1
|
Wallisch E, Tomita-Mitchell A, Liang HL, Szabo A, Lenarczyk M, Kwitek A, Smith JR, Tutaj M, Baker JE. Advancing cell-free DNA as a biomarker of damage to heart caused by ionizing radiation. JOURNAL OF RADIATION RESEARCH 2025; 66:329-340. [PMID: 40304705 PMCID: PMC12100473 DOI: 10.1093/jrr/rraf022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 03/17/2025] [Indexed: 05/02/2025]
Abstract
Exposure to diagnostic and therapeutic radiation introduces risks for development of diseases later in life by causing DNA damage in cells. Currently, there is no clinical method for determining exposure risk caused by radiation toxicity to DNA. Cell-free DNA (cfDNA), a marker of DNA damage, is currently used to assess risk for long-term effects following organ transplantation, surgery and inflammation. The goal of our proposed study is to develop cfDNA as an early biomarker for assessing risk for cardiovascular disease and cancer from radiation exposure so that strategies to mitigate the damaging effects of medical radiation can be assessed. Hearts from male and female WAG/RijCmcr rats (n = 6-10/group) were exposed to increasing doses of X-radiation (50 mGy and 3.5 Gy). Blood was collected prior to and after (15 minutes-96 hours) irradiation, and cell-free plasma was prepared. Primers and probes were designed for quantitative analysis of sequences of mitochondria (12S rRNA) and nuclear (Gapdh) cfDNA present in rat plasma using quantitative reverse transcription polymerase chain reaction (RT-qPCR). Exposure of hearts to radiation increased nuclear and mitochondrial cfDNA in a dose-dependent manner. Three point five grays from X-radiation increase cfDNA for Gapdh in plasma after 1 hour with a 15.8-fold increase (P < 0.001) after 6 hours. The earliest time nuclear and mitochondrial cfDNA increases were detected in plasma was at 60 minutes following exposure to 3.5 Gy. cfDNA has potential to advance as a biomarker of exposure to medical doses of radiation in patients.
Collapse
Affiliation(s)
- Erin Wallisch
- Division of Congenital Heart Surgery, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Aoy Tomita-Mitchell
- Division of Congenital Heart Surgery, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Huan-Ling Liang
- Division of Congenital Heart Surgery, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Aniko Szabo
- Data Science Institute, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Marek Lenarczyk
- Division of Congenital Heart Surgery, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
- Radiation Biosciences Laboratory, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Anne Kwitek
- Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Jennifer R Smith
- Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Monika Tutaj
- Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - John E Baker
- Division of Congenital Heart Surgery, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
- Radiation Biosciences Laboratory, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| |
Collapse
|
2
|
Tsogbadrakh B, Lee M, Jung JA, Choi YK, Lee YJ, Seo JH. A novel mouse model of image-guided radiation-induced acute kidney injury using SARRP. Biochem Biophys Res Commun 2025; 745:151264. [PMID: 39740400 DOI: 10.1016/j.bbrc.2024.151264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 12/10/2024] [Accepted: 12/27/2024] [Indexed: 01/02/2025]
Abstract
Radiation therapy is crucial for cancer treatment, but it often causes tissue damage. The kidney, which is sensitive to radiation, is under-researched in this context. This study aimed to develop a mouse model for radiation-induced acute kidney injury (AKI) using a small animal radiation research platform (SARRP) to mimic clinical radiation conditions. To establish the optimal AKI model, six-week-old male BALB/c mice were irradiated at doses of 5, 10, 20, and 30 Gy. Based on serum creatinine and blood urea nitrogen (BUN) levels, as well as immunohistochemical staining for neutrophil gelatinase-associated lipocalin (NGAL) and kidney injury molecule-1 (KIM-1), a 30 Gy dose was selected. This dose was applied in three ways: (1) single arc after a CT scan (K1, one kidney), (2) two arcs and two static beams after a CT scan (K2, both kidneys), and (3) abdominal irradiation after a single X-ray image (AI, including the kidneys). AKI was assessed 5 days post-irradiation. All irradiated groups exhibited more weight loss compared to the sham group, with the K2 group showing the most significant loss (p < 0.001 vs. K1, p < 0.05 vs. AI). The K2 group also demonstrated a significant reduction in kidney weight (p < 0.05 vs. K1) and higher serum BUN levels (p < 0.05 vs. sham, p < 0.01 vs. K1). Histopathological analysis revealed severe damage in the K2 group, including granular casts and tubular necrosis. The K2 group had elevated NGAL, KIM-1, γ-H2AX, malondialdehyde, and caspase-3 levels, indicating increased AKI severity and DNA damage. The SARRP-created AKI model effectively targeted renal tissue while sparing extrarenal tissues, offering a more clinically relevant model compared to traditional methods. This model bridges the gap between clinical and preclinical studies, enhancing the accuracy and relevance of research on radiation-induced kidney injury.
Collapse
Affiliation(s)
- Bodokhsuren Tsogbadrakh
- Institute of Breast Cancer Precision Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Minyoung Lee
- Laboratory Animal Team, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea
| | - Joo-Ae Jung
- Research Project Management Team, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea
| | - Yang-Kyu Choi
- College of Veterinary Medicine, Konkuk University, Seoul, South Korea
| | - Yong Jin Lee
- Korea Radioisotope Center for Pharmaceuticals, Korea Institute of Radiological & Medical Sciences, Seoul, South Korea
| | - Jin-Hee Seo
- Korea Radioisotope Center for Pharmaceuticals, Korea Institute of Radiological & Medical Sciences, Seoul, South Korea.
| |
Collapse
|
3
|
Jahng JWS, Little MP, No HJ, Loo BW, Wu JC. Consequences of ionizing radiation exposure to the cardiovascular system. Nat Rev Cardiol 2024; 21:880-898. [PMID: 38987578 PMCID: PMC12037960 DOI: 10.1038/s41569-024-01056-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/11/2024] [Indexed: 07/12/2024]
Abstract
Ionizing radiation is widely used in various industrial and medical applications, resulting in increased exposure for certain populations. Lessons from radiation accidents and occupational exposure have highlighted the cardiovascular and cerebrovascular risks associated with radiation exposure. In addition, radiation therapy for cancer has been linked to numerous cardiovascular complications, depending on the distribution of the dose by volume in the heart and other relevant target tissues in the circulatory system. The manifestation of symptoms is influenced by numerous factors, and distinct cardiac complications have previously been observed in different groups of patients with cancer undergoing radiation therapy. However, in contemporary radiation therapy, advances in treatment planning with conformal radiation delivery have markedly reduced the mean heart dose and volume of exposure, and these variables are therefore no longer sole surrogates for predicting the risk of specific types of heart disease. Nevertheless, certain cardiac substructures remain vulnerable to radiation exposure, necessitating close monitoring. In this Review, we provide a comprehensive overview of the consequences of radiation exposure on the cardiovascular system, drawing insights from various cohorts exposed to uniform, whole-body radiation or to partial-body irradiation, and identify potential risk modifiers in the development of radiation-associated cardiovascular disease.
Collapse
Affiliation(s)
- James W S Jahng
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA.
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA.
| | - Mark P Little
- Radiation Epidemiology Branch, National Cancer Institute, Bethesda, MD, USA
- Faculty of Health and Life Sciences, Oxford Brookes University, Headington Campus, Oxford, UK
| | - Hyunsoo J No
- Department of Radiation Oncology, Southern California Permanente Medical Group, Los Angeles, CA, USA
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA
| | - Billy W Loo
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA.
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA.
- Greenstone Biosciences, Palo Alto, CA, USA.
| |
Collapse
|
4
|
Lubas MJ, Panetta J, Freeman R, Meyer JE. Adaptive Stereotactic Body Radiation Therapy in the Management of Oligometastatic Uterine Leiomyosarcoma: A Clinical Case Report. Cureus 2024; 16:e68572. [PMID: 39371748 PMCID: PMC11452315 DOI: 10.7759/cureus.68572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2024] [Indexed: 10/08/2024] Open
Abstract
Safe delivery of stereotactic body radiation therapy (SBRT) to large (>5 cm) oligometastatic abdominopelvic tumors can often be challenging, especially in tumors that require a higher biologically effective dose (BED) for tumor control. Adaptive stereotactic body radiation therapy (A-SBRT) involves inter-fraction and real-time replanning while the patient is on the treatment table, potentially allowing for improved dose coverage and greater sparing of critical structures. Our case report illustrates the benefit of CT-based A-SBRT in the treatment and management of an oligometastatic uterine leiomyosarcoma patient with a rapidly enlarging pelvic recurrence. A 60-year-old female presented to the radiation oncology clinic for treatment of an enlarging, right pelvic oligometastatic leiomyosarcoma. She was prescribed 35 Gy in five fractions. Planning prioritized the sparing of nearby small bowels while maximizing coverage of the planning target volume (PTV). On treatment day, two plans were calculated, the initial plan recalculated on the current CBCT (scheduled plan) and a plan reoptimized using current contours (adapted plan), and the more appropriate one was chosen for delivery. The adapted plan was chosen for all five fractions, with the adapted plan offering better small bowel sparing in five fractions and better target coverage in four fractions, delivering a total of 34 Gy to 95% of the PTV while limiting the small bowel to a maximum point dose of 37 Gy. At approximately six months out from treatment, the patient showed continued radiographic response and resolved acute Grade 1 gastrointestinal toxicity. This case study therefore demonstrates the successful treatment of a large oligometastatic abdominopelvic tumor using CT-based A-SBRT and builds on previous experience treating abdominal cases adaptively.
Collapse
Affiliation(s)
- Maryanne J Lubas
- Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, USA
| | - Joseph Panetta
- Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, USA
| | - Robert Freeman
- Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, USA
| | - Joshua E Meyer
- Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, USA
| |
Collapse
|
5
|
Hamada N. Noncancer Effects of Ionizing Radiation Exposure on the Eye, the Circulatory System and beyond: Developments made since the 2011 ICRP Statement on Tissue Reactions. Radiat Res 2023; 200:188-216. [PMID: 37410098 DOI: 10.1667/rade-23-00030.1] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 06/13/2023] [Indexed: 07/07/2023]
Abstract
For radiation protection purposes, noncancer effects with a threshold-type dose-response relationship have been classified as tissue reactions (formerly called nonstochastic or deterministic effects), and equivalent dose limits aim to prevent occurrence of such tissue reactions. Accumulating evidence demonstrates increased risks for several late occurring noncancer effects at doses and dose rates much lower than previously considered. In 2011, the International Commission on Radiological Protection (ICRP) issued a statement on tissue reactions to recommend a threshold of 0.5 Gy to the lens of the eye for cataracts and to the heart and brain for diseases of the circulatory system (DCS), independent of dose rate. Literature published thereafter continues to provide updated knowledge. Increased risks for cataracts below 0.5 Gy have been reported in several cohorts (e.g., including in those receiving protracted or chronic exposures). A dose threshold for cataracts is less evident with longer follow-up, with limited evidence available for risk of cataract removal surgery. There is emerging evidence for risk of normal-tension glaucoma and diabetic retinopathy, but the long-held tenet that the lens represents among the most radiosensitive tissues in the eye and in the body seems to remain unchanged. For DCS, increased risks have been reported in various cohorts, but the existence or otherwise of a dose threshold is unclear. The level of risk is less uncertain at lower dose and lower dose rate, with the possibility that risk per unit dose is greater at lower doses and dose rates. Target organs and tissues for DCS are also unknown, but may include heart, large blood vessels and kidneys. Identification of potential factors (e.g., sex, age, lifestyle factors, coexposures, comorbidities, genetics and epigenetics) that may modify radiation risk of cataracts and DCS would be important. Other noncancer effects on the radar include neurological effects (e.g., Parkinson's disease, Alzheimer's disease and dementia) of which elevated risk has increasingly been reported. These late occurring noncancer effects tend to deviate from the definition of tissue reactions, necessitating more scientific developments to reconsider the radiation effect classification system and risk management. This paper gives an overview of historical developments made in ICRP prior to the 2011 statement and an update on relevant developments made since the 2011 ICRP statement.
Collapse
Affiliation(s)
- Nobuyuki Hamada
- Biology and Environmental Chemistry Division, Sustainable System Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), Chiba, Japan
| |
Collapse
|
6
|
O'Sullivan ED, Mylonas KJ, Xin C, Baird DP, Carvalho C, Docherty MH, Campbell R, Matchett KP, Waddell SH, Walker AD, Gallagher KM, Jia S, Leung S, Laird A, Wilflingseder J, Willi M, Reck M, Finnie S, Pisco A, Gordon-Keylock S, Medvinsky A, Boulter L, Henderson NC, Kirschner K, Chandra T, Conway BR, Hughes J, Denby L, Bonventre JV, Ferenbach DA. Indian Hedgehog release from TNF-activated renal epithelia drives local and remote organ fibrosis. Sci Transl Med 2023; 15:eabn0736. [PMID: 37256934 PMCID: PMC11977576 DOI: 10.1126/scitranslmed.abn0736] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 05/10/2023] [Indexed: 06/02/2023]
Abstract
Progressive fibrosis is a feature of aging and chronic tissue injury in multiple organs, including the kidney and heart. Glioma-associated oncogene 1 expressing (Gli1+) cells are a major source of activated fibroblasts in multiple organs, but the links between injury, inflammation, and Gli1+ cell expansion and tissue fibrosis remain incompletely understood. We demonstrated that leukocyte-derived tumor necrosis factor (TNF) promoted Gli1+ cell proliferation and cardiorenal fibrosis through induction and release of Indian Hedgehog (IHH) from renal epithelial cells. Using single-cell-resolution transcriptomic analysis, we identified an "inflammatory" proximal tubular epithelial (iPT) population contributing to TNF- and nuclear factor κB (NF-κB)-induced IHH production in vivo. TNF-induced Ubiquitin D (Ubd) expression was observed in human proximal tubular cells in vitro and during murine and human renal disease and aging. Studies using pharmacological and conditional genetic ablation of TNF-induced IHH signaling revealed that IHH activated canonical Hedgehog signaling in Gli1+ cells, which led to their activation, proliferation, and fibrosis within the injured and aging kidney and heart. These changes were inhibited in mice by Ihh deletion in Pax8-expressing cells or by pharmacological blockade of TNF, NF-κB, or Gli1 signaling. Increased amounts of circulating IHH were associated with loss of renal function and higher rates of cardiovascular disease in patients with chronic kidney disease. Thus, IHH connects leukocyte activation to Gli1+ cell expansion and represents a potential target for therapies to inhibit inflammation-induced fibrosis.
Collapse
Affiliation(s)
- Eoin D O'Sullivan
- Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
- Kidney Health Service, Royal Brisbane and Women's Hospital, Brisbane, Queensland 4029, Australia
| | - Katie J Mylonas
- Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Cuiyan Xin
- Renal Division and Division of Engineering in Medicine, Brigham and Women's Hospital, Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - David P Baird
- Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Cyril Carvalho
- Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Marie-Helena Docherty
- Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Ross Campbell
- Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Kylie P Matchett
- Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Scott H Waddell
- Cancer Research UK Scotland Centre and MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Alexander D Walker
- Cancer Research UK Scotland Centre and MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Kevin M Gallagher
- Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
- Department of Urology, Western General Hospital, Edinburgh EH4 2XU, UK
| | - Siyang Jia
- Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Steve Leung
- Department of Urology, Western General Hospital, Edinburgh EH4 2XU, UK
| | - Alexander Laird
- Department of Urology, Western General Hospital, Edinburgh EH4 2XU, UK
| | - Julia Wilflingseder
- Renal Division and Division of Engineering in Medicine, Brigham and Women's Hospital, Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
- Department of Physiology and Pathophysiology, University of Veterinary Medicine, Veterinärplatz 1, 1210 Vienna, Austria
| | - Michaela Willi
- Laboratory of Genetics and Physiology, NIDDK, NIH, Bethesda, MD 20892, USA
| | - Maximilian Reck
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Sarah Finnie
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Angela Pisco
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | | | - Alexander Medvinsky
- Centre for Regenerative Medicine. University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Luke Boulter
- Cancer Research UK Scotland Centre and MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Neil C Henderson
- Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
- Cancer Research UK Scotland Centre and MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Kristina Kirschner
- School of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
- Cancer Research UK Beatson Institute, Glasgow G61 1BD, UK
| | - Tamir Chandra
- Cancer Research UK Scotland Centre and MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Bryan R Conway
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Jeremy Hughes
- Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Laura Denby
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Joseph V Bonventre
- Renal Division and Division of Engineering in Medicine, Brigham and Women's Hospital, Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - David A Ferenbach
- Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
- Renal Division and Division of Engineering in Medicine, Brigham and Women's Hospital, Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
7
|
Andruska N, Schlaak RA, Frei A, Schottstaedt AM, Lin CY, Fish BL, Gasperetti T, Mpoy C, Pipke JL, Pedersen LN, Flister MJ, Javaheri A, Bergom C. Differences in radiation-induced heart dysfunction in male versus female rats. Int J Radiat Biol 2023; 99:1096-1108. [PMID: 36971580 PMCID: PMC10431914 DOI: 10.1080/09553002.2023.2194404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/24/2023] [Accepted: 03/14/2023] [Indexed: 03/29/2023]
Abstract
PURPOSE Radiation therapy remains part of the standard of care for breast, lung, and esophageal cancers. While radiotherapy improves local control and survival, radiation-induced heart dysfunction is a common side effect of thoracic radiotherapy. Cardiovascular dysfunction can also result from non-therapeutic total body radiation exposures. Numerous studies have evaluated the relationship between radiation dose to the heart and cardiotoxicity, but relatively little is known about whether there are differences based on biological sex in radiation-induced heart dysfunction (RIHD). MATERIALS AND METHODS We evaluated whether male and female inbred Dahl SS rats display differences in RIHD following delivery of 24 Gy in a single fraction to the whole heart using a 1.5 cm beam size (collimater). We also compared the 2.0 cm vs. 1.5 cm collimator in males. Pleural and pericardial effusions and normalized heart weights were measured, and echocardiograms were performed. RESULTS Female SS rats displayed more severe RIHD relative to age-matched SS male rats. Normalized heart weight was significantly increased in females, but not in males. A total of 94% (15/16) of males and 55% (6/11) of females survived 5 months after completion of radiotherapy (p < .01). Among surviving rats, 100% of females and 14% of males developed moderate-to-severe pericardial effusions at 5 months. Females demonstrated increased pleural effusions, with the mean normalized pleural fluid volume for females and males being 56.6 mL/kg ± 12.1 and 10.96 mL/kg ± 6.4 in males (p = .001), respectively. Echocardiogram findings showed evidence of heart failure, which was more pronounced in females. Because age-matched female rats have smaller lungs, a higher percentage of the total lung was treated with radiation in females than males using the same beam size. After using a larger 2 cm beam in males which results in higher lung exposure, there was not a significant difference between males and females in terms of the development of moderate-to-severe pericardial effusions or pleural effusions. Treatment of males with a 2 cm beam resulted in comparable increases in LV mass and reductions in stroke volume to female rats treated with a 1.5 cm beam. CONCLUSION Together, these results illustrate that there are differences in radiation-induced cardiotoxicity between male and female SS rats and add to the data that lung radiation doses, in addition to other factors, may play an important role in cardiac dysfunction following heart radiation exposure. These factors may be important to factor into future mitigation studies of radiation-induced cardiotoxicity.
Collapse
Affiliation(s)
- Neal Andruska
- Department of Radiation Oncology, Washington University School of Medicine, St Louis, Missouri
| | - Rachel A. Schlaak
- Department of Pharmacology & Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Anne Frei
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | | | - Chieh-Yu Lin
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, Missouri
| | - Brian L. Fish
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Tracy Gasperetti
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Cedric Mpoy
- Department of Radiation Oncology, Washington University School of Medicine, St Louis, Missouri
| | - Jamie L. Pipke
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Lauren N. Pedersen
- Department of Radiation Oncology, Washington University School of Medicine, St Louis, Missouri
| | - Michael J. Flister
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Ali Javaheri
- Department of Medicine, Division of Cardiology, Washington University School of Medicine, St Louis, Missouri
| | - Carmen Bergom
- Department of Radiation Oncology, Washington University School of Medicine, St Louis, Missouri
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin
- Alvin J. Siteman Cancer Center, Washington University School of Medicine, St Louis, Missouri
| |
Collapse
|
8
|
DiCarlo AL, Cassatt DR, Rios CI, Satyamitra MM, Zhang Y, Golden TG, Taliaferro LP. Making connections: the scientific impact and mentoring legacy of Dr. John E. Moulder. Int J Radiat Biol 2023:1-7. [PMID: 36763099 DOI: 10.1080/09553002.2023.2176563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
PURPOSE The intent of this mini review is to pay homage to Dr. John E. Moulder's long and successful career in radiation science with the Medical College of Wisconsin. This effort will be done from the perspective of his history of U.S. Government funding for research into the biological pathways involved in radiation-induced normal tissue injuries, especially damage to the kidneys and heart, and pharmacological interventions. In addition, the impact of his steady guidance and leadership in the mentoring of junior scientists, and the development of meaningful collaborations with other researchers will be highlighted. CONCLUSION Dr. John E. Moulder's contributions to the field of radiation research, through his strong character and reputation, his consistent and dedicated commitment to his colleagues and students, and his significant scientific advances, have been critical to moving the science forward, and will not be forgotten by those who knew him personally or through publications documenting his important work.
Collapse
Affiliation(s)
- Andrea L DiCarlo
- Radiation and Nuclear Countermeasures Program; Division of Allergy, Immunology, and Transplantation; National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - David R Cassatt
- Radiation and Nuclear Countermeasures Program; Division of Allergy, Immunology, and Transplantation; National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Carmen I Rios
- Radiation and Nuclear Countermeasures Program; Division of Allergy, Immunology, and Transplantation; National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Merriline M Satyamitra
- Radiation and Nuclear Countermeasures Program; Division of Allergy, Immunology, and Transplantation; National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Yuji Zhang
- Department of Epidemiology and Public Health, Marlene and Stewart Greenbaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Trevor G Golden
- Radiation and Nuclear Countermeasures Program; Division of Allergy, Immunology, and Transplantation; National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Lanyn P Taliaferro
- Radiation and Nuclear Countermeasures Program; Division of Allergy, Immunology, and Transplantation; National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| |
Collapse
|
9
|
Li Y, Mizumoto M, Oshiro Y, Nitta H, Saito T, Iizumi T, Kawano C, Yamaki Y, Fukushima H, Hosaka S, Maruo K, Kamizawa S, Sakurai H. A Retrospective Study of Renal Growth Changes after Proton Beam Therapy for Pediatric Malignant Tumor. Curr Oncol 2023; 30:1560-1570. [PMID: 36826081 PMCID: PMC9955816 DOI: 10.3390/curroncol30020120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/12/2023] [Accepted: 01/20/2023] [Indexed: 01/26/2023] Open
Abstract
The purpose of this study was to analyze renal late effects after proton beam therapy (PBT) for pediatric malignant tumors. A retrospective study was performed in 11 patients under 8 years of age who received PBT between 2013 and 2018. The kidney was exposed in irradiation of the primary lesion in all cases. Kidney volume and contour were measured on CT or MRI. Dose volume was calculated with a treatment-planning system. The median follow-up was 24 months (range, 11-57 months). In irradiated kidneys and control contralateral kidneys, the median volume changes were -5.63 (-20.54 to 7.20) and 5.23 (-2.01 to 16.73) mL/year; and the median % volume changes at 1 year were -8.55% (-47.52 to 15.51%) and 9.53% (-2.13 to 38.78%), respectively. The median relative volume change for irradiated kidneys at 1 year was -16.42% (-52.21 to -4.53%) relative to control kidneys. Kidneys irradiated with doses of 10, 20, 30, 40, and 50 GyE had volume reductions of 0.16%, 0.90%, 1.24%, 2.34%, and 8.2% per irradiated volume, respectively. The larger the irradiated volume, the greater the kidney volume was lost. Volume reduction was much greater in patients aged 4-7 years than in those aged 2-3 years. The results suggest that kidneys exposed to PBT in treatment of pediatric malignant tumor show continuous atrophy in follow-up. The degree of atrophy is increased with a higher radiation dose, greater irradiated volume, and older age. However, with growth and maturation, the contralateral kidney becomes progressively larger and is less affected by radiation.
Collapse
Affiliation(s)
- Yinuo Li
- Department of Radiation Oncology, University of Tsukuba Hospital, Tsukuba 305-8576, Japan
| | - Masashi Mizumoto
- Department of Radiation Oncology, University of Tsukuba Hospital, Tsukuba 305-8576, Japan
- Correspondence: ; Tel.: +81-29-853-7100; Fax: +81-29-853-7102
| | - Yoshiko Oshiro
- Department of Radiation Oncology, University of Tsukuba Hospital, Tsukuba 305-8576, Japan
| | - Hazuki Nitta
- Department of Radiation Oncology, University of Tsukuba Hospital, Tsukuba 305-8576, Japan
| | - Takashi Saito
- Department of Radiation Oncology, University of Tsukuba Hospital, Tsukuba 305-8576, Japan
| | - Takashi Iizumi
- Department of Radiation Oncology, University of Tsukuba Hospital, Tsukuba 305-8576, Japan
| | - Chie Kawano
- Department of Radiation Oncology, University of Tsukuba Hospital, Tsukuba 305-8576, Japan
| | - Yuni Yamaki
- Department of Pediatrics, University of Tsukuba Hospital, Tsukuba 305-8576, Japan
| | - Hiroko Fukushima
- Department of Pediatrics, University of Tsukuba Hospital, Tsukuba 305-8576, Japan
| | - Sho Hosaka
- Department of Pediatrics, University of Tsukuba Hospital, Tsukuba 305-8576, Japan
| | - Kazushi Maruo
- Department of Biostatistics, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan
| | - Satoshi Kamizawa
- Department of Radiation Oncology, University of Tsukuba Hospital, Tsukuba 305-8576, Japan
| | - Hideyuki Sakurai
- Department of Radiation Oncology, University of Tsukuba Hospital, Tsukuba 305-8576, Japan
| |
Collapse
|
10
|
Lenarczyk M, Alsheikh AJ, Cohen EP, Schaue D, Kronenberg A, Geurts A, Klawikowski S, Mattson D, Baker JE. T Cells Contribute to Pathological Responses in the Non-Targeted Rat Heart following Irradiation of the Kidneys. TOXICS 2022; 10:toxics10120797. [PMID: 36548630 PMCID: PMC9783591 DOI: 10.3390/toxics10120797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/14/2022] [Accepted: 12/16/2022] [Indexed: 05/14/2023]
Abstract
Heart disease is a significant adverse event caused by radiotherapy for some cancers. Identifying the origins of radiogenic heart disease will allow therapies to be developed. Previous studies showed non-targeted effects manifest as fibrosis in the non-irradiated heart after 120 days following targeted X-irradiation of the kidneys with 10 Gy in WAG/RijCmcr rats. To demonstrate the involvement of T cells in driving pathophysiological responses in the out-of-field heart, and to characterize the timing of immune cell engagement, we created and validated a T cell knock downrat on the WAG genetic backgrou nd. Irradiation of the kidneys with 10 Gy of X-rays in wild-type rats resulted in infiltration of T cells, natural killer cells, and macrophages after 120 days, and none of these after 40 days, suggesting immune cell engagement is a late response. The radiation nephropathy and cardiac fibrosis that resulted in these animals after 120 days was significantly decreased in irradiated T cell depleted rats. We conclude that T cells function as an effector cell in communicating signals from the irradiated kidneys which cause pathologic remodeling of non-targeted heart.
Collapse
Affiliation(s)
- Marek Lenarczyk
- Radiation Biosciences, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Ammar J. Alsheikh
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Eric P. Cohen
- Department of Medicine, Division of Nephrology, New York University, New York, NY 10016, USA
| | - Dörthe Schaue
- Department of Radiation Oncology, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Amy Kronenberg
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Aron Geurts
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Slade Klawikowski
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - David Mattson
- Department of Physiology, Medical College of Georgia, Augusta, GA 30912, USA
| | - John E. Baker
- Radiation Biosciences, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Correspondence: ; Tel.:+1-414-955-8706
| |
Collapse
|
11
|
Azzam P, Francis M, Youssef T, Mroueh M, Daher AA, Eid AA, Fornoni A, Marples B, Zeidan YH. Crosstalk Between SMPDL3b and NADPH Oxidases Mediates Radiation-Induced Damage of Renal Podocytes. Front Med (Lausanne) 2021; 8:732528. [PMID: 34660640 PMCID: PMC8511442 DOI: 10.3389/fmed.2021.732528] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/31/2021] [Indexed: 12/19/2022] Open
Abstract
Patients undergoing radiotherapy (RT) for various tumors localized in the abdomen or pelvis often suffer from radiation nephrotoxicity as collateral damage. Renal podocytes are vulnerable targets for ionizing radiation and contribute to radiation-induced nephropathies. Our prior work previously highlighted the importance of the lipid-modifying enzyme sphingomyelinase acid phosphodiesterase like 3b (SMPDL3b) in modulating the radiation response in podocytes and glomerular endothelial cells. Hereby, we investigated the interplay between SMPDL3b and oxidative stress in mediating radiation injury in podocytes. We demonstrated that the overexpression of SMPDL3b in cultured podocytes (OE) reduced superoxide anion generation and NADPH oxidase activity compared to wild-type cells (WT) post-irradiation. Furthermore, OE podocytes showed downregulated levels of NOX1 and NOX4 after RT. On the other hand, treatment with the NOX inhibitor GKT improved WTs' survival post-RT and restored SMPDL3b to basal levels. in vivo, the administration of GKT restored glomerular morphology and decreased proteinuria in 26-weeks irradiated mice. Taken together, these results suggest a novel role for NOX-derived reactive oxygen species (ROS) upstream of SMPDL3b in modulating the response of renal podocytes to radiation.
Collapse
Affiliation(s)
- Patrick Azzam
- Department of Anatomy, Cell Biology, and Physiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Marina Francis
- Department of Anatomy, Cell Biology, and Physiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Tarek Youssef
- Department of Anatomy, Cell Biology, and Physiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Manal Mroueh
- Department of Anatomy, Cell Biology, and Physiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Alaa Abou Daher
- Department of Anatomy, Cell Biology, and Physiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Assaad A. Eid
- Department of Anatomy, Cell Biology, and Physiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Alessia Fornoni
- Peggy and Harold Katz Family Drug Discovery Center and Division of Nephrology, Department of Medicine, University of Miami, Miami, FL, United States
| | - Brian Marples
- Department of Radiation Oncology, University of Rochester, Rochester, NY, United States
| | - Youssef H. Zeidan
- Department of Radiation Oncology, American University of Beirut Medical Center, Beirut, Lebanon
- Baptist Health, Lynn Cancer Institute, Boca Raton, FL, United States
| |
Collapse
|
12
|
Borg AM, Baker JE. Contemporary biomedical engineering perspective on volitional evolution for human radiotolerance enhancement beyond low-earth orbit. Synth Biol (Oxf) 2021; 6:ysab023. [PMID: 34522784 PMCID: PMC8434797 DOI: 10.1093/synbio/ysab023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 07/15/2021] [Accepted: 09/01/2021] [Indexed: 11/14/2022] Open
Abstract
A primary objective of the National Aeronautics and Space Administration (NASA) is expansion of humankind's presence outside low-Earth orbit, culminating in permanent interplanetary travel and habitation. Having no inherent means of physiological detection or protection against ionizing radiation, humans incur capricious risk when journeying beyond low-Earth orbit for long periods. NASA has made large investments to analyze pathologies from space radiation exposure, emphasizing the importance of characterizing radiation's physiological effects. Because natural evolution would require many generations to confer resistance against space radiation, immediately pragmatic approaches should be considered. Volitional evolution, defined as humans steering their own heredity, may inevitably retrofit the genome to mitigate resultant pathologies from space radiation exposure. Recently, uniquely radioprotective genes have been identified, conferring local or systemic radiotolerance when overexpressed in vitro and in vivo. Aiding in this process, the CRISPR/Cas9 technique is an inexpensive and reproducible instrument capable of making limited additions and deletions to the genome. Although cohorts can be identified and engineered to protect against radiation, alternative and supplemental strategies should be seriously considered. Advanced propulsion and mild synthetic torpor are perhaps the most likely to be integrated. Interfacing artificial intelligence with genetic engineering using predefined boundary conditions may enable the computational modeling of otherwise overly complex biological networks. The ethical context and boundaries of introducing genetically pioneered humans are considered.
Collapse
Affiliation(s)
- Alexander M Borg
- Departments of Biomedical Engineering and Radiation Oncology, Wake Forest University, Winston-Salem, NC, USA
| | - John E Baker
- Radiation Biosciences Laboratory, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
13
|
Little MP, Azizova TV, Hamada N. Low- and moderate-dose non-cancer effects of ionizing radiation in directly exposed individuals, especially circulatory and ocular diseases: a review of the epidemiology. Int J Radiat Biol 2021; 97:782-803. [PMID: 33471563 PMCID: PMC10656152 DOI: 10.1080/09553002.2021.1876955] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 12/24/2020] [Accepted: 01/09/2021] [Indexed: 01/29/2023]
Abstract
PURPOSE There are well-known correlations between high and moderate doses (>0.5 Gy) of ionizing radiation exposure and circulatory system damage, also between radiation and posterior subcapsular cataract. At lower dose correlations with circulatory disease are emerging in the Japanese atomic bomb survivors and in some occupationally exposed groups, and are still to some extent controversial. Heterogeneity in excess relative risks per unit dose in epidemiological studies at low (<0.1 Gy) and at low-moderate (>0.1 Gy, <0.5 Gy) doses may result from confounding and other types of bias, and effect modification by established risk factors. There is also accumulating evidence of excess cataract risks at lower dose and low dose rate in various cohorts. Other ocular endpoints, specifically glaucoma and macular degeneration have been little studied. In this paper, we review recent epidemiological findings, and also discuss some of the underlying radiobiology of these conditions. We briefly review some other types of mainly neurological nonmalignant disease in relation to radiation exposure. CONCLUSIONS We document statistically significant excess risk of the major types of circulatory disease, specifically ischemic heart disease and stroke, in moderate- or low-dose exposed groups, with some not altogether consistent evidence suggesting dose-response non-linearity, particularly for stroke. However, the patterns of risk reported are not straightforward. We also document evidence of excess risks at lower doses/dose-rates of posterior subcapsular and cortical cataract in the Chernobyl liquidators, US Radiologic Technologists and Russian Mayak nuclear workers, with fundamentally linear dose-response. Nuclear cataracts are less radiogenic. For other ocular endpoints, specifically glaucoma and macular degeneration there is very little evidence of effects at low doses; radiation-associated glaucoma has been documented only for doses >5 Gy, and so has the characteristics of a tissue reaction. There is some evidence of neurological detriment following low-moderate dose (∼0.1-0.2 Gy) radiation exposure in utero or in early childhood.
Collapse
Affiliation(s)
- Mark P Little
- Radiation Epidemiology Branch, National Cancer Institute, Bethesda, MD, USA
| | - Tamara V Azizova
- Clinical Department, Southern Urals Biophysics Institute, Ozyorsk, Ozyorsk Chelyabinsk Region, Russia
| | - Nobuyuki Hamada
- Radiation Safety Research Center, Nuclear Technology Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), Komae, Tokyo, Japan
| |
Collapse
|