1
|
Mullins TP, Gallo LA, McIntyre HD, Barrett HL. The influence of fetal sex on antenatal maternal glucose and insulin dynamics. FRONTIERS IN CLINICAL DIABETES AND HEALTHCARE 2024; 5:1351317. [PMID: 39742292 PMCID: PMC11685148 DOI: 10.3389/fcdhc.2024.1351317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 11/29/2024] [Indexed: 01/03/2025]
Abstract
The 'Developmental Origins of Health and Disease' (DOHaD) hypothesis postulates that exposures during critical periods of development and growth, including maternal hyperglycemia, can have significant consequences for short- and long-term health in offspring. The influence of fetal status on maternal (patho)physiology is less well understood but gaining attention. Fetal sex specifically may be an independent risk factor for a range of adverse pregnancy outcomes, including increased gestational diabetes mellitus (GDM) frequency with male fetuses in multi-ethnic populations. Fetal sex has been thought to modulate maternal glucose metabolism, including insulin dynamics, through complex genetic and hormonal interactions. Mechanisms have not been fully elucidated, however, but may relate to sexual dimorphism in maternal-fetal-placental interactions. We review current evidence on the potential influence of fetal sex on maternal glucose and insulin dynamics, and fetal outcomes.
Collapse
Affiliation(s)
- Thomas P. Mullins
- Mater Research Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Linda A. Gallo
- School of Health, University of the Sunshine Coast, Petrie, QLD, Australia
| | - H. David McIntyre
- Mater Research Institute, The University of Queensland, and Mater Hospital Brisbane, Brisbane, QLD, Australia
| | - Helen L. Barrett
- Obstetric Medicine, Royal Hospital for Women, Randwick and Medicine at The University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
2
|
Circulating Delta-like homolog 1 (DLK1) at 36 weeks is correlated with birthweight and is of placental origin. Placenta 2020; 91:24-30. [PMID: 32174303 DOI: 10.1016/j.placenta.2020.01.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 12/24/2019] [Accepted: 01/06/2020] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Recently, Delta-like homolog 1 (DLK1) was identified as a potential marker of small-for-gestational-age (SGA; <10th centile) fetuses; mouse studies suggest reduced levels may represent a fetal stress signal. We sought to measure DLK1 in a large independent cohort of maternal blood samples, correlate levels with measures of placental insufficiency and assess whether DLK1 might be placental derived. METHODS The Fetal Longitudinal Assessment of Growth (FLAG) study was a prospective blood collection from 2000 women. We assessed a case-control cohort at 28 and 36 weeks from the first 1000 FLAG women, before validating changes in the entire second 1000. A subgroup of FLAG participants underwent ultrasound examinations, and 137 neonates, body composition assessment (PEAPOD). DLK1 secretion was assessed from human placentas ex vivo. RESULTS Circulating DLK1 was significantly reduced at 28 and 36 weeks' gestation in women destined to deliver a SGA fetus and associated with birthweight centile (n = 999, p < 0.0001), and placental weight (n = 96, p = 0.0064). Ex vivo, DLK1 was abundantly released from human placenta and significantly reduced under hypoxia (n = 7, p < 0.05). We found no relationship between circulating DLK1 and estimated fetal weight, cerebroplacental ratio, uterine artery or umbilical artery pulsatility index. Nor was there a relationship between DLK1 and neonatal fat or lean mass (n = 137). CONCLUSION We confirmed circulating DLK1 is reduced at both 28 and 36 weeks' gestation preceding delivery of a SGA infant, shown that it is not significantly associated with clinical measures of placental insufficiency, and provide new data demonstrating it may be placenta-derived in humans.
Collapse
|
3
|
Cleaton MAM, Dent CL, Howard M, Corish JA, Gutteridge I, Sovio U, Gaccioli F, Takahashi N, Bauer SR, Charnock-Jones DS, Powell TL, Smith GCS, Ferguson-Smith AC, Charalambous M. Fetus-derived DLK1 is required for maternal metabolic adaptations to pregnancy and is associated with fetal growth restriction. Nat Genet 2016; 48:1473-1480. [PMID: 27776119 DOI: 10.1038/ng.3699] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 09/23/2016] [Indexed: 01/16/2023]
Abstract
Pregnancy is a state of high metabolic demand. Fasting diverts metabolism to fatty acid oxidation, and the fasted response occurs much more rapidly in pregnant women than in non-pregnant women. The product of the imprinted DLK1 gene (delta-like homolog 1) is an endocrine signaling molecule that reaches a high concentration in the maternal circulation during late pregnancy. By using mouse models with deleted Dlk1, we show that the fetus is the source of maternal circulating DLK1. In the absence of fetally derived DLK1, the maternal fasting response is impaired. Furthermore, we found that maternal circulating DLK1 levels predict embryonic mass in mice and can differentiate healthy small-for-gestational-age (SGA) infants from pathologically small infants in a human cohort. Therefore, measurement of DLK1 concentration in maternal blood may be a valuable method for diagnosing human disorders associated with impaired DLK1 expression and to predict poor intrauterine growth and complications of pregnancy.
Collapse
Affiliation(s)
- Mary A M Cleaton
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Claire L Dent
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Mark Howard
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | | | | | - Ulla Sovio
- Department of Obstetrics and Gynaecology, University of Cambridge and NIHR Cambridge Comprehensive Biomedical Research Centre, Cambridge, UK
| | - Francesca Gaccioli
- Department of Obstetrics and Gynaecology, University of Cambridge and NIHR Cambridge Comprehensive Biomedical Research Centre, Cambridge, UK
| | | | - Steven R Bauer
- Center for Biologics Evaluation and Research, US Food and Drug Administration, Bethesda, Maryland, USA
| | - D Steven Charnock-Jones
- Department of Obstetrics and Gynaecology, University of Cambridge and NIHR Cambridge Comprehensive Biomedical Research Centre, Cambridge, UK
| | - Theresa L Powell
- Department of Pediatrics, Section for Neonatology, University of Colorado Anschutz Medical Campus, Denver, Colorado, USA
| | - Gordon C S Smith
- Department of Obstetrics and Gynaecology, University of Cambridge and NIHR Cambridge Comprehensive Biomedical Research Centre, Cambridge, UK
| | - Anne C Ferguson-Smith
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK.,Department of Genetics, University of Cambridge, Cambridge, UK
| | - Marika Charalambous
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
4
|
Reamon-Buettner SM, Buschmann J, Lewin G. Identifying placental epigenetic alterations in an intrauterine growth restriction (IUGR) rat model induced by gestational protein deficiency. Reprod Toxicol 2014; 45:117-24. [PMID: 24607647 DOI: 10.1016/j.reprotox.2014.02.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 02/04/2014] [Accepted: 02/26/2014] [Indexed: 12/13/2022]
Abstract
Poor maternal nutrition during gestation can lead to intrauterine growth retardation (IUGR), a main cause of low birth weight associated with high neonatal morbidity and mortality. Such early uterine environmental exposures can impact the neonatal epigenome to render later-in-life disease susceptibility. We established in Wistar Han rats a mild IUGR model induced by gestational protein deficiency (i.e. 9% crude protein in low protein diet vs. 21% in control, from GD 0 to 21) to identify alterations in gene expression and methylation patterns in certain genes implicated in human IUGR or in placental development. We found differential gene expression of Wnt2 and Dlk1 between IUGR and control. Notably, Wnt2 exhibited significant decrease while Dlk1 increase in IUGR placentas, correlating to decrease in fetal and placental weight. Methylation patterns encompassing 30 CpGs in the Wnt2 promoter region revealed variability in both IUGR and control placentas, but a site-specific hypomethylation was evident in IUGR placentas. Our present findings further support a key role of maternal gestational nutrition in defining the neonatal epigenome.
Collapse
Affiliation(s)
- Stella Marie Reamon-Buettner
- Toxicology and Environmental Hygiene, Fraunhofer Institute for Toxicology and Experimental Medicine, Nikolai-Fuchs Strasse 1, 30625 Hannover, Germany.
| | - Jochen Buschmann
- Toxicology and Environmental Hygiene, Fraunhofer Institute for Toxicology and Experimental Medicine, Nikolai-Fuchs Strasse 1, 30625 Hannover, Germany
| | - Geertje Lewin
- Toxicology and Environmental Hygiene, Fraunhofer Institute for Toxicology and Experimental Medicine, Nikolai-Fuchs Strasse 1, 30625 Hannover, Germany
| |
Collapse
|
5
|
Lavulo LT, Uaesoontrachoon K, Mirams M, White JD, Cockett NE, Mackie EJ, Pagel CN. Myoblasts isolated from hypertrophy-responsive callipyge muscles show altered growth rates and increased resistance to serum deprivation-induced apoptosis. Cells Tissues Organs 2007; 187:141-51. [PMID: 17957094 DOI: 10.1159/000110080] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2007] [Indexed: 11/19/2022] Open
Abstract
Back and hind limb muscles of sheep paternally heterozygous for the callipyge single nucleotide polymorphism undergo extensive hypertrophy shortly after birth. We have established cell cultures from foetal semitendinosus and longissimus dorsi muscles of normal and callipyge animals. Cultures were assessed for rates of proliferation, cell death, myogenicity and DLK1 expression. Myoblasts from callipyge semitendinosus, but not longissimus dorsi muscles, proliferated faster than myoblasts isolated from normal semitendinosus muscle, and cells isolated from either callipyge muscle were more resistant to serum deprivation-induced apoptosis than equivalent cells isolated from normal individuals. These observations indicate that there are intrinsic differences in the behaviour of isolated myoblasts, which are associated with their muscle and genotype of origin. As myoblasts are the cells responsible for hypertrophy of muscle fibres, the observed differences in cell growth may play a role in the hypertrophy of certain muscles in callipyge animals.
Collapse
Affiliation(s)
- Lopeti T Lavulo
- School of Veterinary Science, University of Melbourne, Parkville, Australia
| | | | | | | | | | | | | |
Collapse
|
6
|
Jensen CH, Meyer M, Schroder HD, Kliem A, Zimmer J, Teisner B. Neurons in the monoaminergic nuclei of the rat and human central nervous system express FA1/dlk. Neuroreport 2001; 12:3959-63. [PMID: 11742219 DOI: 10.1097/00001756-200112210-00021] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The gene DLK1 encodes a member of the epidermal growth factor (EGF) superfamily, delta-like (dlk). When exposed in vivo to the action of an unknown protease, this type 1 membrane protein generates a soluble peptide referred to as Fetal antigen 1 (FA1). By acting in juxtacrine as well as paracrine/autocrine manners, both forms have been shown to be active in the differentiation/proliferation process of various cell types. In adults, FA1/dlk has been demonstrated mainly within (neuro) endocrine tissues. In this study we investigated the presence of FA1/dlk in other parts of the developing and adult rat and human CNS. Using immunocytochemistry and in situ hybridization we found that in both species FA1/dlk was expressed in neurons of the Edinger-Westphal's nucleus as well as in substantia nigra, ventral tegmental area (VTA), locus coeruleus and in certain parts of the raphe nuclei.
Collapse
Affiliation(s)
- C H Jensen
- Department of Immunology and Microbiology, University of Southern Denmark, Winslowparken 21, DK-5000 Odense C, Denmark
| | | | | | | | | | | |
Collapse
|