/2018] [Indexed: 12/13/2022] Open
Abstract
Endometrial cells perceive and respond to their microenvironment forming the basis of endometrial homeostasis. Errors in endometrial cell signaling are responsible for a wide spectrum of endometrial pathologies ranging from infertility to cancer. Intensive research over the years has been decoding the sophisticated molecular means by which endometrial cells communicate to each other and with the embryo. The objective of this review is to provide the scientific community with the first overview of key endometrial cell signaling pathways operating throughout the menstrual cycle. On this basis, a comprehensive and critical assessment of the literature was performed to provide the tools for the authorship of this narrative review summarizing the pivotal components and signaling cascades operating during seven endometrial cell fate “routes”: proliferation, decidualization, implantation, migration, breakdown, regeneration, and angiogenesis. Albeit schematically presented as separate transit routes in a subway network and narrated in a distinct fashion, the majority of the time these routes overlap or occur simultaneously within endometrial cells. This review facilitates identification of novel trajectories of research in endometrial cellular communication and signaling. The meticulous study of endometrial signaling pathways potentiates both the discovery of novel therapeutic targets to tackle disease and vanguard fertility approaches.
Collapse
|
17
|
Van Sinderen M, Oyanedel J, Menkhorst E, Cuman C, Rainczuk K, Winship A, Salamonsen L, Edgell T, Dimitriadis E. Soluble Delta-like ligand 1 alters human endometrial epithelial cell adhesive capacity. Reprod Fertil Dev 2018; 29:694-702. [PMID: 26616664 DOI: 10.1071/rd15313] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Accepted: 10/23/2015] [Indexed: 01/23/2023] Open
Abstract
The endometrium undergoes substantial morphological and functional changes to become receptive to embryo implantation and to enable establishment of a successful pregnancy. Reduced Delta-like ligand 1 (DLL1, Notch ligand) in the endometrium is associated with infertility. DLL1 can be cleaved by 'a disintegrin and metalloprotease' (ADAM) proteases to produce a soluble ligand that may act to inhibit Notch signalling. We used an enzyme-linked immunosorbent assay to quantify soluble DLL1 in uterine lavages from fertile and infertile women in the secretory phase of the menstrual cycle. We also determined the cellular location and immunostaining intensity of ADAM12 and 17 in human endometrium throughout the cycle. Functional effects of soluble DLL1 in receptivity were analysed using in vitro adhesion and proliferation assays and gene expression analysis of Notch signalling targets. Soluble DLL1 was significantly increased in uterine lavage samples of infertile women compared with fertile women in the secretory phase of the menstrual cycle. This coincided with significantly increased ADAM17 immunostaining detected in the endometrial luminal epithelium in the mid-secretory phase in infertile women. Soluble DLL1 significantly inhibited the adhesive capacity of endometrial epithelial cells via downregulation of helix-loop-helix and hairy/enhancer of split family member HES1 mRNA. Thus, soluble DLL1 may serve as a suitable target or potential biomarker for receptivity.
Collapse
Affiliation(s)
- Michelle Van Sinderen
- Hudson Institute of Medical Research, 27-31 Wright St, Clayton, Vic. 3168, Australia
| | - Jennifer Oyanedel
- Hudson Institute of Medical Research, 27-31 Wright St, Clayton, Vic. 3168, Australia
| | - Ellen Menkhorst
- Hudson Institute of Medical Research, 27-31 Wright St, Clayton, Vic. 3168, Australia
| | - Carly Cuman
- Hudson Institute of Medical Research, 27-31 Wright St, Clayton, Vic. 3168, Australia
| | - Katarzyna Rainczuk
- Hudson Institute of Medical Research, 27-31 Wright St, Clayton, Vic. 3168, Australia
| | - Amy Winship
- Hudson Institute of Medical Research, 27-31 Wright St, Clayton, Vic. 3168, Australia
| | - Lois Salamonsen
- Hudson Institute of Medical Research, 27-31 Wright St, Clayton, Vic. 3168, Australia
| | - Tracey Edgell
- Hudson Institute of Medical Research, 27-31 Wright St, Clayton, Vic. 3168, Australia
| | - Evdokia Dimitriadis
- Hudson Institute of Medical Research, 27-31 Wright St, Clayton, Vic. 3168, Australia
| |
Collapse
|
18
|
Maddison JW, Rickard JP, Bernecic NC, Tsikis G, Soleilhavoup C, Labas V, Combes-Soia L, Harichaux G, Druart X, Leahy T, de Graaf SP. Oestrus synchronisation and superovulation alter the cervicovaginal mucus proteome of the ewe. J Proteomics 2017; 155:1-10. [DOI: 10.1016/j.jprot.2017.01.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 01/02/2017] [Accepted: 01/05/2017] [Indexed: 01/06/2023]
|
19
|
Evans J, Salamonsen LA, Winship A, Menkhorst E, Nie G, Gargett CE, Dimitriadis E. Fertile ground: human endometrial programming and lessons in health and disease. Nat Rev Endocrinol 2016; 12:654-667. [PMID: 27448058 DOI: 10.1038/nrendo.2016.116] [Citation(s) in RCA: 213] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The human endometrium is a highly dynamic tissue that is cyclically shed, repaired, regenerated and remodelled, primarily under the orchestration of oestrogen and progesterone, in preparation for embryo implantation. Humans are among the very few species that menstruate and that, consequently, are equipped with unique cellular and molecular mechanisms controlling these cyclic processes. Many reproductive pathologies are specific to menstruating species, and studies in animal models rarely translate to humans. Abnormal remodelling and regeneration of the human endometrium leads to a range of reproductive complications. Furthermore, the processes regulating endometrial remodelling and implantation, including those controlling hormonal impact, breakdown and repair, stem/progenitor cell activation, inflammation and cell invasion have broad applications to other fields. This Review presents current knowledge regarding the normal and abnormal function of the human endometrium. The development of biomarkers for prediction of uterine diseases and pregnancy disorders and future avenues of investigation to improve fertility and enhance endometrial function are also discussed.
Collapse
Affiliation(s)
- Jemma Evans
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, 3168, Australia
- Department of Molecular and Translational Medicine, Monash University, Clayton, 3800, Australia
- Department of Physiology, Monash University, Clayton, 3800, Australia
| | - Lois A Salamonsen
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, 3168, Australia
- Department of Molecular and Translational Medicine, Monash University, Clayton, 3800, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, 3800, Australia
| | - Amy Winship
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, 3168, Australia
- Department of Molecular and Translational Medicine, Monash University, Clayton, 3800, Australia
| | - Ellen Menkhorst
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, 3168, Australia
- Department of Molecular and Translational Medicine, Monash University, Clayton, 3800, Australia
| | - Guiying Nie
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, 3168, Australia
- Department of Molecular and Translational Medicine, Monash University, Clayton, 3800, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, 3800, Australia
| | - Caroline E Gargett
- Department of Obstetrics and Gynaecology, Monash University, Clayton, 3800, Australia
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, 3168, Australia
| | - Eva Dimitriadis
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, 3168, Australia
- Department of Molecular and Translational Medicine, Monash University, Clayton, 3800, Australia
- Department of Anatomy and Developmental Biology, Monash University, Clayton, 3800, Australia
| |
Collapse
|
20
|
Schubert C. Embryo Eats Mom. Biol Reprod 2015. [DOI: 10.1095/biolreprod.115.131235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|