1
|
Fitriana W, Sakai T, Duan L, Hengphasatporn K, Shigeta Y, Mashima T, Uda T, Hifumi E, Hirota S. Experimental and Computational Studies on Domain-Swapped Structure Stabilization of an Antibody Light Chain by Disulfide Bond Introduction. J Med Chem 2024; 67:22313-22321. [PMID: 39656517 DOI: 10.1021/acs.jmedchem.4c02570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Development of different platforms would be useful for designing functional antibodies to improve the efficiency of antibody-based drugs. Three-dimensional domain swapping (3D-DS) may occur in the variable region of antibody light chain #4C214A, and a pair of domain-swapped dimers may interact with each other to form a tetramer. In this study, to stabilize the 3D-DS dimer structure in #4C214A, Val2 in strand A (swapping region) and Thr97 in strand G were replaced with Cys residues, generating #4 V2C/T97C/C214A with a Cys2-Cys97 disulfide bond that cross-links strands A and G of different protomers. The #4 V2C/T97C/C214A tetramer did not dissociate into monomers at low protein concentration (6 μM); however, some of the tetramers were converted to monomers by disulfide bond reduction. Two-dimensional free energy profile analysis for the tetramerization of two 3D-DS dimers was performed by molecular dynamics simulation. These results show that disulfide bond introduction is useful for controlling the dimerization/dissociation of the variable region through 3D-DS.
Collapse
Affiliation(s)
- Wahyu Fitriana
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Takahiro Sakai
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Lian Duan
- Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
- Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan
| | - Kowit Hengphasatporn
- Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Yasuteru Shigeta
- Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Tsuyoshi Mashima
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
- Medilux Research Center, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Taizo Uda
- Nanotechnology Laboratory, Institute of Systems, Information Technologies and Nanotechnologies (ISIT), 4-1 Kyudai-Shinmachi, Fukuoka 879-5593, Japan
| | - Emi Hifumi
- Institute for Research Management, Oita University, 700 Dannoharu, Oita-Shi, Oita 870-1192, Japan
| | - Shun Hirota
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| |
Collapse
|
2
|
Sakai T, Mashima T, Kobayashi N, Ogata H, Duan L, Fujiki R, Hengphasatporn K, Uda T, Shigeta Y, Hifumi E, Hirota S. Structural and thermodynamic insights into antibody light chain tetramer formation through 3D domain swapping. Nat Commun 2023; 14:7807. [PMID: 38065949 PMCID: PMC10709643 DOI: 10.1038/s41467-023-43443-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 11/07/2023] [Indexed: 12/18/2023] Open
Abstract
Overexpression of antibody light chains in small plasma cell clones can lead to misfolding and aggregation. On the other hand, the formation of amyloid fibrils from antibody light chains is related to amyloidosis. Although aggregation of antibody light chain is an important issue, atomic-level structural examinations of antibody light chain aggregates are sparse. In this study, we present an antibody light chain that maintains an equilibrium between its monomeric and tetrameric states. According to data from X-ray crystallography, thermodynamic and kinetic measurements, as well as theoretical studies, this antibody light chain engages in 3D domain swapping within its variable region. Here, a pair of domain-swapped dimers creates a tetramer through hydrophobic interactions, facilitating the revelation of the domain-swapped structure. The negative cotton effect linked to the β-sheet structure, observed around 215 nm in the circular dichroism (CD) spectrum of the tetrameric variable region, is more pronounced than that of the monomer. This suggests that the monomer contains less β-sheet structures and exhibits greater flexibility than the tetramer in solution. These findings not only clarify the domain-swapped structure of the antibody light chain but also contribute to controlling antibody quality and advancing the development of future molecular recognition agents and drugs.
Collapse
Affiliation(s)
- Takahiro Sakai
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 630-0192, Japan
| | - Tsuyoshi Mashima
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 630-0192, Japan
| | - Naoya Kobayashi
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 630-0192, Japan
| | - Hideaki Ogata
- Graduate School of Science, University of Hyogo, 3-2-1 Koto, Kamigori-cho, Ako-gun, Hyogo, 678-1297, Japan
| | - Lian Duan
- Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
- Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8571, Japan
| | - Ryo Fujiki
- Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Kowit Hengphasatporn
- Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Taizo Uda
- Nanotechnology Laboratory, Institute of Systems, Information Technologies and Nanotechnologies (ISIT), 4‑1 Kyudai‑Shinmachi, Fukuoka, 879‑5593, Japan
| | - Yasuteru Shigeta
- Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Emi Hifumi
- Institute for Research Management, Oita University, 700 Dannoharu, Oita-shi, Oita, 870‑1192, Japan
| | - Shun Hirota
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 630-0192, Japan.
| |
Collapse
|
3
|
Song C, Li H, Zheng C, Zhang T, Zhang Y. Dual Efficacy of a Catalytic Anti-Oligomeric Aβ42 scFv Antibody in Clearing Aβ42 Aggregates and Reducing Aβ Burden in the Brains of Alzheimer's Disease Mice. Mol Neurobiol 2023; 60:5515-5532. [PMID: 37326904 DOI: 10.1007/s12035-023-03406-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/25/2023] [Indexed: 06/17/2023]
Abstract
One of the primary pathological mechanisms underlying Alzheimer's disease (AD) is the deposition of amyloid β-protein (Aβ42) aggregates in the brain. In this study, a catalytic anti-oligomeric Aβ42 scFv antibody, HS72, was identified by screening a human antibody library, its ability to degrade Aβ42 aggregates was defined, and its role in the reduction of Aβ burden in the AD mouse brain was evaluated. HS72 specifically targeted Aβ42 aggregates with an approximately 14-68 kDa range. Based on molecular docking simulations, HS72 likely catalyzed the hydrolytic cleavage of the His13-His14 bond of Aβ42 chains in an Aβ42 aggregate unit, releasing N/C-terminal fragments and Aβ42 monomers. Degradation of Aβ42 aggregates by HS72 triggered a considerable disassembly or breakdown of the Aβ42 aggregates and greatly reduced their neurotoxicity. Aβ deposit/plaque load in the hippocampus of AD mice was reduced by approximately 27% after 7 days (once daily) of intravenous HS72 administration, while brain neural cells were greatly restored and their morphology was drastically improved. The above efficacies of HS72 were all greater than those of HT7, a simple anti-oligomeric Aβ42 scFv antibody. Although a catalytic anti-oligomeric Aβ42 antibody may have a slightly lower affinity for Aβ42 aggregates than a simple anti-oligomeric Aβ42 antibody, the former may display a stronger overall efficacy (dual efficacy of induction and catalysis) than the latter (induction alone) in clearing Aβ42 aggregates and improving histopathological changes in AD brain. Our findings on the catalytic antibody HS72 indicate the possibility of functional evolution of anti-oligomeric Aβ42 antibodies and provide novel insights into the immunotherapy of AD.
Collapse
Affiliation(s)
- Chuli Song
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - He Li
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Changxin Zheng
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Tianyu Zhang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Yingjiu Zhang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China.
| |
Collapse
|
4
|
Catalytic Antibodies: Design, Expression, and Their Applications in Medicine. Appl Biochem Biotechnol 2023; 195:1514-1540. [PMID: 36222989 PMCID: PMC9554387 DOI: 10.1007/s12010-022-04183-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2022] [Indexed: 01/24/2023]
Abstract
Catalytic antibodies made it feasible to develop new catalysts, which had previously been the subject of research. Scientists have discovered natural antibodies that can hydrolyze substrates such as nucleic acids, proteins, and polysaccharides during decades of research, as well as several ways of producing antibodies with specialized characteristics and catalytic functions. These antibodies are widely used in chemistry, biology, and medicine. Catalytic antibodies can continue to play a role and even fully prevent the emergence of autoimmune disorders, especially in the field of infection and immunity, where the process of its occurrence and development often takes a long time. In this work, the development, design and evolution methodologies, and the expression systems and applications of catalytic antibodies, are discussed. Trial registration: not applicable.
Collapse
|
5
|
Obtaining Highly Active Catalytic Antibodies Capable of Enzymatically Cleaving Antigens. Int J Mol Sci 2022; 23:ijms232214351. [PMID: 36430828 PMCID: PMC9697424 DOI: 10.3390/ijms232214351] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022] Open
Abstract
A catalytic antibody has multiple functions compared with a monoclonal antibody because it possesses unique features to digest antigens enzymatically. Therefore, many catalytic antibodies, including their subunits, have been produced since 1989. The catalytic activities often depend on the preparation methods and conditions. In order to elicit the high catalytic activity of the antibodies, the most preferable methods and conditions, which can be generally applicable, must be explored. Based on this view, systematic experiments using two catalytic antibody light chains, #7TR and H34, were performed by varying the purification methods, pH, and chemical reagents. The experimental results obtained by peptidase activity tests and kinetic analysis, revealed that the light chain's high catalytic activity was observed when it was prepared under a basic condition. These data imply that a small structural modulation of the catalytic antibody occurs during the purification process to increase the catalytic activity while the antigen recognition ability is kept constant. The presence of NaCl enhanced the catalytic activity. When the catalytic light chain was prepared with these preferable conditions, #7TR and H34 hugely enhanced the degradation ability of Amyloid-beta and PD-1 peptide, respectively.
Collapse
|
6
|
Skolnick J, Zhou H. Implications of the Essential Role of Small Molecule Ligand Binding Pockets in Protein-Protein Interactions. J Phys Chem B 2022; 126:6853-6867. [PMID: 36044742 PMCID: PMC9484464 DOI: 10.1021/acs.jpcb.2c04525] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/18/2022] [Indexed: 11/28/2022]
Abstract
Protein-protein interactions (PPIs) and protein-metabolite interactions play a key role in many biochemical processes, yet they are often viewed as being independent. However, the fact that small molecule drugs have been successful in inhibiting PPIs suggests a deeper relationship between protein pockets that bind small molecules and PPIs. We demonstrate that 2/3 of PPI interfaces, including antibody-epitope interfaces, contain at least one significant small molecule ligand binding pocket. In a representative library of 50 distinct protein-protein interactions involving hundreds of mutations, >75% of hot spot residues overlap with small molecule ligand binding pockets. Hence, ligand binding pockets play an essential role in PPIs. In representative cases, evolutionary unrelated monomers that are involved in different multimeric interactions yet share the same pocket are predicted to bind the same metabolites/drugs; these results are confirmed by examples in the PDB. Thus, the binding of a metabolite can shift the equilibrium between monomers and multimers. This implicit coupling of PPI equilibria, termed "metabolic entanglement", was successfully employed to suggest novel functional relationships among protein multimers that do not directly interact. Thus, the current work provides an approach to unify metabolomics and protein interactomics.
Collapse
Affiliation(s)
- Jeffrey Skolnick
- Center for the Study of Systems
Biology, School of Biological Sciences, Georgia Institute of Technology, 950 Atlantic Drive, NW, Atlanta, Georgia 30332, United States
| | - Hongyi Zhou
- Center for the Study of Systems
Biology, School of Biological Sciences, Georgia Institute of Technology, 950 Atlantic Drive, NW, Atlanta, Georgia 30332, United States
| |
Collapse
|
7
|
Hifumi E, Taguchi H, Tsuda H, Minagawa T, Nonaka T, Uda T. A new algorithm to convert a normal antibody into the corresponding catalytic antibody. SCIENCE ADVANCES 2020; 6:eaay6441. [PMID: 32232151 PMCID: PMC7096177 DOI: 10.1126/sciadv.aay6441] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 12/31/2019] [Indexed: 06/10/2023]
Abstract
Over thousands of monoclonal antibodies (mAbs) have been produced so far, and it would be valuable if these mAbs could be directly converted into catalytic antibodies. We have designed a system to realize the above concept by deleting Pro95, a highly conserved residue in CDR-3 of the antibody light chain. The deletion of Pro95 is a key contributor to catalytic function of the light chain. The S35 and S38 light chains have identical amino acid sequences except for Pro95. The former, with Pro95 did not show any catalytic activity, whereas the latter, without Pro95, exhibited peptidase activity. To verify the generality of this finding, we tested another light chain, T99wt, which had Pro95 and showed little catalytic activity. In contrast, a Pro95-deleted mutant enzymatically degraded the peptide substrate and amyloid-beta molecule. These two cases demonstrate the potential for a new method of creating catalytic antibodies from the corresponding mAbs.
Collapse
Affiliation(s)
- Emi Hifumi
- Oita University, Research Promotion Institute, 700 Dannoharu, Oita-shi, Oita 870-1192, Japan
| | - Hiroaki Taguchi
- Suzuka University of Medical Science, Faculty of Pharmaceutical Sciences, 3500-3 Minamitamagaki-cho, Suzuka 510-0293, Japan
| | - Haruna Tsuda
- Oita University, Research Promotion Institute, 700 Dannoharu, Oita-shi, Oita 870-1192, Japan
- Oita University, Department of Applied Chemistry, Faculty of Engineering, 700 Dannoharu, Oita-shi, Oita 870-1192, Japan
| | - Tetsuro Minagawa
- Oita University, Research Promotion Institute, 700 Dannoharu, Oita-shi, Oita 870-1192, Japan
- Oita University, Department of Applied Chemistry, Faculty of Engineering, 700 Dannoharu, Oita-shi, Oita 870-1192, Japan
| | - Tamami Nonaka
- Oita University, Research Promotion Institute, 700 Dannoharu, Oita-shi, Oita 870-1192, Japan
| | - Taizo Uda
- Oita University, Research Promotion Institute, 700 Dannoharu, Oita-shi, Oita 870-1192, Japan
- Nanotechnology Laboratory, Institute of Systems, Information Technologies and Nanotechnologies (ISIT), 4-1 Kyudai-shinmachi, Fukuoka 879-5593, Japan
| |
Collapse
|