1
|
Simões RSRM, Teodoro JPST, Gomes PMB, de Andrade Fontes CMG. Bringing the heat: Thermostable analogs of Bst polymerase allow high-temperature LAMP. Eur J Clin Invest 2025:e70071. [PMID: 40356549 DOI: 10.1111/eci.70071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Accepted: 04/25/2025] [Indexed: 05/15/2025]
Abstract
BACKGROUND Loop-mediated isothermal amplification (LAMP) is a nucleic acid amplification method that gained prominence during the early months of the COVID-19 pandemic due to its simplicity, sensitivity and robustness. However, this technique is susceptible to non-specific amplifications, raising concerns about false-positive results and reduced diagnostic accuracy. A primary contributor to false-positive testing is primer dimerization, which can theoretically be mitigated by performing reactions at higher temperatures. Unfortunately, the strand-displacing DNA polymerases typically used in LAMP, such as Bst, exhibit reduced efficiency at elevated temperatures. To address this limitation, we hypothesised that naturally occurring thermophilic analogs of Bst may be capable of supporting LAMP at higher temperatures, thereby improving reaction specificity. METHODS Bioinformatics and recombinant enzyme production allowed the identification and synthesis of several Bst analogs. These were tested in real-time LAMP assays to detect diverse targets, in a wide range of reaction temperatures (63°C-75°C) and in the presence of typical qPCR inhibitors. RESULTS Three polymerases-Bst_7, Bst_8 and Bst_15-demonstrated exceptional activity and robust stability at higher temperature conditions (up to 72.5°C), while displaying considerable resistance to common qPCR inhibitors. CONCLUSIONS The identified thermophilic Bst analogs represent a potential solution for the mitigation of non-specific amplification in LAMP, further boosting the application of this technique in molecular diagnostic settings.
Collapse
Affiliation(s)
- Rita Silva Ramos Madureira Simões
- NZYtech - Genes & Enzymes, Campus do Lumiar, Lisbon, Portugal
- CIISA - Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Lisbon, Portugal
| | | | - Pedro Miguel Bule Gomes
- CIISA - Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Lisbon, Portugal
| | - Carlos Mendes Godinho de Andrade Fontes
- NZYtech - Genes & Enzymes, Campus do Lumiar, Lisbon, Portugal
- CIISA - Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Lisbon, Portugal
| |
Collapse
|
2
|
Kocalar S, Miller BM, Huang A, Gleason E, Martin K, Foley K, Copeland DS, Jewett MC, Saavedra EA, Kraves S. Validation of Cell-Free Protein Synthesis Aboard the International Space Station. ACS Synth Biol 2024; 13:942-950. [PMID: 38442491 PMCID: PMC10949350 DOI: 10.1021/acssynbio.3c00733] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/06/2024] [Accepted: 02/13/2024] [Indexed: 03/07/2024]
Abstract
Cell-free protein synthesis (CFPS) is a rapidly maturing in vitro gene expression platform that can be used to transcribe and translate nucleic acids at the point of need, enabling on-demand synthesis of peptide-based vaccines and biotherapeutics as well as the development of diagnostic tests for environmental contaminants and infectious agents. Unlike traditional cell-based systems, CFPS platforms do not require the maintenance of living cells and can be deployed with minimal equipment; therefore, they hold promise for applications in low-resource contexts, including spaceflight. Here, we evaluate the performance of the cell-free platform BioBits aboard the International Space Station by expressing RNA-based aptamers and fluorescent proteins that can serve as biological indicators. We validate two classes of biological sensors that detect either the small-molecule DFHBI or a specific RNA sequence. Upon detection of their respective analytes, both biological sensors produce fluorescent readouts that are visually confirmed using a hand-held fluorescence viewer and imaged for quantitative analysis. Our findings provide insights into the kinetics of cell-free transcription and translation in a microgravity environment and reveal that both biosensors perform robustly in space. Our findings lay the groundwork for portable, low-cost applications ranging from point-of-care health monitoring to on-demand detection of environmental hazards in low-resource communities both on Earth and beyond.
Collapse
Affiliation(s)
- Selin Kocalar
- Leigh
High School, 5210 Leigh
Ave, San Jose, California 95124, United States
- Massachusetts
Institute of Technology, 77 Massachusetts Ave, Cambridge, Massachusetts 02139, United States
| | - Bess M. Miller
- Division
of Genetics, Brigham and Women’s Hospital, Harvard Medical School, 75 Francis St, Boston, Massachusetts 02115, United States
| | - Ally Huang
- miniPCR
bio, 1770 Massachusetts
Ave, Cambridge, Massachusetts 02140, United States
| | - Emily Gleason
- miniPCR
bio, 1770 Massachusetts
Ave, Cambridge, Massachusetts 02140, United States
| | - Kathryn Martin
- miniPCR
bio, 1770 Massachusetts
Ave, Cambridge, Massachusetts 02140, United States
| | - Kevin Foley
- Boeing
Defense, Space & Security, 6398 Upper Brandon Dr, Houston, Texas 77058, United States
| | - D. Scott Copeland
- Boeing
Defense, Space & Security, 6398 Upper Brandon Dr, Houston, Texas 77058, United States
| | - Michael C. Jewett
- Department
of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Rd, Evanston, Illinois 60208, United States
- Department
of Bioengineering, Stanford University, Stanford, California 94305, United States
| | | | - Sebastian Kraves
- miniPCR
bio, 1770 Massachusetts
Ave, Cambridge, Massachusetts 02140, United States
| |
Collapse
|
3
|
Misquitta K, Miller BM, Malecek K, Gleason E, Martin K, Walesky CM, Foley K, Copeland DS, Saavedra EA, Kraves S. A fluorescence viewer for rapid molecular assay readout in space and low-resource terrestrial environments. PLoS One 2024; 19:e0291158. [PMID: 38489299 PMCID: PMC10942025 DOI: 10.1371/journal.pone.0291158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 12/07/2023] [Indexed: 03/17/2024] Open
Abstract
Fluorescence-based assays provide sensitive and adaptable methods for point of care testing, environmental monitoring, studies of protein abundance and activity, and a wide variety of additional applications. Currently, their utility in remote and low-resource environments is limited by the need for technically complicated or expensive instruments to read out fluorescence signal. Here we describe the Genes in Space Fluorescence Viewer (GiS Viewer), a portable, durable viewer for rapid molecular assay readout that can be used to visualize fluorescence in the red and green ranges. The GiS Viewer can be used to visualize any assay run in standard PCR tubes and contains a heating element. Results are visible by eye or can be imaged with a smartphone or tablet for downstream quantification. We demonstrate the capabilities of the GiS Viewer using two case studies-detection of SARS-CoV-2 RNA using RT-LAMP and quantification of drug-induced changes in gene expression via qRT-PCR on Earth and aboard the International Space Station. We show that the GiS Viewer provides a reliable method to visualize fluorescence in space without the need to return samples to Earth and can further be used to assess the results of RT-LAMP and qRT-PCR assays on Earth.
Collapse
Affiliation(s)
| | - Bess M. Miller
- Division of Genetics, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States of America
| | - Kathryn Malecek
- Massachusetts Institute of Technology, Cambridge, MA, United States of America
| | - Emily Gleason
- miniPCR bio, Cambridge, MA, United States of America
| | | | - Chad M. Walesky
- Division of Genetics, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States of America
| | - Kevin Foley
- Boeing Defense, Space & Security, Berkeley, MO, United States of America
| | - D. Scott Copeland
- Boeing Defense, Space & Security, Berkeley, MO, United States of America
| | | | | |
Collapse
|
4
|
Costa-Ribeiro A, Lamas A, Mora A, Prado M, Garrido-Maestu A. Moving towards on-site detection of Shiga toxin-producing Escherichia coli in ready-to-eat leafy greens. Curr Res Food Sci 2024; 8:100716. [PMID: 38511154 PMCID: PMC10950744 DOI: 10.1016/j.crfs.2024.100716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/01/2024] [Accepted: 03/06/2024] [Indexed: 03/22/2024] Open
Abstract
Rapid identification of Shiga toxin-producing Escherichia coli, or STEC, is of utmost importance to assure the innocuousness of the foodstuffs. STEC have been implicated in outbreaks associated with different types of foods however, among them, ready-to-eat (RTE) vegetables are particularly problematic as they are consumed raw, and are rich in compounds that inhibit DNA-based detection methods such as qPCR. In the present study a novel method based on Loop-mediated isothermal amplification (LAMP) to overcome the limitations associated with current molecular methods for the detection of STEC in RTE vegetables targeting stx1 and stx2 genes. In this sense, LAMP demonstrated to be more robust against inhibitory substances in food. In this study, a comprehensive enrichment protocol was combined with four inexpensive DNA extraction protocols. The one based on silica purification enhanced the performance of the method, therefore it was selected for its implementation in the final method. Additionally, three different detection chemistries were compared, namely real-time fluorescence detection, and two end-point colorimetric strategies, one based on the addition of SYBR Green, and the other based on a commercial colorimetric master mix. After optimization, all three chemistries demonstrated suitable for the detection of STEC in spiked RTE salad samples, as it was possible to reach a LOD50 of 0.9, 1.4, and 7.0 CFU/25 g for the real-time, SYBR and CC LAMP assays respectively. All the performance parameters reached values higher than 90 %, when compared to a reference method based on multiplex qPCR. More specifically, the analytical sensitivity was 100, 90.0 and 100 % for real-time, SYBR and CC LAMP respectively, the specificity 100 % for all three assays, and accuracy 100, 96 and 100 %. Finally, a high degree of concordance was also obtained (1, 0.92 and 1 respectively). Considering the current technological advances, the method reported, using any of the three detection strategies, demonstrated suitable for their implementation in decentralized settings, with low equipment resources.
Collapse
Affiliation(s)
- Ana Costa-Ribeiro
- International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330, Braga, Portugal
- Department of Biochemistry, Genetics and Immunology, University of Vigo, 36310, Vigo, Spain
| | - Alexandre Lamas
- Food Hygiene, Inspection and Control Laboratory (Lhica), Department of Analytical Chemistry, Nutrition, and Bromatology, Veterinary School, Campus Terra, Universidade de Santiago de Compostela (USC), 27002, Lugo, Spain
| | - Azucena Mora
- Laboratorio de Referencia de E. coli (LREC), Dpto. de Microbioloxía e Parasitoloxía, Facultade de Veterinaria, Universidade de Santiago de Compostela (USC), Lugo, Spain
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Santiago, Spain
| | - Marta Prado
- International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330, Braga, Portugal
- Food Hygiene, Inspection and Control Laboratory (Lhica), Department of Analytical Chemistry, Nutrition, and Bromatology, Veterinary School, Campus Terra, Universidade de Santiago de Compostela (USC), 27002, Lugo, Spain
| | - Alejandro Garrido-Maestu
- International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330, Braga, Portugal
- Laboratory of Microbiology and Technology of Marine Products (MicroTEC), Instituto de Investigaciones Marinas (IIM), CSIC, Eduardo Cabello, 6, 36208, Vigo, Spain
| |
Collapse
|
5
|
Gulinaizhaer A, Yang C, Zou M, Ma S, Fan X, Wu G. Detection of monkeypox virus using helicase dependent amplification and recombinase polymerase amplification combined with lateral flow test. Virol J 2023; 20:274. [PMID: 37996921 PMCID: PMC10668421 DOI: 10.1186/s12985-023-02223-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 10/31/2023] [Indexed: 11/25/2023] Open
Abstract
The monkeypox virus (MPXV) is a zoonotic DNA virus that belongs to the poxvirus family. Conventional laboratory methods for detecting MPXV are complex and expensive, making them unsuitable for detecting the virus in regions with limited resources. In this study, we using the Helicase dependent amplification (HDA) method and the Recombinase polymerase amplification (RPA) technique in combination with the lateral flow test (LFT), together with a self-designed qPCR technique for the detection of the MPXV specific conserved fragment F3L, to compare the sensitivity and specificity of the three assays. By analyzing the sensitivity detection results using Probit, it can be seen that the limit of detection (LOD) of the HDA-LFT detection target is 9.86 copies/µL (95% confidence interval, CI 7.52 copies/µL lower bound), the RPA-LFT detection target is 6.97 copies/µL (95% CI 3.90 copies/µL lower bound), and the qPCR detection target is 479.24 copies/mL (95% CI 273.81 copies/mL lower bound). The specificity test results showed that the specificity of the three methods mentioned above was higher than 90% in detecting pseudoviruses of the same genus of MPXV. The simple, highly sensitive, and specific MPXV assay developed in this study is anticipated to provide a solid foundation for future applications in the early screening, diagnosis, and evaluation of the efficacy of MPXV. This is the first time the HDA-LFT assay has been utilized to detect MPXV infection.
Collapse
Affiliation(s)
- Abudushalamu Gulinaizhaer
- Zhongda Hospital, Center of Clinical Laboratory Medicine, Medical School, Southeast University, Nanjing, 210009, People's Republic of China
| | - Chuankun Yang
- Zhongda Hospital, Center of Clinical Laboratory Medicine, Medical School, Southeast University, Nanjing, 210009, People's Republic of China
| | - Mingyuan Zou
- Zhongda Hospital, Center of Clinical Laboratory Medicine, Medical School, Southeast University, Nanjing, 210009, People's Republic of China
| | - Shuo Ma
- Zhongda Hospital, Center of Clinical Laboratory Medicine, Medical School, Southeast University, Nanjing, 210009, People's Republic of China
| | - Xiaobo Fan
- Zhongda Hospital, Center of Clinical Laboratory Medicine, Medical School, Southeast University, Nanjing, 210009, People's Republic of China.
- Diagnostics Department, Medical School of Southeast University, Nanjing, 210009, People's Republic of China.
| | - Guoqiu Wu
- Zhongda Hospital, Center of Clinical Laboratory Medicine, Medical School, Southeast University, Nanjing, 210009, People's Republic of China.
- Diagnostics Department, Medical School of Southeast University, Nanjing, 210009, People's Republic of China.
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Southeast University, Nanjing, 210009, People's Republic of China.
| |
Collapse
|
6
|
Shirshikov FV, Bespyatykh JA. Loop-Mediated Isothermal Amplification: From Theory to Practice. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2022; 48:1159-1174. [PMID: 36590469 PMCID: PMC9788664 DOI: 10.1134/s106816202206022x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/01/2022] [Accepted: 06/17/2022] [Indexed: 12/24/2022]
Abstract
Increasing the accuracy of pathogen identification and reducing the duration of analysis remain relevant for modern molecular diagnostics up to this day. In laboratory and clinical practice, detection of pathogens mostly relies on methods of nucleic acid amplification, among which the polymerase chain reaction (PCR) is considered the "gold standard." Nevertheless, in some cases, isothermal amplification methods act as an alternative to PCR diagnostics. Upon more than thirty years of the development of isothermal DNA synthesis, the appearance of loop-mediated isothermal amplification (LAMP) has enabled new directions of in-field diagnostics of bacterial and viral infections. This review examines the key characteristics of the LAMP method and corresponding features in practice. We discuss the structure of LAMP amplicons with single-stranded loops, which have the sites for primer annealing under isothermal conditions. The latest achievements in the modification of the LAMP method are analyzed, which allow considering it as a unique platform for creating the next-generation diagnostic assays.
Collapse
Affiliation(s)
- F. V. Shirshikov
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
| | - J. A. Bespyatykh
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
| |
Collapse
|
7
|
Tran QD, Tran V, Toh LS, Williams PM, Tran NN, Hessel V. Space Medicines for Space Health. ACS Med Chem Lett 2022; 13:1231-1247. [PMID: 35978686 PMCID: PMC9377000 DOI: 10.1021/acsmedchemlett.1c00681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Scientists from around the world are studying the effects of microgravity and cosmic radiation via the "off-Earth" International Space Station (ISS) laboratory platform. The ISS has helped scientists make discoveries that go beyond the basic understanding of Earth. Over 300 medical experiments have been performed to date, with the goal of extending the knowledge gained for the benefit of humanity. This paper gives an overview of these numerous space medical findings, critically identifies challenges and gaps, and puts the achievements into perspective toward long-term space traveling and also adding benefits to our home planet. The medical contents are trifold structured, starting with the well-being of space travelers (astronaut health studies), followed by medical formulation research under space conditions, and then concluding with a blueprint for space pharmaceutical manufacturing. The review covers essential elements of our Earth-based pharmaceutical research such as drug discovery, drug and formulation stability, drug-organ interaction, drug disintegration/bioavailability/pharmacokinetics, pathogen virulence, genome mutation, and body's resistance. The information compiles clinical, medicinal, biological, and chemical research as well as fundamentals and practical applications.
Collapse
Affiliation(s)
- Quy Don Tran
- School
of Chemical Engineering and Advanced Materials, University of Adelaide, Adelaide 5005, Australia
- Andy
Thomas Centre for Space Resources, University
of Adelaide, Adelaide 5005, Australia
| | - Vienna Tran
- Adelaide
Medical School, University of Adelaide, Adelaide 5005, Australia
| | - Li Shean Toh
- Faculty
of Science, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Philip M. Williams
- Faculty
of Science, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Nam Nghiep Tran
- School
of Chemical Engineering and Advanced Materials, University of Adelaide, Adelaide 5005, Australia
- Andy
Thomas Centre for Space Resources, University
of Adelaide, Adelaide 5005, Australia
- Department
of Chemical Engineering, Can Tho University, Can Tho 900000, Vietnam
| | - Volker Hessel
- School
of Chemical Engineering and Advanced Materials, University of Adelaide, Adelaide 5005, Australia
- Andy
Thomas Centre for Space Resources, University
of Adelaide, Adelaide 5005, Australia
- School of
Engineering, University of Warwick, Coventry CV4 7AL, United Kingdom
| |
Collapse
|
8
|
Stahl-Rommel S, Li D, Sung M, Li R, Vijayakumar A, Atabay KD, Bushkin GG, Castro CL, Foley KD, Copeland DS, Castro-Wallace SL, Alvarez Saavedra E, Gleason EJ, Kraves S. A CRISPR-based assay for the study of eukaryotic DNA repair onboard the International Space Station. PLoS One 2021; 16:e0253403. [PMID: 34191829 PMCID: PMC8244870 DOI: 10.1371/journal.pone.0253403] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 06/03/2021] [Indexed: 11/18/2022] Open
Abstract
As we explore beyond Earth, astronauts may be at risk for harmful DNA damage caused by ionizing radiation. Double-strand breaks are a type of DNA damage that can be repaired by two major cellular pathways: non-homologous end joining, during which insertions or deletions may be added at the break site, and homologous recombination, in which the DNA sequence often remains unchanged. Previous work suggests that space conditions may impact the choice of DNA repair pathway, potentially compounding the risks of increased radiation exposure during space travel. However, our understanding of this problem has been limited by technical and safety concerns, which have prevented integral study of the DNA repair process in space. The CRISPR/Cas9 gene editing system offers a model for the safe and targeted generation of double-strand breaks in eukaryotes. Here we describe a CRISPR-based assay for DNA break induction and assessment of double-strand break repair pathway choice entirely in space. As necessary steps in this process, we describe the first successful genetic transformation and CRISPR/Cas9 genome editing in space. These milestones represent a significant expansion of the molecular biology toolkit onboard the International Space Station.
Collapse
Affiliation(s)
| | - David Li
- Woodbury High School, Woodbury, Minnesota, United States of America
| | - Michelle Sung
- Mounds View High School, Arden Hills, Minnesota, United States of America
| | - Rebecca Li
- Mounds View High School, Arden Hills, Minnesota, United States of America
| | - Aarthi Vijayakumar
- Mounds View High School, Arden Hills, Minnesota, United States of America
| | - Kutay Deniz Atabay
- Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, United States of America
| | - G. Guy Bushkin
- Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, United States of America
| | | | - Kevin D. Foley
- Boeing Defense, Space & Security, Berkley, Michigan, United States of America
| | - D. Scott Copeland
- Boeing Defense, Space & Security, Berkley, Michigan, United States of America
| | - Sarah L. Castro-Wallace
- Biomedical Research and Environmental Sciences Division, NASA Johnson Space Center, Houston, Texas, United States of America
| | | | - Emily J. Gleason
- MiniPCR Bio, Cambridge, Massachusetts, United States of America
- * E-mail: (EJG); (SK)
| | - Sebastian Kraves
- MiniPCR Bio, Cambridge, Massachusetts, United States of America
- * E-mail: (EJG); (SK)
| |
Collapse
|
9
|
Amalfitano S, Levantesi C, Copetti D, Stefani F, Locantore I, Guarnieri V, Lobascio C, Bersani F, Giacosa D, Detsis E, Rossetti S. Water and microbial monitoring technologies towards the near future space exploration. WATER RESEARCH 2020; 177:115787. [PMID: 32315899 DOI: 10.1016/j.watres.2020.115787] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 03/31/2020] [Accepted: 04/01/2020] [Indexed: 06/11/2023]
Abstract
Space exploration is demanding longer lasting human missions and water resupply from Earth will become increasingly unrealistic. In a near future, the spacecraft water monitoring systems will require technological advances to promptly identify and counteract contingent events of waterborne microbial contamination, posing health risks to astronauts with lowered immune responsiveness. The search for bio-analytical approaches, alternative to those applied on Earth by cultivation-dependent methods, is pushed by the compelling need to limit waste disposal and avoid microbial regrowth from analytical carryovers. Prospective technologies will be selected only if first validated in a flight-like environment, by following basic principles, advantages, and limitations beyond their current applications on Earth. Starting from the water monitoring activities applied on the International Space Station, we provide a critical overview of the nucleic acid amplification-based approaches (i.e., loop-mediated isothermal amplification, quantitative PCR, and high-throughput sequencing) and early-warning methods for total microbial load assessments (i.e., ATP-metry, flow cytometry), already used at a high readiness level aboard crewed space vehicles. Our findings suggest that the forthcoming space applications of mature technologies will be necessarily bounded by a compromise between analytical performances (e.g., speed to results, identification depth, reproducibility, multiparametricity) and detrimental technical requirements (e.g., reagent usage, waste production, operator skills, crew time). As space exploration progresses toward extended missions to Moon and Mars, miniaturized systems that also minimize crew involvement in their end-to-end operation are likely applicable on the long-term and suitable for the in-flight water and microbiological research.
Collapse
Affiliation(s)
- Stefano Amalfitano
- Water Research Institute - National Research Council of Italy (IRSA-CNR), Via Salaria Km 29,300, 00015, Monterotondo, Roma, Italy.
| | - Caterina Levantesi
- Water Research Institute - National Research Council of Italy (IRSA-CNR), Via Salaria Km 29,300, 00015, Monterotondo, Roma, Italy
| | - Diego Copetti
- Water Research Institute - National Research Council of Italy (IRSA-CNR), Via del Mulino 19, 20861, Brugherio, Monza-Brianza, Italy
| | - Fabrizio Stefani
- Water Research Institute - National Research Council of Italy (IRSA-CNR), Via del Mulino 19, 20861, Brugherio, Monza-Brianza, Italy
| | - Ilaria Locantore
- Thales Alenia Space Italia SpA, Strada Antica di Collegno, 253 - 10146, Turin, Italy
| | - Vincenzo Guarnieri
- Thales Alenia Space Italia SpA, Strada Antica di Collegno, 253 - 10146, Turin, Italy
| | - Cesare Lobascio
- Thales Alenia Space Italia SpA, Strada Antica di Collegno, 253 - 10146, Turin, Italy
| | - Francesca Bersani
- Centro Ricerche SMAT, Società Metropolitana Acque Torino S.p.A., C.so Unità d'Italia 235/3, 10127, Torino, Italy
| | - Donatella Giacosa
- Centro Ricerche SMAT, Società Metropolitana Acque Torino S.p.A., C.so Unità d'Italia 235/3, 10127, Torino, Italy
| | - Emmanouil Detsis
- European Science Foundation, 1 quai Lezay Marnésia, BP 90015, 67080, Strasbourg Cedex, France
| | - Simona Rossetti
- Water Research Institute - National Research Council of Italy (IRSA-CNR), Via Salaria Km 29,300, 00015, Monterotondo, Roma, Italy
| |
Collapse
|
10
|
Rubinfien J, Atabay KD, Nichols NM, Tanner NA, Pezza JA, Gray MM, Wagner BM, Poppin JN, Aken JT, Gleason EJ, Foley KD, Copeland DS, Kraves S, Alvarez Saavedra E. Nucleic acid detection aboard the International Space Station by colorimetric loop-mediated isothermal amplification (LAMP). FASEB Bioadv 2020; 2:160-165. [PMID: 32161905 PMCID: PMC7059625 DOI: 10.1096/fba.2019-00088] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 10/30/2019] [Accepted: 12/30/2019] [Indexed: 12/22/2022] Open
Abstract
Human spaceflight endeavors present an opportunity to expand our presence beyond Earth. To this end, it is crucial to understand and diagnose effects of long‐term space travel on the human body. Developing tools for targeted, on‐site detection of specific DNA sequences will allow us to establish research and diagnostics platforms that will benefit space programs. We describe a simple DNA diagnostic method that utilizes colorimetric loop‐mediated isothermal amplification (LAMP) to enable detection of a repetitive telomeric DNA sequence in as little as 30 minutes. A proof of concept assay for this method was carried out using existing hardware on the International Space Station and the results were read instantly by an astronaut through a simple color change of the reaction mixture. LAMP offers a novel platform for on‐orbit DNA‐based diagnostics that can be deployed on the International Space Station and to the broader benefit of space programs.
Collapse
Affiliation(s)
| | - Kutay D Atabay
- Whitehead Institute for Biomedical Research Massachusetts Institute of Technology Cambridge MA USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|