1
|
Chu X, Han Z, Li B, Yang T. Plasma proteins and different onset subtype of COPD: Proteome-wide Mendelian randomization study and co-localization analyses. Medicine (Baltimore) 2025; 104:e42409. [PMID: 40355193 PMCID: PMC12074030 DOI: 10.1097/md.0000000000042409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 04/23/2025] [Indexed: 05/14/2025] Open
Abstract
Several studies have reported a strong association between plasma proteins and chronic obstructive pulmonary disease (COPD). However, the directionality and causality of the association and whether proteins effected COPD remain unclear. Therefore, we used Proteome-wide Mendelian randomization (MR) study and co-localization analyses to estimate the casual relationship between them. Summary-level data of 2923 plasma protein levels were extracted from a large-scale protein quantitative trait loci study including 54,219 individuals by the UK Biobank Pharma Proteomics Project. The outcome data for COPD and its subtypes were sourced from the FinnGen study. MR analysis was conducted to estimate the associations between protein and COPD and its subtypes risk. Additionally, phenome-wide MR analysis, and candidate drug prediction were employed to identify potential causal circulating proteins and novel drug targets. STROBE MR guidelines are followed for the study. We assessed the effect of 1929 plasma proteins on COPD. We found that Seven proteins, 4 proteins, and 3 proteins were associated with overall COPD, early-onset COPD, and later-onset COPD risk, respectively. MHC class I polypeptide-related sequence B_A (MICB_MICA) and tyrosine-protein kinase receptor tie-1 (TIE-1) would increase 8% and 27% COPD risk (MICB_MICA: odds ratios [OR], 1.08; 95% CI, 1.05-1.10; PFDR = 2.53 × 10-5; TIE-1: OR, 1.27; 95% CI, 1.13-1.43; PFDR = .012). There was negative association of Septin-8 and Butyrophilin subfamily 1 member A1 (BTN1A1) with overall COPD risk (Septin-8: OR, 0.68; 95% CI, 0.57-0.79; PFDR = 8.00 × 10-4 BTN1A1: OR, 0.82; 95% CI, 0.75-0.90; PFDR = .010). There was a protective effect of BTN1A1 on early COPD incidence (OR, 0.72; 95% CI, 0.63-0.83; PFDR = .002). However, there was no evidence indicating a shared causal variant between the other proteins and COPD and its subtypes in these regions (all posterior probability.H4 < .8). The study revealed the causal relationship between several plasma proteins and COPD and its subtypes, providing new theoretical support for understanding COPD.
Collapse
Affiliation(s)
- Xu Chu
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, P.R. China
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Henan University of Science & Technology, Luoyang, P.R. China
| | - Zhifa Han
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, P.R. China
| | - Baicun Li
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, P.R. China
| | - Ting Yang
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, P.R. China
| |
Collapse
|
2
|
Kim YS, Lee SH, Park AH, Wu C, Hong BK, Jung H, Lin SH, Yoo SS. BTN1A1 is a novel immune checkpoint mutually exclusive to PD-L1. J Immunother Cancer 2024; 12:e008303. [PMID: 38485289 PMCID: PMC10941171 DOI: 10.1136/jitc-2023-008303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2024] [Indexed: 03/17/2024] Open
Abstract
BACKGROUND While Programmed cell death protein 1 (PD-1)/programmed cell death-ligand 1 (PD-L1) blockade is a potent antitumor treatment strategy, it is effective in only limited subsets of patients with cancer, emphasizing the need for the identification of additional immune checkpoints. Butyrophilin 1A1 (BTN1A1) has been reported to exhibit potential immunoregulatory activity, but its ability to function as an immune checkpoint remains to be systematically assessed, and the mechanisms underlying such activity have yet to be characterized. METHODS BTN1A1 expression was evaluated in primary tumor tissue samples, and its ability to suppress T-cell activation and T cell-dependent tumor clearance was examined. The relationship between BTN1A1 and PD-L1 expression was further characterized, followed by the development of a BTN1A1-specific antibody that was administered to tumor-bearing mice to test the amenability of this target to immune checkpoint inhibition. RESULTS BTN1A1 was confirmed to suppress T-cell activation in vitro and in vivo. Robust BTN1A1 expression was detected in a range of solid tumor tissue samples, and BTN1A1 expression was mutually exclusive with that of PD-L1 as a consequence of its inhibition of Janus-activated kinase/signal transducer and activator of transcription signaling-induced PD-L1 upregulation. Antibody-mediated BTN1A1 blockade suppressed tumor growth and enhanced immune cell infiltration in syngeneic tumor-bearing mice. CONCLUSION Together, these results confirm that the potential of BTN1A1 is a bona fide immune checkpoint and a viable immunotherapeutic target for the treatment of individuals with anti-PD-1/PD-L1 refractory or resistant disease, opening new avenues to improving survival outcomes for patients with a range of cancers.
Collapse
Affiliation(s)
| | - Seung-Hoon Lee
- STCube Pharmaceuticals, Inc, Gaithersburg, Maryland, USA
| | - Andrew H Park
- STCube Pharmaceuticals, Inc, Gaithersburg, Maryland, USA
| | - Chunai Wu
- STCube Pharmaceuticals, Inc, Gaithersburg, Maryland, USA
| | - Bong-Ki Hong
- STCube Pharmaceuticals, Inc, Gaithersburg, Maryland, USA
| | - Hyunjin Jung
- STCube Inc, Gangnam-gu, Seoul, Korea (the Republic of)
| | - Steven H Lin
- Radiation Oncology, University of Texas MD Anderson Cancer Center Division of Radiation Oncology, Houston, Texas, USA
| | - Stephen S Yoo
- STCube Pharmaceuticals, Inc, Gaithersburg, Maryland, USA
- STCube Inc, Gangnam-gu, Seoul, Korea (the Republic of)
| |
Collapse
|
3
|
Martin Carli JF, Dzieciatkowska M, Hernandez TL, Monks J, McManaman JL. Comparative proteomic analysis of human milk fat globules and paired membranes and mouse milk fat globules identifies core cellular systems contributing to mammary lipid trafficking and secretion. Front Mol Biosci 2023; 10:1259047. [PMID: 38169886 PMCID: PMC10759240 DOI: 10.3389/fmolb.2023.1259047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/22/2023] [Indexed: 01/05/2024] Open
Abstract
Introduction: Human milk delivers critical nutritional and immunological support to human infants. Milk fat globules (MFGs) and their associated membranes (MFGMs) contain the majority of milk lipids and many bioactive components that contribute to neonatal development and health, yet their compositions have not been fully defined, and the mechanisms responsible for formation of these structures remain incompletely understood. Methods: In this study, we used untargeted mass spectrometry to quantitatively profile the protein compositions of freshly obtained MFGs and their paired, physically separated MFGM fractions from 13 human milk samples. We also quantitatively profiled the MFG protein compositions of 9 pooled milk samples from 18 lactating mouse dams. Results: We identified 2,453 proteins and 2,795 proteins in the majority of human MFG and MFGM samples, respectively, and 1,577 proteins in mouse MFGs. Using paired analyses of protein abundance in MFGMs compared to MFGs (MFGM-MFG; 1% FDR), we identified 699 proteins that were more highly abundant in MFGMs (MFGM-enriched), and 201 proteins that were less abundant in MFGMs (cytoplasmic). MFGM-enriched proteins comprised membrane systems (apical plasma membrane and multiple vesicular membranes) hypothesized to be responsible for lipid and protein secretion and components of membrane transport and signaling systems. Cytoplasmic proteins included ribosomal and proteasomal systems. Comparing abundance between human and mouse MFGs, we found a positive correlation (R 2 = 0.44, p < 0.0001) in the relative abundances of 1,279 proteins that were found in common across species. Discussion: Comparative pathway enrichment analyses between human and mouse samples reveal similarities in membrane trafficking and signaling pathways involved in milk fat secretion and identify potentially novel immunological components of MFGs. Our results advance knowledge of the composition and relative quantities of proteins in human and mouse MFGs in greater detail, provide a quantitative profile of specifically enriched human MFGM proteins, and identify core cellular systems involved in milk lipid secretion.
Collapse
Affiliation(s)
- Jayne F. Martin Carli
- Section of Nutrition, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Monika Dzieciatkowska
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Teri L. Hernandez
- College of Nursing, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Jenifer Monks
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - James L. McManaman
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
4
|
Li Q, Liu H, Jin Y, Yu Y, Wang Y, Wu D, Guo Y, Xi L, Ye D, Pan Y, Zhang X, Li J. Analysis of a new therapeutic target and construction of a prognostic model for breast cancer based on ferroptosis genes. Comput Biol Med 2023; 165:107370. [PMID: 37643511 DOI: 10.1016/j.compbiomed.2023.107370] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/09/2023] [Accepted: 08/12/2023] [Indexed: 08/31/2023]
Abstract
Breast cancer, which is the most common malignant tumor among women worldwide and an important cause of death in women. The existing prognostic model for patients with breast cancer is not accurate as breast cancer is resistant to commonly used antitumor drugs. Ferroptosis is a novel mechanism of programmed cell death that depends on iron accumulation and lipid peroxidation. Various studies have confirmed the role of ferroptosis in tumor regulation and ferroptosis is now considered to play an important role in breast cancer development. At present, the association between breast cancer prognosis and ferroptosis-related gene expression remains unclear. Further exploration of this research area may optimize the evaluation and prediction of prognosis of patients with breast cancer and finding of new therapeutic targets. In this study, clinical factors and the expression of multiple genes were evaluated in breast cancer samples from the Cancer Genome Atlas (TCGA) database and Gene Expression Omnibus (GEO) database database. Eleven prognostication-related genes (TP63, IFNG, MT3, ANO6, FLT3, PTGS2, SLC1A4, JUN, SLC7A5, CHAC1, and TF) were identified from differentially expressed genes to construct a survival prediction model, which showed a good prediction ability. KEGG pathway analysis revealed that immune-related pathways were the primary pathways. ssGSEA analysis showed significant differences in the distribution of certain immune-related cell subsets, such as CD8+T cells and B cells, and in the expression of multiple immune genes, including type II IFN response and APC coinhibition. In addition, 10 immune targets related to ferroptosis in breast cancer were found: CD276, CD80, HHLA2, LILRA2, NCR3LG1, NECTIN3, PVR, SLAMF9,TNFSF4, and BTN1A1. Using TCGA, new ferroptosis genes related to breast cancer prognosis were identified, a new reliable and accurate prognosis model was developed, and 10 new potential therapeutic targets different from the traditional targeted drugs were identified to provide a reference for improving the poor prognosis of patients with breast cancer.
Collapse
Affiliation(s)
- Qi Li
- Department of Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, China; Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, China.
| | - Hengchen Liu
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Zhejiang Provincial Clinical Research Center for Cancer, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, China.
| | - Yun Jin
- Department of Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, China; Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, China.
| | - Yuanquan Yu
- Department of Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, China; Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, China.
| | - Yihang Wang
- Department of Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, China; Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, China.
| | - Di Wu
- Department of Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, China; Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, China.
| | - Yinghao Guo
- Department of Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, China; Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, China.
| | - Longfu Xi
- Department of Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, China; Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, China.
| | - Dan Ye
- Department of Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, China; Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, China.
| | - Yanzhi Pan
- Department of Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, China; Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, China.
| | - Xiaoxiao Zhang
- Department of Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, China; Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, China.
| | - Jiangtao Li
- Department of Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, China; Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, China.
| |
Collapse
|
5
|
Alveolar cells in the mammary gland: lineage commitment and cell death. Biochem J 2022; 479:995-1006. [PMID: 35551601 PMCID: PMC9162463 DOI: 10.1042/bcj20210734] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/18/2022] [Accepted: 04/21/2022] [Indexed: 11/17/2022]
Abstract
The mammary gland provides a spectacular example of physiological cell death whereby the cells that produce milk during lactation are removed swiftly, efficiently, and without inducing inflammation upon the cessation of lactation. The milk-producing cells arise primarily during pregnancy and comprise the alveolar lineage that is specified by signalling pathways and factors that are activated in response to pregnancy hormones. There are at least two alveolar sub-lineages, one of which is marked by the presence of binucleate cells that are especially susceptible to programmed cell death during involution. This process of post-lactational regression, or involution, is carefully orchestrated and occurs in two phases, the first results in a rapid switch in cell fate with the secretory epithelial cells becoming phagocytes whereupon they destroy dead and dying cells from milk. This reversible phase is followed by the second phase that is marked by an influx of immune cells and a remodelling of the gland to replace the alveolar cells with re-differentiated adipocytes, resulting in a return to the pre-pregnant state in preparation for any subsequent pregnancies. The mouse mammary gland provides an excellent experimental tool with which to investigate lineage commitment and the mechanisms of programmed cell death that occur in a normal physiological process. Importantly, involution has highlighted a role for lysoptosis, a mechanism of cell death that is mediated by lysosomal cathepsins and their endogenous inhibitors, serpins. In this review, I discuss alveolar lineage commitment during pregnancy and the programmed cell death pathways that destroy these cells during involution.
Collapse
|