1
|
Barth A, Perry VEA, Hamilton LE, Sutovsky P, Oko R. Bovine Spermatogenesis. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2025; 240:65-136. [PMID: 40272587 DOI: 10.1007/978-3-031-70126-9_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Abstract
The intent of this chapter is to provide a morphological foundation in the normal cellular process of bovine gamete development so that abnormalities occurring are recognizable. The knowledge gained here is essential to begin to understand the significance of many of the common bull sperm abnormalities encountered in the clinics. Spermatogenesis is divided into three phases (i. e., Mitosis, Meiosis and Spermiogenesis) all happening in the seminiferous epithelium. The 'Cycle of the Bovine Seminiferous Epithelium' is explained in relation to these phases. Information is provided as to how to identify the stages of the bovine cycle and the steps of spermiogenesis at the histological and ultrastructural levels in preparation to recognize where and when in the cycle a spermatid abnormality arises. Spermiogenesis, the last phase of spermatogenesis, is the most revealing phase to recognize gamete abnormalities as this is where spermatid head and tail differentiation take place and spermatid compartments materialize. The formation of the nucleus, acrosome, manchette, perinuclear theca, axoneme, outer dense fibers, fibrous sheath, connecting piece and mitochondrial sheath occur during this phase and are evaluated. The origins and assembly of a number of essential proteins compartmentalizing the sperm head and tail as well as defects arising during spermiogenesis are reviewed.
Collapse
Affiliation(s)
- Albert Barth
- Department of Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada.
| | - Viv E A Perry
- Queensland Sperm Morphology Laboratory (QSML), Goondiwindi, QLD, Australia
| | - Lauren E Hamilton
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
| | - Peter Sutovsky
- Division of Animal Science and Department of Obstetrics, Gynecology & Women's Health, University of Missouri, Columbia, MO, USA
| | - Richard Oko
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| |
Collapse
|
2
|
Barth A, Perry VEA, Hamilton LE, Sutovsky P, Oko R. The Ultrastructure and Composition of Bovine Spermatozoa. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2025; 240:1-64. [PMID: 40272586 DOI: 10.1007/978-3-031-70126-9_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Abstract
This chapter provides a cytological and compositional evaluation of the various compartments and sub-compartments making up the bull spermatozoon. The intention is to define the sperm head and tail compartments from an ultrastructural perspective and attribute to them their protein constituents gathered from both traditional and modern proteomic approaches. Common to both approaches, the compositional analysis is dependent on the fractionation and isolation of the sperm compartments combined with polyacrylamide gel electrophoresis (PAGE) and Western blotting to detect the identities of the proteins, and immunocytochemistry to confirm their residency. As will be appreciated, the identity of a particular sperm protein together with its residency provide valuable insights not only into its role, but also to the role of the specific sperm compartment it occupies, in development and/or fertilization. Attention is also given in this chapter to the consequences (on sperm structure and fertility) of inactivating genes that play key roles in sperm formation, especially if their phenotypes appear to match common bull sperm abnormalities. The keywords below cover the sperm head and tail compartments addressed in this chapter.
Collapse
Affiliation(s)
- Albert Barth
- Department of Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada.
| | - Viv E A Perry
- Queensland Sperm Morphology Laboratory (QSML), Goondiwindi, QLD, Australia
| | - Lauren E Hamilton
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
| | - Peter Sutovsky
- Division of Animal Science and Department of Obstetrics, Gynecology & Women's Health, University of Missouri, Columbia, MO, USA
| | - Richard Oko
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| |
Collapse
|
3
|
Rizo G, Barrera AD, García EV, Roldán-Olarte M. Plasminogen activation and plasmin inhibition during in vitro fertilization in bovine: implications for fertilization parameters and early embryo development. Reprod Biol 2024; 24:100844. [PMID: 38160587 DOI: 10.1016/j.repbio.2023.100844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 11/24/2023] [Accepted: 12/14/2023] [Indexed: 01/03/2024]
Abstract
Components of the plasminogen/plasmin system, known to be present in the oocyte, play a key role in maturation and fertilization. The objective of this study was to examine the effect of plasminogen activation and plasmin inhibition by exogenous supplementation of the IVF medium with streptokinase (SK) or ɛ-aminocaproic acid (ε-ACA), respectively, on fertilization parameters and preimplantation embryo development. After in vitro maturation, bovine cumulus-oocyte complexes (COCs) were inseminated in the presence of SK or ε-ACA. The addition of SK to the IVF medium facilitated the adhesion of the spermatozoa to the zona pellucida without affecting the percentages of monospermy. Cleavage rates and blastocyst yield were similar between the SK and Control groups while they were lower with the ε-ACA treatment. Additionally, we found that the expression levels of embryo quality-related genes (SDHA and DNMT3A) could be modified in blastocysts by the addition of SK or ε-ACA during IVF. The results obtained indicate that supplementation of the IVF medium with SK did not greatly alter the embryonic developmental parameters related to embryo quality in blastocysts. Moreover, we noticed that ε-ACA treatment compromises the success of in vitro embryo development, thus highlighting the importance of the plasminogen/plasmin activity during the early stages of embryogenesis in bovine.
Collapse
Affiliation(s)
- Gabriela Rizo
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT, and Instituto de Biología 'Dr. Francisco D. Barbieri', Facultad de Bioquímica, Química y Farmacia, UNT, Chacabuco 461 (4000), San Miguel de Tucumán, Tucumán, Argentina
| | - Antonio Daniel Barrera
- Laboratorio de Biología Molecular, Facultad de Ciencias Agrarias y Veterinarias, Universidad Católica de Salta (UCASAL) and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Campo Castañares (4400), Salta, Argentina
| | - Elina Vanesa García
- Laboratorio de Biología Molecular, Facultad de Ciencias Agrarias y Veterinarias, Universidad Católica de Salta (UCASAL) and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Campo Castañares (4400), Salta, Argentina
| | - Mariela Roldán-Olarte
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT, and Instituto de Biología 'Dr. Francisco D. Barbieri', Facultad de Bioquímica, Química y Farmacia, UNT, Chacabuco 461 (4000), San Miguel de Tucumán, Tucumán, Argentina.
| |
Collapse
|
4
|
Fujihara Y, Herberg S, Blaha A, Panser K, Kobayashi K, Larasati T, Novatchkova M, Theussl HC, Olszanska O, Ikawa M, Pauli A. The conserved fertility factor SPACA4/Bouncer has divergent modes of action in vertebrate fertilization. Proc Natl Acad Sci U S A 2021; 118:e2108777118. [PMID: 34556579 PMCID: PMC8488580 DOI: 10.1073/pnas.2108777118] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/13/2021] [Indexed: 11/18/2022] Open
Abstract
Fertilization is the fundamental process that initiates the development of a new individual in all sexually reproducing species. Despite its importance, our understanding of the molecular players that govern mammalian sperm-egg interaction is incomplete, partly because many of the essential factors found in nonmammalian species do not have obvious mammalian homologs. We have recently identified the lymphocyte antigen-6 (Ly6)/urokinase-type plasminogen activator receptor (uPAR) protein Bouncer as an essential fertilization factor in zebrafish [S. Herberg, K. R. Gert, A. Schleiffer, A. Pauli, Science 361, 1029-1033 (2018)]. Here, we show that Bouncer's homolog in mammals, Sperm Acrosome Associated 4 (SPACA4), is also required for efficient fertilization in mice. In contrast to fish, in which Bouncer is expressed specifically in the egg, SPACA4 is expressed exclusively in the sperm. Male knockout mice are severely subfertile, and sperm lacking SPACA4 fail to fertilize wild-type eggs in vitro. Interestingly, removal of the zona pellucida rescues the fertilization defect of Spaca4-deficient sperm in vitro, indicating that SPACA4 is not required for the interaction of sperm and the oolemma but rather of sperm and the zona pellucida. Our work identifies SPACA4 as an important sperm protein necessary for zona pellucida penetration during mammalian fertilization.
Collapse
Affiliation(s)
- Yoshitaka Fujihara
- Research Institute for Microbial Diseases, Osaka University, Suita 565-0871, Japan
- Department of Bioscience and Genetics, National Cerebral and Cardiovascular Center, Suita 564-8565, Japan
| | - Sarah Herberg
- Research Institute of Molecular Pathology, Vienna BioCenter, Campus-Vienna-Biocenter 1, 1030 Vienna, Austria
| | - Andreas Blaha
- Research Institute of Molecular Pathology, Vienna BioCenter, Campus-Vienna-Biocenter 1, 1030 Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, 1030 Vienna, Austria
| | - Karin Panser
- Research Institute of Molecular Pathology, Vienna BioCenter, Campus-Vienna-Biocenter 1, 1030 Vienna, Austria
| | - Kiyonori Kobayashi
- Research Institute for Microbial Diseases, Osaka University, Suita 565-0871, Japan
| | - Tamara Larasati
- Research Institute for Microbial Diseases, Osaka University, Suita 565-0871, Japan
| | - Maria Novatchkova
- Research Institute of Molecular Pathology, Vienna BioCenter, Campus-Vienna-Biocenter 1, 1030 Vienna, Austria
| | - Hans-Christian Theussl
- Research Institute of Molecular Pathology, Vienna BioCenter, Campus-Vienna-Biocenter 1, 1030 Vienna, Austria
| | - Olga Olszanska
- Research Institute of Molecular Pathology, Vienna BioCenter, Campus-Vienna-Biocenter 1, 1030 Vienna, Austria
| | - Masahito Ikawa
- Research Institute for Microbial Diseases, Osaka University, Suita 565-0871, Japan;
- The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Andrea Pauli
- Research Institute of Molecular Pathology, Vienna BioCenter, Campus-Vienna-Biocenter 1, 1030 Vienna, Austria;
| |
Collapse
|
5
|
Hamilton LE, Lion M, Aguila L, Suzuki J, Acteau G, Protopapas N, Xu W, Sutovsky P, Baker M, Oko R. Core Histones Are Constituents of the Perinuclear Theca of Murid Spermatozoa: An Assessment of Their Synthesis and Assembly during Spermiogenesis and Function after Gametic Fusion. Int J Mol Sci 2021; 22:ijms22158119. [PMID: 34360885 PMCID: PMC8347300 DOI: 10.3390/ijms22158119] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/23/2021] [Accepted: 07/26/2021] [Indexed: 11/16/2022] Open
Abstract
The perinuclear theca (PT) of the eutherian sperm head is a cytoskeletal-like structure that houses proteins involved in important cellular processes during spermiogenesis and fertilization. Building upon our novel discovery of non-nuclear histones in the bovine PT, we sought to investigate whether this PT localization was a conserved feature of eutherian sperm. Employing cell fractionation, immunodetection, mass spectrometry, qPCR, and intracytoplasmic sperm injections (ICSI), we examined the localization, developmental origin, and functional potential of histones from the murid PT. Immunodetection localized histones to the post-acrosomal sheath (PAS) and the perforatorium (PERF) of the PT but showed an absence in the sperm nucleus. MS/MS analysis of selectively extracted PT histones indicated that predominately core histones (i.e., H3, H3.3, H2B, H2A, H2AX, and H4) populate the murid PT. These core histones appear to be de novo-synthesized in round spermatids and assembled via the manchette during spermatid elongation. Mouse ICSI results suggest that early embryonic development is delayed in the absence of PT-derived core histones. Here, we provide evidence that core histones are de novo-synthesized prior to PT assembly and deposited in PT sub-compartments for subsequent involvement in chromatin remodeling of the male pronucleus post-fertilization.
Collapse
Affiliation(s)
- Lauren E. Hamilton
- Department of Biomedical and Molecular Sciences, Queen’s University, Botterell Hall, 18 Stuart Street, Kingston, ON K7L 3N6, Canada; (L.E.H.); (M.L.); (G.A.); (N.P.); (W.X.)
- Division of Animal Science, College of Agriculture, Food and Natural Resources, University of Missouri, Columbia, MO 65211, USA;
| | - Morgan Lion
- Department of Biomedical and Molecular Sciences, Queen’s University, Botterell Hall, 18 Stuart Street, Kingston, ON K7L 3N6, Canada; (L.E.H.); (M.L.); (G.A.); (N.P.); (W.X.)
| | - Luis Aguila
- Center for Research in Reproduction and Fertility, Department of Veterinary Sciences, Université de Montreal, St. Hyacinthe, QC J2S 2M2, Canada; (L.A.); (J.S.)
| | - João Suzuki
- Center for Research in Reproduction and Fertility, Department of Veterinary Sciences, Université de Montreal, St. Hyacinthe, QC J2S 2M2, Canada; (L.A.); (J.S.)
| | - Genevieve Acteau
- Department of Biomedical and Molecular Sciences, Queen’s University, Botterell Hall, 18 Stuart Street, Kingston, ON K7L 3N6, Canada; (L.E.H.); (M.L.); (G.A.); (N.P.); (W.X.)
| | - Nicole Protopapas
- Department of Biomedical and Molecular Sciences, Queen’s University, Botterell Hall, 18 Stuart Street, Kingston, ON K7L 3N6, Canada; (L.E.H.); (M.L.); (G.A.); (N.P.); (W.X.)
| | - Wei Xu
- Department of Biomedical and Molecular Sciences, Queen’s University, Botterell Hall, 18 Stuart Street, Kingston, ON K7L 3N6, Canada; (L.E.H.); (M.L.); (G.A.); (N.P.); (W.X.)
| | - Peter Sutovsky
- Division of Animal Science, College of Agriculture, Food and Natural Resources, University of Missouri, Columbia, MO 65211, USA;
- Department of Obstetrics, Gynecology and Women’s Health, School of Medicine, University of Missouri, Columbia, MO 65211, USA
| | - Mark Baker
- School of Environmental and Life Science, University of Newcastle, Callaghan, NSW 2308, Australia;
| | - Richard Oko
- Department of Biomedical and Molecular Sciences, Queen’s University, Botterell Hall, 18 Stuart Street, Kingston, ON K7L 3N6, Canada; (L.E.H.); (M.L.); (G.A.); (N.P.); (W.X.)
- Correspondence:
| |
Collapse
|
6
|
Kuang W, Zhang J, Lan Z, Deepak RNVK, Liu C, Ma Z, Cheng L, Zhao X, Meng X, Wang W, Wang X, Xu L, Jiao Y, Luo Q, Meng Z, Kee K, Liu X, Deng H, Li W, Fan H, Chen L. SLC22A14 is a mitochondrial riboflavin transporter required for sperm oxidative phosphorylation and male fertility. Cell Rep 2021; 35:109025. [PMID: 33882315 DOI: 10.1016/j.celrep.2021.109025] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 01/20/2021] [Accepted: 03/31/2021] [Indexed: 02/05/2023] Open
Abstract
Ablation of Slc22a14 causes male infertility in mice, but the underlying mechanisms remain unknown. Here, we show that SLC22A14 is a riboflavin transporter localized at the inner mitochondrial membrane of the spermatozoa mid-piece and show by genetic, biochemical, multi-omic, and nutritional evidence that riboflavin transport deficiency suppresses the oxidative phosphorylation and reprograms spermatozoa energy metabolism by disrupting flavoenzyme functions. Specifically, we find that fatty acid β-oxidation (FAO) is defective with significantly reduced levels of acyl-carnitines and metabolites from the TCA cycle (the citric acid cycle) but accumulated triglycerides and free fatty acids in Slc22a14 knockout spermatozoa. We demonstrate that Slc22a14-mediated FAO is essential for spermatozoa energy generation and motility. Furthermore, sperm from wild-type mice treated with a riboflavin-deficient diet mimics those in Slc22a14 knockout mice, confirming that an altered riboflavin level causes spermatozoa morphological and bioenergetic defects. Beyond substantially advancing our understanding of spermatozoa energy metabolism, our study provides an attractive target for the development of male contraceptives.
Collapse
Affiliation(s)
- Wenhua Kuang
- School of Pharmaceutical Sciences, Beijing Advanced Innovation Center for Structural Biology, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing 100084, China; Beijing Advanced Innovation Center for Human Brain Protection, Beijing Tiantan Hospital, Capital Medical University, Beijing 100084, China
| | - Jie Zhang
- School of Pharmaceutical Sciences, Beijing Advanced Innovation Center for Structural Biology, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Zhou Lan
- School of Pharmaceutical Sciences, Beijing Advanced Innovation Center for Structural Biology, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing 100084, China
| | - R N V Krishna Deepak
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A(∗)STAR), Singapore 138671, Singapore
| | - Chao Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhilong Ma
- School of Pharmaceutical Sciences, Beijing Advanced Innovation Center for Structural Biology, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Lili Cheng
- School of Pharmaceutical Sciences, Beijing Advanced Innovation Center for Structural Biology, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Xinbin Zhao
- School of Pharmaceutical Sciences, Beijing Advanced Innovation Center for Structural Biology, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Xianbin Meng
- National Center for Protein Science, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Weihua Wang
- School of Pharmaceutical Sciences, Beijing Advanced Innovation Center for Structural Biology, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Xueying Wang
- National Center for Protein Science, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Lina Xu
- National Center for Protein Science, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yupei Jiao
- National Center for Protein Science, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Qi Luo
- School of Pharmaceutical Sciences, Beijing Advanced Innovation Center for Structural Biology, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing 100084, China; Beijing Advanced Innovation Center for Human Brain Protection, Beijing Tiantan Hospital, Capital Medical University, Beijing 100084, China
| | - Ziyi Meng
- School of Pharmaceutical Sciences, Beijing Advanced Innovation Center for Structural Biology, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Kehkooi Kee
- Center for Stem Cell Biology and Regenerative Medicine, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Xiaohui Liu
- National Center for Protein Science, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Haiteng Deng
- National Center for Protein Science, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Wei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Hao Fan
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A(∗)STAR), Singapore 138671, Singapore
| | - Ligong Chen
- School of Pharmaceutical Sciences, Beijing Advanced Innovation Center for Structural Biology, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing 100084, China; Beijing Advanced Innovation Center for Human Brain Protection, Beijing Tiantan Hospital, Capital Medical University, Beijing 100084, China; Collaborative Innovation Center for Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
7
|
Chen Y, Wei H, Liu Y, Gao F, Chen Z, Wang P, Li L, Zhang S. Identification of new protein biomarkers associated with the boar fertility using iTRAQ-based quantitative proteomic analysis. Int J Biol Macromol 2020; 162:50-59. [PMID: 32553959 DOI: 10.1016/j.ijbiomac.2020.06.102] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 06/10/2020] [Accepted: 06/11/2020] [Indexed: 01/23/2023]
Abstract
In this study, we performed the isobaric tags for relative and absolute quantitation (iTRAQ) proteomic analysis in the spermatozoa of Landrace boars with different fertility potentials and investigated the ability of sperm acrosome associated 4 (SPACA4) and IZUMO family member 2 (IZUMO2) to predict the reproductive perform of boars. The iTRAQ results revealed that 202 proteins were up-regulated and 43 proteins were down-regulated in the spermatozoa from high fertility boars. SPACA4 and IZUMO2 protein levels were significantly up-regulated in the spermatozoa from high fertility boars. SPACA4 and IZUMO2 expression were specifically detected in the adult boar testis. SPACA4 levels were positively correlated with Sow's farrowing rate and reproductive efficiency, but not litter size. IZUMO2 were positively correlated with litter size, Sow's farrowing rate and reproductive efficiency. Treating the boar semen with SPACA4 or IZUMO2 antibodies for 30 min and 60 min failed to affect the sperm motility; while treating the semen with SPACA4 antibody significantly reduced the fertilization and cleavage rates. Similar results for fertilization and cleavage rates were found in IZUMO2 antibody-treated semen. Collectively, our results indicated that protein levels of SPACA4 and IZUMO2 in the spermatozoa were positively related to the reproductive performance of Landrace boars.
Collapse
Affiliation(s)
- Yuming Chen
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Hengxi Wei
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| | - Yanting Liu
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Fenglei Gao
- Department of Tropical Agriculture and Forestry, College of Guangdong Agriculture Industry Business Polytechnic, Guangzhou, Guangdong 510507, China
| | - Zhilin Chen
- Technology Department, Guangdong Wen's Foodstuffs Group Co., Ltd., Yunfu, Guangdong 527400, China
| | - Ping Wang
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Li Li
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Shouquan Zhang
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
8
|
Martinez-Soto JC, Landeras J, Mollá M, Mondejar I, Nicolás M, Fernández-Olmedilla L, Trabalón M, Coy P, Gadea J. Total urokinase-type plasminogen activator (uPA) levels in seminal plasma are associated with positive assisted reproductive technology outcomes. J Assist Reprod Genet 2018; 35:1091-1101. [PMID: 29572694 DOI: 10.1007/s10815-018-1164-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 03/14/2018] [Indexed: 10/17/2022] Open
Abstract
PURPOSE The plasminogen/plasmin system is an important extracellular protease system whose function has been implicated in male reproductive function. However, its clinical relevance to fertility in human assisted reproduction technologies has not been systematically investigated. Here, we examined whether total and active populations of urokinase-type plasminogen activator (uPA) in human seminal plasma and spermatozoa are predictive of pregnancy outcome in couples undergoing insemination or intracytoplasmic sperm injection (ICSI). METHODS Seminal samples from 182 men, 5 donors, 21 patients attending the clinic for infertility screening, and 156 for assisted reproduction technology (ART) treatment (insemination and ICSI), were evaluated. Total uPA in seminal plasma and spermatozoa as well as active uPA in seminal plasma were measured by ELISA. Sperm quality parameters and fertility outcomes following insemination or ICSI were correlated with the uPA values. RESULTS Active uPA in seminal plasma was positively correlated to the volume of the ejaculate, total number of spermatozoa in the ejaculate, and total motility. However, these values were not prognostic of fertility outcomes. Total uPA in spermatozoa was inversely related to sperm concentration, total sperm in ejaculate, morphology, and total and progressive motility, and this measure was not related to fertility. Importantly, however, higher values of total uPA in seminal plasma were detected in cases that resulted in pregnancy compared to those that did not follow insemination and ICSI treatment. CONCLUSIONS Taken together, these findings lay the foundation for further understanding the mechanism by which total uPA in seminal plasma affects fertility and how this marker can be used as a predictor of ART outcomes.
Collapse
Affiliation(s)
- Juan Carlos Martinez-Soto
- IVI Murcia, 30008, Murcia, Spain.,Institute for Biomedical Research of Murcia IMIB-Arrixaca, Murcia, Spain
| | - José Landeras
- IVI Murcia, 30008, Murcia, Spain.,Institute for Biomedical Research of Murcia IMIB-Arrixaca, Murcia, Spain
| | - Marta Mollá
- IVI Murcia, 30008, Murcia, Spain.,Institute for Biomedical Research of Murcia IMIB-Arrixaca, Murcia, Spain
| | - Irene Mondejar
- Institute for Biomedical Research of Murcia IMIB-Arrixaca, Murcia, Spain.,Department of Physiology, International Excellence Campus for Higher Education and Research (Campus Mare Nostrum), University of Murcia, 30100, Murcia, Spain
| | | | | | | | - Pilar Coy
- Institute for Biomedical Research of Murcia IMIB-Arrixaca, Murcia, Spain.,Department of Physiology, International Excellence Campus for Higher Education and Research (Campus Mare Nostrum), University of Murcia, 30100, Murcia, Spain
| | - Joaquín Gadea
- Institute for Biomedical Research of Murcia IMIB-Arrixaca, Murcia, Spain. .,Department of Physiology, International Excellence Campus for Higher Education and Research (Campus Mare Nostrum), University of Murcia, 30100, Murcia, Spain.
| |
Collapse
|