1
|
Chen RY, Liu YJ, Wang R, Yu J, Shi JJ, Yang GJ, Chen J. Fingerprint of ubiquitin coupled enzyme UBC13 in health and disease. Bioorg Chem 2025; 161:108524. [PMID: 40319811 DOI: 10.1016/j.bioorg.2025.108524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 04/16/2025] [Accepted: 04/24/2025] [Indexed: 05/07/2025]
Abstract
Ubiquitination is one of the most well-known post-translational modifications in eukaryotes. UBC13 is an E2 ubiquitin coupling enzyme, which interacts with different E3 ligases and exerts ubiquitination activity to assemble and synthesize lysine-63-linked (Lys63) ubiquitin strands, thus playing an important role in cell homeostasis, various diseases caused by inflammation, and the occurrence and development of cancer. In this paper, we review the structure and function of UBC13, summarize the diverse pathways it mediates, and discuss its involvement in bacterial and non-bacterial inflammatory diseases. Additionally, we explore UBC13's role in physiological damage repair mechanisms, cancer development, DNA damage repair, immune cell maturation, and function. Furthermore, We also elucidate the progress of the discovery of small molecule inhibitors targeting UBC13 and summarize their structure, which suggests that targeting UBC13 may be a potential disease treatment strategy.
Collapse
Affiliation(s)
- Ru-Yi Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Yan-Jun Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Ran Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Jing Yu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Jin-Jin Shi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Guan-Jun Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, Zhejiang, China.
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, Zhejiang, China.
| |
Collapse
|
2
|
Parashar S, Kaushik A, Ambasta RK, Kumar P. E2 conjugating enzymes: A silent but crucial player in ubiquitin biology. Ageing Res Rev 2025; 108:102740. [PMID: 40194666 DOI: 10.1016/j.arr.2025.102740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 03/14/2025] [Accepted: 03/19/2025] [Indexed: 04/09/2025]
Abstract
E2 conjugating enzymes serve as the linchpin of the Ubiquitin-Proteasome System (UPS), facilitating ubiquitin (Ub) transfer to substrate proteins and regulating diverse processes critical to cellular homeostasis. The interaction of E2s with E1 activating enzymes and E3 ligases singularly positions them as middlemen of the ubiquitin machinery that guides protein turnover. Structural determinants of E2 enzymes play a pivotal role in these interactions, enabling precise ubiquitin transfer and substrate specificity. Regulation of E2 enzymes is tightly controlled through mechanisms such as post-translational modifications (PTMs), allosteric control, and gene expression modulation. Specific residues that undergo PTMs highlight their impact on E2 function and their role in ubiquitin dynamics. E2 enzymes also cooperate with deubiquitinases (DUBs) to maintain proteostasis. Design of small molecule inhibitors to modulate E2 activity is emerging as promising avenue to restrict ubiquitination as a potential therapeutic intervention. Additionally, E2 enzymes have been implicated in the pathogenesis and progression of neurodegenerative disorders (NDDs), where their dysfunction contributes to disease mechanisms. In summary, examining E2 enzymes from structural and functional perspectives offers potential to advance our understanding of cellular processes and assist in discovery of new therapeutic targets.
Collapse
Affiliation(s)
- Somya Parashar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly Delhi College of Engineering), Shahbad Daulatpur, Bawana Road, Delhi 110042, India
| | - Aastha Kaushik
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly Delhi College of Engineering), Shahbad Daulatpur, Bawana Road, Delhi 110042, India
| | - Rashmi K Ambasta
- Department of Medicine, Vanderbilt University Medical Center (VUMC), Nashville, TN, USA
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly Delhi College of Engineering), Shahbad Daulatpur, Bawana Road, Delhi 110042, India.
| |
Collapse
|
3
|
Shen Y, Gleghorn JP. Class III Phosphatidylinositol-3 Kinase/Vacuolar Protein Sorting 34 in Cardiovascular Health and Disease. J Cardiovasc Transl Res 2025; 18:392-407. [PMID: 39821606 PMCID: PMC12043424 DOI: 10.1007/s12265-024-10581-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 12/12/2024] [Indexed: 01/19/2025]
Abstract
Phosphatidylinositol-3 kinases (PI3Ks) play a critical role in maintaining cardiovascular health and the development of cardiovascular diseases (CVDs). Specifically, vacuolar Protein Sorting 34 (VPS34) or PIK3C3, the only member of Class III PI3K, plays an important role in CVD progression. The main function of VPS34 is inducing the production of phosphatidylinositol 3-phosphate, which, together with other essential structural and regulatory proteins in forming VPS34 complexes, further regulates the mammalian target of rapamycin activation, autophagy, and endocytosis. VPS34 is found to have crucial functions in the cardiovascular system, including dictating the proliferation and survival of vascular smooth muscle cells and cardiomyocytes and the formation of thrombosis. This review aims to summarize our current knowledge and recent advances in understanding the function and regulation of VPS34 in cardiovascular health and disease. We also discuss the current development of VPS34 inhibitors and their potential to treat CVDs.
Collapse
Affiliation(s)
- Yuanjun Shen
- Departments of Biomedical Engineering, University of Delaware, Newark, DE, USA.
- School of Pharmacy and Pharmceutical Sciences, Binghamton University, Johnson City, NY, USA.
| | - Jason P Gleghorn
- Departments of Biomedical Engineering, University of Delaware, Newark, DE, USA
- Biological Sciences, University of Delaware, Newark, DE, USA
| |
Collapse
|
4
|
Zhou X, Zhang H, Wang Y, Wang D, Lin Z, Zhang Y, Tang Y, Liu J, Yao YF, Zhang Y, Pan L. Shigella effector IpaH1.4 subverts host E3 ligase RNF213 to evade antibacterial immunity. Nat Commun 2025; 16:3099. [PMID: 40164614 PMCID: PMC11958729 DOI: 10.1038/s41467-025-58432-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 03/21/2025] [Indexed: 04/02/2025] Open
Abstract
Ubiquitination plays vital roles in modulating pathogen-host cell interactions. RNF213, a E3 ligase, can catalyze the ubiquitination of lipopolysaccharide (LPS) and is crucial for antibacterial immunity in mammals. Shigella flexneri, an LPS-containing pathogenic bacterium, has developed mechanisms to evade host antibacterial defenses during infection. However, the precise strategies by which S. flexneri circumvents RNF213-mediated antibacterial immunity remain poorly understood. Here, through comprehensive biochemical, structural and cellular analyses, we reveal that the E3 effector IpaH1.4 of S. flexneri can directly target human RNF213 via a specific interaction between the IpaH1.4 LRR domain and the RING domain of RNF213, and mediate the ubiquitination and proteasomal degradation of RNF213 in cells. Furthermore, we determine the cryo-EM structure of human RNF213 and the crystal structure of the IpaH1.4 LRR/RNF213 RING complex, elucidating the molecular mechanism underlying the specific recognition of RNF213 by IpaH1.4. Finally, our cell based functional assays demonstrate that the targeting of host RNF213 by IpaH1.4 promotes S. flexneri proliferation within infected cells. In summary, our work uncovers an unprecedented strategy employed by S. flexneri to subvert the key host immune factor RNF213, thereby facilitating bacterial proliferation during invasion.
Collapse
Affiliation(s)
- Xindi Zhou
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Huijing Zhang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Yaru Wang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, China
| | - Danni Wang
- Laboratory of Bacterial Pathogenesis, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhiqiao Lin
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yuchao Zhang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yubin Tang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Jianping Liu
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yu-Feng Yao
- Laboratory of Bacterial Pathogenesis, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yixiao Zhang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China.
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China.
| | - Lifeng Pan
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China.
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, China.
| |
Collapse
|
5
|
Crespillo-Casado A, Pothukuchi P, Naydenova K, Yip MCJ, Young JM, Boulanger J, Dharamdasani V, Harper C, Hammoudi PM, Otten EG, Boyle K, Gogoi M, Malik HS, Randow F. Recognition of phylogenetically diverse pathogens through enzymatically amplified recruitment of RNF213. EMBO Rep 2024; 25:4979-5005. [PMID: 39375464 PMCID: PMC11549300 DOI: 10.1038/s44319-024-00280-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 10/09/2024] Open
Abstract
Innate immunity senses microbial ligands known as pathogen-associated molecular patterns (PAMPs). Except for nucleic acids, PAMPs are exceedingly taxa-specific, thus enabling pattern recognition receptors to detect cognate pathogens while ignoring others. How the E3 ubiquitin ligase RNF213 can respond to phylogenetically distant pathogens, including Gram-negative Salmonella, Gram-positive Listeria, and eukaryotic Toxoplasma, remains unknown. Here we report that the evolutionary history of RNF213 is indicative of repeated adaptation to diverse pathogen target structures, especially in and around its newly identified CBM20 carbohydrate-binding domain, which we have resolved by cryo-EM. We find that RNF213 forms coats on phylogenetically distant pathogens. ATP hydrolysis by RNF213's dynein-like domain is essential for coat formation on all three pathogens studied as is RZ finger-mediated E3 ligase activity for bacteria. Coat formation is not diffusion-limited but instead relies on rate-limiting initiation events and subsequent cooperative incorporation of further RNF213 molecules. We conclude that RNF213 responds to evolutionarily distant pathogens through enzymatically amplified cooperative recruitment.
Collapse
Affiliation(s)
- Ana Crespillo-Casado
- MRC Laboratory of Molecular Biology, Division of Protein and Nucleic Acid Chemistry, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Prathyush Pothukuchi
- MRC Laboratory of Molecular Biology, Division of Protein and Nucleic Acid Chemistry, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Katerina Naydenova
- MRC Laboratory of Molecular Biology, Division of Protein and Nucleic Acid Chemistry, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Matthew C J Yip
- MRC Laboratory of Molecular Biology, Division of Protein and Nucleic Acid Chemistry, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Janet M Young
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Jerome Boulanger
- MRC Laboratory of Molecular Biology, Division of Protein and Nucleic Acid Chemistry, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Vimisha Dharamdasani
- MRC Laboratory of Molecular Biology, Division of Protein and Nucleic Acid Chemistry, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Ceara Harper
- MRC Laboratory of Molecular Biology, Division of Protein and Nucleic Acid Chemistry, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Pierre-Mehdi Hammoudi
- MRC Laboratory of Molecular Biology, Division of Protein and Nucleic Acid Chemistry, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Elsje G Otten
- MRC Laboratory of Molecular Biology, Division of Protein and Nucleic Acid Chemistry, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Keith Boyle
- MRC Laboratory of Molecular Biology, Division of Protein and Nucleic Acid Chemistry, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Mayuri Gogoi
- MRC Laboratory of Molecular Biology, Division of Protein and Nucleic Acid Chemistry, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Harmit S Malik
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Felix Randow
- MRC Laboratory of Molecular Biology, Division of Protein and Nucleic Acid Chemistry, Francis Crick Avenue, Cambridge, CB2 0QH, UK.
- University of Cambridge, Department of Medicine, Addenbrooke's Hospital, Cambridge, CB2 2QQ, UK.
| |
Collapse
|
6
|
Chiablaem K, Jinawath A, Nuanpirom J, Arora JK, Nasaree S, Thanomchard T, Singhto N, Chittavanich P, Suktitipat B, Charoensawan V, Chairoungdua A, Jinn-Chyuan Sheu J, Kiyotani K, Svasti J, Nakamura Y, Jinawath N. Identification of RNF213 as a Potential Suppressor of Local Invasion in Intrahepatic Cholangiocarcinoma. J Transl Med 2024; 104:102074. [PMID: 38723854 DOI: 10.1016/j.labinv.2024.102074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 04/08/2024] [Accepted: 04/30/2024] [Indexed: 06/14/2024] Open
Abstract
Intrahepatic cholangiocarcinoma (ICC) is a lethal cancer with poor survival especially when it spreads. The histopathology of its rare intraductal papillary neoplasm of the bile duct type (IPNB) characteristically shows cancer cells originating within the confined bile duct space. These cells eventually invade and infiltrate the nearby liver tissues, making it a good model to study the mechanism of local invasion, which is the earliest step of metastasis. To discover potential suppressor genes of local invasion in ICC, we analyzed the somatic mutation profiles and performed clonal evolution analyses of the 11 pairs of macrodissected locally invasive IPNB tissues (LI-IPNB) and IPNB tissues without local invasion from the same patients. We identified a protein-truncating variant in an E3 ubiquitin ligase, RNF213 (c.6967C>T; p.Gln2323X; chr17: 78,319,102 [hg19], exon 29), as the most common protein-truncating variant event in LI-IPNB samples (4/11 patients). Knockdown of RNF213 in HuCCT1 and YSCCC cells showed increased migration and invasion, and reduced vasculogenic mimicry but maintained normal proliferation. Transcriptomic analysis of the RNF213-knockdown vs control cells was then performed in the HuCCT1, YSCCC, and KKU-100 cells. Gene ontology enrichment analysis of the common differentially expressed genes revealed significantly altered cytokine and oxidoreductase-oxidizing metal ion activities, as confirmed by Western blotting. Gene Set Enrichment Analysis identified the most enriched pathways being oxidative phosphorylation, fatty acid metabolism, reactive oxygen species, adipogenesis, and angiogenesis. In sum, loss-of-function mutation of RNF213 is a common genetic alteration in LI-IPNB tissues. RNF213 knockdown leads to increased migration and invasion of ICC cells, potentially through malfunctions of the pathways related to inflammation and energy metabolisms.
Collapse
Affiliation(s)
- Khajeelak Chiablaem
- Program in Translational Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand; Laboratory of Biochemistry, Chulabhorn Research Institute, Bangkok, Thailand
| | - Artit Jinawath
- Molecular Histopathology Laboratory, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Jiratchaya Nuanpirom
- Integrative Computational Bioscience (ICBS) Center, Mahidol University, Nakhon Pathom, Thailand
| | - Jantarika Kumar Arora
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Sirawit Nasaree
- Program in Translational Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Thanastha Thanomchard
- Ramathibodi Comprehensive Cancer Center, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Nilubon Singhto
- Ramathibodi Comprehensive Cancer Center, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Pamorn Chittavanich
- Program in Translational Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Bhoom Suktitipat
- Integrative Computational Bioscience (ICBS) Center, Mahidol University, Nakhon Pathom, Thailand; Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Varodom Charoensawan
- Integrative Computational Bioscience (ICBS) Center, Mahidol University, Nakhon Pathom, Thailand; Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand; Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand; Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand; Siriraj Genomics, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Arthit Chairoungdua
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Jim Jinn-Chyuan Sheu
- Institute of Biomedical Science, National Sun Yat-Sen University, Kaohsiung, Taiwan; School of Chinese Medicine, China Medical University, Taichung, Taiwan; Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Kazuma Kiyotani
- Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Jisnuson Svasti
- Laboratory of Biochemistry, Chulabhorn Research Institute, Bangkok, Thailand
| | - Yusuke Nakamura
- Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Tokyo, Japan; National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Natini Jinawath
- Program in Translational Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand; Integrative Computational Bioscience (ICBS) Center, Mahidol University, Nakhon Pathom, Thailand; Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bang Phli, Samut Prakan, Thailand.
| |
Collapse
|
7
|
Sakamaki JI, Mizushima N. Ubiquitination of non-protein substrates. Trends Cell Biol 2023; 33:991-1003. [PMID: 37120410 DOI: 10.1016/j.tcb.2023.03.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 05/01/2023]
Abstract
The covalent attachment of ubiquitin is a common regulatory mechanism in various proteins. Although it has long been thought that the substrates of ubiquitination are limited to proteins, recent studies have changed this view: ubiquitin can be conjugated to lipids, sugars, and nucleotides. Ubiquitin is linked to these substrates by the action of different classes of ubiquitin ligases that have distinct catalytic mechanisms. Ubiquitination of non-protein substrates likely serves as a signal for the recruitment of other proteins to bring about specific effects. These discoveries have expanded the concept of ubiquitination and have advanced our insight into the biology and chemistry of this well-established modification process. In this review we describe the molecular mechanisms and roles of non-protein ubiquitination and discuss the current limitations.
Collapse
Affiliation(s)
- Jun-Ichi Sakamaki
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan.
| | - Noboru Mizushima
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan.
| |
Collapse
|
8
|
Chen Y, Yuan Y, Chen Y, Jiang X, Hua X, Chen Z, Wang J, Liu H, Zhou Q, Yu Y, Yang Z, Yu Y, Wang Y, Wang Q, Li Y, Chen J, Wang Y. Novel signaling axis of FHOD1-RNF213-Col1α/Col3α in the pathogenesis of hypertension-induced tunica media thickening. J Mol Cell Cardiol 2023; 182:57-72. [PMID: 37482037 DOI: 10.1016/j.yjmcc.2023.07.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/05/2023] [Accepted: 07/15/2023] [Indexed: 07/25/2023]
Abstract
Hypertension-induced tunica media thickening (TMT) is the most important fundamental for the subsequent complications like stroke and cardiovascular diseases. Pathogenically, TMT originates from both vascular smooth muscle cells (VSMCs) hypertrophy due to synthesizing more amount of intracellular contractile proteins and excess secretion of extracellular matrix. However, what key molecules are involved in the pathogenesis of TMT is unknown. We hypothesize that formin homology 2 domain-containing protein 1 (FHOD1), an amply expressed mediator for assembly of thin actin filament in VSMCs, is a key regulator for the pathogenesis of TMT. In this study, we found that FHOD1 expression and its phosphorylation/activation were both upregulated in the arteries of three kinds of hypertensive rats. Ang-II induced actin filament formation and hypertrophy through activation and upregulation of FHOD1 in VSMCs. Active FHOD1-mediated actin filament assembly and secretions of collagen-1α/collagen-3α played crucial roles in Ang-II-induced VSMCs hypertrophy in vitro and hypertensive TMT in vivo. Proteomics demonstrated that activated FL-FHOD1 or its C-terminal diaphanous-autoregulatory domain significantly upregulated RNF213 (ring finger protein 213), a 591-kDa cytosolic E3 ubiquitin ligase with its loss-of-functional mutations being a susceptibility gene for Moyamoya disease which has prominent tunica media thinning in both intracranial and systemic arteries. Mechanistically, activated FHOD1 upregulated its downstream effector RNF213 independently of its classical pathway of decreasing G-actin/F-actin ratio, transcription, and translation, but dependently on its C-terminus-mediated stabilization of RNF213 protein. FHOD1-RNF213 signaling dramatically promoted collagen-1α/collagen-3α syntheses in VSMCs. Our results discovered a novel signaling axis of FHOD1-RNF213-collagen-1α/collagen-3α and its key role in the pathogenesis of hypertensive TMT.
Collapse
Affiliation(s)
- Yuanyuan Chen
- Molecular Cardiology Research Laboratory, Department of Cardiology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Yuchan Yuan
- Molecular Cardiology Research Laboratory, Department of Cardiology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Yuhan Chen
- Molecular Cardiology Research Laboratory, Department of Cardiology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Xueze Jiang
- Molecular Cardiology Research Laboratory, Department of Cardiology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Xuesheng Hua
- Molecular Cardiology Research Laboratory, Department of Cardiology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Zhiyong Chen
- Molecular Cardiology Research Laboratory, Department of Cardiology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Julie Wang
- Department of Computer Science, Brown University, Providence, RI 02912, USA
| | - Hua Liu
- Department of Intensive Care Med, Zhongshan Hospital of Fudan University, Shanghai 200032, China
| | - Qing Zhou
- Molecular Cardiology Research Laboratory, Department of Cardiology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Ying Yu
- Molecular Cardiology Research Laboratory, Department of Cardiology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Zhenwei Yang
- Molecular Cardiology Research Laboratory, Department of Cardiology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Yi Yu
- Molecular Cardiology Research Laboratory, Department of Cardiology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Yongqin Wang
- Division of Rheumatology and Immunology, University of Toledo Medical center, 3120 Glendale Avenue, Toledo, OH 43614, USA
| | - Qunshan Wang
- Molecular Cardiology Research Laboratory, Department of Cardiology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Yigang Li
- Molecular Cardiology Research Laboratory, Department of Cardiology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Jie Chen
- Molecular Cardiology Research Laboratory, Department of Cardiology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China.
| | - Yuepeng Wang
- Molecular Cardiology Research Laboratory, Department of Cardiology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China.
| |
Collapse
|
9
|
Zhang Y, Yuan Y, Jiang L, Liu Y, Zhang L. The emerging role of E3 ubiquitin ligase RNF213 as an antimicrobial host determinant. Front Cell Infect Microbiol 2023; 13:1205355. [PMID: 37655297 PMCID: PMC10465799 DOI: 10.3389/fcimb.2023.1205355] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 07/24/2023] [Indexed: 09/02/2023] Open
Abstract
Ring finger protein 213 (RNF213) is a large E3 ubiquitin ligase with a molecular weight of 591 kDa that is associated with moyamoya disease, a rare cerebrovascular disease. It is located in the cytosol and perinuclear space. Missense mutations in this gene have been found to be more prevalent in patients with moyamoya disease compared with that in healthy individuals. Understanding the molecular function of RNF213 could provide insights into moyamoya disease. RNF213 contains a C3HC4-type RING finger domain with an E3 ubiquitin ligase domain and six AAA+ adenosine triphosphatase (ATPase) domains. It is the only known protein with both AAA+ ATPase and ubiquitin ligase activities. Recent studies have highlighted the role of RNF213 in fighting against microbial infections, including viruses, parasites, bacteria, and chlamydiae. This review aims to summarize the recent research progress on the mechanisms of RNF213 in pathogenic infections, which will aid researchers in understanding the antimicrobial role of RNF213.
Collapse
Affiliation(s)
- Yulu Zhang
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Yupei Yuan
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Lu Jiang
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Yihan Liu
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Leiliang Zhang
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| |
Collapse
|
10
|
Dorschel KB, Wanebo JE. Physiological and pathophysiological mechanisms of the molecular and cellular biology of angiogenesis and inflammation in moyamoya angiopathy and related vascular diseases. Front Neurol 2023; 14:661611. [PMID: 37273690 PMCID: PMC10236939 DOI: 10.3389/fneur.2023.661611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 01/16/2023] [Indexed: 06/06/2023] Open
Abstract
Rationale The etiology and pathophysiological mechanisms of moyamoya angiopathy (MMA) remain largely unknown. MMA is a progressive, occlusive cerebrovascular disorder characterized by recurrent ischemic and hemorrhagic strokes; with compensatory formation of an abnormal network of perforating blood vessels that creates a collateral circulation; and by aberrant angiogenesis at the base of the brain. Imbalance of angiogenic and vasculogenic mechanisms has been proposed as a potential cause of MMA. Moyamoya vessels suggest that aberrant angiogenic, arteriogenic, and vasculogenic processes may be involved in the pathophysiology of MMA. Circulating endothelial progenitor cells have been hypothesized to contribute to vascular remodeling in MMA. MMA is associated with increased expression of angiogenic factors and proinflammatory molecules. Systemic inflammation may be related to MMA pathogenesis. Objective This literature review describes the molecular mechanisms associated with cerebrovascular dysfunction, aberrant angiogenesis, and inflammation in MMA and related cerebrovascular diseases along with treatment strategies and future research perspectives. Methods and results References were identified through a systematic computerized search of the medical literature from January 1, 1983, through July 29, 2022, using the PubMed, EMBASE, BIOSIS Previews, CNKI, ISI web of science, and Medline databases and various combinations of the keywords "moyamoya," "angiogenesis," "anastomotic network," "molecular mechanism," "physiology," "pathophysiology," "pathogenesis," "biomarker," "genetics," "signaling pathway," "blood-brain barrier," "endothelial progenitor cells," "endothelial function," "inflammation," "intracranial hemorrhage," and "stroke." Relevant articles and supplemental basic science articles almost exclusively published in English were included. Review of the reference lists of relevant publications for additional sources resulted in 350 publications which met the study inclusion criteria. Detection of growth factors, chemokines, and cytokines in MMA patients suggests the hypothesis of aberrant angiogenesis being involved in MMA pathogenesis. It remains to be ascertained whether these findings are consequences of MMA or are etiological factors of MMA. Conclusions MMA is a heterogeneous disorder, comprising various genotypes and phenotypes, with a complex pathophysiology. Additional research may advance our understanding of the pathophysiology involved in aberrant angiogenesis, arterial stenosis, and the formation of moyamoya collaterals and anastomotic networks. Future research will benefit from researching molecular pathophysiologic mechanisms and the correlation of clinical and basic research results.
Collapse
Affiliation(s)
- Kirsten B. Dorschel
- Medical Faculty, Heidelberg University Medical School, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
| | - John E. Wanebo
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
- Department of Neuroscience, HonorHealth Research Institute, Scottsdale, AZ, United States
| |
Collapse
|
11
|
Walsh SC, Reitano JR, Dickinson MS, Kutsch M, Hernandez D, Barnes AB, Schott BH, Wang L, Ko DC, Kim SY, Valdivia RH, Bastidas RJ, Coers J. The bacterial effector GarD shields Chlamydia trachomatis inclusions from RNF213-mediated ubiquitylation and destruction. Cell Host Microbe 2022; 30:1671-1684.e9. [PMID: 36084633 PMCID: PMC9772000 DOI: 10.1016/j.chom.2022.08.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 05/13/2022] [Accepted: 08/12/2022] [Indexed: 01/26/2023]
Abstract
Chlamydia trachomatis is the leading cause of sexually transmitted bacterial infections and a major threat to women's reproductive health in particular. This obligate intracellular pathogen resides and replicates within a cellular compartment termed an inclusion, where it is sheltered by unknown mechanisms from gamma-interferon (IFNγ)-induced cell-autonomous host immunity. Through a genetic screen, we uncovered the Chlamydia inclusion membrane protein gamma resistance determinant (GarD) as a bacterial factor protecting inclusions from cell-autonomous immunity. In IFNγ-primed human cells, inclusions formed by garD loss-of-function mutants become decorated with linear ubiquitin and are eliminated. Leveraging cellular genome-wide association data, we identified the ubiquitin E3 ligase RNF213 as a candidate anti-Chlamydia protein. We demonstrate that IFNγ-inducible RNF213 facilitates the ubiquitylation and destruction of GarD-deficient inclusions. Furthermore, we show that GarD operates as a cis-acting stealth factor barring RNF213 from targeting inclusions, thus functionally defining GarD as an RNF213 antagonist essential for chlamydial growth during IFNγ-stimulated immunity.
Collapse
Affiliation(s)
- Stephen C Walsh
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
| | - Jeffrey R Reitano
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA; Department of Immunology, Duke University Medical Center, Durham, NC, USA
| | - Mary S Dickinson
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
| | - Miriam Kutsch
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
| | - Dulcemaria Hernandez
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
| | - Alyson B Barnes
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
| | - Benjamin H Schott
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
| | - Liuyang Wang
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
| | - Dennis C Ko
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
| | - So Young Kim
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
| | - Raphael H Valdivia
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
| | - Robert J Bastidas
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
| | - Jörn Coers
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA; Department of Immunology, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
12
|
Yin X, Liu Q, Liu F, Tian X, Yan T, Han J, Jiang S. Emerging Roles of Non-proteolytic Ubiquitination in Tumorigenesis. Front Cell Dev Biol 2022; 10:944460. [PMID: 35874839 PMCID: PMC9298949 DOI: 10.3389/fcell.2022.944460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 06/15/2022] [Indexed: 12/13/2022] Open
Abstract
Ubiquitination is a critical type of protein post-translational modification playing an essential role in many cellular processes. To date, more than eight types of ubiquitination exist, all of which are involved in distinct cellular processes based on their structural differences. Studies have indicated that activation of the ubiquitination pathway is tightly connected with inflammation-related diseases as well as cancer, especially in the non-proteolytic canonical pathway, highlighting the vital roles of ubiquitination in metabolic programming. Studies relating degradable ubiquitination through lys48 or lys11-linked pathways to cellular signaling have been well-characterized. However, emerging evidence shows that non-degradable ubiquitination (linked to lys6, lys27, lys29, lys33, lys63, and Met1) remains to be defined. In this review, we summarize the non-proteolytic ubiquitination involved in tumorigenesis and related signaling pathways, with the aim of providing a reference for future exploration of ubiquitination and the potential targets for cancer therapies.
Collapse
Affiliation(s)
- Xiu Yin
- Clinical Medical Laboratory Center, Jining First People's Hospital, Jining Medical University, Jining, China
| | - Qingbin Liu
- Clinical Medical Laboratory Center, Jining First People's Hospital, Jining Medical University, Jining, China
| | - Fen Liu
- Clinical Medical Laboratory Center, Jining First People's Hospital, Jining Medical University, Jining, China
| | - Xinchen Tian
- Clinical Medical Laboratory Center, Jining First People's Hospital, Jining Medical University, Jining, China.,Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Tinghao Yan
- Clinical Medical Laboratory Center, Jining First People's Hospital, Jining Medical University, Jining, China.,Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jie Han
- Department of Thyroid and Breast Surgery, Jining First People's Hospital, Jining Medical University, Jining, China
| | - Shulong Jiang
- Clinical Medical Laboratory Center, Jining First People's Hospital, Jining Medical University, Jining, China
| |
Collapse
|
13
|
Pollaci G, Gorla G, Potenza A, Carrozzini T, Canavero I, Bersano A, Gatti L. Novel Multifaceted Roles for RNF213 Protein. Int J Mol Sci 2022; 23:ijms23094492. [PMID: 35562882 PMCID: PMC9099590 DOI: 10.3390/ijms23094492] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/13/2022] [Accepted: 04/17/2022] [Indexed: 11/16/2022] Open
Abstract
Ring Finger Protein 213 (RNF213), also known as Mysterin, is the major susceptibility factor for Moyamoya Arteriopathy (MA), a progressive cerebrovascular disorder that often leads to brain stroke in adults and children. Although several rare RNF213 polymorphisms have been reported, no major susceptibility variant has been identified to date in Caucasian patients, thus frustrating the attempts to identify putative therapeutic targets for MA treatment. For these reasons, the investigation of novel biochemical functions, substrates and unknown partners of RNF213 will help to unravel the pathogenic mechanisms of MA and will facilitate variant interpretations in a diagnostic context in the future. The aim of the present review is to discuss novel perspectives regarding emerging RNF213 roles in light of recent literature updates and dissect their relevance for understanding MA and for the design of future research studies. Since its identification, RNF213 involvement in angiogenesis and vasculogenesis has strengthened, together with its role in inflammatory signals and proliferation pathways. Most recent studies have been increasingly focused on its relevance in antimicrobial activity and lipid metabolism, highlighting new intriguing perspectives. The last area could suggest the main role of RNF213 in the proteasome pathway, thus reinforcing the hypotheses already previously formulated that depict the protein as an important regulator of the stability of client proteins involved in angiogenesis. We believe that the novel evidence reviewed here may contribute to untangling the complex and still obscure pathogenesis of MA that is reflected in the lack of therapies able to slow down or halt disease progression and severity.
Collapse
Affiliation(s)
- Giuliana Pollaci
- Laboratory of Neurobiology, Neurology IX Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (G.P.); (G.G.); (A.P.); (T.C.)
| | - Gemma Gorla
- Laboratory of Neurobiology, Neurology IX Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (G.P.); (G.G.); (A.P.); (T.C.)
| | - Antonella Potenza
- Laboratory of Neurobiology, Neurology IX Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (G.P.); (G.G.); (A.P.); (T.C.)
| | - Tatiana Carrozzini
- Laboratory of Neurobiology, Neurology IX Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (G.P.); (G.G.); (A.P.); (T.C.)
| | - Isabella Canavero
- Cerebrovascular Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (I.C.); (A.B.)
| | - Anna Bersano
- Cerebrovascular Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (I.C.); (A.B.)
| | - Laura Gatti
- Laboratory of Neurobiology, Neurology IX Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (G.P.); (G.G.); (A.P.); (T.C.)
- Correspondence: ; Tel.: +39-02-23942389
| |
Collapse
|
14
|
Plasma Lipid Profiling Contributes to Untangle the Complexity of Moyamoya Arteriopathy. Int J Mol Sci 2021; 22:ijms222413410. [PMID: 34948203 PMCID: PMC8708587 DOI: 10.3390/ijms222413410] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/10/2021] [Accepted: 12/12/2021] [Indexed: 12/12/2022] Open
Abstract
Moyamoya arteriopathy (MA) is a rare cerebrovascular disorder characterized by ischemic/hemorrhagic strokes. The pathophysiology is unknown. A deregulation of vasculogenic/angiogenic/inflammatory pathways has been hypothesized as a possible pathophysiological mechanism. Since lipids are implicated in modulating neo-vascularization/angiogenesis and inflammation, their deregulation is potentially involved in MA. Our aim is to evaluate angiogenic/vasculogenic/inflammatory proteins and lipid profile in plasma of MA patients and control subjects (healthy donors HD or subjects with atherosclerotic cerebrovascular disease ACVD). Angiogenic and inflammatory protein levels were measured by ELISA and a complete lipidomic analysis was performed on plasma by mass spectrometry. ELISA showed a significant decrease for MMP-9 released in plasma of MA. The untargeted lipidomic analysis showed a cumulative depletion of lipid asset in plasma of MA as compared to HD. Specifically, a decrease in membrane complex glycosphingolipids peripherally circulating in MA plasma with respect to HD was observed, likely suggestive of cerebral cellular recruitment. The quantitative targeted approach demonstrated an increase in free sphingoid bases, likely associated with a deregulated angiogenesis. Our findings indicate that lipid signature could play a central role in MA and that a detailed biomarker profile may contribute to untangle the complex, and still obscure, pathogenesis of MA.
Collapse
|
15
|
Mineharu Y, Miyamoto S. RNF213 and GUCY1A3 in Moyamoya Disease: Key Regulators of Metabolism, Inflammation, and Vascular Stability. Front Neurol 2021; 12:687088. [PMID: 34381413 PMCID: PMC8350054 DOI: 10.3389/fneur.2021.687088] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 06/24/2021] [Indexed: 12/24/2022] Open
Abstract
Moyamoya disease is an idiopathic chronically progressive cerebrovascular disease, which causes both ischemic and hemorrhagic stroke. Genetic studies identified RNF213/Mysterin and GUCY1A3 as disease-causing genes. They were also known to be associated with non-moyamoya intracranial large artery disease, coronary artery disease and pulmonary artery hypertension. This review focused on these two molecules and their strong linker, calcineurin/NFAT signaling and caveolin to understand the pathophysiology of moyamoya disease and related vascular diseases. They are important regulators of lipid metabolism especially lipotoxicity, NF-κB mediated inflammation, and nitric oxide-mediated vascular protection. Although intimal thickening with fibrosis and damaged vascular smooth muscle cells are the distinguishing features of moyamoya disease, origin of the fibrous tissue and the mechanism of smooth muscle cell damages remains not fully elucidated. Endothelial cells and smooth muscle cells have long been a focus of interest, but other vascular components such as immune cells and extracellular matrix also need to be investigated in future studies. Molecular research on moyamoya disease would give us a clue to understand the mechanism preserving vascular stability.
Collapse
Affiliation(s)
- Yohei Mineharu
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | | |
Collapse
|