1
|
Nègre-Salvayre A, Salvayre R. Reactive Carbonyl Species and Protein Lipoxidation in Atherogenesis. Antioxidants (Basel) 2024; 13:232. [PMID: 38397830 PMCID: PMC10886358 DOI: 10.3390/antiox13020232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/08/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
Atherosclerosis is a multifactorial disease of medium and large arteries, characterized by the presence of lipid-rich plaques lining the intima over time. It is the main cause of cardiovascular diseases and death worldwide. Redox imbalance and lipid peroxidation could play key roles in atherosclerosis by promoting a bundle of responses, including endothelial activation, inflammation, and foam cell formation. The oxidation of polyunsaturated fatty acids generates various lipid oxidation products such as reactive carbonyl species (RCS), including 4-hydroxy alkenals, malondialdehyde, and acrolein. RCS covalently bind to nucleophilic groups of nucleic acids, phospholipids, and proteins, modifying their structure and activity and leading to their progressive dysfunction. Protein lipoxidation is the non-enzymatic post-translational modification of proteins by RCS. Low-density lipoprotein (LDL) oxidation and apolipoprotein B (apoB) modification by RCS play a major role in foam cell formation. Moreover, oxidized LDLs are a source of RCS, which form adducts on a huge number of proteins, depending on oxidative stress intensity, the nature of targets, and the availability of detoxifying systems. Many systems are affected by lipoxidation, including extracellular matrix components, membranes, cytoplasmic and cytoskeletal proteins, transcription factors, and other components. The mechanisms involved in lipoxidation-induced vascular dysfunction are not fully elucidated. In this review, we focus on protein lipoxidation during atherogenesis.
Collapse
Affiliation(s)
- Anne Nègre-Salvayre
- Inserm Unité Mixte de Recherche (UMR), 1297 Toulouse, Centre Hospitalier Universitaire (CHU) Rangueil—BP 84225, 31432 Toulouse CEDEX 4, France;
- Faculty of Medicine, University of Toulouse, 31432 Toulouse, France
| | - Robert Salvayre
- Inserm Unité Mixte de Recherche (UMR), 1297 Toulouse, Centre Hospitalier Universitaire (CHU) Rangueil—BP 84225, 31432 Toulouse CEDEX 4, France;
- Faculty of Medicine, University of Toulouse, 31432 Toulouse, France
| |
Collapse
|
2
|
Lee SG, Eom SY, Lim JA, Choi BS, Kwon HJ, Hong YS, Kim YD, Kim H, Park JD. Association between urinary arsenic concentration and genetic polymorphisms in Korean adults. Toxicol Res 2024; 40:179-188. [PMID: 38223675 PMCID: PMC10786758 DOI: 10.1007/s43188-023-00216-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/10/2023] [Accepted: 10/25/2023] [Indexed: 01/16/2024] Open
Abstract
Arsenic (As) is a human carcinogen widely distributed in the environment. This study evaluated the association between the urinary As concentration and single nucleotide polymorphisms (SNPs) in Korean adults to determine the genetic factors related to As concentration. The study included 496 participants for the genome-wide association study (GWAS) and 1483 participants for the candidate gene approach study. Participants were 19 years and older. The concentrations of total As (Tot As) and total As metabolites (Tmet As, the sum of inorganic As and their metabolites; arsenite, arsenate, monomethylarsonic, and dimethylarsinic acid) in the urine were analyzed. The GWAS identified four SNPs (rs1432523, rs3776006, rs11171747, and rs807573) associated with urinary Tot As and four SNPs (rs117605537, rs3776006, rs11171747, and rs148103384) significantly associated with urinary Tmet As concentration (P < 1 × 10-4). The candidate gene study identified two SNPs (PRDX2 rs10427027 and GLRX rs3822751) in genes related to the reduction reaction associated with urinary Tot As and Tmet As. This study suggests that genetic factors may play a role in regulating As metabolism in the human body, affecting both exposure levels and its potential health risks in the general Korean population, even at low exposure levels. Supplementary Information The online version contains supplementary material available at 10.1007/s43188-023-00216-x.
Collapse
Affiliation(s)
- Seul-Gi Lee
- Department of Preventive Medicine, College of Medicine, Chung-Ang University, 84 Heukseok-Ro, Dongjak-Gu, Seoul, 06974 Republic of Korea
| | - Sang-Yong Eom
- Department of Preventive Medicine, College of Medicine, Chungbuk National University, Cheongju, 28644 Republic of Korea
| | - Ji-Ae Lim
- Department of Preventive Medicine, College of Medicine, Dankook University, Cheonan, 16890 Republic of Korea
| | - Byung-Sun Choi
- Department of Preventive Medicine, College of Medicine, Chung-Ang University, 84 Heukseok-Ro, Dongjak-Gu, Seoul, 06974 Republic of Korea
| | - Ho-Jang Kwon
- Department of Preventive Medicine, College of Medicine, Dankook University, Cheonan, 16890 Republic of Korea
| | - Young-Seoub Hong
- Department of Preventive Medicine, College of Medicine, Dong-A University, Busan, 49201 Republic of Korea
| | - Yong-Dae Kim
- Department of Preventive Medicine, College of Medicine, Chungbuk National University, Cheongju, 28644 Republic of Korea
| | - Heon Kim
- Department of Preventive Medicine, College of Medicine, Chungbuk National University, Cheongju, 28644 Republic of Korea
| | - Jung-Duck Park
- Department of Preventive Medicine, College of Medicine, Chung-Ang University, 84 Heukseok-Ro, Dongjak-Gu, Seoul, 06974 Republic of Korea
| |
Collapse
|
3
|
4-Hydroxynonenal Modulates Blood-Brain Barrier Permeability In Vitro through Changes in Lipid Composition and Oxidative Status of Endothelial Cells and Astrocytes. Int J Mol Sci 2022; 23:ijms232214373. [PMID: 36430852 PMCID: PMC9698020 DOI: 10.3390/ijms232214373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
Blood brain barrier (BBB) is a dynamic interface responsible for proper functioning of brain, but also a major obstacle for effective treatment of neurological diseases. Increased levels of free radicals, in high ferrous and high lipid content surrounding, induce lipid peroxidation, leading to production of 4-hydroxynonenal (HNE). HNE modifies all key proteins responsible for proper brain functioning thus playing a major role in the onset of neurological diseases. To investigate HNE effects on BBB permeability, we developed two in vitro BBB models-'physiological' and 'pathological'. The latter mimicked HNE modified extracellular matrix under oxidative stress conditions in brain pathologies. We showed that exogenous HNE induce activation of antioxidative defense systems by increasing catalase activity and glutathione content as well as reducing lipid peroxide levels in endothelial cells and astrocytes of 'physiological' model. While in 'pathological' model, exogenous HNE further increased lipid peroxidation levels of endothelial cells and astrocytes, followed by increase in Nrf2 and glutathione levels in endothelial cells. At lipid composition level, HNE caused increase in ω3 polyunsaturated fatty acid (PUFA) level in endothelial cells, followed by decrease in ω3 PUFA level and increase in monounsaturated fatty acid level in astrocytes. Using these models, we showed for the first time that HNE in 'pathological' model can reduce BBB permeability.
Collapse
|
4
|
Negre-Salvayre A, Swiader A, Salvayre R, Guerby P. Oxidative stress, lipid peroxidation and premature placental senescence in preeclampsia. Arch Biochem Biophys 2022; 730:109416. [PMID: 36179910 DOI: 10.1016/j.abb.2022.109416] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 09/19/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022]
Abstract
Accelerated placental senescence is associated with preeclampsia (PE) and other pregnancy complications. It is characterized by an accelerated decline in placental function due to the accumulation of senescence patterns such as telomere shortening, mitochondrial dysfunction, oxidative damages, increased expression of phosphorylated (serine-139) histone γ-H2AX, a sensitive marker of double-stranded DNA breaks, accumulation of cross-linked ubiquitinated proteins and sirtuin inhibition. Among the lipid oxidation products generated by the peroxidation of polyunsaturated fatty acids, aldehydes such as acrolein, 4-hydroxy-2-nonenal, 4-oxo-2-nonenal, are present in the blood and placenta from PE-affected women and could contribute to PE pathogenesis and accelerated placental aging. In this review we summarize the current knowledge on premature placental senescence and the role of oxidative stress and lipid oxidation-derived aldehydes in this process, as well as their links with PE pathogenesis. The interest of developing (or not) new therapeutic strategies targeting lipid peroxidation is discussed, the objective being a better understanding of accelerated placental aging in PE pathophysiology, and the prevention of PE bad outcomes.
Collapse
Affiliation(s)
| | | | | | - Paul Guerby
- lnfinity, CNRS, Inserm UMR 1291, University Toulouse III and Gynecology/Obstetrics Department, Paule-de-Viguier Hospital, Toulouse, France
| |
Collapse
|
5
|
Lipid peroxidation in brain tumors. Neurochem Int 2021; 149:105118. [PMID: 34197897 DOI: 10.1016/j.neuint.2021.105118] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/15/2021] [Accepted: 06/24/2021] [Indexed: 12/20/2022]
Abstract
There is a lot of evidence showing that lipid peroxidation plays very important role in development of various diseases, including neurodegenerative diseases and brain tumors. Lipid peroxidation is achieved by two main pathways, by enzymatic or by non-enzymatic oxidation, respectively. In this paper, we focus on non-enzymatic, self-catalyzed chain reaction of poly-unsaturated fatty acid (PUFA) peroxidation generating reactive aldehydes, notably 4-hydroxynonenal (4-HNE), which acts as second messenger of free radicals and as growth regulating factor. It might originate from astrocytes as well as from blood vessels, even within the blood-brain barrier (BBB), which is in case of brain tumors transformed into the blood-brain-tumor barrier (BBTB). The functionality of the BBB is strongly affected by 4-HNE because it forms relatively stable protein adducts thus allowing the persistence and the spread of lipid peroxidation, as revealed by immunohistochemical findings. Because 4-HNE can act as a regulator of vital functions of normal and of malignant cells acting in the cell type- and concentration-dependent manners, the bioactivities of this product of lipid peroxidation be should further studied to reveal if it acts as a co-factor of carcinogenesis or as natural factor of defense against primary brain tumors and metastatic cancer.
Collapse
|
6
|
Bahrami A, Sathyapalan T, Moallem SA, Sahebkar A. Counteracting arsenic toxicity: Curcumin to the rescue? JOURNAL OF HAZARDOUS MATERIALS 2020; 400:123160. [PMID: 32574880 DOI: 10.1016/j.jhazmat.2020.123160] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 06/05/2020] [Accepted: 06/06/2020] [Indexed: 06/11/2023]
Abstract
Arsenicosis leads to various irreversible damages in several organs and is considered to be a carcinogen. The effects of chronic arsenic poisoning are a result of an imbalance between pro- and antioxidant homeostasis, oxidative stress, as well as DNA and protein damage. Curcumin, the polyphenolic pigment extracted from the rhizome of Curcuma longa, is well-known for its pleiotropic medicinal effects. Curcumin has been shown to have ameliorative effects in arsenic-induced genotoxicity, nephrotoxicity, hepatotoxicity, angiogenesis, skin diseases, reproductive toxicity, neurotoxicity, and immunotoxicity. This review aims to summarize the scientific evidence on arsenic toxicity in various organs and the ameliorative effects of curcumin on the arsenic toxicity.
Collapse
Affiliation(s)
- Afsane Bahrami
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Thozhukat Sathyapalan
- Department of Academic Diabetes, Endocrinology and Metabolism, Hull York Medical School, University of Hull, Hull, HU3 2JZ, UK
| | - Seyed Adel Moallem
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmacology and Toxicology, School of Pharmacy, Al-Zahraa University for Women, Karbala, Iraq
| | - Amirhossein Sahebkar
- Halal Research Center of IRI, FDA, Tehran, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
7
|
Bagchi AK, Surendran A, Malik A, Jassal DS, Ravandi A, Singal PK. IL-10 attenuates OxPCs-mediated lipid metabolic responses in ischemia reperfusion injury. Sci Rep 2020; 10:12120. [PMID: 32694752 PMCID: PMC7374703 DOI: 10.1038/s41598-020-68995-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 01/03/2020] [Indexed: 12/12/2022] Open
Abstract
Oxidized phospholipids (OxPLs) promote inflammation as well as low density lipoprotein (LDL) uptake in a variety of physiological and pathological states. Given the anti-inflammatory role of the cytokine IL-10, we investigated its modulatory effect on the production of oxidized phosphatidylcholines (OxPCs) as well as lipid metabolic responses in global myocardial ischemia/reperfusion (I/R) injury. Increased OxPCs levels, by 1-Palmitoyl-2-(5-oxovaleryl)-sn-glycero-3-phosphocholine (POVPC), promoted oxidative stress (OS) and cell death. OxPCs-mediated-OS, resulted in oxidized low-density lipoprotein receptor 1 (LOX-1) activation and upregulated the expression of toll-like receptor 2 (TLR2). IL-10-induced increase in proprotein convertase subtilisin/kexin type 9 (PCSK9) negatively regulated LOX-1 as well as TLR2 inflammatory responses. Under stress conditions, phosphorylation of sterol regulatory element binding protein 1c (SREBP 1c) was prevented by IL-10. The latter also prevented the generation of OxPCs and reduced their ratio (OxPCs/PCs) during injury. LOX-1 activation also promoted SREBP1c-mediated TGF-βRII expression which was inhibited by IL-10. Both fragmented and non-fragmented OxPCs were elevated during I/R and this effect was attenuated by IL-10. The largest impact (two–threefold change at log2) was on PAzPC, (1-palmitoyl-2-azelaoyl-sn-glycero-3-phosphocholine)—a fragmented OxPC. Thus it appears that among different OxPCs, IL-10 significantly reduces a single molecule (PAzPC)-mediated lipid metabolic responses in cardiomyocytes thereby mitigating inflammation and cell death.
Collapse
Affiliation(s)
- Ashim K Bagchi
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, 351 Tache Ave. Room R3022, Winnipeg, MB, R2H 2A6, Canada.,Department of Physiology and Pathophysiology, St. Boniface Hospital Albrechtsen Research Centre, 351 Tache Ave. Room R3022, Winnipeg, MB, R2H 2A6, Canada
| | - Arun Surendran
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, 351 Tache Ave. Room R3022, Winnipeg, MB, R2H 2A6, Canada.,Department of Physiology and Pathophysiology, St. Boniface Hospital Albrechtsen Research Centre, 351 Tache Ave. Room R3022, Winnipeg, MB, R2H 2A6, Canada
| | - Akshi Malik
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, 351 Tache Ave. Room R3022, Winnipeg, MB, R2H 2A6, Canada.,Department of Physiology and Pathophysiology, St. Boniface Hospital Albrechtsen Research Centre, 351 Tache Ave. Room R3022, Winnipeg, MB, R2H 2A6, Canada
| | - Davinder S Jassal
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, 351 Tache Ave. Room R3022, Winnipeg, MB, R2H 2A6, Canada.,Section of Cardiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Amir Ravandi
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, 351 Tache Ave. Room R3022, Winnipeg, MB, R2H 2A6, Canada.,Section of Cardiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Pawan K Singal
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, 351 Tache Ave. Room R3022, Winnipeg, MB, R2H 2A6, Canada. .,Department of Physiology and Pathophysiology, St. Boniface Hospital Albrechtsen Research Centre, 351 Tache Ave. Room R3022, Winnipeg, MB, R2H 2A6, Canada.
| |
Collapse
|
8
|
Signorello MG, Ravera S, Leoncini G. Lectin-induced oxidative stress in human platelets. Redox Biol 2020; 32:101456. [PMID: 32063518 PMCID: PMC7264469 DOI: 10.1016/j.redox.2020.101456] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/30/2020] [Accepted: 02/06/2020] [Indexed: 02/07/2023] Open
Abstract
Previously we have shown that wheat germ agglutinin (WGA) and, with minor potency, Phaseolus vulgaris agglutinin (PHA), but not lens culinarian agglutinin (LCA), induce platelet aggregation, through the PLCƴ2 activation by the concerted action of src/syk and PI3K/BTK pathways. In this study, we have investigated platelet oxidative stress induced by lectins. Several parameters indicative of oxidative stress, such as reactive oxygen species (ROS), superoxide anion, lipid peroxidation and the efficiency of the aerobic metabolism, have been measured. It was found that ROS, superoxide anion formation and lipid peroxidation are significantly increased upon platelet treatment with WGA and PHA while LCA is ineffective. WGA is always more effective than PHA in all experimental conditions tested. In addition, the involvement of NADPH oxidase 1, syk and PI3K in oxidative stress induced by WGA and PHA has been shown. Concerning the lectins effect on aerobic metabolism, WGA and PHA, but not LCA, act as uncoupling agents, determining an increase of oxygen consumption and a decrease of ATP synthesis, with a consequent decrease of P/O value. These results are confirmed by the impairment of platelets proton gradient formation, evaluated by membrane potential, in platelets treated with WGA and PHA. In conclusion lectins, especially WGA, induce oxidative stress in platelets and decrease energy availability through modifications of membrane structure leading to the inefficiency of the aerobic machinery that steers platelets toward death as suggested by the decreased metabolic activity of platelets and the increased lactic dehydrogenase release.
Collapse
Affiliation(s)
| | - Silvia Ravera
- Department of Experimental Medicine, University of Genoa, Genova, 16132, Italy
| | - Giuliana Leoncini
- Department of Pharmacy, Biochemistry Lab, University of Genoa, Genova, 16132, Italy.
| |
Collapse
|
9
|
The Role of Reactive Oxygen Species in Arsenic Toxicity. Biomolecules 2020; 10:biom10020240. [PMID: 32033297 PMCID: PMC7072296 DOI: 10.3390/biom10020240] [Citation(s) in RCA: 218] [Impact Index Per Article: 43.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 01/28/2020] [Accepted: 01/29/2020] [Indexed: 12/13/2022] Open
Abstract
Arsenic poisoning is a global health problem. Chronic exposure to arsenic has been associated with the development of a wide range of diseases and health problems in humans. Arsenic exposure induces the generation of intracellular reactive oxygen species (ROS), which mediate multiple changes to cell behavior by altering signaling pathways and epigenetic modifications, or cause direct oxidative damage to molecules. Antioxidants with the potential to reduce ROS levels have been shown to ameliorate arsenic-induced lesions. However, emerging evidence suggests that constructive activation of antioxidative pathways and decreased ROS levels contribute to chronic arsenic toxicity in some cases. This review details the pathways involved in arsenic-induced redox imbalance, as well as current studies on prophylaxis and treatment strategies using antioxidants.
Collapse
|
10
|
Takasugi N, Hiraoka H, Nakahara K, Akiyama S, Fujikawa K, Nomura R, Furuichi M, Uehara T. The Emerging Role of Electrophiles as a Key Regulator for Endoplasmic Reticulum (ER) Stress. Int J Mol Sci 2019; 20:E1783. [PMID: 30974903 PMCID: PMC6480251 DOI: 10.3390/ijms20071783] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 03/28/2019] [Accepted: 04/08/2019] [Indexed: 12/13/2022] Open
Abstract
The unfolded protein response (UPR) is activated by the accumulation of misfolded proteins in the endoplasmic reticulum (ER), which is called ER stress. ER stress sensors PERK, IRE1, and ATF6 play a central role in the initiation and regulation of the UPR; they inhibit novel protein synthesis and upregulate ER chaperones, such as protein disulfide isomerase, to remove unfolded proteins. However, when recovery from ER stress is difficult, the UPR pathway is activated to eliminate unhealthy cells. This signaling transition is the key event of many human diseases. However, the precise mechanisms are largely unknown. Intriguingly, reactive electrophilic species (RES), which exist in the environment or are produced through cellular metabolism, have been identified as a key player of this transition. In this review, we focused on the function of representative RES: nitric oxide (NO) as a gaseous RES, 4-hydroxynonenal (HNE) as a lipid RES, and methylmercury (MeHg) as an environmental organic compound RES, to outline the relationship between ER stress and RES. Modulation by RES might be a target for the development of next-generation therapy for ER stress-associated diseases.
Collapse
Affiliation(s)
- Nobumasa Takasugi
- Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan.
| | - Hideki Hiraoka
- Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan.
| | - Kengo Nakahara
- Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan.
| | - Shiori Akiyama
- Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan.
| | - Kana Fujikawa
- Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan.
| | - Ryosuke Nomura
- Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan.
| | - Moeka Furuichi
- Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan.
| | - Takashi Uehara
- Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan.
| |
Collapse
|
11
|
Nègre-Salvayre A, Garoby-Salom S, Swiader A, Rouahi M, Pucelle M, Salvayre R. Proatherogenic effects of 4-hydroxynonenal. Free Radic Biol Med 2017; 111:127-139. [PMID: 28040472 DOI: 10.1016/j.freeradbiomed.2016.12.038] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 12/22/2016] [Accepted: 12/24/2016] [Indexed: 01/08/2023]
Abstract
4-hydroxy-2-nonenal (HNE) is a α,β-unsaturated hydroxyalkenal generated by peroxidation of n-6 polyunsaturated fatty acid. This reactive carbonyl compound exhibits a huge number of biological properties that result mainly from the formation of HNE-adducts on free amino groups and thiol groups in proteins. In the vascular system, HNE adduct accumulation progressively leads to cellular dysfunction and tissue damages that are involved in the progression of atherosclerosis and related diseases. HNE contributes to the atherogenicity of oxidized LDL, by forming HNE-apoB adducts that deviate the LDL metabolism to the scavenger receptor pathway of macrophagic cells, and lead to the formation of foam cells. HNE activates transcription factors (Nrf2, NF-kappaB) that (dys)regulate various cellular responses ranging from hormetic and survival signaling at very low concentrations, to inflammatory and apoptotic effects at higher concentrations. Among a variety of cellular targets, HNE can modify signaling proteins involved in atherosclerotic plaque remodeling, particularly growth factor receptors (PDGFR, EGFR), cell cycle proteins, mitochondrial and endoplasmic reticulum components or extracellular matrix proteins, which progressively alters smooth muscle cell proliferation, angiogenesis and induces apoptosis. HNE adducts accumulate in the lipidic necrotic core of advanced atherosclerotic lesions, and may locally contribute to macrophage and smooth muscle cell apoptosis, which may induce plaque destabilization and rupture, thereby increasing the risk of athero-thrombotic events.
Collapse
Affiliation(s)
| | | | | | | | | | - Robert Salvayre
- Inserm UMR-1048, France; University of Toulouse, Faculty of Medicine, Biochemistry Dept, Toulouse, France; CHU Toulouse, Rangueil, Toulouse, France
| |
Collapse
|
12
|
Zhang H, Forman HJ. 4-hydroxynonenal-mediated signaling and aging. Free Radic Biol Med 2017; 111:219-225. [PMID: 27876535 PMCID: PMC5438786 DOI: 10.1016/j.freeradbiomed.2016.11.032] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 11/14/2016] [Accepted: 11/17/2016] [Indexed: 02/07/2023]
Abstract
4-Hydroxy-2-nonenal (HNE), one of the major α, β-unsaturated aldehydes produced during lipid peroxidation, is a potent messenger in mediating signaling pathways. Lipid peroxidation and HNE production appear to increase with aging. Although the cause and effect relation remains arguable, aging is associated with significant changes in diverse signaling events, characterized by enhanced or diminished responses of specific signaling pathways. In this review we will discuss how HNE may contribute to aging-related alterations of signaling pathways.
Collapse
Affiliation(s)
- Hongqiao Zhang
- Andrus Gerontology Center of the Leonard Davis School of Gerontology, University of Southern California, 3715 McClintock Ave, Los Angeles, CA 90089-0191, USA
| | - Henry Jay Forman
- Andrus Gerontology Center of the Leonard Davis School of Gerontology, University of Southern California, 3715 McClintock Ave, Los Angeles, CA 90089-0191, USA.
| |
Collapse
|
13
|
Nègre-Salvayre A, Augé N, Camaré C, Bacchetti T, Ferretti G, Salvayre R. Dual signaling evoked by oxidized LDLs in vascular cells. Free Radic Biol Med 2017; 106:118-133. [PMID: 28189852 DOI: 10.1016/j.freeradbiomed.2017.02.006] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Revised: 01/30/2017] [Accepted: 02/02/2017] [Indexed: 12/12/2022]
Abstract
The oxidative theory of atherosclerosis relies on the modification of low density lipoproteins (LDLs) in the vascular wall by reactive oxygen species. Modified LDLs, such as oxidized LDLs, are thought to participate in the formation of early atherosclerotic lesions (accumulation of foam cells and fatty streaks), whereas their role in advanced lesions and atherothrombotic events is more debated, because antioxidant supplementation failed to prevent coronary disease events and mortality in intervention randomized trials. As oxidized LDLs and oxidized lipids are present in atherosclerotic lesions and are able to trigger cell signaling on cultured vascular cells and macrophages, it has been proposed that they could play a role in atherogenesis and atherosclerotic vascular remodeling. Oxidized LDLs exhibit dual biological effects, which are dependent on extent of lipid peroxidation, nature of oxidized lipids (oxidized phospholipids, oxysterols, malondialdehyde, α,β-unsaturated hydroxyalkenals), concentration of oxidized LDLs and uptake by scavenger receptors (e.g. CD36, LOX-1, SRA) that signal through different transduction pathways. Moderate concentrations of mildly oxidized LDLs are proinflammatory and trigger cell migration and proliferation, whereas higher concentrations induce cell growth arrest and apoptosis. The balance between survival and apoptotic responses evoked by oxidized LDLs depends on cellular systems that regulate the cell fate, such as ceramide/sphingosine-1-phosphate rheostat, endoplasmic reticulum stress, autophagy and expression of pro/antiapoptotic proteins. In vivo, the intimal concentration of oxidized LDLs depends on the influx (hypercholesterolemia, endothelial permeability), residence time and lipid composition of LDLs, oxidative stress intensity, induction of defense mechanisms (antioxidant systems, heat shock proteins). As a consequence, the local cellular responses to oxidized LDLs may stimulate inflammatory or anti-inflammatory pathways, angiogenic or antiangiogenic responses, survival or apoptosis, thereby contributing to plaque growth, instability, complication (intraplaque hemorrhage, proteolysis, calcification, apoptosis) and rupture. Finally, these dual properties suggest that oxLDLs could be implicated at each step of atherosclerosis development, from early fatty streaks to advanced lesions, depending on the nature and concentration of their oxidized lipid content.
Collapse
Affiliation(s)
| | | | - Caroline Camaré
- Inserm UMR-1048, France; University of Toulouse, Faculty of Medicine, Biochemistry Dept, Toulouse, France; CHU Toulouse, Rangueil, Toulouse, France
| | | | | | - Robert Salvayre
- Inserm UMR-1048, France; University of Toulouse, Faculty of Medicine, Biochemistry Dept, Toulouse, France; CHU Toulouse, Rangueil, Toulouse, France.
| |
Collapse
|
14
|
4-Hydroxynonenal Contributes to Angiogenesis through a Redox-Dependent Sphingolipid Pathway: Prevention by Hydralazine Derivatives. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:9172741. [PMID: 28479957 PMCID: PMC5396448 DOI: 10.1155/2017/9172741] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 03/01/2017] [Indexed: 12/23/2022]
Abstract
The neovascularization of atherosclerotic lesions is involved in plaque development and may contribute to intraplaque hemorrhage and plaque fragilization and rupture. Among the various proangiogenic agents involved in the neovascularization process, proatherogenic oxidized LDLs (oxLDLs) contribute to the formation of tubes via the generation of sphingosine 1-phosphate (S1P), a major mitogenic and proangiogenic sphingolipid mediator. In this study, we investigated whether 4-hydroxynonenal (4-HNE), an aldehydic lipid oxidation product abundantly present in oxLDLs, contributes to their proangiogenic properties. Immunofluorescence analysis of human atherosclerotic lesions from carotid endarterectomy showed the colocalization of HNE-adducts with CD31, a marker of endothelial cells, suggesting a close relationship between 4-HNE and neovessel formation. In vitro, low 4-HNE concentration (0.5-1 µM) elicited the formation of tubes by human microvascular endothelial cells (HMEC-1), whereas higher concentrations were not angiogenic. The formation of tubes by 4-HNE involved the generation of reactive oxygen species and the activation of the sphingolipid pathway, namely, the neutral type 2 sphingomyelinase and sphingosine kinase-1 (nSMase2/SK-1) pathway, indicating a role for S1P in the angiogenic signaling of 4-HNE. Carbonyl scavengers hydralazine and bisvanillyl-hydralazone inhibited the nSMase2/SK1 pathway activation and the formation of tubes on Matrigel® evoked by 4-HNE. Altogether, these results emphasize the role of 4-HNE in the angiogenic effect of oxLDLs and point out the potential interest of pharmacological carbonyl scavengers to prevent the neovascularization process.
Collapse
|
15
|
Wang L, Huang Z, Huang W, Chen X, Shan P, Zhong P, Khan Z, Wang J, Fang Q, Liang G, Wang Y. Inhibition of epidermal growth factor receptor attenuates atherosclerosis via decreasing inflammation and oxidative stress. Sci Rep 2017; 8:45917. [PMID: 28374780 PMCID: PMC5379239 DOI: 10.1038/srep45917] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 03/06/2017] [Indexed: 12/31/2022] Open
Abstract
Atherosclerosis is a progressive disease leading to loss of vascular homeostasis and entails fibrosis, macrophage foam cell formation, and smooth muscle cell proliferation. Recent studies have reported that epidermal growth factor receptor (EGFR) is involved vascular pathophysiology and in the regulation of oxidative stress in macrophages. Although, oxidative stress and inflammation play a critical role in the development of atherosclerosis, the underlying mechanisms are complex and not completely understood. In the present study, we have elucidated the role of EGFR in high-fat diet-induced atherosclerosis in apolipoprotein E null mice. We show increased EGFR phosphorylation and activity in atherosclerotic lesion development. EGFR inhibition prevented oxidative stress, macrophage infiltration, induction of pro-inflammatory cytokines, and SMC proliferation within the lesions. We further show that EGFR is activated through toll-like receptor 4. Disruption of toll-like receptor 4 or the EGFR pathway led to reduced inflammatory activity and foam cell formation. These studies provide evidence that EGFR plays a key role on the pathogenesis of atherosclerosis, and suggests that EGFR may be a potential therapeutic target in the prevention of atherosclerosis development.
Collapse
Affiliation(s)
- Lintao Wang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Zhouqing Huang
- Department of Cardiology, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Weijian Huang
- Department of Cardiology, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Xuemei Chen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Peiren Shan
- Department of Cardiology, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Peng Zhong
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Zia Khan
- Department of Pathology and Laboratory Medicine, Western University, London, ON N6A5C1, Canada
| | - Jingying Wang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Qilu Fang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Guang Liang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Yi Wang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| |
Collapse
|
16
|
Zhang H, Forman HJ. Signaling by 4-hydroxy-2-nonenal: Exposure protocols, target selectivity and degradation. Arch Biochem Biophys 2016; 617:145-154. [PMID: 27840096 DOI: 10.1016/j.abb.2016.11.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 10/20/2016] [Accepted: 11/09/2016] [Indexed: 01/26/2023]
Abstract
4-hydroxy-2-nonenal (HNE), a major non-saturated aldehyde product of lipid peroxidation, has been extensively studied as a signaling messenger. In these studies a wide range of HNE concentrations have been used, ranging from the unstressed plasma concentration to far beyond what would be found in actual pathophysiological condition. In addition, accumulating evidence suggest that signaling protein modification by HNE is specific with only those proteins with cysteine, histidine, and lysine residues located in certain sequence or environments adducted by HNE. HNE-signaling is further regulated through the turnover of HNE-signaling protein adducts through proteolytic process that involve proteasomes, lysosomes and autophagy. This review discusses the HNE concentrations and exposure modes used in signaling studies, the selectivity of the HNE-adduction site, and the turnover of signaling protein adducts.
Collapse
Affiliation(s)
- Hongqiao Zhang
- Andrus Gerontology Center of the Leonard Davis School of Gerontology, University of Southern California, 3715 McClintock Ave, Los Angeles, CA 90089-0191, USA.
| | - Henry Jay Forman
- Andrus Gerontology Center of the Leonard Davis School of Gerontology, University of Southern California, 3715 McClintock Ave, Los Angeles, CA 90089-0191, USA
| |
Collapse
|
17
|
Nagano T, Mizuno M, Morita K, Nawa H. Pathological Implications of Oxidative Stress in Patients and Animal Models with Schizophrenia: The Role of Epidermal Growth Factor Receptor Signaling. Curr Top Behav Neurosci 2016; 29:429-446. [PMID: 26475158 DOI: 10.1007/7854_2015_399] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Proinflammatory cytokines perturb brain development and neurotransmission and are implicated in various psychiatric diseases, such as schizophrenia and depression. These cytokines often induce the production of reactive oxygen species (ROS) and regulate not only cell survival and proliferation but also inflammatory process and neurotransmission. Under physiological conditions, ROS are moderately produced in mitochondria but are rapidly scavenged by reducing agents in cells. However, brain injury, ischemia, infection, or seizure-like neural activities induce inflammatory cytokines and trigger the production of excessive amounts of ROS, leading to abnormal brain functions and psychiatric symptoms. Protein phosphatases, which are involved in the basal silencing of cytokine receptor activation, are the major targets of ROS. Consistent with this, several ROS scavengers, such as polyphenols and unsaturated fatty acids, attenuate both cytokine signaling and psychiatric abnormalities. In this review, we list the inducers, producers, targets, and scavengers of ROS in the brain and discuss the interaction between ROS and cytokine signaling implicated in schizophrenia and its animal models. In particular, we present an animal model of schizophrenia established by perinatal exposure to epidermal growth factor and illustrate the pathological role of ROS and antipsychotic actions of ROS scavengers, such as emodin and edaravone.
Collapse
Affiliation(s)
- Tadasato Nagano
- Faculty of Human Life Studies, University of Niigata Prefecture, 471 Ebigase, Higashi-ku, Niigata, 950-8680, Japan
| | - Makoto Mizuno
- Aichi Human Service Center, Institute for Developmental Research, Kasugai, Aichi, 480-0392, Japan
| | - Keisuke Morita
- Department of Molecular Biology, Brain Research Institute, Niigata University, Asahimachi-Dori 1-757, Niigata, 951-8585, Japan
| | - Hiroyuki Nawa
- Department of Molecular Biology, Brain Research Institute, Niigata University, Asahimachi-Dori 1-757, Niigata, 951-8585, Japan.
| |
Collapse
|
18
|
Zhang H, Forman HJ. 4-Hydroxynonenal activates Src through a non-canonical pathway that involves EGFR/PTP1B. Free Radic Biol Med 2015; 89:701-7. [PMID: 26453921 PMCID: PMC4684732 DOI: 10.1016/j.freeradbiomed.2015.08.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 08/20/2015] [Accepted: 08/26/2015] [Indexed: 12/30/2022]
Abstract
Src, a non-receptor protein tyrosine kinase involved in many biological processes, can be activated through both redox-dependent and independent mechanisms. 4-Hydroxy-2-nonenal (HNE) is a lipid peroxidation product that is increased in pathophysiological conditions associated with Src activation. This study examined how HNE activates human c-Src. In the canonical pathway Src activation is initiated by dephosphorylation of pTyr530 followed by conformational change that causes Src auto-phosphorylation at Tyr419 and its activation. HNE increased Src activation in both dose- and time-dependent manner, while it also increased Src phosphorylation at Tyr530 (pTyr530 Src), suggesting that HNE activated Src via a non-canonical mechanism. Protein tyrosine phosphatase 1B inhibitor (539741), at concentrations that increased basal pTyr530 Src, also increased basal Src activity and significantly reduced HNE-mediated Src activation. The EGFR inhibitor, AG1478, and EGFR silencing, abrogated HNE-mediated EGFR activation and inhibited basal and HNE-induced Src activity. In addition, AG1478 also eliminated the increase of basal Src activation by a PTP1B inhibitor. Taken together these data suggest that HNE can activate Src partly through a non-canonical pathway involving activation of EGFR and inhibition of PTP1B.
Collapse
Affiliation(s)
- Hongqiao Zhang
- Andrus Gerontology Center, Davis School of Gerontology, University of Southern, California
| | - Henry Jay Forman
- Andrus Gerontology Center, Davis School of Gerontology, University of Southern, California.
| |
Collapse
|
19
|
Forrester SJ, Kawai T, O'Brien S, Thomas W, Harris RC, Eguchi S. Epidermal Growth Factor Receptor Transactivation: Mechanisms, Pathophysiology, and Potential Therapies in the Cardiovascular System. Annu Rev Pharmacol Toxicol 2015; 56:627-53. [PMID: 26566153 DOI: 10.1146/annurev-pharmtox-070115-095427] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Epidermal growth factor receptor (EGFR) activation impacts the physiology and pathophysiology of the cardiovascular system, and inhibition of EGFR activity is emerging as a potential therapeutic strategy to treat diseases including hypertension, cardiac hypertrophy, renal fibrosis, and abdominal aortic aneurysm. The capacity of G protein-coupled receptor (GPCR) agonists, such as angiotensin II (AngII), to promote EGFR signaling is called transactivation and is well described, yet delineating the molecular processes and functional relevance of this crosstalk has been challenging. Moreover, these critical findings are dispersed among many different fields. The aim of our review is to highlight recent advancements in defining the signaling cascades and downstream consequences of EGFR transactivation in the cardiovascular renal system. We also focus on studies that link EGFR transactivation to animal models of the disease, and we discuss potential therapeutic applications.
Collapse
Affiliation(s)
- Steven J Forrester
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania 19140;
| | - Tatsuo Kawai
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania 19140;
| | - Shannon O'Brien
- The School of Biomedical Sciences, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Walter Thomas
- The School of Biomedical Sciences, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Raymond C Harris
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - Satoru Eguchi
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania 19140;
| |
Collapse
|
20
|
Jang EJ, Jeong HO, Park D, Kim DH, Choi YJ, Chung KW, Park MH, Yu BP, Chung HY. Src Tyrosine Kinase Activation by 4-Hydroxynonenal Upregulates p38, ERK/AP-1 Signaling and COX-2 Expression in YPEN-1 Cells. PLoS One 2015; 10:e0129244. [PMID: 26466383 PMCID: PMC4605600 DOI: 10.1371/journal.pone.0129244] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 05/06/2015] [Indexed: 01/02/2023] Open
Abstract
4-Hydroxynonenal (4-HNE), a major end product of lipid peroxidation, is highly reactive and involved in various cellular processes, such as inflammatory signaling. However, to date, the mechanistic roles of 4-HNE in inflammatory signaling related to protein tyrosine kinases have not been elucidated. In the present study, we investigated the interaction between 4-HNE and Src (a non-receptor tyrosine kinase) for its involvement in the molecular modulation of the inflammatory signaling pathway utilizing the YPEN-1 cell system. Immunoprecipitation experiments showed that 4-HNE phosphorylates (activates) Src at Tyr416 via adduct formation. In addition, LC-MS/MS and a docking simulation model revealed an addiction site at the Cys248 residue of Src, resulting in the stimulation of downstream p38, ERK/AP-1 and cyclooxygenase-2 (COX-2) signaling in YPEN-1 cells. The role of 4-HNE-activated Src in downstream inflammatory signaling was further investigated using dasatinib (a Src inhibitor) and by siRNA knockdown of Src. p38 and ERK were directly regulated by Src, as revealed by immunoblotting of the phosphorylated forms of mitogen-activated protein kinases (MAPKs), which are key elements in the signaling transduction pathway initiated by Src. The study also shows that Src modulates the HNE-enhanced activation of AP-1 and the expression of COX-2 (a target gene of AP-1). Together, the results of this study show that 4-HNE stimulates Src tyrosine kinase in activation of the inflammation process.
Collapse
Affiliation(s)
- Eun Ji Jang
- Molecular Inflammation Research Center for Aging Intervention (MRCA), Department of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Hyoung Oh Jeong
- Molecular Inflammation Research Center for Aging Intervention (MRCA), Department of Pharmacy, Pusan National University, Busan, Republic of Korea
- Interdisciplinary Research Program of Bioinformatics and Longevity Science, Pusan National University, Busan 609–735, Republic of Korea
| | - Daeui Park
- Molecular Inflammation Research Center for Aging Intervention (MRCA), Department of Pharmacy, Pusan National University, Busan, Republic of Korea
- Interdisciplinary Research Program of Bioinformatics and Longevity Science, Pusan National University, Busan 609–735, Republic of Korea
| | - Dae Hyun Kim
- Molecular Inflammation Research Center for Aging Intervention (MRCA), Department of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Yeon Ja Choi
- Molecular Inflammation Research Center for Aging Intervention (MRCA), Department of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Ki Wung Chung
- Molecular Inflammation Research Center for Aging Intervention (MRCA), Department of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Min Hi Park
- Molecular Inflammation Research Center for Aging Intervention (MRCA), Department of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Byung Pal Yu
- Department of Physiology, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229–3900, United States of America
| | - Hae Young Chung
- Molecular Inflammation Research Center for Aging Intervention (MRCA), Department of Pharmacy, Pusan National University, Busan, Republic of Korea
- * E-mail:
| |
Collapse
|
21
|
Yamamoto K, Kakino A, Takeshita H, Hayashi N, Li L, Nakano A, Hanasaki-Yamamoto H, Fujita Y, Imaizumi Y, Toyama-Yokoyama S, Nakama C, Kawai T, Takeda M, Hongyo K, Oguro R, Maekawa Y, Itoh N, Takami Y, Onishi M, Takeya Y, Sugimoto K, Kamide K, Nakagami H, Ohishi M, Kurtz TW, Sawamura T, Rakugi H. Oxidized LDL (oxLDL) activates the angiotensin II type 1 receptor by binding to the lectin-like oxLDL receptor. FASEB J 2015; 29:3342-56. [PMID: 25877213 DOI: 10.1096/fj.15-271627] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 04/05/2015] [Indexed: 11/11/2022]
Abstract
The angiotensin II type 1 receptor (AT1) is a 7-transmembrane domain GPCR that when activated by its ligand angiotensin II, generates signaling events promoting vascular dysfunction and the development of cardiovascular disease. Here, we show that the single-transmembrane oxidized LDL (oxLDL) receptor (LOX-1) resides in proximity to AT1 on cell-surface membranes and that binding of oxLDL to LOX-1 can allosterically activate AT1-dependent signaling events. oxLDL-induced signaling events in human vascular endothelial cells were abolished by knockdown of AT1 and inhibited by AT1 blockade (ARB). oxLDL increased cytosolic G protein by 350% in Chinese hamster ovary (CHO) cells with genetically induced expression of AT1 and LOX-1, whereas little increase was observed in CHO cells expressing only LOX-1. Immunoprecipitation and in situ proximity ligation assay (PLA) assays in CHO cells revealed the presence of cell-surface complexes involving LOX-1 and AT1. Chimeric analysis showed that oxLDL-induced AT1 signaling events are mediated via interactions between the intracellular domain of LOX-1 and AT1 that activate AT1. oxLDL-induced impairment of endothelium-dependent vascular relaxation of vascular ring from mouse thoracic aorta was abolished by ARB or genetic deletion of AT1. These findings reveal a novel pathway for AT1 activation and suggest a new mechanism whereby oxLDL may be promoting risk for cardiovascular disease.
Collapse
Affiliation(s)
- Koichi Yamamoto
- *Department of Geriatric Medicine and Nephrology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan; Department of Vascular Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan; Department of Molecular Pathophysiology, Osaka University Graduate School of Pharmaceutical Sciences, Suita, Osaka, Japan; Department of Physiology, Shinshu University School of Medicine, Asahi, Matsumo, Japan; Division of Vascular Medicine and Epigenetics, Osaka University United Graduate School of Child Development, Suita, Osaka, Japan; and Department of Laboratory Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Akemi Kakino
- *Department of Geriatric Medicine and Nephrology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan; Department of Vascular Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan; Department of Molecular Pathophysiology, Osaka University Graduate School of Pharmaceutical Sciences, Suita, Osaka, Japan; Department of Physiology, Shinshu University School of Medicine, Asahi, Matsumo, Japan; Division of Vascular Medicine and Epigenetics, Osaka University United Graduate School of Child Development, Suita, Osaka, Japan; and Department of Laboratory Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Hikari Takeshita
- *Department of Geriatric Medicine and Nephrology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan; Department of Vascular Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan; Department of Molecular Pathophysiology, Osaka University Graduate School of Pharmaceutical Sciences, Suita, Osaka, Japan; Department of Physiology, Shinshu University School of Medicine, Asahi, Matsumo, Japan; Division of Vascular Medicine and Epigenetics, Osaka University United Graduate School of Child Development, Suita, Osaka, Japan; and Department of Laboratory Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Norihiro Hayashi
- *Department of Geriatric Medicine and Nephrology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan; Department of Vascular Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan; Department of Molecular Pathophysiology, Osaka University Graduate School of Pharmaceutical Sciences, Suita, Osaka, Japan; Department of Physiology, Shinshu University School of Medicine, Asahi, Matsumo, Japan; Division of Vascular Medicine and Epigenetics, Osaka University United Graduate School of Child Development, Suita, Osaka, Japan; and Department of Laboratory Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Lei Li
- *Department of Geriatric Medicine and Nephrology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan; Department of Vascular Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan; Department of Molecular Pathophysiology, Osaka University Graduate School of Pharmaceutical Sciences, Suita, Osaka, Japan; Department of Physiology, Shinshu University School of Medicine, Asahi, Matsumo, Japan; Division of Vascular Medicine and Epigenetics, Osaka University United Graduate School of Child Development, Suita, Osaka, Japan; and Department of Laboratory Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Atsushi Nakano
- *Department of Geriatric Medicine and Nephrology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan; Department of Vascular Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan; Department of Molecular Pathophysiology, Osaka University Graduate School of Pharmaceutical Sciences, Suita, Osaka, Japan; Department of Physiology, Shinshu University School of Medicine, Asahi, Matsumo, Japan; Division of Vascular Medicine and Epigenetics, Osaka University United Graduate School of Child Development, Suita, Osaka, Japan; and Department of Laboratory Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Hiroko Hanasaki-Yamamoto
- *Department of Geriatric Medicine and Nephrology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan; Department of Vascular Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan; Department of Molecular Pathophysiology, Osaka University Graduate School of Pharmaceutical Sciences, Suita, Osaka, Japan; Department of Physiology, Shinshu University School of Medicine, Asahi, Matsumo, Japan; Division of Vascular Medicine and Epigenetics, Osaka University United Graduate School of Child Development, Suita, Osaka, Japan; and Department of Laboratory Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Yoshiko Fujita
- *Department of Geriatric Medicine and Nephrology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan; Department of Vascular Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan; Department of Molecular Pathophysiology, Osaka University Graduate School of Pharmaceutical Sciences, Suita, Osaka, Japan; Department of Physiology, Shinshu University School of Medicine, Asahi, Matsumo, Japan; Division of Vascular Medicine and Epigenetics, Osaka University United Graduate School of Child Development, Suita, Osaka, Japan; and Department of Laboratory Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Yuki Imaizumi
- *Department of Geriatric Medicine and Nephrology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan; Department of Vascular Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan; Department of Molecular Pathophysiology, Osaka University Graduate School of Pharmaceutical Sciences, Suita, Osaka, Japan; Department of Physiology, Shinshu University School of Medicine, Asahi, Matsumo, Japan; Division of Vascular Medicine and Epigenetics, Osaka University United Graduate School of Child Development, Suita, Osaka, Japan; and Department of Laboratory Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Serina Toyama-Yokoyama
- *Department of Geriatric Medicine and Nephrology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan; Department of Vascular Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan; Department of Molecular Pathophysiology, Osaka University Graduate School of Pharmaceutical Sciences, Suita, Osaka, Japan; Department of Physiology, Shinshu University School of Medicine, Asahi, Matsumo, Japan; Division of Vascular Medicine and Epigenetics, Osaka University United Graduate School of Child Development, Suita, Osaka, Japan; and Department of Laboratory Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Chikako Nakama
- *Department of Geriatric Medicine and Nephrology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan; Department of Vascular Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan; Department of Molecular Pathophysiology, Osaka University Graduate School of Pharmaceutical Sciences, Suita, Osaka, Japan; Department of Physiology, Shinshu University School of Medicine, Asahi, Matsumo, Japan; Division of Vascular Medicine and Epigenetics, Osaka University United Graduate School of Child Development, Suita, Osaka, Japan; and Department of Laboratory Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Tatsuo Kawai
- *Department of Geriatric Medicine and Nephrology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan; Department of Vascular Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan; Department of Molecular Pathophysiology, Osaka University Graduate School of Pharmaceutical Sciences, Suita, Osaka, Japan; Department of Physiology, Shinshu University School of Medicine, Asahi, Matsumo, Japan; Division of Vascular Medicine and Epigenetics, Osaka University United Graduate School of Child Development, Suita, Osaka, Japan; and Department of Laboratory Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Masao Takeda
- *Department of Geriatric Medicine and Nephrology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan; Department of Vascular Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan; Department of Molecular Pathophysiology, Osaka University Graduate School of Pharmaceutical Sciences, Suita, Osaka, Japan; Department of Physiology, Shinshu University School of Medicine, Asahi, Matsumo, Japan; Division of Vascular Medicine and Epigenetics, Osaka University United Graduate School of Child Development, Suita, Osaka, Japan; and Department of Laboratory Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Kazuhiro Hongyo
- *Department of Geriatric Medicine and Nephrology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan; Department of Vascular Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan; Department of Molecular Pathophysiology, Osaka University Graduate School of Pharmaceutical Sciences, Suita, Osaka, Japan; Department of Physiology, Shinshu University School of Medicine, Asahi, Matsumo, Japan; Division of Vascular Medicine and Epigenetics, Osaka University United Graduate School of Child Development, Suita, Osaka, Japan; and Department of Laboratory Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Ryosuke Oguro
- *Department of Geriatric Medicine and Nephrology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan; Department of Vascular Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan; Department of Molecular Pathophysiology, Osaka University Graduate School of Pharmaceutical Sciences, Suita, Osaka, Japan; Department of Physiology, Shinshu University School of Medicine, Asahi, Matsumo, Japan; Division of Vascular Medicine and Epigenetics, Osaka University United Graduate School of Child Development, Suita, Osaka, Japan; and Department of Laboratory Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Yoshihiro Maekawa
- *Department of Geriatric Medicine and Nephrology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan; Department of Vascular Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan; Department of Molecular Pathophysiology, Osaka University Graduate School of Pharmaceutical Sciences, Suita, Osaka, Japan; Department of Physiology, Shinshu University School of Medicine, Asahi, Matsumo, Japan; Division of Vascular Medicine and Epigenetics, Osaka University United Graduate School of Child Development, Suita, Osaka, Japan; and Department of Laboratory Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Norihisa Itoh
- *Department of Geriatric Medicine and Nephrology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan; Department of Vascular Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan; Department of Molecular Pathophysiology, Osaka University Graduate School of Pharmaceutical Sciences, Suita, Osaka, Japan; Department of Physiology, Shinshu University School of Medicine, Asahi, Matsumo, Japan; Division of Vascular Medicine and Epigenetics, Osaka University United Graduate School of Child Development, Suita, Osaka, Japan; and Department of Laboratory Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Yoichi Takami
- *Department of Geriatric Medicine and Nephrology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan; Department of Vascular Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan; Department of Molecular Pathophysiology, Osaka University Graduate School of Pharmaceutical Sciences, Suita, Osaka, Japan; Department of Physiology, Shinshu University School of Medicine, Asahi, Matsumo, Japan; Division of Vascular Medicine and Epigenetics, Osaka University United Graduate School of Child Development, Suita, Osaka, Japan; and Department of Laboratory Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Miyuki Onishi
- *Department of Geriatric Medicine and Nephrology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan; Department of Vascular Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan; Department of Molecular Pathophysiology, Osaka University Graduate School of Pharmaceutical Sciences, Suita, Osaka, Japan; Department of Physiology, Shinshu University School of Medicine, Asahi, Matsumo, Japan; Division of Vascular Medicine and Epigenetics, Osaka University United Graduate School of Child Development, Suita, Osaka, Japan; and Department of Laboratory Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Yasushi Takeya
- *Department of Geriatric Medicine and Nephrology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan; Department of Vascular Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan; Department of Molecular Pathophysiology, Osaka University Graduate School of Pharmaceutical Sciences, Suita, Osaka, Japan; Department of Physiology, Shinshu University School of Medicine, Asahi, Matsumo, Japan; Division of Vascular Medicine and Epigenetics, Osaka University United Graduate School of Child Development, Suita, Osaka, Japan; and Department of Laboratory Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Ken Sugimoto
- *Department of Geriatric Medicine and Nephrology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan; Department of Vascular Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan; Department of Molecular Pathophysiology, Osaka University Graduate School of Pharmaceutical Sciences, Suita, Osaka, Japan; Department of Physiology, Shinshu University School of Medicine, Asahi, Matsumo, Japan; Division of Vascular Medicine and Epigenetics, Osaka University United Graduate School of Child Development, Suita, Osaka, Japan; and Department of Laboratory Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Kei Kamide
- *Department of Geriatric Medicine and Nephrology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan; Department of Vascular Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan; Department of Molecular Pathophysiology, Osaka University Graduate School of Pharmaceutical Sciences, Suita, Osaka, Japan; Department of Physiology, Shinshu University School of Medicine, Asahi, Matsumo, Japan; Division of Vascular Medicine and Epigenetics, Osaka University United Graduate School of Child Development, Suita, Osaka, Japan; and Department of Laboratory Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Hironori Nakagami
- *Department of Geriatric Medicine and Nephrology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan; Department of Vascular Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan; Department of Molecular Pathophysiology, Osaka University Graduate School of Pharmaceutical Sciences, Suita, Osaka, Japan; Department of Physiology, Shinshu University School of Medicine, Asahi, Matsumo, Japan; Division of Vascular Medicine and Epigenetics, Osaka University United Graduate School of Child Development, Suita, Osaka, Japan; and Department of Laboratory Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Mitsuru Ohishi
- *Department of Geriatric Medicine and Nephrology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan; Department of Vascular Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan; Department of Molecular Pathophysiology, Osaka University Graduate School of Pharmaceutical Sciences, Suita, Osaka, Japan; Department of Physiology, Shinshu University School of Medicine, Asahi, Matsumo, Japan; Division of Vascular Medicine and Epigenetics, Osaka University United Graduate School of Child Development, Suita, Osaka, Japan; and Department of Laboratory Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Theodore W Kurtz
- *Department of Geriatric Medicine and Nephrology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan; Department of Vascular Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan; Department of Molecular Pathophysiology, Osaka University Graduate School of Pharmaceutical Sciences, Suita, Osaka, Japan; Department of Physiology, Shinshu University School of Medicine, Asahi, Matsumo, Japan; Division of Vascular Medicine and Epigenetics, Osaka University United Graduate School of Child Development, Suita, Osaka, Japan; and Department of Laboratory Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Tatsuya Sawamura
- *Department of Geriatric Medicine and Nephrology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan; Department of Vascular Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan; Department of Molecular Pathophysiology, Osaka University Graduate School of Pharmaceutical Sciences, Suita, Osaka, Japan; Department of Physiology, Shinshu University School of Medicine, Asahi, Matsumo, Japan; Division of Vascular Medicine and Epigenetics, Osaka University United Graduate School of Child Development, Suita, Osaka, Japan; and Department of Laboratory Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Hiromi Rakugi
- *Department of Geriatric Medicine and Nephrology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan; Department of Vascular Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan; Department of Molecular Pathophysiology, Osaka University Graduate School of Pharmaceutical Sciences, Suita, Osaka, Japan; Department of Physiology, Shinshu University School of Medicine, Asahi, Matsumo, Japan; Division of Vascular Medicine and Epigenetics, Osaka University United Graduate School of Child Development, Suita, Osaka, Japan; and Department of Laboratory Medicine, University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|
22
|
Milkovic L, Cipak Gasparovic A, Zarkovic N. Overview on major lipid peroxidation bioactive factor 4-hydroxynonenal as pluripotent growth-regulating factor. Free Radic Res 2015; 49:850-60. [PMID: 25532703 DOI: 10.3109/10715762.2014.999056] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The reactive aldehyde 4-hydroxynonenal (HNE) is major bioactive marker of lipid peroxidation generated under oxidative stress from polyunsaturated fatty acids. Biomedical significance of HNE was first revealed in pathogenesis of various degenerative and malignant diseases. Thus, HNE was considered for decades only as cytotoxic molecule, "second toxic messenger of free radicals" responsible for numerous undesirable consequences of oxidative stress. However, the increase of knowledge on physiology of redox signaling revealed also desirable, physiological roles of HNE, especially in the field of cellular signaling pathways regulating proliferation, differentiation, and apoptosis. These pluripotent effects of HNE can be explained by its concentration-dependent interactions with the cytokine networks and complex cellular antioxidant systems also showing cell and tissue specificities. Therefore, this paper gives a comprehensive, yet short overview on HNE as pluripotent growth-regulating factor.
Collapse
Affiliation(s)
- L Milkovic
- Laboratory for Oxidative Stress, Rudjer Boskovic Institute , Zagreb , Croatia
| | | | | |
Collapse
|
23
|
Zarkovic K, Larroque-Cardoso P, Pucelle M, Salvayre R, Waeg G, Nègre-Salvayre A, Zarkovic N. Elastin aging and lipid oxidation products in human aorta. Redox Biol 2014; 4:109-17. [PMID: 25553420 PMCID: PMC4309857 DOI: 10.1016/j.redox.2014.12.008] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 12/10/2014] [Accepted: 12/15/2014] [Indexed: 01/21/2023] Open
Abstract
Vascular aging is associated with structural and functional modifications of the arteries, and by an increase in arterial wall thickening in the intima and the media, mainly resulting from structural modifications of the extracellular matrix (ECM) components. Among the factors known to accumulate with aging, advanced lipid peroxidation end products (ALEs) are a hallmark of oxidative stress-associated diseases such as atherosclerosis. Aldehydes generated from the peroxidation of polyunsaturated fatty acids (PUFA), (4-hydroxynonenal, malondialdehyde, acrolein), form adducts on cellular proteins, leading to a progressive protein dysfunction with consequences in the pathophysiology of vascular aging. The contribution of these aldehydes to ECM modification is not known. This study was carried out to investigate whether aldehyde-adducts are detected in the intima and media in human aorta, whether their level is increased in vascular aging, and whether elastin fibers are a target of aldehyde-adduct formation. Immunohistological and confocal immunofluorescence studies indicate that 4-HNE-histidine-adducts accumulate in an age-related manner in the intima, media and adventitia layers of human aortas, and are mainly expressed in smooth muscle cells. In contrast, even if the structure of elastin fiber is strongly altered in the aged vessels, our results show that elastin is not or very poorly modified by 4-HNE. These data indicate a complex role for lipid peroxidation and in particular for 4-HNE in elastin homeostasis, in the vascular wall remodeling during aging and atherosclerosis development.
Collapse
Affiliation(s)
| | | | - Mélanie Pucelle
- Inserm UMR-1048, Toulouse, France; University of Toulouse, Toulouse, France
| | - Robert Salvayre
- Inserm UMR-1048, Toulouse, France; University of Toulouse, Toulouse, France
| | - Georg Waeg
- Institute of Molecular Biosciences, University of Graz, Austria
| | | | - Neven Zarkovic
- Rudjer Boskovic Institute, LabOs, Zagreb, Croatia; University for Applied Sciences Baltazar, Zaprešić, Croatia.
| |
Collapse
|
24
|
Abstract
PURPOSE OF THE REVIEW The epidermal growth factor receptor (EGFR) is a receptor tyrosine kinase with a wide implication in tumor biology, wound healing and development. Besides acting as a growth factor receptor activated by ligands such as EGF, the EGFR can also be transactivated and thereby mediate cross-talk with different signaling pathways. The aim of this review is to illustrate the Janus-faced function of the EGFR in the vasculature with its relevance for vascular biology and disease. RECENT FINDINGS Over recent years, the number of identified signaling partners of the EGFR has steadily increased, as have the biological processes in which the EGFR is thought to be involved. Recently, new models have allowed investigation of EGFR effects in vivo, shedding some light on the overall function of the EGFR in the vasculature. At the same time, EGFR inhibitors and antibodies have become increasingly established in cancer therapy, providing potential therapeutic tools for decreasing EGFR signaling. SUMMARY The EGFR is a versatile signaling pathway integrator associated with vascular homeostasis and disease. In addition to modulating basal vascular tone and tissue homeostasis, the EGFR also seems to be involved in proinflammatory, proliferative, migratory and remodeling processes, with enhanced deposition of extracellular matrix components, thereby promoting vascular diseases such as hypertension or atherosclerosis.
Collapse
|
25
|
Larroque-Cardoso P, Mucher E, Grazide MH, Josse G, Schmitt AM, Nadal-Wolbold F, Zarkovic K, Salvayre R, Nègre-Salvayre A. 4-Hydroxynonenal impairs transforming growth factor-β1-induced elastin synthesis via epidermal growth factor receptor activation in human and murine fibroblasts. Free Radic Biol Med 2014; 71:427-436. [PMID: 24561579 DOI: 10.1016/j.freeradbiomed.2014.02.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 02/12/2014] [Accepted: 02/13/2014] [Indexed: 01/17/2023]
Abstract
Elastin is a long-lived protein and a key component of connective tissues. The tissular elastin content decreases during chronological aging, and the mechanisms underlying its slow repair are not known. Lipid oxidation products that accumulate in aged tissues may generate protein dysfunction. We hypothesized that 4-hydroxynonenal (4-HNE), a highly reactive α,β-aldehydic product generated from polyunsaturated fatty acid peroxidation, could contribute to inhibiting elastin repair by antagonizing the elastogenic signaling of transforming growth factor-β1 (TGF-β1) in skin fibroblasts. We report that a low 4-HNE concentration (2µmol/L) inhibits the upregulation of tropoelastin expression stimulated by TGF-β1 in human and murine fibroblasts. The study of signaling pathways potentially involved in the regulation of elastin expression showed that 4-HNE did not block the phosphorylation of Smad3, an early step of TGF-β1 signaling, but inhibited the nuclear translocation of Smad2. Concomitantly, 4-HNE modified and stimulated the phosphorylation of the epidermal growth factor receptor (EGFR) and subsequently ERK1/2 activation, leading to the phosphorylation/stabilization of the Smad transcriptional corepressor TGIF, which antagonizes TGF-β1 signaling. Inhibitors of EGFR (AG1478) and MEK/ERK (PD98059), and EGFR-specific siRNAs, reversed the inhibitory effect of 4-HNE on TGF-β1-induced nuclear translocation of Smad2 and tropoelastin synthesis. In vivo studies on aortas from aged C57BL/6 mice showed that EGFR is modified by 4-HNE, in correlation with an increased 4-HNE-adduct accumulation and decreased elastin content. Altogether, these data suggest that 4-HNE inhibits the elastogenic activity of TGF-β1, by modifying and activating the EGFR/ERK/TGIF pathway, which may contribute to altering elastin repair in chronological aging and oxidative stress-associated aging processes.
Collapse
Affiliation(s)
| | - Elodie Mucher
- INSERM UMR-1048, 31432 Toulouse Cedex 4, France; University of Toulouse, Toulouse, France
| | | | - Gwendal Josse
- Centre Européen de Recherche sur la Peau, Pierre Fabre Dermocosmetique, Toulouse, France
| | - Anne-Marie Schmitt
- Centre Européen de Recherche sur la Peau, Pierre Fabre Dermocosmetique, Toulouse, France
| | - Florence Nadal-Wolbold
- Centre Européen de Recherche sur la Peau, Pierre Fabre Dermocosmetique, Toulouse, France
| | | | - Robert Salvayre
- INSERM UMR-1048, 31432 Toulouse Cedex 4, France; University of Toulouse, Toulouse, France
| | - Anne Nègre-Salvayre
- INSERM UMR-1048, 31432 Toulouse Cedex 4, France; University of Toulouse, Toulouse, France.
| |
Collapse
|
26
|
Pizzimenti S, Ciamporcero E, Daga M, Pettazzoni P, Arcaro A, Cetrangolo G, Minelli R, Dianzani C, Lepore A, Gentile F, Barrera G. Interaction of aldehydes derived from lipid peroxidation and membrane proteins. Front Physiol 2013; 4:242. [PMID: 24027536 PMCID: PMC3761222 DOI: 10.3389/fphys.2013.00242] [Citation(s) in RCA: 256] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 08/15/2013] [Indexed: 01/07/2023] Open
Abstract
A great variety of compounds are formed during lipid peroxidation of polyunsaturated fatty acids of membrane phospholipids. Among them, bioactive aldehydes, such as 4-hydroxyalkenals, malondialdehyde (MDA) and acrolein, have received particular attention since they have been considered as toxic messengers that can propagate and amplify oxidative injury. In the 4-hydroxyalkenal class, 4-hydroxy-2-nonenal (HNE) is the most intensively studied aldehyde, in relation not only to its toxic function, but also to its physiological role. Indeed, HNE can be found at low concentrations in human tissues and plasma and participates in the control of biological processes, such as signal transduction, cell proliferation, and differentiation. Moreover, at low doses, HNE exerts an anti-cancer effect, by inhibiting cell proliferation, angiogenesis, cell adhesion and by inducing differentiation and/or apoptosis in various tumor cell lines. It is very likely that a substantial fraction of the effects observed in cellular responses, induced by HNE and related aldehydes, be mediated by their interaction with proteins, resulting in the formation of covalent adducts or in the modulation of their expression and/or activity. In this review we focus on membrane proteins affected by lipid peroxidation-derived aldehydes, under physiological and pathological conditions.
Collapse
Affiliation(s)
- Stefania Pizzimenti
- Dipartimento di Scienze Cliniche e Biologiche, Università di Torino Torino, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Chapple SJ, Cheng X, Mann GE. Effects of 4-hydroxynonenal on vascular endothelial and smooth muscle cell redox signaling and function in health and disease. Redox Biol 2013; 1:319-31. [PMID: 24024167 PMCID: PMC3757694 DOI: 10.1016/j.redox.2013.04.001] [Citation(s) in RCA: 329] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 04/21/2013] [Indexed: 12/04/2022] Open
Abstract
4-hydroxynonenal (HNE) is a lipid hydroperoxide end product formed from the oxidation of n-6 polyunsaturated fatty acids. The relative abundance of HNE within the vasculature is dependent not only on the rate of lipid peroxidation and HNE synthesis but also on the removal of HNE adducts by phase II metabolic pathways such as glutathione-S-transferases. Depending on its relative concentration, HNE can induce a range of hormetic effects in vascular endothelial and smooth muscle cells, including kinase activation, proliferation, induction of phase II enzymes and in high doses inactivation of enzymatic processes and apoptosis. HNE also plays an important role in the pathogenesis of vascular diseases such as atherosclerosis, diabetes, neurodegenerative disorders and in utero diseases such as pre-eclampsia. This review examines the known production, metabolism and consequences of HNE synthesis within vascular endothelial and smooth muscle cells, highlighting alterations in mitochondrial and endoplasmic reticulum function and their association with various vascular pathologies. HNE is a lipid peroxidation endproduct regulating vascular redox signaling. HNE detoxification is tightly regulated in vascular and other cell types. Elevated HNE levels are associated with various vascular diseases.
Collapse
Key Words
- 15d-PGJ2, 15-deoxy-Delta (12,14) prostaglandin-J2
- 4-hydroxynonenal
- AP-1, Activator protein-1
- AR, Aldose reductase
- ARE, Antioxidant response element
- ATF6, Activating transcription factor 6
- Akt, Protein kinase B
- BAEC, Bovine aortic endothelial cells
- BH4, Tetrahydrobiopterin
- BLMVEC, Bovine lung microvascular vein endothelial cells
- BPAEC, Bovine pulmonary arterial endothelial cells
- BTB, Broad complex Tramtrack and Bric–brac domain
- CHOP, C/EBP-homologous protein
- CREB, cAMP response element-binding protein
- EGFR, Epidermal growth factor receptor
- ER, Endoplasmic reticulum
- ERAD, Endoplasmic reticulum assisted degradation
- ERK1/2, Extracellular signal-regulated kinase 1/2
- Elk1, ETS domain-containing protein
- Endothelial cells
- EpRE, Electrophile response element
- FAK, Focal adhesion kinase
- FAP, Familial amyloidotic polyneuropathy
- GCLC, Glutamate cysteine ligase catalytic subunit
- GCLM, Glutamate cysteine ligase modifier subunit
- GS-DHN, Glutathionyl-1,4 dihydroxynonene
- GS-HNE, HNE-conjugates
- GSH, Glutathione
- GST, Glutathione-S-transferase
- GTPCH, Guanosine triphosphate cyclohydrolase I
- HASMC, Human aortic smooth muscle cells
- HCSMC, Human coronary smooth muscle cells
- HERP, Homocysteine inducible ER protein
- HMEC, Human microvascular endothelial cells
- HNE, 4-hydroxynonenal
- HO-1, Heme oxygenase-1
- HUVEC, Human umbilical vein endothelial cells
- Hsp-70/72/90, Heat shock proteins-70/ -72/ -90
- IRE1, Inositol requiring enzyme 1 IRE1
- IVR, Central intervening region
- JNK, c-jun N-terminal kinase
- Keap1, Kelch-like ECH-associated protein 1
- MASMC, Mouse aortic smooth muscle cells
- MEK1/2, Mitogen activated protein kinase kinase 1/2
- MMP-1/2, Matrix metalloproteinase-1/ -2
- MPEC, Mouse pancreatic islet endothelial cells
- NAC, N-acetylcysteine
- NFκB, Nuclear factor kappa B
- NO, Nitric oxide
- NQO1, NAD(P)H quinone oxidoreductase
- Nrf2
- Nrf2, Nuclear factor-E2-related factor 2
- PCEC, Porcine cerebral endothelial cells
- PDGF, Platelet-derived growth factor
- PDI, Protein disulfide isomerases
- PERK, Protein kinase-like endoplasmic reticulum kinase
- PKC, Protein kinase C
- PUFAs, Polyunsaturated fatty acids
- RASMC, Rat aortic smooth muscle cells
- ROS, Reactive oxygen species
- RVSMC, Rat vascular smooth muscle cells
- Redox signaling
- SMC, Smooth muscle cell
- TKR, Tyrosine kinase receptor
- UPR, Unfolded protein response
- Vascular biology
- Vascular smooth muscle cells
- eNOS, Endothelial nitric oxide synthase
- elF2α, Eukaryotic translation initiation factor 2α
- iNOS, Inducible nitric oxide synthase
- oxLDL, Oxidized low density lipoprotein
- tBHP, Tert-butylhydroperoxide
- xCT, cystine/glutamate amino acid transporter
Collapse
Affiliation(s)
- Sarah J Chapple
- Cardiovascular Division, British Heart Foundation Centre of Research Excellence, School of Medicine, King's College London, 150 Stamford Street, London SE1 9NH, U.K
| | | | | |
Collapse
|
28
|
Li H, Park JH, Lee JC, Yoo KY, Hwang IK, Lee CH, Choi JH, Kim JD, Kang IJ, Won MH. Neuroprotective effects of Alpinia katsumadai against experimental ischemic damage via control of oxidative stress. PHARMACEUTICAL BIOLOGY 2013; 51:197-205. [PMID: 23095174 DOI: 10.3109/13880209.2012.716853] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
CONTEXT Alpinia katsumadai (Zingiberaceae) has been identified by the National Plant Quarantine Service in Korea. The extract of Alpinia katsumadai seed (EAKS) has antioxidant activities. OBJECTIVE We investigated the neuroprotective effects of EAKS on ischemic damage in the gerbil hippocampal CA1 region after transient cerebral ischemia. MATERIALS AND METHODS The ethanol extract of EAKS was obtained by organic solvent, collected in Kangwon province (South Korea) and orally administered using a feeding needle once a day for one week before transient cerebral ischemia in gerbils. RESULT We adapted oral administration of 25 and 50 mg/kg EAKS because there are no data about the absorption and metabolism of EKAS. We found a significant neuroprotection in the 50 mg/kg EAKS-treated ischemia group, not in the 25 mg/kg EAKS-treated ischemia group, at 4 days ischemia-reperfusion (I-R). In the 50 mg/kg EAKS-treated ischemia group, about 68% of pyramidal neurons in the CA1 region were immunostained with neuronal nuclei (NeuN) 4 days after I-R, compared to the vehicle-treated ischemia group. 8-Hydroxy-2'-deoxyguanosine (a marker for DNA damage) and 4-hydroxy-2-nonenal (a marker for lipid peroxidation) immunoreactivity in the CA1 region of the EAKS-treated ischemia group were not markedly changed compared to the vehicle-treated ischemia group. In addition, Cu,Zn- and Mn-SOD immunoreactivity in the CA1 region of the EAKS-treated ischemia group were increased compared to the vehicle-treated ischemia group. DISCUSSION Repeated supplements of EAKS could protect neurons against ischemic damage, showing that DNA damage and lipid peroxidation are attenuated and SODs are increased in the ischemic CA1 region.
Collapse
Affiliation(s)
- Hua Li
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, South Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Avraham-Davidi I, Grunspan M, Yaniv K. Lipid signaling in the endothelium. Exp Cell Res 2013; 319:1298-305. [PMID: 23328305 DOI: 10.1016/j.yexcr.2013.01.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2012] [Accepted: 01/07/2013] [Indexed: 12/16/2022]
Affiliation(s)
- Inbal Avraham-Davidi
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | |
Collapse
|
30
|
Kimura K, Takada M, Ishii T, Tsuji-Naito K, Akagawa M. Pyrroloquinoline quinone stimulates epithelial cell proliferation by activating epidermal growth factor receptor through redox cycling. Free Radic Biol Med 2012; 53:1239-51. [PMID: 22824864 DOI: 10.1016/j.freeradbiomed.2012.07.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Revised: 07/02/2012] [Accepted: 07/16/2012] [Indexed: 01/08/2023]
Abstract
Pyrroloquinoline quinone (PQQ), a redox cofactor for bacterial dehydrogenases, has been implicated to be an important nutrient in mammals functioning as a potent growth factor. However, the underlying molecular mechanisms have not been elucidated. The present study revealed that PQQ induces the activation (tyrosine autophosphorylation) of epidermal growth factor receptor (EGFR) and its downstream signaling in a ligand-independent manner, leading to increased cellular proliferation in an epithelial cell line A431. PQQ inhibited protein tyrosine phosphatase 1B (PTP1B), which negatively regulates the EGFR signaling by tyrosine dephosphorylation, to oxidatively modify the catalytic cysteine through its redox cycling activity to generate H(2)O(2). PQQ-inducible intracellular ROS production and EGFR activation were significantly suppressed by the pre-treatment with antioxidants. The intracellular redox state regulates the EGFR signaling through the redox-sensitive catalytic cysteine of PTP1B and modulates cell proliferation. Our data suggest that PQQ may stimulate epithelial cell proliferation by activating EGFR by oxidation and subsequent inactivation of PTP1B via its redox cycling. Our results provide novel insight into the mechanisms by which PQQ may function as a growth factor to contribute to mammalian growth.
Collapse
Affiliation(s)
- Kazuki Kimura
- Department of Biological Chemistry, Division of Applied Life Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai 599-8531, Japan
| | | | | | | | | |
Collapse
|
31
|
Lee S, Springstead JR, Parks BW, Romanoski CE, Palvolgyi R, Ho T, Nguyen P, Lusis AJ, Berliner JA. Metalloproteinase processing of HBEGF is a proximal event in the response of human aortic endothelial cells to oxidized phospholipids. Arterioscler Thromb Vasc Biol 2012; 32:1246-54. [PMID: 22402363 DOI: 10.1161/atvbaha.111.241257] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
OBJECTIVE Atherosclerosis is a chronic inflammatory disease initiated by monocyte recruitment and retention in the vessel wall. An important mediator of monocyte endothelial interaction is the chemokine interleukin (IL)-8. The oxidation products of phospholipids, including oxidized 1-palmitoyl-2-arachidonyl-sn-glycerol-3-phosphocholine (Ox-PAPC), accumulate in atherosclerotic lesions and strongly induce IL-8 in human aortic endothelial cells (HAECs). The goal of this study was to identify the proximal events leading to induction of IL-8 by Ox-PAPC in vascular endothelial cells. METHODS AND RESULTS In a systems genetics analysis of HAECs isolated from 96 different human donors, we showed that heparin-binding EGF-like growth factor (HBEGF) transcript levels are strongly correlated to IL-8 induction by Ox-PAPC. The silencing and overexpression of HBEGF in HAECs confirmed the role of HBEGF in regulating IL-8 expression. HBEGF has been shown to be stored in an inactive form and activation is dependent on processing by a dysintegrin and metalloproteinases (ADAM) to a form that can activate the epidermal growth factor (EGF) receptor. Ox-PAPC was shown to rapidly induce HBEGF processing and EGF receptor activation in HAECs. Using siRNA we identified 3 ADAMs that regulate IL-8 induction and directly demonstrated that Ox-PAPC increases ADAM activity in the cells using a substrate cleavage assay. We provide evidence for one mechanism of Ox-PAPC activation of ADAM involving covalent binding of Ox-PAPC to cysteine on ADAM. Free thiol cysteine analogs showed inhibition of IL-8 induction by Ox-PAPC, and both a cysteine analog and a cell surface thiol blocker strongly inhibited ADAM activity induction by Ox-PAPC. Using microarray analyses, we determined that this ADAM pathway may regulate at least 30% of genes induced by Ox-PAPC in HAECs. CONCLUSIONS This study is the first report demonstrating a role for the ADAM-HBEGF-EGF receptor axis in Ox-PAPC induction of IL-8 in HAECs. These studies highlight a role for specific ADAMs as initiators of Ox-PAPC action and provide evidence for a role of covalent interaction of Ox-PAPC in activation of ADAMs.
Collapse
Affiliation(s)
- Sangderk Lee
- Department of Pathology, University of California-Los Angeles, Los Angeles, CA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Osada-Oka M, Kita H, Yagi S, Sato T, Izumi Y, Iwao H. Angiotensin AT1 receptor blockers suppress oxidized low-density lipoprotein-derived formation of foam cells. Eur J Pharmacol 2012; 679:9-15. [DOI: 10.1016/j.ejphar.2011.12.044] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Revised: 12/19/2011] [Accepted: 12/28/2011] [Indexed: 10/14/2022]
|
33
|
Winczura A, Zdżalik D, Tudek B. Damage of DNA and proteins by major lipid peroxidation products in genome stability. Free Radic Res 2012; 46:442-59. [PMID: 22257221 DOI: 10.3109/10715762.2012.658516] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Oxidative stress and lipid peroxidation (LPO) accompanying infections and chronic inflammation may induce several human cancers. LPO products are characterized by carbohydrate chains of different length, reactive aldehyde groups and double bonds, which make these molecules reactive to nucleic acids, proteins and cellular thiols. LPO-derived adducts to DNA bases form etheno-type and propano-type exocyclic rings, which have profound mutagenic potential, and are elevated in several cancer-prone diseases. Adducts of long chain LPO products to DNA bases inhibit transcription. Elimination from DNA of LPO-induced lesions is executed by several repair systems: base excision repair (BER), direct reversal by AlkB family proteins, nucleotide excision repair (NER) and recombination. Modifications of proteins with LPO products may regulate cellular processes like apoptosis, cell signalling and senescence. This review summarizes consequences of LPO products' presence in cell, particularly 4-hydroxy-2-nonenal, in terms of genomic stability.
Collapse
Affiliation(s)
- Alicja Winczura
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 02-106 Warsaw, Poland
| | | | | |
Collapse
|
34
|
Abstract
Reactive oxygen species (ROS) are produced by living organisms as a result of normal cellular metabolism and environmental factors, such as air pollutants or cigarette smoke. ROS are highly reactive molecules and can damage cell structures such as carbohydrates, nucleic acids, lipids, and proteins and alter their functions. The shift in the balance between oxidants and antioxidants in favor of oxidants is termed “oxidative stress.” Regulation of reducing and oxidizing (redox) state is critical for cell viability, activation, proliferation, and organ function. Aerobic organisms have integrated antioxidant systems, which include enzymatic and nonenzymatic antioxidants that are usually effective in blocking harmful effects of ROS. However, in pathological conditions, the antioxidant systems can be overwhelmed. Oxidative stress contributes to many pathological conditions and diseases, including cancer, neurological disorders, atherosclerosis, hypertension, ischemia/perfusion, diabetes, acute respiratory distress syndrome, idiopathic pulmonary fibrosis, chronic obstructive pulmonary disease, and asthma. In this review, we summarize the cellular oxidant and antioxidant systems and discuss the cellular effects and mechanisms of the oxidative stress.
Collapse
|
35
|
Flora SJS. Arsenic-induced oxidative stress and its reversibility. Free Radic Biol Med 2011; 51:257-281. [PMID: 21554949 DOI: 10.1016/j.freeradbiomed.2011.04.008] [Citation(s) in RCA: 572] [Impact Index Per Article: 40.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2010] [Revised: 03/18/2011] [Accepted: 04/04/2011] [Indexed: 12/12/2022]
Abstract
This review summarizes the literature describing the molecular mechanisms of arsenic-induced oxidative stress, its relevant biomarkers, and its relation to various diseases, including preventive and therapeutic strategies. Arsenic alters multiple cellular pathways including expression of growth factors, suppression of cell cycle checkpoint proteins, promotion of and resistance to apoptosis, inhibition of DNA repair, alterations in DNA methylation, decreased immunosurveillance, and increased oxidative stress, by disturbing the pro/antioxidant balance. These alterations play prominent roles in disease manifestation, such as carcinogenicity, genotoxicity, diabetes, cardiovascular and nervous systems disorders. The exact molecular and cellular mechanisms involved in arsenic toxicity are rather unrevealed. Arsenic alters cellular glutathione levels either by utilizing this electron donor for the conversion of pentavalent to trivalent arsenicals or directly binding with it or by oxidizing glutathione via arsenic-induced free radical generation. Arsenic forms oxygen-based radicals (OH(•), O(2)(•-)) under physiological conditions by directly binding with critical thiols. As a carcinogen, it acts through epigenetic mechanisms rather than as a classical mutagen. The carcinogenic potential of arsenic may be attributed to activation of redox-sensitive transcription factors and other signaling pathways involving nuclear factor κB, activator protein-1, and p53. Modulation of cellular thiols for protection against reactive oxygen species has been used as a therapeutic strategy against arsenic. N-acetylcysteine, α-lipoic acid, vitamin E, quercetin, and a few herbal extracts show prophylactic activity against the majority of arsenic-mediated injuries in both in vitro and in vivo models. This review also updates the reader on recent advances in chelation therapy and newer therapeutic strategies suggested to treat arsenic-induced oxidative damage.
Collapse
Affiliation(s)
- Swaran J S Flora
- Division of Pharmacology & Toxicology, Defence Research and Development Establishment, Jhansi Road, Gwalior 474002, India.
| |
Collapse
|
36
|
Negre-Salvayre A, Auge N, Ayala V, Basaga H, Boada J, Brenke R, Chapple S, Cohen G, Feher J, Grune T, Lengyel G, Mann GE, Pamplona R, Poli G, Portero-Otin M, Riahi Y, Salvayre R, Sasson S, Serrano J, Shamni O, Siems W, Siow RCM, Wiswedel I, Zarkovic K, Zarkovic N. Pathological aspects of lipid peroxidation. Free Radic Res 2010; 44:1125-71. [PMID: 20836660 DOI: 10.3109/10715762.2010.498478] [Citation(s) in RCA: 490] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Lipid peroxidation (LPO) product accumulation in human tissues is a major cause of tissular and cellular dysfunction that plays a major role in ageing and most age-related and oxidative stress-related diseases. The current evidence for the implication of LPO in pathological processes is discussed in this review. New data and literature review are provided evaluating the role of LPO in the pathophysiology of ageing and classically oxidative stress-linked diseases, such as neurodegenerative diseases, diabetes and atherosclerosis (the main cause of cardiovascular complications). Striking evidences implicating LPO in foetal vascular dysfunction occurring in pre-eclampsia, in renal and liver diseases, as well as their role as cause and consequence to cancer development are addressed.
Collapse
|
37
|
Vatsyayan R, Chaudhary P, Sharma A, Sharma R, Rao Lelsani PC, Awasthi S, Awasthi YC. Role of 4-hydroxynonenal in epidermal growth factor receptor-mediated signaling in retinal pigment epithelial cells. Exp Eye Res 2010; 92:147-54. [PMID: 21134369 DOI: 10.1016/j.exer.2010.11.010] [Citation(s) in RCA: 212] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Revised: 11/22/2010] [Accepted: 11/23/2010] [Indexed: 11/17/2022]
Abstract
Lipid peroxidation (LPO) end-product 4-hydroxynonenal (4-HNE) has been implicated in the mechanism of retinopathy. Lately it has been shown that besides being cytotoxic, 4-HNE plays an important role in oxidative stress-induced signaling. In this study, we have investigated the effect of 4-HNE on epidermal growth factor receptor (EGFR)-mediated signaling, its potential functional consequences, and the regulatory role of the 4-HNE metabolizing isozymes, glutathione S-transferase A4-4 (GSTA4-4) on this signaling in retinal pigment epithelial (RPE) cells. Our results showed that consistent with its known toxicity at relatively higher concentrations, 4-HNE induced cell death in RPE. However, at lower concentrations (as low as 0.1 μM) 4-HNE triggered phosphorylation of EGFR and activation of its down stream signaling components ERK1/2 and Akt that are known to be involved in cell proliferation. These effects of 4-HNE on EGFR could be attenuated by the over expression of GSTA4-4 that reduces intracellular levels of 4-HNE. Our results also indicated that 4-HNE-induced activation of EGFR is a protective mechanism against oxidative stress because EGFR, MEK, and PI3K inhibitors potentiated the toxicity of 4-HNE and also inhibited wound healing in a RPE cell model. These studies suggest that as an initial response to oxidative stress, 4-HNE induces protective mechanism(s) in RPE cells through EGFR-mediated signaling.
Collapse
Affiliation(s)
- Rit Vatsyayan
- Department of Molecular Biology and Immunology, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, TX 76107, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Cavalheiro RA, Marin RM, Rocco SA, Cerqueira FM, Caldeira da Silva CC, Rittner R, Kowaltowski AJ, Vercesi AE, Franchini KG, Castilho RF. Potent cardioprotective effect of the 4-anilinoquinazoline derivative PD153035: involvement of mitochondrial K(ATP) channel activation. PLoS One 2010; 5:e10666. [PMID: 20498724 PMCID: PMC2871796 DOI: 10.1371/journal.pone.0010666] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2009] [Accepted: 04/27/2010] [Indexed: 11/21/2022] Open
Abstract
Background The aim of the present study was to evaluate the protective effects of the 4-anilinoquinazoline derivative PD153035 on cardiac ischemia/reperfusion and mitochondrial function. Methodology/Principal Findings Perfused rat hearts and cardiac HL-1 cells were used to determine cardioprotective effects of PD153035. Isolated rat heart mitochondria were studied to uncover mechanisms of cardioprotection. Nanomolar doses of PD153035 strongly protect against heart and cardiomyocyte damage induced by ischemia/reperfusion and cyanide/aglycemia. PD153035 did not alter oxidative phosphorylation, nor directly prevent Ca2+ induced mitochondrial membrane permeability transition. The protective effect of PD153035 on HL-1 cells was also independent of AKT phosphorylation state. Interestingly, PD153035 activated K+ transport in isolated mitochondria, in a manner prevented by ATP and 5-hydroxydecanoate, inhibitors of mitochondrial ATP-sensitive K+ channels (mitoKATP). 5-Hydroxydecanoate also inhibited the cardioprotective effect of PD153035 in cardiac HL-1 cells, demonstrating that this protection is dependent on mitoKATP activation. Conclusions/Significance We conclude that PD153035 is a potent cardioprotective compound and acts in a mechanism involving mitoKATP activation.
Collapse
Affiliation(s)
- Renata A. Cavalheiro
- Departamento de Patologia Clínica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, Brazil
| | - Rodrigo M. Marin
- Departamento de Clínica Médica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, Brazil
| | - Silvana A. Rocco
- Departamento de Clínica Médica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, Brazil
| | - Fernanda M. Cerqueira
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | | | - Roberto Rittner
- Departamento de Química Orgânica, Instituto de Química, Universidade Estadual de Campinas, Campinas, Brazil
| | - Alicia J. Kowaltowski
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Anibal E. Vercesi
- Departamento de Patologia Clínica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, Brazil
| | - Kleber G. Franchini
- Departamento de Clínica Médica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, Brazil
- * E-mail: (RFC); (KGF)
| | - Roger F. Castilho
- Departamento de Patologia Clínica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, Brazil
- * E-mail: (RFC); (KGF)
| |
Collapse
|
39
|
Sangle GV, Shen GX. Signaling mechanisms for oxidized LDL-induced oxidative stress and the upregulation of plasminogen activator inhibitor-1 in vascular cells. ACTA ACUST UNITED AC 2010. [DOI: 10.2217/clp.10.6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
40
|
Shafi S, Lamb D, Modjtahedi H, Ferns G. Periadventitial delivery of anti-EGF receptor antibody inhibits neointimal macrophage accumulation after angioplasty in a hypercholesterolaemic rabbit. Int J Exp Pathol 2009; 91:224-34. [PMID: 20002649 DOI: 10.1111/j.1365-2613.2009.00700.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Monocyte recruitment and their differentiation into macrophages are both early events in native and accelerated atherosclerosis that follows angioplasty. We have investigated the putative functional role of the epidermal growth factor receptor (EGFR) present on rabbit monocytes/macrophages. The impact of periadventitial delivery of an EGFR-specific, blocking monoclonal antibody (ICR62, which inhibits EGF-binding to its receptor) was investigated in a rabbit model of accelerated atherosclerosis induced by a combination of carotid injury and 4 weeks of a 2% cholesterol-diet. Two weeks after the initiation of the diet, a balloon-catheter angioplasty of the left common carotid artery was performed and a collar placed around the injured carotid artery immediately, for the delivery of ICR62 antibody, isotype-matched antibody or saline control. Monocyte/macrophage accumulation, cell proliferation and neointimal thickening were determined 2 weeks after the delivery of the antibodies. The function of the EGFR on rabbit monocytes was also investigated in vitro, using chemotaxis assays. Treatment with ICR62 was associated with a significant reduction in macrophage accumulation and neointimal thickening and a 76% reduction in neointimal area of the vessel wall compared with controls. In vitro ICR62 inhibited macrophage and smooth muscle cell migration towards EGFR ligands including EGF and HB-EGF. These findings suggest that EGFR ligation may be important in the development of early atherosclerotic lesions following balloon-catheter angioplasty, and periadventitial delivery may provide a feasible approach for administration of the inhibitors of EGFR-binding such as ICR62.
Collapse
Affiliation(s)
- Shahida Shafi
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK.
| | | | | | | |
Collapse
|
41
|
Mazière C, Mazière JC. Activation of transcription factors and gene expression by oxidized low-density lipoprotein. Free Radic Biol Med 2009; 46:127-37. [PMID: 18996472 DOI: 10.1016/j.freeradbiomed.2008.10.024] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2008] [Revised: 06/26/2008] [Accepted: 10/01/2008] [Indexed: 11/25/2022]
Abstract
It is well recognized that oxidized LDL (OxLDL) plays a crucial role in the initiation and progression of atherosclerosis. Many biological effects of OxLDL are mediated through signaling pathways, especially via the activation of transcription factors, which in turn stimulate the expression of genes involved in the inflammatory and oxidative stress response or in cell cycle regulation. In this review, we will discuss the various transcription factors activated by OxLDL, the studied cell types, the active compounds of the OxLDL particle, and the downstream genes when identified. Identification of the transcription factors and some of the downstream genes regulated by OxLDL has helped us understand the molecular mechanism involved in generation of the atherosclerotic plaque.
Collapse
Affiliation(s)
- Cécile Mazière
- Biochemistry Laboratory, North Hospital, University of Picardie-Jules Verne, and INSERM, ERI 12, Amiens F-80000, France.
| | | |
Collapse
|
42
|
Pamplona R. Membrane phospholipids, lipoxidative damage and molecular integrity: A causal role in aging and longevity. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2008; 1777:1249-62. [DOI: 10.1016/j.bbabio.2008.07.003] [Citation(s) in RCA: 207] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2008] [Revised: 07/16/2008] [Accepted: 07/17/2008] [Indexed: 10/21/2022]
|
43
|
Ciencewicki J, Trivedi S, Kleeberger SR. Oxidants and the pathogenesis of lung diseases. J Allergy Clin Immunol 2008; 122:456-68; quiz 469-70. [PMID: 18774381 PMCID: PMC2693323 DOI: 10.1016/j.jaci.2008.08.004] [Citation(s) in RCA: 278] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2008] [Revised: 08/05/2008] [Accepted: 08/07/2008] [Indexed: 12/31/2022]
Abstract
The increasing number of population-based and epidemiologic associations between oxidant pollutant exposures and cardiopulmonary disease exacerbation, decrements in pulmonary function, and mortality underscores the important detrimental effects of oxidants on public health. Because inhaled oxidants initiate a number of pathologic processes, including inflammation of the airways, which may contribute to the pathogenesis and/or exacerbation of airways disease, it is critical to understand the mechanisms through which exogenous and endogenous oxidants interact with molecules in the cells, tissues, and epithelial lining fluid of the lung. Furthermore, it is clear that interindividual variation in response to a given exposure also exists across an individual lifetime. Because of the potential impact that oxidant exposures may have on reproductive outcomes and infant, child, and adult health, identification of the intrinsic and extrinsic factors that may influence susceptibility to oxidants remains an important issue. In this review, we discuss mechanisms of oxidant stress in the lung, the role of oxidants in lung disease pathogenesis and exacerbation (eg, asthma, chronic obstructive pulmonary disease, and acute respiratory distress syndrome), and the potential risk factors (eg, age, genetics) for enhanced susceptibility to oxidant-induced disease.
Collapse
Affiliation(s)
- Jonathan Ciencewicki
- Laboratory of Respiratory Biology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | | | | |
Collapse
|
44
|
Abstract
A growing body of evidence suggests that many of the effects of vascular dysfunction on cardiovascular diseases are mediated by the products of nonenzymatic reactions, such as the peroxidative degradation of polyunsaturated fatty acids (ie, lipid peroxidation). These degradation products are electrophilic reactive compounds and are thought to have a major impact on human health and lifespan by acting on proteins and genes. The oxidized lipids bound to the biomacromolecules can be detected as constituents in human patients with increased risk factors or clinical manifestations of lifestyle-related diseases, such as atherosclerosis. However, it appears that there are several sensor mechanisms in which specific cellular proteins directly interact with these electrophilic molecules. Moreover, a number of lipid peroxidation products have been shown as inducers for activation of the redox-related cell signaling mechanism, which integrate with other signaling pathways to control cellular responses to extracellular stimuli.
Collapse
|
45
|
Lundstam U, Hägg U, Sverrisdottir YB, Svensson LET, Gan LM. Epidermal growth factor levels are related to diastolic blood pressure and carotid artery stiffness. SCAND CARDIOVASC J 2008; 41:308-12. [PMID: 17852780 DOI: 10.1080/14017430701439508] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
OBJECTIVES The epidermal growth factor (EGF) is believed to be involved in vascular remodelling. EGF receptors are expressed in human atherosclerotic tissue. DESIGN In order to study the role of EGF in vascular remodelling and early progression of atherosclerosis, 17 men and 16 women aged 20 to 45 years were recruited. Common Carotid Artery Stiffness index (CCA SI) and blood pressure were evaluated. In addition, serum levels of EGF and blood lipids were measured. RESULTS The levels of serum EGF were significantly correlated to diastolic blood pressure (p<0.05) and CCA SI (p<0.05). Subjects with EGF concentrations in the upper median had significantly lower levels of HDL (High Density Lipoproteins) (p<0.05) and ApoA1 (Apolipoprotein) (p<0.05) than those with EGF concentrations in the lower median. DISCUSSION High serum level of EGF is associated with elevated diastolic blood pressure and increased vessel stiffness suggesting a possible functional role of EGF in the cardiovascular system in a healthy population.
Collapse
Affiliation(s)
- Ulf Lundstam
- Department of Physiology, Institute of Physiology and Pharmacology, The Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden
| | | | | | | | | |
Collapse
|
46
|
Poli G, Schaur R, Siems W, Leonarduzzi G. 4-Hydroxynonenal: A membrane lipid oxidation product of medicinal interest. Med Res Rev 2008; 28:569-631. [DOI: 10.1002/med.20117] [Citation(s) in RCA: 509] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
47
|
Negre-Salvayre A, Coatrieux C, Ingueneau C, Salvayre R. Advanced lipid peroxidation end products in oxidative damage to proteins. Potential role in diseases and therapeutic prospects for the inhibitors. Br J Pharmacol 2007; 153:6-20. [PMID: 17643134 PMCID: PMC2199390 DOI: 10.1038/sj.bjp.0707395] [Citation(s) in RCA: 631] [Impact Index Per Article: 35.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Reactive carbonyl compounds (RCCs) formed during lipid peroxidation and sugar glycoxidation, namely Advanced lipid peroxidation end products (ALEs) and Advanced Glycation end products (AGEs), accumulate with ageing and oxidative stress-related diseases, such as atherosclerosis, diabetes or neurodegenerative diseases. RCCs induce the 'carbonyl stress' characterized by the formation of adducts and cross-links on proteins, which progressively leads to impaired protein function and damages in all tissues, and pathological consequences including cell dysfunction, inflammatory response and apoptosis. The prevention of carbonyl stress involves the use of free radical scavengers and antioxidants that prevent the generation of lipid peroxidation products, but are inefficient on pre-formed RCCs. Conversely, carbonyl scavengers prevent carbonyl stress by inhibiting the formation of protein cross-links. While a large variety of AGE inhibitors has been developed, only few carbonyl scavengers have been tested on ALE-mediated effects. This review summarizes the signalling properties of ALEs and ALE-precursors, their role in the pathogenesis of oxidative stress-associated diseases, and the different agents efficient in neutralizing ALEs effects in vitro and in vivo. The generation of drugs sharing both antioxidant and carbonyl scavenger properties represents a new therapeutic challenge in the treatment of carbonyl stress-associated diseases.
Collapse
Affiliation(s)
- A Negre-Salvayre
- INSERM U858, IFR-31 and Biochemistry Department, CHU Rangueil, University Toulouse-3, Toulouse, France.
| | | | | | | |
Collapse
|
48
|
Dentelli P, Rosso A, Zeoli A, Gambino R, Pegoraro L, Pagano G, Falcioni R, Brizzi MF. Oxidative stress-mediated mesangial cell proliferation requires RAC-1/reactive oxygen species production and beta4 integrin expression. J Biol Chem 2007; 282:26101-10. [PMID: 17604276 DOI: 10.1074/jbc.m703132200] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Lipid abnormalities and oxidative stress, by stimulating mesangial cell (MC) proliferation, can contribute to the development of diabetes-associated renal disease. In this study we investigated the molecular events elicited by oxidized low density lipoproteins (ox-LDL) in MC. We demonstrate that in MC cultured in the presence of ox-LDL, survival and mitogenic signals on Akt and Erk1/2 MAPK pathways are induced, respectively. Moreover, as shown by the expression of the dominant negative Rac-1 construct, we first report that ox-LDL-mediated cell survival and cell cycle progression depend on Rac-1 GTPase-mediated reactive oxygen species production and on epidermal growth factor receptor transactivation. By silencing Akt and blocking Erk1/2 MAPK pathways, we also demonstrate that these signals are downstream to Rac-1/reactive oxygen species production and epidermal growth factor receptor activation. Finally, by endogenous depletion of beta4 integrin, expressed in MC, we provide evidence that the expression of this adhesion molecule is essential for ox-LDL-mediated MC dysfunction. Our data identify a novel signaling pathway involved in oxidative stress-induced diabetes-associated renal disease and provide the rationale for therapeutically targeting beta4 integrin.
Collapse
Affiliation(s)
- Patrizia Dentelli
- Department of Internal Medicine, University of Torino, Corso Dogliotti 14, 10126 Torino, Italy
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Kanayama M, Yamaguchi S, Shibata T, Shibata N, Kobayashi M, Nagai R, Arai H, Takahashi K, Uchida K. Identification of a serum component that regulates cyclooxygenase-2 gene expression in cooperation with 4-hydroxy-2-nonenal. J Biol Chem 2007; 282:24166-74. [PMID: 17581812 DOI: 10.1074/jbc.m703212200] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Atherosclerosis is a disorder of lipid metabolism as well as a chronic inflammatory disease. Cyclooxygenase-2 (COX-2), an inducible isoform responsible for high levels of prostaglandin production during inflammation and immune responses, mediates a variety of biological actions involved in vascular pathophysiology. We have previously shown that COX-2 gene expression is dramatically induced by a lipid-derived endogenous electrophile, 4-hydroxy-2-nonenal (HNE) (Kumagai, T., Matsukawa, N., Kaneko, Y., Kusumi, Y., Mitsumata, M., and Uchida, K. (2004) J. Biol. Chem. 279, 48389-48396). In the present study, based on the finding that HNE induced COX-2 expression only in the serum-containing media, we characterized a serum component essential for the HNE-induced COX-2 induction and found that low density lipoprotein (LDL) that had been denatured by freeze-thawing or oxidized LDL might be involved in the COX-2 induction. Moreover, we characterized the cellular events triggered by the combined stimulus of HNE and oxidized LDL and established that COX-2 induction is regulated by two sets of signaling mechanisms, one for the up-regulation of the scavenger receptor CD36 by HNE and one for the CD36-mediated COX induction by oxidized LDL. These findings represent a demonstration of a link between lipoprotein modification and activation of the inflammatory potential of macrophages.
Collapse
Affiliation(s)
- Masaya Kanayama
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Negre-Salvayre A, Dousset N, Ferretti G, Bacchetti T, Curatola G, Salvayre R. Antioxidant and cytoprotective properties of high-density lipoproteins in vascular cells. Free Radic Biol Med 2006; 41:1031-40. [PMID: 16962927 DOI: 10.1016/j.freeradbiomed.2006.07.006] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2006] [Revised: 07/03/2006] [Accepted: 07/05/2006] [Indexed: 11/26/2022]
Abstract
Beside their key role in the regulation of cholesterol homeostasis, HDL exhibit antioxidant and anti-inflammatory properties that participate to their general antiatherogenic effect. The purpose of this review is to summarize the recent findings on antioxidant activity and cytoprotective cell signalling elicited by HDL against oxidized LDL and proatherogenic agents in vascular cells. HDL exhibit an antioxidant activity efficient to prevent LDL oxidation, or to inactivate newly formed lipid oxidation products. The antioxidant ability of HDL is due to the apoprotein moiety and to the presence of associated enzymes, paraoxonase and PAF-Acetyl Hydrolase. HDL prevent the intracellular oxidative stress and the inflammatory response elicited by oxidized LDL (ox-LDL), by inhibiting the NFkappaB signalling pathway, and the subsequent inflammatory events (expression of adhesion molecules, recruitment and proliferation of mononuclear cells within the vascular wall). HDL prevent ox-LDL-mediated cell activation and proliferation, this being also attributed to the presence in HDL of sphingosine-1 phosphate which modulates the migration and survival of vascular cells. Lastly, HDL inhibit apoptosis elicited by ox-LDL in vascular cells. Recent evidences indicate that, beside their strong antiatherogenic properties, HDL could exert their protective effect in diseases generally associated to inflammatory events.
Collapse
|