1
|
Fouad AM, Abo-Al-Ela HG, Moneeb RH, Alfons MS, Salah AS, Yusuf S. Impact of Bambusa vulgaris-supplemented diet on Nile tilapia challenged with Pseudomonas putida: Hematological, immune, and oxidative responses. FISH & SHELLFISH IMMUNOLOGY 2025; 157:110102. [PMID: 39732380 DOI: 10.1016/j.fsi.2024.110102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/15/2024] [Accepted: 12/25/2024] [Indexed: 12/30/2024]
Abstract
This study investigated the effects of bamboo shoot extract (Bambusa vulgaris) as a feed additive on the health profiles and infection resistance of Nile tilapia (Oreochromis niloticus) against Pseudomonas putida. Bamboo shoot extract was added at levels of 0 g, 40 g, and 60 g per 1000 g of diet over a 60-day period. The fish were then challenged with a pathogenic P. putida strain. Chemical analysis of the bamboo shoot extract identified 3,5-dinitrophenol and hydroquinone as the two most abundant compounds. Results showed that fish fed bamboo-enriched diets exhibited significantly enhanced levels of red blood cells, hemoglobin, hematocrit, white blood cells, and platelets, and improved erythrocyte cellular and nuclear morphologies, indicating improved health profiles after the challenge. Liver function indicators, including AST, ALT, and ALP, were notably balanced in fish receiving bamboo shoot extract post-challenge (p < 0.05). Blood levels of K+ were lower in the bamboo-fed groups. Additionally, blood levels of Ca++ and Na+ were reduced in fish fed 40 g and 60 g of bamboo, respectively, compared to the control group (p < 0.01). The bamboo extract also enhanced immune and oxidative capacities, as demonstrated by increased catalase, superoxide dismutase, lysozyme activity, and phagocytic activity, along with reduced malondialdehyde levels and elevated serum immunoglobulin M (p < 0.01). Gene expression analysis revealed significant effects of Bambusa vulgaris extract, Pseudomonas infection, and their interaction on the expression of interleukin-1β, interleukin-10, and NK-lysin genes, with varying expression levels at 1, 3, and 7 days post-challenge (p < 0.05). The liver bacterial load in fish exposed to P. putida significantly decreased in the bamboo-fed groups, with the lowest count observed in the 60 g bamboo group. Additionally, survival rates were markedly higher in the bamboo-fed groups compared to the control, with no significant difference between the two bamboo-fed groups. In conclusion, dietary supplementation with bamboo shoot extract enhances hematological parameters, blood cell and nuclear morphology, and increases survival rates in Nile tilapia following infection.
Collapse
Affiliation(s)
- Alamira Marzouk Fouad
- Department of Aquatic Animal Medicine and Management, Faculty of Veterinary Medicine, Assiut University, Assiut, 71526, Egypt
| | - Haitham G Abo-Al-Ela
- Genetics and Biotechnology, Department of Aquaculture, Faculty of Fish Resources, Suez University, Suez, 43221, Egypt.
| | - Rehab H Moneeb
- Zoology Department, Faculty of Science, New Valley University, El Kharga, New Valley, 72511, Egypt
| | - Mariana S Alfons
- Zoology Department, Faculty of Science, New Valley University, El Kharga, New Valley, 72511, Egypt
| | - Abdallah S Salah
- Department of Aquaculture, Faculty of Aquatic and Fishers Sciences, Kafrelsheikh University, 33516, Kafrelsheikh, Egypt
| | - Shaymaa Yusuf
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, Assiut University, Assiut, 71526, Egypt
| |
Collapse
|
2
|
Cardoso S, Carvalho C, Correia SC, Moreira PI. Protective effects of 2,4-dinitrophenol in okadaic acid-induced cellular model of Alzheimer's disease. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167222. [PMID: 38729530 DOI: 10.1016/j.bbadis.2024.167222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/28/2024] [Accepted: 05/03/2024] [Indexed: 05/12/2024]
Abstract
Alzheimer's disease (AD) research started several decades ago and despite the many efforts employed to develop new treatments or approaches to slow and/or revert disease progression, AD treatment remains an unsolved issue. Knowing that mitochondria loss of function is a central hub for many AD-associated pathophysiological processes, there has been renewed interest in exploring mitochondria as targets for intervention. In this perspective, the present study was aimed to investigate the possible beneficial effects of 2,4 dinitrophenol (DNP), a mitochondrial uncoupler agent, in an in vitro model of AD. Retinoic acid-induced differentiated SH-SY5Y cells were incubated with okadaic acid (OA), a neurotoxin often used as an AD experimental model, and/or with DNP. OA caused a decrease in neuronal cells viability, induced multiple mitochondrial anomalies including increased levels of reactive oxygen species, decreased bioenergetics and mitochondria content markers, and an altered mitochondria morphology. OA-treated cells also presented increased lipid peroxidation levels, and overactivation of tau related kinases (GSK3β, ERK1/2 and AMPK) alongside with a significant augment in tau protein phosphorylation levels. Interestingly, DNP co-treatment ameliorated and rescued OA-induced detrimental effects not only on mitochondria but also but also reinstated signaling pathways homeostasis and ameliorated tau pathology. Overall, our results show for the first time that DNP has the potential to preserve mitochondria homeostasis under a toxic insult, like OA exposure, as well as to reestablish cellular signaling homeostasis. These observations foster the idea that DNP, as a mitochondrial modulator, might represent a new avenue for treatment of AD.
Collapse
Affiliation(s)
- Susana Cardoso
- CNC-UC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal; IIIU - Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal.
| | - Cristina Carvalho
- CNC-UC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal; IIIU - Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | - Sónia C Correia
- CNC-UC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal; IIIU - Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | - Paula I Moreira
- CNC-UC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal; Institute of Physiology, Faculty of Medicine, University of Coimbra, 3000-370 Coimbra, Portugal
| |
Collapse
|
3
|
Zhong R, Rua MT, Wei-LaPierre L. Targeting mitochondrial Ca 2+ uptake for the treatment of amyotrophic lateral sclerosis. J Physiol 2024; 602:1519-1549. [PMID: 38010626 PMCID: PMC11032238 DOI: 10.1113/jp284143] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 10/31/2023] [Indexed: 11/29/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a rare adult-onset neurodegenerative disease characterized by progressive motor neuron (MN) loss, muscle denervation and paralysis. Over the past several decades, researchers have made tremendous efforts to understand the pathogenic mechanisms underpinning ALS, with much yet to be resolved. ALS is described as a non-cell autonomous condition with pathology detected in both MNs and non-neuronal cells, such as glial cells and skeletal muscle. Studies in ALS patient and animal models reveal ubiquitous abnormalities in mitochondrial structure and function, and disturbance of intracellular calcium homeostasis in various tissue types, suggesting a pivotal role of aberrant mitochondrial calcium uptake and dysfunctional calcium signalling cascades in ALS pathogenesis. Calcium signalling and mitochondrial dysfunction are intricately related to the manifestation of cell death contributing to MN loss and skeletal muscle dysfunction. In this review, we discuss the potential contribution of intracellular calcium signalling, particularly mitochondrial calcium uptake, in ALS pathogenesis. Functional consequences of excessive mitochondrial calcium uptake and possible therapeutic strategies targeting mitochondrial calcium uptake or the mitochondrial calcium uniporter, the main channel mediating mitochondrial calcium influx, are also discussed.
Collapse
Affiliation(s)
- Renjia Zhong
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, Gainesville, FL, 32611
- Department of Emergency Medicine, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China, 110001
| | - Michael T. Rua
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, Gainesville, FL, 32611
| | - Lan Wei-LaPierre
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, Gainesville, FL, 32611
- Myology Institute, University of Florida, Gainesville, FL 32611
| |
Collapse
|
4
|
Sousa T, Moreira PI, Cardoso S. Current Advances in Mitochondrial Targeted Interventions in Alzheimer's Disease. Biomedicines 2023; 11:2331. [PMID: 37760774 PMCID: PMC10525414 DOI: 10.3390/biomedicines11092331] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/16/2023] [Accepted: 08/18/2023] [Indexed: 09/29/2023] Open
Abstract
Alzheimer's disease is the most prevalent neurodegenerative disorder and affects the lives not only of those who are diagnosed but also of their caregivers. Despite the enormous social, economic and political burden, AD remains a disease without an effective treatment and with several failed attempts to modify the disease course. The fact that AD clinical diagnosis is most often performed at a stage at which the underlying pathological events are in an advanced and conceivably irremediable state strongly hampers treatment attempts. This raises the awareness of the need to identify and characterize the early brain changes in AD, in order to identify possible novel therapeutic targets to circumvent AD's cascade of events. One of the most auspicious targets is mitochondria, powerful organelles found in nearly all cells of the body. A vast body of literature has shown that mitochondria from AD patients and model organisms of the disease differ from their non-AD counterparts. In view of this evidence, preserving and/or restoring mitochondria's health and function can represent the primary means to achieve advances to tackle AD. In this review, we will briefly assess and summarize the previous and latest evidence of mitochondria dysfunction in AD. A particular focus will be given to the recent updates and advances in the strategy options aimed to target faulty mitochondria in AD.
Collapse
Affiliation(s)
- Tiago Sousa
- Faculty of Medicine, University of Coimbra, 3000-370 Coimbra, Portugal;
| | - Paula I. Moreira
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal;
- CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- Institute of Physiology, Faculty of Medicine, University of Coimbra, 3000-370 Coimbra, Portugal
| | - Susana Cardoso
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal;
- CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- IIIUC—Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| |
Collapse
|
5
|
Evaluation of hsa-let-7d-5p, hsa-let-7g-5p and hsa-miR-15b-5p plasma levels in patients with Alzheimer's disease. Psychiatr Genet 2022; 32:25-29. [PMID: 34955516 DOI: 10.1097/ypg.0000000000000303] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) is a progressive neurodegenerative disorder MicroRNAs (miRNAs) may be promising diagnostic biomarkers for AD. Previous evidence shows that miR-15b-5p, hsa-let7g-5p and hsa-let7d-5p might confer potential blood biomarkers for timely diagnosis of AD. Therefore, in this replication study, we aimed to investigate the serum transcript level of these miRNAs to assess for their potential as diagnostic or prognostic biomarker in AD patients. METHODS Blood samples were obtained from 50 AD patients and 50 age- and sex-matched healthy individuals. Then, total RNA was extracted from serum samples, cDNA was synthesized, and the expression level of miRNAs was measured by the real-time PCR method. RESULTS The expression level of hsa-let7d-5p (fold change = 2.14, P = 0.007) and hsa-let7g-5p (fold change = 1.94; P = 0.013) was significantly increased in the AD patients compared to control individuals. However, the difference in the transcription of miR-15b-5p between the two groups was not statistically significant (fold change = 1.08; P = 0.76). The AROC for transcript levels of hsa-let-7d-5p was 0.68 (P = 0.014; 95% CI, 0.39-0.88) and it was 0.64 for hsa-let-7g-5p (P = 0.028; 95% CI, 0.27-0.89). The cut-off value for let-7d-5p had 0.82 sensitivity and 0.34 specificity. Moreover, the cut-off value for hsa-let-7g-5p indicated a 0.79 sensitivity and 0.28 specificity. CONCLUSION Our findings suggest the potential of measuring the transcript levels of hsa-let7d-5p and hsa-let7g-5p miRNAs as a diagnostic biomarker for AD.
Collapse
|
6
|
Wang Z, Wang Y, Pasangulapati JP, Stover KR, Liu X, Schier SW, Weaver DF. Design, synthesis, and biological evaluation of furosemide analogs as therapeutics for the proteopathy and immunopathy of Alzheimer's disease. Eur J Med Chem 2021; 222:113565. [PMID: 34118718 DOI: 10.1016/j.ejmech.2021.113565] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/18/2021] [Accepted: 05/12/2021] [Indexed: 01/11/2023]
Abstract
β-Amyloid (Aβ) triggered proteopathic and immunopathic processes are a postulated cause of Alzheimer's disease (AD). Monomeric Aβ is derived from amyloid precursor protein, whereupon it aggregates into various assemblies, including oligomers and fibrils, which disrupt neuronal membrane integrity and induce cellular damage. Aβ is directly neurotoxic/synaptotoxic, but may also induce neuroinflammation through the concomitant activation of microglia. Previously, we have shown that furosemide is a known anthranilate-based drug with the capacity to downregulate the proinflammatory microglial M1 phenotype and upregulate the anti-inflammatory M2 phenotype. To further explore the pharmacologic effects of furosemide, this study reports a series of furosemide analogs that target both Aβ aggregation and neuroinflammation, thereby addressing the combined proteopathic-immunopathic pathogenesis of AD. Forty compounds were synthesized and evaluated. Compounds 3c, 3g, and 20 inhibited Aβ oligomerization; 33 and 34 inhibited Aβ fibrillization. 3g and 34 inhibited the production of TNF-α, IL-6, and nitric oxide, downregulated the expression of COX-2 and iNOS, and promoted microglial phagocytotic activity, suggesting dual activity against Aβ aggregation and neuroinflammation. Our data demonstrate the potential therapeutic utility of the furosemide-like anthranilate platform in the development of drug-like molecules targeting both the proteopathy and immunopathy of AD.
Collapse
Affiliation(s)
- Zhiyu Wang
- Krembil Research Institute, University Health Network, Toronto, Canada; Faculty of Pharmacy, University of Toronto, Ontario, Canada
| | - Yanfei Wang
- Krembil Research Institute, University Health Network, Toronto, Canada
| | | | - Kurt R Stover
- Krembil Research Institute, University Health Network, Toronto, Canada
| | - Xiaojing Liu
- Krembil Research Institute, University Health Network, Toronto, Canada
| | | | - Donald F Weaver
- Krembil Research Institute, University Health Network, Toronto, Canada; Faculty of Pharmacy, University of Toronto, Ontario, Canada; Faculty of Medicine, University of Toronto, Ontario, Canada; Department of Chemistry, University of Toronto, Ontario, Canada.
| |
Collapse
|
7
|
Lee MJ, Jang Y, Zhu J, Namgung E, Go D, Seo C, Ju X, Cui J, Lee YL, Kang H, Kim H, Chung W, Heo JY. Auraptene Enhances Junction Assembly in Cerebrovascular Endothelial Cells by Promoting Resilience to Mitochondrial Stress through Activation of Antioxidant Enzymes and mtUPR. Antioxidants (Basel) 2021; 10:475. [PMID: 33802930 PMCID: PMC8002628 DOI: 10.3390/antiox10030475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/04/2021] [Accepted: 03/15/2021] [Indexed: 02/06/2023] Open
Abstract
Junctional proteins in cerebrovascular endothelial cells are essential for maintaining the barrier function of the blood-brain barrier (BBB), thus protecting the brain from the infiltration of pathogens. The present study showed that the potential therapeutic natural compound auraptene (AUR) enhances junction assembly in cerebrovascular endothelial cells by inducing antioxidant enzymes and the mitochondrial unfolded protein response (mtUPR). Treatment of mouse cerebrovascular endothelial cells with AUR enhanced the expression of junctional proteins, such as occludin, zonula occludens-1 (ZO-1) and vascular endothelial cadherin (VE-cadherin), by increasing the levels of mRNA encoding antioxidant enzymes. AUR treatment also resulted in the depolarization of mitochondrial membrane potential and activation of mtUPR. The ability of AUR to protect against ischemic conditions was further assessed using cells deprived of oxygen and glucose. Pretreatment of these cells with AUR protected against damage to junctional proteins, including occludin, claudin-5, ZO-1 and VE-cadherin, accompanied by a stress resilience response regulated by levels of ATF5, LONP1 and HSP60 mRNAs. Collectively, these results indicate that AUR promotes resilience against oxidative stress and improves junction assembly, suggesting that AUR may help maintain intact barriers in cerebrovascular endothelial cells.
Collapse
Affiliation(s)
- Min Joung Lee
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon 35015, Korea
- Department of Biochemistry, Chungnam National University School of Medicine, Daejeon 35015, Korea
- Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon 35015, Korea
| | - Yunseon Jang
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon 35015, Korea
- Department of Biochemistry, Chungnam National University School of Medicine, Daejeon 35015, Korea
- Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon 35015, Korea
| | - Jiebo Zhu
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon 35015, Korea
- Department of Biochemistry, Chungnam National University School of Medicine, Daejeon 35015, Korea
- Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon 35015, Korea
| | - Eunji Namgung
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon 35015, Korea
- Department of Biochemistry, Chungnam National University School of Medicine, Daejeon 35015, Korea
- Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon 35015, Korea
| | - Dahyun Go
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon 35015, Korea
- Department of Biochemistry, Chungnam National University School of Medicine, Daejeon 35015, Korea
- Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon 35015, Korea
| | - Changjun Seo
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon 35015, Korea
- Department of Biochemistry, Chungnam National University School of Medicine, Daejeon 35015, Korea
- Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon 35015, Korea
| | - Xianshu Ju
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon 35015, Korea
- Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon 35015, Korea
| | - Jianchen Cui
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon 35015, Korea
- Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon 35015, Korea
| | - Yu Lim Lee
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon 35015, Korea
- Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon 35015, Korea
| | - Hyoeun Kang
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon 35015, Korea
- Department of Biochemistry, Chungnam National University School of Medicine, Daejeon 35015, Korea
| | - Hyeongseok Kim
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon 35015, Korea
- Department of Biochemistry, Chungnam National University School of Medicine, Daejeon 35015, Korea
| | - Woosuk Chung
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon 35015, Korea
- Department of Anesthesiology and Pain Medicine, Chungnam National University School of Medicine, Daejeon 35015, Korea
- Department of Anesthesiology and Pain Medicine, Chungnam National University Hospital, Daejeon 35015, Korea
| | - Jun Young Heo
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon 35015, Korea
- Department of Biochemistry, Chungnam National University School of Medicine, Daejeon 35015, Korea
- Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon 35015, Korea
| |
Collapse
|
8
|
Gao W, Jin L, Liu C, Zhang N, Zhang R, Bednarikova Z, Gazova Z, Bhunia A, Siebert HC, Dong H. Inhibition behavior of Sennoside A and Sennoside C on amyloid fibrillation of human lysozyme and its possible mechanism. Int J Biol Macromol 2021; 178:424-433. [PMID: 33662415 DOI: 10.1016/j.ijbiomac.2021.02.213] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 02/24/2021] [Accepted: 02/27/2021] [Indexed: 11/29/2022]
Abstract
Amyloid proteins were recognized as the crucial cause of many senile diseases. In this study, the inhibitory effects of Sennoside A (SA) and Sennoside C (SC) on amyloid fibrillation were evaluated by the combination of biophysical approaches and molecular docking tool using human lysozyme (HL) as amyloid-forming model. The results of thioflavin-T (ThT), 8-anilino-1-naphthalenesulfonic acid (ANS) and congo red (CR) assays indicated that both SA and SC could inhibit the amyloid fibrillation of HL in a dose-dependent manner. The IC50 value of SA and SC on HL fibrillation was 200.09 μM and 186.20 μM, respectively. These findings were further verified by transmission electron microscopy (TEM) and atomic force microscopy (AFM), which showed that the addition of SA or SC could sharply reduce the amyloid fibrillation of HL. Additionally, the interactions of HL with SA and SC were investigated by steady-state fluorescence spectra and molecular docking studies. The results suggested that both SA and SC could bind to the binding pocket of HL and form a stable complex mainly via hydrogen bonds, van-der-Waals forces and hydrophobic interactions. In conclusion, our experiments revealed that both SA and SC can significantly inhibit amyloid fibrillation of HL.
Collapse
Affiliation(s)
- Wen Gao
- Department of Pharmacy, Liaocheng University, Liaocheng, Shandong 252000, China
| | - Li Jin
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong 252000, China
| | - Chunhong Liu
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong 252000, China
| | - Ning Zhang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong 252000, China.
| | - Ruiyan Zhang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong 252000, China.
| | - Zuzana Bednarikova
- Department of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 04001 Kosice, Slovakia
| | - Zuzana Gazova
- Department of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 04001 Kosice, Slovakia
| | - Anirban Bhunia
- Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VII (M), 700054 Kolkata, India
| | - Hans-Christian Siebert
- RI-B-NT Research Institute of Bioinformatics and Nanotechnology, Franziusallee 177, 24148 Kiel, Germany
| | - Huijun Dong
- Department of Pharmacy, Liaocheng University, Liaocheng, Shandong 252000, China.
| |
Collapse
|
9
|
Mani S, Swargiary G, Chadha R. Mitophagy impairment in neurodegenerative diseases: Pathogenesis and therapeutic interventions. Mitochondrion 2021; 57:270-293. [PMID: 33476770 DOI: 10.1016/j.mito.2021.01.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/23/2020] [Accepted: 01/14/2021] [Indexed: 02/07/2023]
Abstract
Neurons are specialized cells, requiring a lot of energy for its proper functioning. Mitochondria are the key cellular organelles and produce most of the energy in the form of ATP, required for all the crucial functions of neurons. Hence, the regulation of mitochondrial biogenesis and quality control is important for maintaining neuronal health. As a part of mitochondrial quality control, the aged and damaged mitochondria are removed through a selective mode of autophagy called mitophagy. However, in different pathological conditions, this process is impaired in neuronal cells and lead to a variety of neurodegenerative disease (NDD). Various studies indicate that specific protein aggregates, the characteristics of different NDDs, affect this process of mitophagy, adding to the severity and progression of diseases. Though, the detailed process of this association is yet to be explored. In light of the significant role of impaired mitophagy in NDDs, further studies have also investigated a large number of therapeutic strategies to target mitophagy in these diseases. Our current review summarizes the abnormalities in different mitophagy pathways and their association with different NDDs. We have also elaborated upon various novel therapeutic strategies and their limitations to enhance mitophagy in NDDs that may help in the management of symptoms and increasing the life expectancy of NDD patients. Thus, our study provides an overview of mitophagy in NDDs and emphasizes the need to elucidate the mechanism of impaired mitophagy prevalent across different NDDs in future research. This will help designing better treatment options with high efficacy and specificity.
Collapse
Affiliation(s)
- Shalini Mani
- Department of Biotechnology, Centre for Emerging Disease, Jaypee Institute of Information Technology, Noida, India.
| | - Geeta Swargiary
- Department of Biotechnology, Centre for Emerging Disease, Jaypee Institute of Information Technology, Noida, India
| | - Radhika Chadha
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, USA
| |
Collapse
|
10
|
Sriram B, Kogularasu S, Wang SF, Sheu JK. Rationally designed RGO@CuO@Mn2O3 as an excellent electrocatalyst for the rapid and real-time detection of 2-nitrophenol. NEW J CHEM 2020. [DOI: 10.1039/d0nj02118k] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Rationally designed and functional electronic structures of TMOs (precisely Cu and Mn) with purposeful morphologies were prepared using a facile synthetic method.
Collapse
Affiliation(s)
- Balasubramanian Sriram
- Department of Materials and Mineral Resources Engineering
- National Taipei University of Technology
- Taipei 106
- Taiwan
| | | | - Sea-Fue Wang
- Department of Materials and Mineral Resources Engineering
- National Taipei University of Technology
- Taipei 106
- Taiwan
| | - Jinn-Kong Sheu
- Department of Photonics
- National Cheng Kung University
- Tainan 701
- Taiwan
| |
Collapse
|
11
|
Geisler JG. 2,4 Dinitrophenol as Medicine. Cells 2019; 8:cells8030280. [PMID: 30909602 PMCID: PMC6468406 DOI: 10.3390/cells8030280] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 03/11/2019] [Accepted: 03/20/2019] [Indexed: 12/20/2022] Open
Abstract
In the sanctity of pure drug discovery, objective reasoning can become clouded when pursuing ideas that appear unorthodox, but are spot on physiologically. To put this into historical perspective, it was an unorthodox idea in the 1950’s to suggest that warfarin, a rat poison, could be repositioned into a breakthrough drug in humans to protect against strokes as a blood thinner. Yet it was approved in 1954 as Coumadin® and has been prescribed to billions of patients as a standard of care. Similarly, no one can forget the horrific effects of thalidomide, prescribed or available without a prescription, as both a sleeping pill and “morning sickness” anti-nausea medication targeting pregnant women in the 1950’s. The “thalidomide babies” became the case-in-point for the need of strict guidelines by the U.S. Food & Drug Administration (FDA) or full multi-species teratogenicity testing before drug approval. More recently it was found that thalidomide is useful in graft versus host disease, leprosy and resistant tuberculosis treatment, and as an anti-angiogenesis agent as a breakthrough drug for multiple myeloma (except for pregnant female patients). Decades of diabetes drug discovery research has historically focused on every possible angle, except, the energy-out side of the equation, namely, raising mitochondrial energy expenditure with chemical uncouplers. The idea of “social responsibility” allowed energy-in agents to be explored and the portfolio is robust with medicines of insulin sensitizers, insulin analogues, secretagogues, SGLT2 inhibitors, etc., but not energy-out medicines. The primary reason? It appeared unorthodox, to return to exploring a drug platform used in the 1930s in over 100,000 obese patients used for weight loss. This is over 80-years ago and prior to Dr Peter Mitchell explaining the mechanism of how mitochondrial uncouplers, like 2,4-dinitrophenol (DNP) even worked by three decades later in 1961. Although there is a clear application for metabolic disease, it was not until recently that this platform was explored for its merit at very low, weight-neutral doses, for treating insidious human illnesses and completely unrelated to weight reduction. It is known that mitochondrial uncouplers specifically target the entire organelle’s physiology non-genomically. It has been known for years that many neuromuscular and neurodegenerative diseases are associated with overt production of reactive oxygen species (ROSs), a rise in isoprostanes (biomarker of mitochondrial ROSs in urine or blood) and poor calcium (Ca2+) handing. It has also been known that mitochondrial uncouplers lower ROS production and Ca2+ overload. There is evidence that elevation of isoprostanes precedes disease onset, in Alzheimer’s Disease (AD). It is also curious, why so many neurodegenerative diseases of known and unknown etiology start at mid-life or later, such as Multiple Sclerosis (MS), Huntington Disease (HD), AD, Parkinson Disease, and Amyotrophic Lateral Sclerosis (ALS). Is there a relationship to a buildup of mutations that are sequestered over time due to ROSs exceeding the rate of repair? If ROS production were managed, could disease onset due to aging be delayed or prevented? Is it possible that most, if not all neurodegenerative diseases are manifested through mitochondrial dysfunction? Although DNP, a historic mitochondrial uncoupler, was used in the 1930s at high doses for obesity in well over 100,000 humans, and so far, it has never been an FDA-approved drug. This review will focus on the application of using DNP, but now, repositioned as a potential disease-modifying drug for a legion of insidious diseases at much lower and paradoxically, weight neutral doses. DNP will be addressed as a treatment for “metabesity”, an emerging term related to the global comorbidities associated with the over-nutritional phenotype; obesity, diabetes, nonalcoholic steatohepatitis (NASH), metabolic syndrome, cardiovascular disease, but including neurodegenerative disorders and accelerated aging. Some unexpected drug findings will be discussed, such as DNP’s induction of neurotrophic growth factors involved in neuronal heath, learning and cognition. For the first time in 80’s years, the FDA has granted (to Mitochon Pharmaceutical, Inc., Blue Bell, PA, USA) an open Investigational New Drug (IND) approval to begin rigorous clinical testing of DNP for safety and tolerability, including for the first ever, pharmacokinetic profiling in humans. Successful completion of Phase I clinical trial will open the door to explore the merits of DNP as a possible treatment of people with many truly unmet medical needs, including those suffering from HD, MS, PD, AD, ALS, Duchenne Muscular Dystrophy (DMD), and Traumatic Brain Injury (TBI).
Collapse
Affiliation(s)
- John G Geisler
- Mitochon Pharmaceuticals, Inc., 970 Cross Lane, Blue Bell, PA 19422, USA.
| |
Collapse
|
12
|
de Godoy MA, Saraiva LM, de Carvalho LRP, Vasconcelos-Dos-Santos A, Beiral HJV, Ramos AB, Silva LRDP, Leal RB, Monteiro VHS, Braga CV, de Araujo-Silva CA, Sinis LC, Bodart-Santos V, Kasai-Brunswick TH, Alcantara CDL, Lima APCA, da Cunha-E Silva NL, Galina A, Vieyra A, De Felice FG, Mendez-Otero R, Ferreira ST. Mesenchymal stem cells and cell-derived extracellular vesicles protect hippocampal neurons from oxidative stress and synapse damage induced by amyloid-β oligomers. J Biol Chem 2017; 293:1957-1975. [PMID: 29284679 DOI: 10.1074/jbc.m117.807180] [Citation(s) in RCA: 159] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 12/22/2017] [Indexed: 12/19/2022] Open
Abstract
Alzheimer's disease (AD) is a disabling and highly prevalent neurodegenerative condition, for which there are no effective therapies. Soluble oligomers of the amyloid-β peptide (AβOs) are thought to be proximal neurotoxins involved in early neuronal oxidative stress and synapse damage, ultimately leading to neurodegeneration and memory impairment in AD. The aim of the current study was to evaluate the neuroprotective potential of mesenchymal stem cells (MSCs) against the deleterious impact of AβOs on hippocampal neurons. To this end, we established transwell cocultures of rat hippocampal neurons and MSCs. We show that MSCs and MSC-derived extracellular vesicles protect neurons against AβO-induced oxidative stress and synapse damage, revealed by loss of pre- and postsynaptic markers. Protection by MSCs entails three complementary mechanisms: 1) internalization and degradation of AβOs; 2) release of extracellular vesicles containing active catalase; and 3) selective secretion of interleukin-6, interleukin-10, and vascular endothelial growth factor to the medium. Results support the notion that MSCs may represent a promising alternative for cell-based therapies in AD.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Renata B Leal
- From the Institute of Biophysics Carlos Chagas Filho
| | | | | | | | | | | | | | | | | | | | - Antonio Galina
- the Institute of Medical Biochemistry Leopoldo de Meis, and
| | - Adalberto Vieyra
- From the Institute of Biophysics Carlos Chagas Filho.,the National Center for Structural Biology and Bioimaging/CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21944-590, Brazil
| | | | | | - Sergio T Ferreira
- From the Institute of Biophysics Carlos Chagas Filho, .,the Institute of Medical Biochemistry Leopoldo de Meis, and
| |
Collapse
|
13
|
Investigating the inhibitory effects of zinc ions on amyloid fibril formation of hen egg-white lysozyme. Int J Biol Macromol 2017; 98:717-722. [DOI: 10.1016/j.ijbiomac.2017.01.128] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 01/17/2017] [Accepted: 01/30/2017] [Indexed: 12/27/2022]
|
14
|
In vitro disintegration of goat brain cystatin fibrils using conventional and gemini surfactants: Putative therapeutic intervention in amyloidoses. Int J Biol Macromol 2016; 93:493-500. [DOI: 10.1016/j.ijbiomac.2016.08.082] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 08/26/2016] [Accepted: 08/29/2016] [Indexed: 01/01/2023]
|
15
|
Song S, Ma X, Zhou Y, Xu M, Shuang S, Dong C. Studies on the interaction between vanillin and β-Amyloid protein via fluorescence spectroscopy and atomic force microscopy. Chem Res Chin Univ 2016. [DOI: 10.1007/s40242-016-5347-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
16
|
Bhat WF, Bhat SA, Bano B. Evaluation of polyphenols as possible therapeutics for amyloidoses: Comparative analysis of Kaempferol and Catechin. Int J Biol Macromol 2015; 81:60-8. [DOI: 10.1016/j.ijbiomac.2015.07.052] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 07/24/2015] [Accepted: 07/26/2015] [Indexed: 12/18/2022]
|
17
|
Shariatizi S, Meratan AA, Ghasemi A, Nemat-Gorgani M. Inhibition of amyloid fibrillation and cytotoxicity of lysozyme fibrillation products by polyphenols. Int J Biol Macromol 2015; 80:95-106. [PMID: 26102331 DOI: 10.1016/j.ijbiomac.2015.06.030] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Revised: 06/16/2015] [Accepted: 06/17/2015] [Indexed: 12/13/2022]
Abstract
An increasing number of studies conducted under in vitro and in vivo conditions, have concluded that polyphenols, compounds frequently occurring in many herbs with antioxidant properties, prevent and reverse amyloid fibril formation. However, the mechanisms by which these natural products modulate the protein aggregation process are poorly understood. Herein, a range of techniques including thioflavin T (ThT) and ANS fluorescence assays, electron microscopy and circular dichroism have been employed to determine the efficacy of rosmarinic acid (RA) and resveratrol (Res) on the inhibition/reversion of fibrillogenesis and hindering cytotoxicity induced by protofibrils and amyloid fibrils of hen egg white lysozyme (HEWL). Results demonstrated that both polyphenols effectively inhibit fibrillogenesis and destabilize preformed fibrils of HEWL in a concentration-dependent manner. Cytotoxicity protection on PC12 cells was also observed using the MTT assay, ROS production assay, and phase-contrast microscopy. It is suggested that the mechanism underlying the inhibitory effects of RA and Res is to prevent hydrophobic interactions between HEWL amyloidogenic prefibrillar species, although additional studies is needed to elucidate the detailed mechanisms involved. A combination of antioxidative and anti-amyloidogenic properties of these molecules may provide them with the described neuroprotective capacities.
Collapse
Affiliation(s)
- Sajad Shariatizi
- Institute of Biochemistry and Biophysics, University of Tehran, P.O. Box 13145-1384, 1417614411 Tehran, Iran
| | - Ali Akbar Meratan
- Department of Biotechnology, Ramin University of Agricultural and Natural Resources, Khouzestan, Iran.
| | - Atiyeh Ghasemi
- Institute of Biochemistry and Biophysics, University of Tehran, P.O. Box 13145-1384, 1417614411 Tehran, Iran
| | | |
Collapse
|
18
|
Hirabayashi A, Shindo Y, Oka K, Takahashi D, Toshima K. Photodegradation of amyloid β and reduction of its cytotoxicity to PC12 cells using porphyrin derivatives. Chem Commun (Camb) 2015; 50:9543-6. [PMID: 25012260 DOI: 10.1039/c4cc03791j] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A purpose-designed porphyrin-peptide hybrid effectively degraded amyloid β monomer and oligomers associated with Alzheimer's disease. Degradation was achieved using light irradiation in the absence of any additives and under neutral conditions. Moreover, the hybrid effectively neutralized the cytotoxicity of amyloid β in PC12 cells upon photoirradiation.
Collapse
Affiliation(s)
- Ayumi Hirabayashi
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan.
| | | | | | | | | |
Collapse
|
19
|
Kai T, Zhang L, Wang X, Jing A, Zhao B, Yu X, Zheng J, Zhou F. Tabersonine inhibits amyloid fibril formation and cytotoxicity of Aβ(1-42). ACS Chem Neurosci 2015; 6:879-88. [PMID: 25874995 DOI: 10.1021/acschemneuro.5b00015] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The misfolding and aggregation of amyloid beta (Aβ) peptides into amyloid fibrils are key events in the amyloid cascade hypothesis for the etiology of Alzheimer's disease (AD). Using thioflavin-T (ThT) fluorescence assay, atomic force microscopy, circular dichroism, size exclusion chromatography, surface plasmon resonance (SPR), and cytotoxicity tests, we demonstrate that tabersonine, an ingredient extracted from the bean of Voacanga africana, disrupts Aβ(1-42) aggregation and ameliorates Aβ aggregate-induced cytotoxicity. A small amount of tabersonine (e.g., 10 μM) can effectively inhibit the formation of Aβ(1-42) (e.g., 80 μM) fibrils or convert mature fibrils into largely innocuous amorphous aggregates. SPR results indicate that tabersonine binds to Aβ(1-42) oligomers in a dose-dependent way. Molecular dynamics (MD) simulations further confirm that tabersonine can bind to oligomers such as the pentamer of Aβ(1-42). Tabersonine preferentially interact with the β-sheet grooves of Aβ(1-42) containing aromatic and hydrophobic residues. The various binding sites and modes explain the diverse inhibitory effects of tabersonine on Aβ aggregation. Given that tabersonine is a natural product and a precursor for vincristine used in cancer chemotherapy, the biocompatibility and small size essential for permeating the blood-brain barrier make it a potential therapeutic drug candidate for treating AD.
Collapse
Affiliation(s)
- Tianhan Kai
- College
of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, P. R. China
| | - Lin Zhang
- College
of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, P. R. China
| | - Xiaoying Wang
- Department of Chemistry and Biochemistry, California State University, Los Angeles, Los Angeles, California 90032, United States
| | - Aihua Jing
- Department of Chemistry and Biochemistry, California State University, Los Angeles, Los Angeles, California 90032, United States
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, Henan 471003, P. R. China
| | - Bingqing Zhao
- Department of Chemistry and Biochemistry, California State University, Los Angeles, Los Angeles, California 90032, United States
| | - Xiang Yu
- Department
of Chemical and Biomolecular Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Jie Zheng
- Department
of Chemical and Biomolecular Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Feimeng Zhou
- Department of Chemistry and Biochemistry, California State University, Los Angeles, Los Angeles, California 90032, United States
| |
Collapse
|
20
|
Catechins and procyanidins of Ginkgo biloba show potent activities towards the inhibition of β-amyloid peptide aggregation and destabilization of preformed fibrils. Molecules 2014; 19:5119-34. [PMID: 24759072 PMCID: PMC6271394 DOI: 10.3390/molecules19045119] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 04/09/2014] [Accepted: 04/10/2014] [Indexed: 02/07/2023] Open
Abstract
Catechins and procyanidins, together with flavonoid glycosides and terpene trilactones, are three important categories of components in the standard extract of Ginkgo biloba leaves (EGb761). In this research, catechins and proanthocyanidins were found to exist in both the extract of Ginkgo leaves and Ginkgo products. By comparing with reference compounds, six of them were identified as (+)-catechin, (−)-epicatechin, (−)-gallocatechin, (−)-epigallocatechin and procyanidins B1 and B3. The activities of these polyphenols in the inhibition of Aβ42 aggregation and the destabilization of preformed fibrils were evaluated using biochemical assays, which showed that all six of the polyphenols, as well as a fraction of the extract of Ginkgo biloba leaves (EGb) containing catechins and procyanidins, exerted potent inhibitory activities towards Aβ42 aggregation and could also destabilize the performed fibrils. Catechins and procyanidins can therefore be regarded as the potent active constituents of EGb761 in terms of their inhibition of Aβ42 aggregation and destabilization of the fibrils. Although quantitative mass spectroscopic analysis revealed that the catechins and procyanidins are only present in low concentrations in EGb761, these components should be studied in greater detail because of their potent inhibitory effects towards Aβ42 aggregation and their ability to destabilize preformed fibrils, especially during the quality control of Ginkgo leaves and the manufacture of Ginkgo products.
Collapse
|
21
|
Ma B, You X, Lu F. Inhibitory effects of β-ionone on amyloid fibril formation of β-lactoglobulin. Int J Biol Macromol 2014; 64:162-7. [DOI: 10.1016/j.ijbiomac.2013.12.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 11/09/2013] [Accepted: 12/02/2013] [Indexed: 10/25/2022]
|
22
|
Nguyen PH, Tarus B, Derreumaux P. Familial Alzheimer A2 V Mutation Reduces the Intrinsic Disorder and Completely Changes the Free Energy Landscape of the Aβ1–28 Monomer. J Phys Chem B 2014; 118:501-10. [DOI: 10.1021/jp4115404] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Phuong H. Nguyen
- Laboratoire
de Biochimie Théorique, UPR 9080 CNRS, Université Paris Diderot, Sorbonne Paris Cité, IBPC, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Bogdan Tarus
- Laboratoire
de Biochimie Théorique, UPR 9080 CNRS, Université Paris Diderot, Sorbonne Paris Cité, IBPC, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Philippe Derreumaux
- Laboratoire
de Biochimie Théorique, UPR 9080 CNRS, Université Paris Diderot, Sorbonne Paris Cité, IBPC, 13 rue Pierre et Marie Curie, 75005 Paris, France
- Institut Universitaire de France, IUF, 103 Boulevard Saint-Michel, 75005 Paris, France
| |
Collapse
|
23
|
2,4-dinitrophenol induces neural differentiation of murine embryonic stem cells. Stem Cell Res 2013; 11:1407-16. [DOI: 10.1016/j.scr.2013.09.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 09/02/2013] [Accepted: 09/27/2013] [Indexed: 11/20/2022] Open
|
24
|
Bhattacharjee P, Bhattacharyya D. Factor V activator from Daboia russelli russelli venom destabilizes β-amyloid aggregate, the hallmark of Alzheimer disease. J Biol Chem 2013; 288:30559-30570. [PMID: 23986449 DOI: 10.1074/jbc.m113.511410] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Formation of plaque by fibrils of β-amyloid (Aβ) peptide in the brain is the characteristic feature of Alzheimer disease (AD). Inhibition of the process of aggregate formation from Aβ-monomer and destabilization of the aggregate could be useful for prevention and propagation of the disease respectively. Russell's viper venom (RVV) contains protein(s) that destabilize Aβ aggregates as revealed from the thioflavin T assay. The active component was identified as factor V activator (RVV-V). Among the possible mechanisms of destabilization, RVV-V-mediated proteolysis was ruled out from mass spectrometric data and the thioflavin T assay. The alternate hypothesis that small peptides derived from RVV-V destabilize the aggregate is better supported by experimental results. Six small peptides were synthesized using RVV-V as the template, and three unrelated peptides were synthesized to serve as controls. Destabilization of Aβ aggregate by these peptides was studied using spectrofluorometric assays, atomic force microscopy, transmission electron microscopy, and confocal microscopy. Among the peptides, CTNIF and the mixture of the six peptides were most potent in converting the aggregates to the monomeric state and thus, preventing cytotoxicity in SH-SY5Y human neuroblastoma cells. The control peptides failed to show similar effects. Moreover, some of these peptides are stable in blood for 24 h. Therefore, these venom-derived peptides offer an encouraging opportunity to prevent amyloidosis and may provide information to combat AD.
Collapse
Affiliation(s)
- Payel Bhattacharjee
- From the Division of Structural Biology and Bioinformatics, Council of Scientific and Industrial Research, Indian Institute of Chemical Biology, Jadavpur, Kolkata 700032, India.
| | - Debasish Bhattacharyya
- From the Division of Structural Biology and Bioinformatics, Council of Scientific and Industrial Research, Indian Institute of Chemical Biology, Jadavpur, Kolkata 700032, India.
| |
Collapse
|
25
|
Jiang L, Liu C, Leibly D, Landau M, Zhao M, Hughes MP, Eisenberg DS. Structure-based discovery of fiber-binding compounds that reduce the cytotoxicity of amyloid beta. eLife 2013. [PMID: 23878726 DOI: 10.7554/elife.00857.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Amyloid protein aggregates are associated with dozens of devastating diseases including Alzheimer's, Parkinson's, ALS, and diabetes type 2. While structure-based discovery of compounds has been effective in combating numerous infectious and metabolic diseases, ignorance of amyloid structure has hindered similar approaches to amyloid disease. Here we show that knowledge of the atomic structure of one of the adhesive, steric-zipper segments of the amyloid-beta (Aβ) protein of Alzheimer's disease, when coupled with computational methods, identifies eight diverse but mainly flat compounds and three compound derivatives that reduce Aβ cytotoxicity against mammalian cells by up to 90%. Although these compounds bind to Aβ fibers, they do not reduce fiber formation of Aβ. Structure-activity relationship studies of the fiber-binding compounds and their derivatives suggest that compound binding increases fiber stability and decreases fiber toxicity, perhaps by shifting the equilibrium of Aβ from oligomers to fibers. DOI:http://dx.doi.org/10.7554/eLife.00857.001.
Collapse
Affiliation(s)
- Lin Jiang
- Departments of Chemistry and Biochemistry and Biological Chemistry , Howard Hughes Medical Institute, UCLA-DOE Institute for Genomics and Proteomics, University of California, Los Angeles , Los Angeles , United States
| | | | | | | | | | | | | |
Collapse
|
26
|
Jiang L, Liu C, Leibly D, Landau M, Zhao M, Hughes MP, Eisenberg DS. Structure-based discovery of fiber-binding compounds that reduce the cytotoxicity of amyloid beta. eLife 2013; 2:e00857. [PMID: 23878726 PMCID: PMC3713518 DOI: 10.7554/elife.00857] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 06/10/2013] [Indexed: 12/15/2022] Open
Abstract
Amyloid protein aggregates are associated with dozens of devastating diseases including Alzheimer’s, Parkinson’s, ALS, and diabetes type 2. While structure-based discovery of compounds has been effective in combating numerous infectious and metabolic diseases, ignorance of amyloid structure has hindered similar approaches to amyloid disease. Here we show that knowledge of the atomic structure of one of the adhesive, steric-zipper segments of the amyloid-beta (Aβ) protein of Alzheimer’s disease, when coupled with computational methods, identifies eight diverse but mainly flat compounds and three compound derivatives that reduce Aβ cytotoxicity against mammalian cells by up to 90%. Although these compounds bind to Aβ fibers, they do not reduce fiber formation of Aβ. Structure-activity relationship studies of the fiber-binding compounds and their derivatives suggest that compound binding increases fiber stability and decreases fiber toxicity, perhaps by shifting the equilibrium of Aβ from oligomers to fibers. DOI:http://dx.doi.org/10.7554/eLife.00857.001 Alzheimer’s disease is the most common form of dementia, estimated to affect roughly five million people in the United States, and its incidence is steadily increasing as the population ages. A pathological hallmark of Alzheimer’s disease is the presence in the brain of aggregates of two proteins: tangles of a protein called tau; and fibers and smaller units (oligomers) of a peptide called amyloid beta. Many attempts have been made to screen libraries of natural and synthetic compounds to identify substances that might prevent the aggregation and toxicity of amyloid. Such studies revealed that polyphenols found in green tea and in the spice turmeric can inhibit the formation of amyloid fibrils. Moreover, a number of dyes reduce the toxic effects of amyloid on cells, although significant side effects prevent these from being used as drugs. Structure-based drug design, in which the structure of a target protein is used to help identify compounds that will interact with it, has been used to generate therapeutic agents for a number of diseases. Here, Jiang et al. report the first application of this technique in the hunt for compounds that inhibit the cytotoxicity of amyloid beta. Using the known atomic structure of the protein in complex with a dye, Jiang et al. performed a computational screen of 18,000 compounds in search of those that are likely to bind effectively. The compounds that showed the strongest predicted binding were then tested for their ability to interfere with the aggregation of amyloid beta and to protect cells grown in culture from its toxic effects. Compounds that reduced toxicity did not reduce the abundance of protein aggregates, but they appear to increase the stability of fibrils. This is consistent with other evidence suggesting that small, soluble forms (oligomers) of amyloid beta that break free from the fibrils may be the toxic agent in Alzheimer’s disease, rather than the fibrils themselves. In addition to uncovering compounds with therapeutic potential in Alzheimer’s disease, this work presents a new approach for identifying proteins that bind to amyloid fibrils. Given that amyloid accumulation is a feature of many other diseases, including Parkinson’s disease, Huntington’s disease and type 2 diabetes, the approach could have broad therapeutic applications. DOI:http://dx.doi.org/10.7554/eLife.00857.002
Collapse
Affiliation(s)
- Lin Jiang
- Departments of Chemistry and Biochemistry and Biological Chemistry , Howard Hughes Medical Institute, UCLA-DOE Institute for Genomics and Proteomics, University of California, Los Angeles , Los Angeles , United States
| | | | | | | | | | | | | |
Collapse
|
27
|
Amini R, Yazdanparast R, Bahramikia S. Apigenin reduces human insulin fibrillation in vitro and protects SK-N-MC cells against insulin amyloids. Int J Biol Macromol 2013; 60:334-40. [PMID: 23777711 DOI: 10.1016/j.ijbiomac.2013.06.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2013] [Revised: 06/10/2013] [Accepted: 06/13/2013] [Indexed: 01/21/2023]
Abstract
Deposition of proteins is a key pathogenic feature of more than 20 amyloid-related diseases. Inhibiting or reversing amyloid aggregation via the use of small molecules is proposed as two useful approaches in hampering the development of these diseases. In this research, we examined the inhibitory and disruptive effects of apigenin, a common dietary flavonoid with multiple pharmacological properties, against human insulin fibrillization. Besides, we investigated the potential cytotoxicity of insulin fibrils on SK-N-MC cells in the presence and absence of apigenin. The increase in Thioflavin T (ThT) and anilinonaphthalene-8-sulfonic acid (ANS) fluorescent intensities and Congo red absorbance were inhibited by simultaneous incubation of various concentrations of apigenin with insulin, in a dose-dependent manner. The spectroscopy results were confirmed by transmission electron microscopy, where lower extent of fibrillar structures was observed in the presence of apigenin. In addition, the cell exposure to the co-incubated insulin amyloids with apigenin led to the increased viability and decreased LDH release dose-dependently, compared to cells exposed to insulin fibrils alone. Co-incubation with apigenin also attenuated the extent of apoptotic cell death induced by insulin fibrils. It can be concluded that apigenin possess in vitro anti-amyloidogenic activities as well as protective effects against insulin amyloids cytotoxicity.
Collapse
Affiliation(s)
- Rahim Amini
- Institute of Biochemistry and Biophysics, P. O. Box 13145-1384, University of Tehran, Tehran, Iran
| | | | | |
Collapse
|
28
|
Zhang H, Wang JR, Yau LF, Ho HM, Chan CL, Hu P, Liu L, Jiang ZH. A cellular lipidomic study on the Aβ-induced neurotoxicity and neuroprotective effects of EGCG by using UPLC/MS-based glycerolipids profiling and multivariate analysis. MOLECULAR BIOSYSTEMS 2013; 8:3208-15. [PMID: 23032920 DOI: 10.1039/c2mb25126d] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The aim of this study was to investigate the cellular lipid metabolism associated with β-amyloid peptide (Aβ)-induced neurotoxicity as well as the neuroprotective effect of (-)-epigallocatechin gallate (EGCG), a major polyphenol in green tea. An ultra-performance liquid chromatography-quadrupole-time-of-flight mass spectrometry (UPLC-Q-TOF-MS)-based lipidomic approach was developed to screen and identify changes of the glycerolipids (GL) upon Aβ treatment with or without the presence of EGCG in PC12 cells. Principle component analysis (PCA) showed that the Aβ-treated group was well separated from the control group, whereas the EGCG group was closer to the control group. The GL levels were significantly elevated in Aβ-treated cells compared with the control group, but were restored near to normal levels after EGCG treatment. The elevated phosphatidylcholines (PCs) levels observed in the Aβ-treated PC12 cells were quite probably the integrated results of the reduced phospholipase A(2) (PLA(2)) activity and the enhanced activity of lysophospholipid acyltransferases. Moreover, an increased liberation of arachidonic acid (AA) from PCs was observed as another important response of PC12 cells to the Aβ aggregates, implying an active inflammatory process occurring in Aβ induced neurotoxicity. EGCG treatment can reverse the deregulated metabolism of PCs, which might be one of the biochemical mechanisms contributing to its neuroprotective effect. Collectively, results obtained from the current lipidomic analyses of PC12 cells provided important insight into the biochemical mechanisms underlying Aβ-induced neurotoxicity and neuro protective effects of EGCG. This is the first report of the lipidomic study on the neuroprotective effect of EGCG.
Collapse
Affiliation(s)
- Hongyang Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, China
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Vuong QV, Siposova K, Nguyen TT, Antosova A, Balogova L, Drajna L, Imrich J, Li MS, Gazova Z. Binding of Glyco-Acridine Derivatives to Lysozyme Leads to Inhibition of Amyloid Fibrillization. Biomacromolecules 2013; 14:1035-43. [DOI: 10.1021/bm301891q] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Quan Van Vuong
- Institute for Computational Science and Technology, 6 Quarter, Linh Trung Ward,
Thu Duc District, Ho Chi Minh
City, Vietnam
| | - Katarina Siposova
- Department of Biophysics, Institute of Experimental
Physics, Slovak Academy of Sciences, Watsonova 47, 040 01 Kosice, Slovakia
| | - Trang Truc Nguyen
- Institute for Computational Science and Technology, 6 Quarter, Linh Trung Ward,
Thu Duc District, Ho Chi Minh
City, Vietnam
| | - Andrea Antosova
- Department of Biophysics, Institute of Experimental
Physics, Slovak Academy of Sciences, Watsonova 47, 040 01 Kosice, Slovakia
| | | | | | | | - Mai Suan Li
- Institute
of Physics, Polish Academy of Sciences, Al. Lotnikow
32/46, 02-668 Warsaw, Poland
| | - Zuzana Gazova
- Department of Biophysics, Institute of Experimental
Physics, Slovak Academy of Sciences, Watsonova 47, 040 01 Kosice, Slovakia
| |
Collapse
|
30
|
Interaction between baicalein and amyloid-β fibrils studied by fluorescence spectroscopy. Chem Res Chin Univ 2013. [DOI: 10.1007/s40242-013-2180-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
31
|
Toshima K. Chemical biology based on target-selective degradation of proteins and carbohydrates using light-activatable organic molecules. ACTA ACUST UNITED AC 2013; 9:834-54. [DOI: 10.1039/c2mb25416f] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
32
|
Maity S, Kumar R, Maity SK, Jana P, Bera S, Haldar D. Synthesis and study of 2-acetyl amino-3-[4-(2-amino-5-sulfo-phenylazo)-phenyl]-propionic acid: a new class of inhibitor for hen egg white lysozyme amyloidogenesis. MEDCHEMCOMM 2013. [DOI: 10.1039/c2md20236k] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
33
|
Ghosh S, Pandey NK, Dasgupta S. (-)-Epicatechin gallate prevents alkali-salt mediated fibrillogenesis of hen egg white lysozyme. Int J Biol Macromol 2012; 54:90-8. [PMID: 23219698 DOI: 10.1016/j.ijbiomac.2012.11.031] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 11/28/2012] [Accepted: 11/28/2012] [Indexed: 01/26/2023]
Abstract
Green tea polyphenols (GTPs) are found to be potent inhibitors of amyloid fibril formation. We report the effective inhibitory property of (-)-epicatechin gallate (ECG) during the alkali-salt induced fibrillogenesis of hen egg white lysozyme (HEWL) at 37 °C. Spectroscopic techniques such as fluorescence, circular dichroism and microscopic images show that (-)-epigallocatechin (EGC), (-)-epicatechin gallate (ECG), and (-)-epigallocatechin gallate (EGCG) show moderate inhibition of fibrillation with ECG as the most potent polyphenol. Aromatic interactions, hydrophobic interactions, the radical scavenging activity and autoxidation of polyphenols are likely to be the major reasons for ECG being the most effective inhibitor.
Collapse
Affiliation(s)
- Sudeshna Ghosh
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | | | | |
Collapse
|
34
|
Antosova A, Gazova Z, Fedunova D, Valusova E, Bystrenova E, Valle F, Daxnerova Z, Biscarini F, Antalik M. Anti-amyloidogenic activity of glutathione-covered gold nanoparticles. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2012. [DOI: 10.1016/j.msec.2012.07.036] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
35
|
Human apolipoprotein A-I natural variants: molecular mechanisms underlying amyloidogenic propensity. PLoS One 2012; 7:e43755. [PMID: 22952757 PMCID: PMC3429494 DOI: 10.1371/journal.pone.0043755] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Accepted: 07/25/2012] [Indexed: 01/11/2023] Open
Abstract
Human apolipoprotein A-I (apoA-I)-derived amyloidosis can present with either wild-type (Wt) protein deposits in atherosclerotic plaques or as a hereditary form in which apoA-I variants deposit causing multiple organ failure. More than 15 single amino acid replacement amyloidogenic apoA-I variants have been described, but the molecular mechanisms involved in amyloid-associated pathology remain largely unknown. Here, we have investigated by fluorescence and biochemical approaches the stabilities and propensities to aggregate of two disease-associated apoA-I variants, apoA-IGly26Arg, associated with polyneuropathy and kidney dysfunction, and apoA-ILys107-0, implicated in amyloidosis in severe atherosclerosis. Results showed that both variants share common structural properties including decreased stability compared to Wt apoA-I and a more flexible structure that gives rise to formation of partially folded states. Interestingly, however, distinct features appear to determine their pathogenic mechanisms. ApoA-ILys107-0 has an increased propensity to aggregate at physiological pH and in a pro-inflammatory microenvironment than Wt apoA-I, whereas apoA-IGly26Arg elicited macrophage activation, thus stimulating local chronic inflammation. Our results strongly suggest that some natural mutations in apoA-I variants elicit protein tendency to aggregate, but in addition the specific interaction of different variants with macrophages may contribute to cellular stress and toxicity in hereditary amyloidosis.
Collapse
|
36
|
Bahramikia S, Yazdanparast R, Gheysarzadeh A. Syntheses and structure-activity relationships of seven manganese-salen derivatives as anti-amyloidogenic and fibril-destabilizing agents against hen egg-white lysozyme aggregation. Chem Biol Drug Des 2012; 80:227-36. [PMID: 22530978 DOI: 10.1111/j.1747-0285.2012.01391.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Accumulation of intra- and/or extracellular misfolded proteins as amyloid fibrils is a key hallmark in more than 20 amyloid-related diseases. In that respect, blocking or reversing amyloid aggregation via the use of small compounds is considered as two useful approaches in hampering the development of these diseases. In this research, we have studied the ability of different manganese-salen derivatives to inhibit amyloid self-assembly as well as to dissolve amyloid aggregates of hen egg-white lysozyme, as an in vitro model system, with the aim of investigating their structure-activity relationships. By coupling several techniques such as thioflavin T and anilinonaphthalene-8-sulfonic acid fluorescence, congo red absorbance, far-UV circular dichroism, and transmission electron microscopy, we demonstrated that all compounds possessed anti-amyloidogenic activities and were capable of dispersing the fibrillar aggregates. In addition, MTT assay of the treated SK-N-MC cells with the preformed fibrils formed in the presence of compounds at a drug-to-protein molar ratio of 5:1, indicated a significant increase in the viability of cells, compared to the fibrils formed in the absence of each of the compounds. Our spectroscopy, electron microscopy, and cellular studies indicated that EUK-15, with a methoxy group at the para position (group R(5)), had higher activity to either inhibit or disrupt the β-sheet structures relative to other compounds. On the basis of these results, it can be concluded that in addition to aromatic rings of each of the derivatives, the type and position of the side group(s) contribute to lower lysozyme fibril accumulation.
Collapse
Affiliation(s)
- Seifollah Bahramikia
- Institute of Biochemistry and Biophysics, P. O. Box 13145-1384, University of Tehran, Tehran, Iran
| | | | | |
Collapse
|
37
|
Naeem A, Fazili NA. Defective protein folding and aggregation as the basis of neurodegenerative diseases: the darker aspect of proteins. Cell Biochem Biophys 2012; 61:237-50. [PMID: 21573992 DOI: 10.1007/s12013-011-9200-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The ability of a polypeptide to fold into a unique, functional, and three-dimensional structure depends on the intrinsic properties of the amino acid sequence, function of the molecular chaperones, proteins, and enzymes. Every polypeptide has a finite tendency to misfold and this forms the darker side of the protein world. Partially folded and misfolded proteins that escape the cellular quality control mechanism have the high tendency to form inter-molecular hydrogen bonding between the same protein molecules resulting in aggregation. This review summarizes the underlying and universal mechanism of protein folding. It also deals with the factors responsible for protein misfolding and aggregation. This article describes some of the consequences of such behavior particularly in the context of neurodegenerative conformational diseases such as Alzheimer's, Parkinson's, Huntington's, amyotrophic lateral sclerosis and other non-neurodegenerative conformational diseases such as cancer and cystic fibrosis etc. This will encourage a more proactive approach to the early diagnosis of conformational diseases and nutritional counseling for patients.
Collapse
Affiliation(s)
- Aabgeena Naeem
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India.
| | | |
Collapse
|
38
|
Oliveira LT, Matos PA, Provance DW, de Mello FG, Andrade LR, Sorenson MM, Salerno VP. β-amyloid peptide is internalized into chick retinal neurons and alters the distribution of myosin Vb. Cytoskeleton (Hoboken) 2012; 69:166-78. [DOI: 10.1002/cm.21007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Revised: 12/22/2011] [Accepted: 01/03/2012] [Indexed: 11/07/2022]
|
39
|
Zheng X, Gessel MM, Wisniewski ML, Viswanathan K, Wright DL, Bahr BA, Bowers MT. Z-Phe-Ala-diazomethylketone (PADK) disrupts and remodels early oligomer states of the Alzheimer disease Aβ42 protein. J Biol Chem 2012; 287:6084-8. [PMID: 22253440 DOI: 10.1074/jbc.c111.328575] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The oligomerization of the amyloid-β protein (Aβ) is an important event in Alzheimer disease (AD) pathology. Developing small molecules that disrupt formation of early oligomeric states of Aβ and thereby reduce the effective amount of toxic oligomers is a promising therapeutic strategy for AD. Here, mass spectrometry and ion mobility spectrometry were used to investigate the effects of a small molecule, Z-Phe-Ala-diazomethylketone (PADK), on the Aβ42 form of the protein. The mass spectrum of a mixture of PADK and Aβ42 clearly shows that PADK binds directly to Aβ42 monomers and small oligomers. Ion mobility results indicate that PADK not only inhibits the formation of Aβ42 dodecamers, but also removes preformed Aβ42 dodecamers from the solution. Electron microscopy images show that PADK inhibits Aβ42 fibril formation in the solution. These results are consistent with a previous study that found that PADK has protective effects in an AD transgenic mouse model. The study of PADK and Aβ42 provides an example of small molecule therapeutic development for AD and other amyloid diseases.
Collapse
Affiliation(s)
- Xueyun Zheng
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106-9510, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Tanimoto S, Takahashi D, Toshima K. Chemical methods for degradation of target proteins using designed light-activatable organic molecules. Chem Commun (Camb) 2012; 48:7659-71. [DOI: 10.1039/c2cc30831b] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
41
|
Bahramikia S, Yazdanparast R. Anti-amyloidogenic and fibril-destabilizing effects of two manganese–salen derivatives against hen egg-white lysozyme aggregation. Int J Biol Macromol 2012; 50:187-97. [DOI: 10.1016/j.ijbiomac.2011.10.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Revised: 10/09/2011] [Accepted: 10/20/2011] [Indexed: 10/16/2022]
|
42
|
Amadoro G, Corsetti V, Atlante A, Florenzano F, Capsoni S, Bussani R, Mercanti D, Calissano P. Interaction between NH(2)-tau fragment and Aβ in Alzheimer's disease mitochondria contributes to the synaptic deterioration. Neurobiol Aging 2011; 33:833.e1-25. [PMID: 21958963 DOI: 10.1016/j.neurobiolaging.2011.08.001] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Revised: 07/26/2011] [Accepted: 08/05/2011] [Indexed: 12/15/2022]
Abstract
Although amyloid beta (Aβ) peptide can promote tau pathology and its toxicity is concurrently tau-dependent, the underlying mechanisms of the in vivo interplay of these proteins remain unsolved. Structural and functional mitochondrial alterations play an early, precipitating role in synaptic failure of Alzheimer's disease (AD) pathogenesis and an aggravated mitochondrial impairment has been described in triple APP/PS/tau transgenic mice carrying both plaques and tangles, if compared with mice overexpressing tau or amyloid precursor protein (APP) alone. Here, we show that a neurotoxic aminoterminal (NH(2))-derived tau fragment mapping between 26 and 230 amino acids of the human tau40 isoform (441 amino acids)-but not the physiological full-length protein-preferentially interacts with Aβ peptide(s) in human AD synapses in association with mitochondrial adenine nucleotide translocator-1 (ANT-1) and cyclophilin D. The two peptides-Aβ 1-42 and the smaller and more potent NH(2)-26-44 peptide of the longest 20-22 kDa NH(2)-tau fragment-inhibit the ANT-1-dependent adenosine diphosphate-adenosine triphosphate (ADP/ATP) exchange in a noncompetitive and competitive manner, respectively, and together further aggravate the mitochondrial dysfunction by exacerbating the ANT-1 impairment. Taken together, these data establish a common, direct and synergistic toxicity of pathological APP and tau products on synaptic mitochondria and suggest potential, new pathway(s) and target(s) for a combined, more efficient therapeutic intervention of early synaptic dysfunction in AD.
Collapse
|
43
|
Ishida Y, Fujii T, Oka K, Takahashi D, Toshima K. Inhibition of amyloid β aggregation and cytotoxicity by photodegradation using a designed fullerene derivative. Chem Asian J 2011; 6:2312-5. [PMID: 21780295 DOI: 10.1002/asia.201100421] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Indexed: 11/07/2022]
Affiliation(s)
- Yasunori Ishida
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | | | | | | | | |
Collapse
|
44
|
Antosova A, Chelli B, Bystrenova E, Siposova K, Valle F, Imrich J, Vilkova M, Kristian P, Biscarini F, Gazova Z. Structure-activity relationship of acridine derivatives to amyloid aggregation of lysozyme. Biochim Biophys Acta Gen Subj 2011; 1810:465-74. [DOI: 10.1016/j.bbagen.2011.01.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Revised: 12/23/2010] [Accepted: 01/20/2011] [Indexed: 10/18/2022]
|
45
|
Neuroactive Multifunctional Tacrine Congeners with Cholinesterase, Anti-Amyloid Aggregation and Neuroprotective Properties. Pharmaceuticals (Basel) 2011. [PMCID: PMC4053961 DOI: 10.3390/ph4020382] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
46
|
Vargas-Lopes C, Madeira C, Kahn SA, Albino do Couto I, Bado P, Houzel JC, De Miranda J, de Freitas MS, Ferreira ST, Panizzutti R. Protein kinase C activity regulates D-serine availability in the brain. J Neurochem 2011; 116:281-90. [PMID: 21070240 DOI: 10.1111/j.1471-4159.2010.07102.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
D-serine is a co-agonist of NMDA receptor (NMDAR) and plays important roles in synaptic plasticity mechanisms. Serine racemase (SR) is a brain-enriched enzyme that converts L-serine to D-serine. SR interacts with the protein interacting with C-kinase 1 (PICK1), which is known to direct protein kinase C (PKC) to its targets in cells. Here, we investigated whether PKC activity regulates SR activity and D-serine availability in the brain. In vitro, PKC phosphorylated SR and decreased its activity. PKC activation increased SR phosphorylation in serine residues and reduced D-serine levels in astrocyte and neuronal cultures. Conversely, PKC inhibition decreased basal SR phosphorylation and increased cellular D-serine levels. In vivo modulation of PKC activity regulated both SR phosphorylation and D-serine levels in rat frontal cortex. Finally, rats that completed an object recognition task showed decreased SR phosphorylation and increased D-serine/total serine ratios, which was markedly correlated with decreased PKC activity in both cortex and hippocampus. Results indicate that PKC phosphorylates SR in serine residues and regulates D-serine availability in the brain. This interaction may be relevant for the regulation of physiological and pathological mechanisms linked to NMDAR function.
Collapse
Affiliation(s)
- Charles Vargas-Lopes
- Laboratório de Fronteiras em Neurociências, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Saraiva LM, Seixas da Silva GS, Galina A, da-Silva WS, Klein WL, Ferreira ST, De Felice FG. Amyloid-β triggers the release of neuronal hexokinase 1 from mitochondria. PLoS One 2010; 5:e15230. [PMID: 21179577 PMCID: PMC3002973 DOI: 10.1371/journal.pone.0015230] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Accepted: 10/29/2010] [Indexed: 01/30/2023] Open
Abstract
Brain accumulation of the amyloid-β peptide (Aβ) and oxidative stress underlie neuronal dysfunction and memory loss in Alzheimer's disease (AD). Hexokinase (HK), a key glycolytic enzyme, plays important pro-survival roles, reducing mitochondrial reactive oxygen species (ROS) generation and preventing apoptosis in neurons and other cell types. Brain isozyme HKI is mainly associated with mitochondria and HK release from mitochondria causes a significant decrease in enzyme activity and triggers oxidative damage. We here investigated the relationship between Aβ-induced oxidative stress and HK activity. We found that Aβ triggered HKI detachment from mitochondria decreasing HKI activity in cortical neurons. Aβ oligomers further impair energy metabolism by decreasing neuronal ATP levels. Aβ-induced HKI cellular redistribution was accompanied by excessive ROS generation and neuronal death. 2-deoxyglucose blocked Aβ-induced oxidative stress and neuronal death. Results suggest that Aβ-induced cellular redistribution and inactivation of neuronal HKI play important roles in oxidative stress and neurodegeneration in AD.
Collapse
Affiliation(s)
- Leonardo M. Saraiva
- Programa de Bioquímica e Biofísica Celular, Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gisele S. Seixas da Silva
- Programa de Bioquímica e Biofísica Celular, Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Antonio Galina
- Programa de Bioquímica e Biofísica Celular, Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Wagner S. da-Silva
- Programa de Bioquímica e Biofísica Celular, Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - William L. Klein
- Department of Neurobiology and Physiology, Northwestern University, Evanston, Illinois, United States of America
| | - Sérgio T. Ferreira
- Programa de Bioquímica e Biofísica Celular, Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fernanda G. De Felice
- Programa de Bioquímica e Biofísica Celular, Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
- Department of Neurobiology and Physiology, Northwestern University, Evanston, Illinois, United States of America
- * E-mail:
| |
Collapse
|
48
|
da Costa RFM, Martinez AMB, Ferreira ST. 2,4-Dinitrophenol blocks neurodegeneration and preserves sciatic nerve function after trauma. J Neurotrauma 2010; 27:829-41. [PMID: 20143955 DOI: 10.1089/neu.2009.1189] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Preventing the harm caused by nerve degeneration is a major challenge in neurodegenerative diseases and in various forms of trauma to the nervous system. The aim of the current work was to investigate the effects of systemic administration of 2,4-dinitrophenol (DNP), a compound with newly recognized neuroprotective properties, on sciatic-nerve degeneration following a crush injury. Sciatic-nerve injury was induced by unilateral application of an aneurysm clip. Four groups of mice were used: uninjured, injured treated with vehicle (PBS), injured treated with two intraperitoneal doses of DNP (0.06 mg DNP/kg every 24 h), and injured treated with four doses of DNP (every 12 h). Animals were sacrificed 48 h post injury and both injured and uninjured (contralateral) sciatic nerves were processed for light and electron microscopy. Morphometric, ultrastructural, and immunohistochemical analysis of injured nerves established that DNP prevented axonal degeneration, blocked cytoskeletal disintegration, and preserved the immunoreactivity of amyloid precursor protein (APP) and Neuregulin 1 (Nrg1), proteins implicated in neuronal survival and myelination. Functional tests revealed preservation of limb function following injury in DNP-treated animals. Results indicate that DNP prevents nerve degeneration and suggest that it may be a useful small-molecule adjuvant in the development of novel therapeutic approaches in nerve injury.
Collapse
Affiliation(s)
- Rodrigo F Madeiro da Costa
- Programa de Bioquimica e Biofisica Celular, Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | |
Collapse
|
49
|
Bruce NJ, Chen D, Dastidar SG, Marks GE, Schein CH, Bryce RA. Molecular dynamics simulations of Aβ fibril interactions with β-sheet breaker peptides. Peptides 2010; 31:2100-8. [PMID: 20691234 DOI: 10.1016/j.peptides.2010.07.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Revised: 07/26/2010] [Accepted: 07/26/2010] [Indexed: 01/21/2023]
Abstract
Accumulation and aggregation of the 42-residue amyloid-β (Aβ) protein fragment, which originates from the cleavage of amyloid precursor protein by β and γ secretase, correlates with the pathology of Alzheimer's disease (AD). Possible therapies for AD include peptides based on the Aβ sequence, and recently identified small molecular weight compounds designed to mimic these, that interfere with the aggregation of Aβ and prevent its toxic effects on neuronal cells in culture. Here, we use molecular dynamics simulations to compare the mode of interaction of an active (LPFFD) and inactive (LHFFD) β-sheet breaker peptide with an Aβ fibril structure from solid-state NMR studies. We found that LHFFD had a weaker interaction with the fibril than the active peptide, LPFFD, from geometric and energetic considerations, as estimated by the MM/PBSA approach. Cluster analysis and computational alanine scanning identified important ligand-fibril contacts, including a possible difference in the effect of histidine on ligand-fibril π-stacking interactions, and the role of the proline residue in establishing contacts that compete with those essential for maintenance of the inter-monomer β-sheet structure of the fibril. Our results show that molecular dynamics simulations can be a useful way to classify the stability of docking sites. These mechanistic insights into the ability of LPFFD to reverse aggregation of toxic Aβ will guide the redesign of lead compounds, and aid in developing realistic therapies for AD and other diseases of protein aggregation.
Collapse
Affiliation(s)
- Neil J Bruce
- School of Pharmacy and Pharmaceutical Sciences, University of Manchester, Oxford Road, Manchester, M13 9PT, UK.
| | | | | | | | | | | |
Collapse
|
50
|
Oliveira LT, Louzada PR, de Mello FG, Ferreira ST. Amyloid-β decreases nitric oxide production in cultured retinal neurons: a possible mechanism for synaptic dysfunction in Alzheimer's disease? Neurochem Res 2010; 36:163-9. [PMID: 20936504 DOI: 10.1007/s11064-010-0287-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2010] [Indexed: 01/21/2023]
Abstract
The neurotoxicity of the amyloid-β peptide (Aβ) appears to be, at least in part, related to pathological activation of glutamate receptors by Aβ aggregates. However, the downstream signaling pathways leading to neurodegeneration are still incompletely understood. Hyperactivation of nitric oxide synthase (NOS) and increased nitric oxide (NO) production have been implicated in excitotoxic neuronal damage caused by overactivation of glutamate receptors, and it has been suggested that increased NO levels might also play a role in neurotoxicity in Alzheimer's disease. We have examined the effect of blockade of NO production on the neurotoxicity instigated by Aβ₄₂ and by elevated concentrations of glutamate in chick embryo retinal neurons in culture. Results showed that L-nitroarginine methyl ester, a potent inhibitor of all NOS isoforms, had no protective effect against neuronal death induced by either Aβ₄₂ (20 μM) or glutamate (1 mM). Surprisingly, at short incubation times both Aβ and glutamate decreased NO production in retinal neuronal cultures in the absence of neuronal death. Thus, excitotoxic insults induced by Aβ and glutamate cause inhibition rather than activation of NO synthase in retinal neurons, suggesting that cell death induced by Aβ or glutamate is not related to increased NO production. On the other hand, considering the role of NO in long term potentiation and synaptic plasticity, the decrease in NO levels instigated by Aβ and glutamate suggests a possible mechanism leading to synaptic failure in AD.
Collapse
Affiliation(s)
- Leandro T Oliveira
- Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-590, Brazil
| | | | | | | |
Collapse
|