1
|
Liu JC, Lei SY, Zhang DH, He QY, Sun YY, Zhu HJ, Qu Y, Zhou SY, Yang Y, Li C, Guo ZN. The pleiotropic effects of statins: a comprehensive exploration of neurovascular unit modulation and blood-brain barrier protection. Mol Med 2024; 30:256. [PMID: 39707228 DOI: 10.1186/s10020-024-01025-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 12/03/2024] [Indexed: 12/23/2024] Open
Abstract
The blood-brain barrier (BBB) is the most central component of the neurovascular unit (NVU) and is crucial for the maintenance of the internal environment of the central nervous system and the regulation of homeostasis. A multitude of neuroprotective agents have been developed to exert neuroprotective effects and improve the prognosis of patients with ischemic stroke. These agents have been designed to maintain integrity and promote BBB repair. Statins are widely used as pharmacological agents for the treatment and prevention of ischemic stroke, making them a cornerstone in the pharmacological armamentarium for this condition. The primary mechanism of action is the reduction of serum cholesterol through the inhibition of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase, which results in a decrease in low-density lipoprotein cholesterol (LDL-C) and an increase in cholesterol clearance. Nevertheless, basic and clinical research has indicated that statins may exert additional pleiotropic effects beyond LDL-C reduction. Previous studies on ischemic stroke have demonstrated that statins can enhance neurological function, reduce inflammation, and promote angiogenic and synaptic processes following ischemic stroke. The BBB has been increasingly recognized for its role in the development and progression of ischemic stroke. Statins have also been found to play a potential BBB protective role by affecting members of the NVU. This review aimed to provide a comprehensive theoretical basis for the clinical application of statins by systematically detailing how statins influence the BBB, particularly focusing on the regulation of the function of each member of the NVU.
Collapse
Affiliation(s)
- Jia-Cheng Liu
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Xinmin Street 1#, Changchun, 130021, China
| | - Shuang-Yin Lei
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Xinmin Street 1#, Changchun, 130021, China
| | - Dian-Hui Zhang
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Xinmin Street 1#, Changchun, 130021, China
| | - Qian-Yan He
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Xinmin Street 1#, Changchun, 130021, China
| | - Ying-Ying Sun
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Xinmin Street 1#, Changchun, 130021, China
| | - Hong-Jing Zhu
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Xinmin Street 1#, Changchun, 130021, China
| | - Yang Qu
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Xinmin Street 1#, Changchun, 130021, China
| | - Sheng-Yu Zhou
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Xinmin Street 1#, Changchun, 130021, China
| | - Yi Yang
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Xinmin Street 1#, Changchun, 130021, China
- Jilin Provincial Key Laboratory of Cerebrovascular Disease, Xinmin Street 1#, Changchun, 130021, China
| | - Chao Li
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Xinmin Street 1#, Changchun, 130021, China.
| | - Zhen-Ni Guo
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Xinmin Street 1#, Changchun, 130021, China.
- Jilin Provincial Key Laboratory of Cerebrovascular Disease, Xinmin Street 1#, Changchun, 130021, China.
- Neuroscience Research Center, The First Hospital of Jilin University, Xinmin Street 1#, Changchun, 130021, China.
| |
Collapse
|
2
|
Hernandez I, Gobinath C, Padilla AE, Loyola CD, Joddar B. Of cells and tissues: Identifying the elements of a diabetic cardiac in vitro study model. RESEARCH SQUARE 2024:rs.3.rs-5125697. [PMID: 39764116 PMCID: PMC11702775 DOI: 10.21203/rs.3.rs-5125697/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
This study aimed to elucidate the impact of advanced glycation end products (AGEs) and glucose shock on cardiomyocyte viability, gene expression, cardiac biomarkers, and cardiac contractility. Firstly, AGEs were generated in-house, and their concentration was confirmed using absorbance measurements. AC16 cardiomyocytes were then exposed to varying doses of AGEs, resulting in dose-dependent decreases in cell viability. The maximum tolerated dose of AGEs was determined, revealing significant downregulation of the cardiac gene gap junction alpha 1 (GJA1). Furthermore, the study assessed the effects of AGEs, glucose shock, and their combination on biomarkers, cardiac myosin heavy chain (MHC), and connexin-43 (Cx-43) in AC16 cells. It was found that AGEs supplementation induced an increase in MHC expression while reducing Cx-43 expression, potentially contributing to cardiac dysfunction. Glucose shock also affected cardiomyocyte contractility, highlighting the complex interplay between AGEs, glucose levels, and cardiac function. Additionally, human iPSC-derived cardiomyocytes were subjected to varying doses of AGEs, revealing dose-dependent cytotoxicity and alterations in contractility. Immunostaining confirmed upregulation of MYH7, a cardiac gene associated with muscle contraction, in response to AGEs. However, the expression of Cx-43 was minimal in these cells. This comprehensive investigation sheds light on the intricate relationship between AGEs, glucose shock, and cardiomyocyte function, providing insights into potential mechanisms underlying cardiac dysfunction associated with metabolic disorders such as diabetic cardiomyopathy (DCM).
Collapse
|
3
|
Wang T, Xu X, Sun S, Liu Z, Xi H, Feng R, Han N, Yin J. Xiaoer-Feire-Qing granules alleviate pyretic pulmonary syndrome induced by Streptococcus pneumoniae in young rats by affecting the lungs and intestines: An in vivo study based on network pharmacology. JOURNAL OF ETHNOPHARMACOLOGY 2024; 331:118288. [PMID: 38705426 DOI: 10.1016/j.jep.2024.118288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/01/2024] [Accepted: 05/02/2024] [Indexed: 05/07/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The traditional Chinese medicine (TCM) Xiaoer-Feire-Qing granules (XEFRQ) has been used to treat pyretic pulmonary syndrome (PPS) in children for many years. The function of the lungs is considered to be closely related to the large intestine in TCM. PURPOSE We aimed to investigate the effects of XEFRQ on PPS and the underlying mechanisms via network pharmacology and animal experiments. METHODS The TCMSP platform was used to identify the ingredients and potential targets of XEFRQ. The GeneCards, OMIM, and TTD databases were used to predict PPS-associated targets. Cytoscape 3.9.1 was employed to construct the protein-protein interaction network, and target prediction was performed by GO and KEGG analyses. For the animal experiment, a PPS model was constructed by three cycles of nasal drip of Streptococcus pneumoniae (STP; 0.5 mL/kg). The animals were randomly divided into the following four groups according to their weight (n = 10 rats per group): the blank group, the model group, the XEFRQ-L (16.3 g/kg) group, and the XEFRQ-H (56.6 g/kg) group. Rats in the blank group and the model group were given 0.5% CMC-Na by gavage. The general conditions of the rats were observed, and their food-intake, body weight, and body temperature were recorded for 14 days. After the intervention of 14 days, serum was collected to detect inflammatory cytokines (TNF-α, IL-1β, and PGE2) and neurotransmitters (5-HT, SP, and VIP). H&E staining was used to observe the pathological morphology of lung and colon tissue. AQP3 expression was detected by Western blot. In addition, the gut microbiota in cecal content samples were analyzed by 16S rDNA high-throughput sequencing. RESULTS Our network analysis revealed that XEFRQ may alleviate PPS injury by affecting the levels of inflammatory cytokines and neurotransmitters and mitigating STP-induced PPS.In vivo validation experiments revealed that XEFRQ improved STP-induced PPS and reduced the expression of inflammatory cytokines and neurotransmitters. Notably, XEFRQ significantly decreased the protein expression levels of AQP3, which was associated with dry stool. Our gut microbiota analysis revealed that the relative abundance of [Eubacterium]_ruminantium_group, Colidextribacter, Romboutsia, and Oscillibacter was decreased, which means XEFRQ exerts therapeutic effects against PPS associated with these bacteria. CONCLUSION Our results demonstrate that XEFRQ alleviates PPS by affecting the lungs and intestines, further guiding its clinical application.
Collapse
Affiliation(s)
- Taotao Wang
- Development and Utilization Key Laboratory of Northeast Plant Materials, Key Laboratory of Northeast Authentic Materials Research and Development in Liaoning Province, School of Traditional Chinese Meteria Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Xiaoqing Xu
- Development and Utilization Key Laboratory of Northeast Plant Materials, Key Laboratory of Northeast Authentic Materials Research and Development in Liaoning Province, School of Traditional Chinese Meteria Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Saisai Sun
- Development and Utilization Key Laboratory of Northeast Plant Materials, Key Laboratory of Northeast Authentic Materials Research and Development in Liaoning Province, School of Traditional Chinese Meteria Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Zhihui Liu
- Development and Utilization Key Laboratory of Northeast Plant Materials, Key Laboratory of Northeast Authentic Materials Research and Development in Liaoning Province, School of Traditional Chinese Meteria Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Haoying Xi
- Dalian Merro Chinese Traditional Medicine Factory Co.Ltd, Yingsheng Road 19, Dalian 116036 China
| | - Ruimao Feng
- Dalian Merro Chinese Traditional Medicine Factory Co.Ltd, Yingsheng Road 19, Dalian 116036 China
| | - Na Han
- Development and Utilization Key Laboratory of Northeast Plant Materials, Key Laboratory of Northeast Authentic Materials Research and Development in Liaoning Province, School of Traditional Chinese Meteria Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Jun Yin
- Development and Utilization Key Laboratory of Northeast Plant Materials, Key Laboratory of Northeast Authentic Materials Research and Development in Liaoning Province, School of Traditional Chinese Meteria Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| |
Collapse
|
4
|
Zhang YY, Li YJ, Xue CD, Li S, Gao ZN, Qin KR. Effects of T2DM on cancer progression: pivotal precipitating factors and underlying mechanisms. Front Endocrinol (Lausanne) 2024; 15:1396022. [PMID: 39290325 PMCID: PMC11405243 DOI: 10.3389/fendo.2024.1396022] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 08/21/2024] [Indexed: 09/19/2024] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a chronic metabolic disorder affecting people worldwide. It is characterized by several key features, including hyperinsulinemia, hyperglycemia, hyperlipidemia, and dysbiosis. Epidemiologic studies have shown that T2DM is closely associated with the development and progression of cancer. T2DM-related hyperinsulinemia, hyperglycemia, and hyperlipidemia contribute to cancer progression through complex signaling pathways. These factors increase drug resistance, apoptosis resistance, and the migration, invasion, and proliferation of cancer cells. Here, we will focus on the role of hyperinsulinemia, hyperglycemia, and hyperlipidemia associated with T2DM in cancer development. Additionally, we will elucidate the potential molecular mechanisms underlying their effects on cancer progression. We aim to identify potential therapeutic targets for T2DM-related malignancies and explore relevant directions for future investigation.
Collapse
Affiliation(s)
- Yu-Yuan Zhang
- Institute of Cardio-Cerebrovascular Medicine, Central Hospital of Dalian University of Technology, Dalian, Liaoning, China
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Dalian, Liaoning, China
| | - Yong-Jiang Li
- Institute of Cardio-Cerebrovascular Medicine, Central Hospital of Dalian University of Technology, Dalian, Liaoning, China
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Dalian, Liaoning, China
| | - Chun-Dong Xue
- Institute of Cardio-Cerebrovascular Medicine, Central Hospital of Dalian University of Technology, Dalian, Liaoning, China
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Dalian, Liaoning, China
| | - Shen Li
- Institute of Cardio-Cerebrovascular Medicine, Central Hospital of Dalian University of Technology, Dalian, Liaoning, China
| | - Zheng-Nan Gao
- Institute of Cardio-Cerebrovascular Medicine, Central Hospital of Dalian University of Technology, Dalian, Liaoning, China
| | - Kai-Rong Qin
- Institute of Cardio-Cerebrovascular Medicine, Central Hospital of Dalian University of Technology, Dalian, Liaoning, China
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Dalian, Liaoning, China
| |
Collapse
|
5
|
Salem NAB, Ismail WM, Hendawy SR, Abdelrahman AM, El-Refaey AM. Serum angiopoietin-2: a promising biomarker for early diabetic kidney disease in children and adolescents with type 1 diabetes. Eur J Pediatr 2024; 183:3853-3862. [PMID: 38884820 PMCID: PMC11322226 DOI: 10.1007/s00431-024-05637-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/20/2024] [Accepted: 05/30/2024] [Indexed: 06/18/2024]
Abstract
Albuminuria has been considered the golden standard biomarker for diabetic kidney disease (DKD), but appears once significant kidney damage has already occurred. Angiopoietin-2 (Angpt-2) has been implicated in the development and progression of DKD in adults. We aimed to explore the association of serum Angpt-2 levels with DKD in children and adolescents with type 1 diabetes mellitus (T1DM) of short duration (3-5 years) and to evaluate the predictive power of serum Angpt-2 in the early detection of DKD prior to the microalbuminuric phase. The current cross-sectional study included 90 children divided into three age and sex-matched groups based on urinary albumin-to-creatinine ratio (UACR): microalbuminuric diabetic group (n = 30), non-albuminuric diabetic group (n = 30), and control group (n = 30). All participants were subjected to anthropometric measurements, serum Angpt-2 and fasting lipid profile (total cholesterol, triglycerides, LDL-C, HDL-C, and Non-HDL-C) assessment. Glomerular filtration rate was estimated based on serum creatinine (eGFR-Cr). Higher serum Angpt-2 levels were detected in both diabetic groups compared to controls and in microalbuminuric compared to non-albuminuric diabetic group. There was no detected significant difference in eGFR-Cr values across the study groups. Serum Angpt-2 was positively correlated with triglycerides, LDL, Non-HDL-C, HbA1c, and UACR, while UACR, HbA1c, and Non-HDL-C were independent predictors for serum Angpt-2. Serum Angpt-2 at level of 137.4 ng/L could discriminate between microalbuminuric and non-albuminuric diabetic groups with AUC = 0.960 and at level of 115.95 ng/L could discriminate between the non-albuminuric diabetic group and controls with AUC = 0.976.Conclusion: Serum Angpt-2 is a promising potent biomarker for the detection of early stage of DKD in childhood T1DM before albuminuria emerges. What is Known? • Urine albumin-to-creatinine ratio (UACR) and glomerular filtration rate (GFR) are the golden standard but late biomarkers for DKD. • Angiopoietin-2 has been implicated in the development and progression of DKD in adults with diabetes, but has not been explored in T1DM children with DKD. What is New? • Higher serum angiopoietin-2 was detected in diabetic groups compared to controls and in microalbuminuric compared to non-albuminuric group. • Angiopoietin-2 correlated positively with triglycerides, LDL, Non-HDL-C, HbA1c, and UACR. • Serum angiopoietin-2 is a promising early diagnostic biomarker for DKD in children with T1DM.
Collapse
Affiliation(s)
- Nanees Abdel-Badie Salem
- Pediatric Endocrinology and Diabetes Unit, Department of Pediatrics, Faculty of Medicine, Mansoura University, Mansoura, Egypt.
| | - Wafaa M Ismail
- Mansoura University Children's Hospital, Mansoura, Egypt
| | - Shimaa R Hendawy
- Department of Clinical Pathology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Ashraf M Abdelrahman
- Department of Diagnostic Radiology, Mansoura University Children's Hospital, Mansoura, Egypt
| | - Ahmed M El-Refaey
- Nephrology Unit, Department of Pediatrics, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
6
|
Bejarano E, Domenech-Bendaña A, Avila-Portillo N, Rowan S, Edirisinghe S, Taylor A. Glycative stress as a cause of macular degeneration. Prog Retin Eye Res 2024; 101:101260. [PMID: 38521386 PMCID: PMC11699537 DOI: 10.1016/j.preteyeres.2024.101260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/08/2024] [Accepted: 03/11/2024] [Indexed: 03/25/2024]
Abstract
People are living longer and rates of age-related diseases such as age-related macular degeneration (AMD) are accelerating, placing enormous burdens on patients and health care systems. The quality of carbohydrate foods consumed by an individual impacts health. The glycemic index (GI) is a kinetic measure of the rate at which glucose arrives in the blood stream after consuming various carbohydrates. Consuming diets that favor slowly digested carbohydrates releases sugar into the bloodstream gradually after consuming a meal (low glycemic index). This is associated with reduced risk for major age-related diseases including AMD, cardiovascular disease, and diabetes. In comparison, consuming the same amounts of different carbohydrates in higher GI diets, releases glucose into the blood rapidly, causing glycative stress as well as accumulation of advanced glycation end products (AGEs). Such AGEs are cytotoxic by virtue of their forming abnormal proteins and protein aggregates, as well as inhibiting proteolytic and other protective pathways that might otherwise selectively recognize and remove toxic species. Using in vitro and animal models of glycative stress, we observed that consuming higher GI diets perturbs metabolism and the microbiome, resulting in a shift to more lipid-rich metabolomic profiles. Interactions between aging, diet, eye phenotypes and physiology were observed. A large body of laboratory animal and human clinical epidemiologic data indicates that consuming lower GI diets, or lower glycemia diets, is protective against features of early AMD (AMDf) in mice and AMD prevalence or AMD progression in humans. Drugs may be optimized to diminish the ravages of higher glycemic diets. Human trials are indicated to determine if AMD progression can be retarded using lower GI diets. Here we summarized the current knowledge regarding the pathological role of glycative stress in retinal dysfunction and how dietary strategies might diminish retinal disease.
Collapse
Affiliation(s)
- Eloy Bejarano
- Department of Biomedical Sciences, School of Health Sciences and Veterinary School, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain
| | - Alicia Domenech-Bendaña
- Department of Biomedical Sciences, School of Health Sciences and Veterinary School, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain
| | | | - Sheldon Rowan
- JM USDA Human Nutrition Research Center on Aging at Tufts University, United States
| | - Sachini Edirisinghe
- Tufts University Friedman School of Nutrition Science and Policy, United States
| | - Allen Taylor
- Tufts University Friedman School of Nutrition Science and Policy, United States.
| |
Collapse
|
7
|
Chen-Li G, Martinez-Archer R, Coghi A, Roca JA, Rodriguez FJ, Acaba-Berrocal L, Berrocal MH, Wu L. Beyond VEGF: Angiopoietin-Tie Signaling Pathway in Diabetic Retinopathy. J Clin Med 2024; 13:2778. [PMID: 38792322 PMCID: PMC11122151 DOI: 10.3390/jcm13102778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/12/2024] [Accepted: 04/30/2024] [Indexed: 05/26/2024] Open
Abstract
Complications from diabetic retinopathy such as diabetic macular edema (DME) and proliferative diabetic retinopathy (PDR) constitute leading causes of preventable vision loss in working-age patients. Since vascular endothelial growth factor (VEGF) plays a major role in the pathogenesis of these complications, VEGF inhibitors have been the cornerstone of their treatment. Anti-VEGF monotherapy is an effective but burdensome treatment for DME. However, due to the intensive and burdensome treatment, most patients in routine clinical practice are undertreated, and therefore, their outcomes are compromised. Even in adequately treated patients, persistent DME is reported anywhere from 30% to 60% depending on the drug used. PDR is currently treated by anti-VEGF, panretinal photocoagulation (PRP) or a combination of both. Similarly, a number of eyes, despite these treatments, continue to progress to tractional retinal detachment and vitreous hemorrhage. Clearly there are other molecular pathways other than VEGF involved in the pathogenesis of DME and PDR. One of these pathways is the angiopoietin-Tie signaling pathway. Angiopoietin 1 (Ang1) plays a major role in maintaining vascular quiescence and stability. It acts as a molecular brake against vascular destabilization and inflammation that is usually promoted by angiopoietin 2 (Ang2). Several pathological conditions including chronic hyperglycemia lead to Ang2 upregulation. Recent regulatory approval of the bi-specific antibody, faricimab, may improve long term outcomes in DME. It targets both the Ang/Tie and VEGF pathways. The YOSEMITE and RHINE were multicenter, double-masked, randomized non-inferiority phase 3 clinical trials that compared faricimab to aflibercept in eyes with center-involved DME. At 12 months of follow-up, faricimab demonstrated non-inferior vision gains, improved anatomic outcomes and a potential for extended dosing when compared to aflibercept. The 2-year results of the YOSEMITE and RHINE trials demonstrated that the anatomic and functional results obtained at the 1 year follow-up were maintained. Short term outcomes of previously treated and treatment-naive eyes with DME that were treated with faricimab during routine clinical practice suggest a beneficial effect of faricimab over other agents. Targeting of Ang2 has been reported by several other means including VE-PTP inhibitors, integrin binding peptide and surrobodies.
Collapse
Affiliation(s)
- Genesis Chen-Li
- Asociados de Mácula Vitreo y Retina de Costa Rica, San José 60612, Costa Rica (R.M.-A.); (A.C.)
| | - Rebeca Martinez-Archer
- Asociados de Mácula Vitreo y Retina de Costa Rica, San José 60612, Costa Rica (R.M.-A.); (A.C.)
| | - Andres Coghi
- Asociados de Mácula Vitreo y Retina de Costa Rica, San José 60612, Costa Rica (R.M.-A.); (A.C.)
| | | | | | - Luis Acaba-Berrocal
- Department of Ophthalmology, Illinois Eye and Ear Infirmary, School of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA
| | | | - Lihteh Wu
- Asociados de Mácula Vitreo y Retina de Costa Rica, San José 60612, Costa Rica (R.M.-A.); (A.C.)
- Department of Ophthalmology, Illinois Eye and Ear Infirmary, School of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA
| |
Collapse
|
8
|
Mohebi R, Liu Y, Hansen MK, Yavin Y, Sattar N, Pollock CA, Butler J, Jardine M, Masson S, Heerspink HJ, Januzzi JL. Associations of Angiopoietin 2 and Vascular Endothelial Growth Factor-A Concentrations with Clinical End Points. Clin J Am Soc Nephrol 2024; 19:429-437. [PMID: 38099944 PMCID: PMC11020427 DOI: 10.2215/cjn.0000000000000389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 12/11/2023] [Indexed: 01/09/2024]
Abstract
BACKGROUND Angiopoietin 2 regulates endothelial function partially mediated by vascular endothelial growth factor-A (VEGF-A) and may play a role in diabetic kidney disease (DKD). We assessed the association of angiopoietin 2 and VEGF-A with cardiorenal outcomes and investigated the effect of canagliflozin on angiopoietin 2 and VEGF-A concentrations. METHODS Two thousand five hundred sixty-five study participants with DKD and available plasma samples treated with canagliflozin or placebo in the Canagliflozin and Kidney Events in Diabetes with Established Nephropathy Clinical Evaluation (CREDENCE) trial were included. Angiopoietin 2 and VEGF-A concentrations were measured at baseline, year 1, and year 3. The primary composite end point of the trial was a composite of kidney failure, doubling of the serum creatinine level, and kidney or cardiovascular death. RESULTS Patients with the highest baseline quartile of angiopoietin 2, but not VEGF-A, concentration had the highest risk clinical profile. Treatment with canagliflozin significantly lowered concentrations of angiopoietin 2 (adjusted geometric mean ratio: 0.94; 95% confidence interval, 0.92 to 0.95; P < 0.001), but not VEGF-A. In multivariable-adjusted modeling, each 50% increment in log baseline angiopoietin 2 concentrations was associated with a higher risk of primary composite outcome (hazard ratio, 1.27; 95% confidence interval, 1.13 to 1.43). Angiopoietin 2 change at year 1 compared with baseline explained 10% of the effect of canagliflozin on the primary composite outcome. VEGF-A concentrations were not associated with outcomes, alone or in combination with angiopoietin 2. CONCLUSIONS Higher angiopoietin 2 levels were associated with cardiorenal risk among individuals with DKD independent of VEGF-A. Canagliflozin lowered angiopoietin 2 concentrations. CLINICAL TRIAL REGISTRY NAME AND REGISTRATION NUMBER Evaluation of the Effects of Canagliflozin on Renal and Cardiovascular Outcomes in Participants With Diabetic Nephropathy, NCT02065791 .
Collapse
Affiliation(s)
- Reza Mohebi
- Cardiology Division, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Yuxi Liu
- Cardiology Division, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | | | - Yshai Yavin
- Janssen Research & Development, LLC, Spring House, Pennsylvania
| | - Naveed Sattar
- BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - Carol A. Pollock
- Kolling Institute, Royal North Shore Hospital University of Sydney, Sydney, New South Wales, Australia
| | - Javed Butler
- Department of Medicine, University of Mississippi Medical Center, Jackson, Mississippi
- Baylor Scott & White Institute, Dallas, Texas
| | - Meg Jardine
- The George Institute for Global Health, UNSW Sydney, Sydney, New South Wales, Australia
- NHMRC Clinical Trials Centre, University of Sydney, Sydney, New South Wales, Australia
- Concord Repatriation General Hospital, Sydney, New South Wales, Australia
| | - Serge Masson
- Roche Diagnostics International, Rotkreuz, Switzerland
| | - Hiddo J.L. Heerspink
- Department Clinical Pharmacy and Pharmacology, University of Groningen, Groningen, The Netherlands
| | - James L. Januzzi
- Cardiology Division, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Heart Failure and Biomarker Trials, Baim Institute for Clinical Research, Boston, Massachusetts
| |
Collapse
|
9
|
Wang Y, Ding T, Jiang X. Network Pharmacology Study on Herb Pair Bletilla striata-Galla chinensis in the Treatment of Chronic Skin Ulcers. Curr Pharm Des 2024; 30:1354-1376. [PMID: 38571354 DOI: 10.2174/0113816128288490240322055201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/27/2024] [Accepted: 03/11/2024] [Indexed: 04/05/2024]
Abstract
BACKGROUND Herb pair Bletilla striata-Galla chinensis (BS-GC) is a classic combination of topical traditional Chinese medicine formulae in the treatment of chronic skin ulcers (CSUs). OBJECTIVE The aim of this study is to explore the effective active ingredients of BS-GC, as well as the core targets and signal transduction pathways of its action on CSUs. METHODS The ingredients of BS-GC were obtained from TCMSP and HERB databases. The targets of all active ingredients were retrieved from the SwissTargetPrediction database. The targets of CSUs were obtained from OMIM, GeneCards, Drugbank, and DisGeNET databases. A drug-disease target protein-protein interaction (PPI) network was constructed to select the most core targets, and an herb-ingredient-target network was built by utilizing Cytoscape 3.7.2. Furthermore, we performed Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes database (KEGG) analysis and verified the results of network pharmacology through molecular docking. RESULTS A total of 40 active ingredients from the herb pair BS-GC were initially screened, and a total of 528 targets were retrieved. Meanwhile, the total number of CSU targets was 1032. Then, the number of common targets between BS-GC and CSUs was 107. The 13 core targets of herb pair BS-GC with CSUs were filtered out according to the PPI network, including AKT1, TNF, EGFR, BCL2, HIF1A, MMP-9, etc. The 5 main core active ingredients were 1-(4-Hydroxybenzyl)-2-methoxy-9,10-dihydrophenanthrene-4,7-diol, 1-(4- Hydroxybenzyl)-4-methoxy-9,10-dihydrophenanthrene-2,7-diol, physcion, dihydromyricetin, and myricetin. The main biological processes were inflammation, oxidative stress, and immune response, involving the AGE-RAGE signaling pathway in diabetic complications, HIF-1 signaling pathway, NF-κB signaling pathway, and calcium signaling pathway. Molecular docking results showed good binding activity between the 5 main core active ingredients and 13 core targets. CONCLUSION This study predicted the core targets and signal transduction pathways in the treatment of CSUs to provide a reference for further molecular mechanism research.
Collapse
Affiliation(s)
- Yue Wang
- School of Nursing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Tengteng Ding
- School of Nursing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xing Jiang
- School of Nursing, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
10
|
Sakasai-Sakai A, Takeda K, Takeuchi M. Involvement of Intracellular TAGE and the TAGE-RAGE-ROS Axis in the Onset and Progression of NAFLD/NASH. Antioxidants (Basel) 2023; 12:antiox12030748. [PMID: 36978995 PMCID: PMC10045097 DOI: 10.3390/antiox12030748] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/15/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
The repeated excessive intake of sugar, a factor that contributes to the onset of nonalcoholic fatty liver disease (NAFLD) and its progression to the chronic form of nonalcoholic steatohepatitis (NASH), markedly increases the hepatocyte content of glyceraldehyde (GA), a glucose/fructose metabolic intermediate. Toxic advanced glycation end-products (toxic AGEs, TAGE) are synthesized by cross-linking reactions between the aldehyde group of GA and the amino group of proteins, and their accumulation has been implicated in the development of NAFLD/NASH and hepatocellular carcinoma (HCC). Our previous findings not only showed that hepatocyte disorders were induced by the intracellular accumulation of TAGE, but they also indicated that extracellular leakage resulted in elevated TAGE concentrations in circulating fluids. Interactions between extracellular TAGE and receptor for AGEs (RAGE) affect intracellular signaling and reactive oxygen species (ROS) production, which may, in turn, contribute to the pathological changes observed in NAFLD/NASH. RAGE plays a role in the effects of the extracellular leakage of TAGE on the surrounding cells, which ultimately promote the onset and progression of NAFLD/NASH. This review describes the relationships between intracellular TAGE levels and hepatocyte and hepatic stellate cell (HSC) damage as well as the TAGE-RAGE-ROS axis in hepatocytes, HSC, and HCC cells. The "TAGE theory" will provide novel insights for future research on NAFLD/NASH.
Collapse
Affiliation(s)
- Akiko Sakasai-Sakai
- Department of Advanced Medicine, Medical Research Institute, Kanazawa Medical University, 1-1 Daigaku, Uchinada-machi, Ishikawa 920-0293, Japan
| | - Kenji Takeda
- Department of Advanced Medicine, Medical Research Institute, Kanazawa Medical University, 1-1 Daigaku, Uchinada-machi, Ishikawa 920-0293, Japan
| | - Masayoshi Takeuchi
- Department of Advanced Medicine, Medical Research Institute, Kanazawa Medical University, 1-1 Daigaku, Uchinada-machi, Ishikawa 920-0293, Japan
| |
Collapse
|
11
|
Duan ZL, Wang YJ, Lu ZH, Tian L, Xia ZQ, Wang KL, Chen T, Wang R, Feng ZY, Shi GP, Xu XT, Bu F, Ding Y, Jiang F, Zhou JY, Wang Q, Chen YG. Wumei Wan attenuates angiogenesis and inflammation by modulating RAGE signaling pathway in IBD: Network pharmacology analysis and experimental evidence. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 111:154658. [PMID: 36706698 DOI: 10.1016/j.phymed.2023.154658] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/28/2022] [Accepted: 01/09/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Wumei Wan (WMW) has been used to address digestive disorder for centuries in traditional Chinese medicine. Previous studies have demonstrated its anti-colitis efficacy, but the underlying mechanism of its action remains to be further clarified. PURPOSE To investigate the underlying mechanisms of WMW in the treatment of chronic ulcerative colitis (UC) through network pharmacology and experimental validation. METHODS Traditional Chinese Medicine Systems Pharmacology (TCMSP) platform were used to identify the ingredients and potential targets of WMW. The microarray gene data GSE75214 datasets from GEO database was used to define UC-associated targets. Cytoscape3.7.2 was employed to construct the protein-protein interaction (PPI) network and compounds-disease targets network. GO enrichment analysis and KEGG pathway analysis were performed by R software for functional annotation. UPLC-TOF-MS/MS method was used to quantitatively analyze the active ingredients of WMW. For experimental validation, three cycles of 2% dextran sulfate sodium salt (DSS) were used to construct chronic colitis model. The hub targets and signal pathway were detected by qPCR, ELISA, western blotting , immunohistochemical and immunofluorescence. RESULTS Through network analysis, 104 active ingredients were obtained from WMW, and 47 of these ingredients had potential targets for UC. A total of 41 potential targets of WMW and 13 hub targets were identified. KEGG analysis showed that WMW involved in advanced glycation end products-receptor of advanced glycation end products (AGE-RAGE) signaling pathway. Taxifolin, rutaecarpine, kaempferol, quercetin, and luteolin of WMW were the more highly predictive components related to the AGE-RAGE signaling pathway. In vivo validation, WMW improved DSS-induced colitis, reduced the expression of inflammatory cytokines and chemokines. Notably, it significantly decreased the mRNA expression of Spp1, Serpine1, Mmp2, Mmp9, Ptgs2, Nos2, Kdr and Icam1, which were associated with angiogenesis. In addition, we confirmed WMW inhibited RAGE expression and diminished DSS-induced epithelial barrier alterations CONCLUSION: Our results initially demonstrated the effective components and the strong anti-angiogenic activity of WMW in experimental chronic colitis. Sufficient evidence of the satisfactory anti-colitis action of WMW was verified in this study, suggesting its potential as a quite prospective agent for the therapy of UC.
Collapse
Affiliation(s)
- Zheng-Lan Duan
- No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Yu-Ji Wang
- No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Zhi-Hua Lu
- No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Lin Tian
- No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Zi-Qian Xia
- No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Kui-Ling Wang
- No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Tuo Chen
- No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Rong Wang
- No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Ze-Yu Feng
- No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Guo-Ping Shi
- Collaborative Innovation Center for Cancer Medicine, Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, PR China
| | - Xin-Tian Xu
- No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Fan Bu
- No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Yang Ding
- No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Feng Jiang
- Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, PR China; Department of Colorectal Surgery, Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, PR China
| | - Jin-Yong Zhou
- Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, PR China; Central Laboratory, Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, PR China
| | - Qiong Wang
- Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, PR China.
| | - Yu-Gen Chen
- Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, PR China; Collaborative Innovation Center for Cancer Medicine, Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, PR China.
| |
Collapse
|
12
|
Dorenkamp M, Nasiry M, Semo D, Koch S, Löffler I, Wolf G, Reinecke H, Godfrey R. Pharmacological Targeting of the RAGE-NFκB Signalling Axis Impedes Monocyte Activation under Diabetic Conditions through the Repression of SHP-2 Tyrosine Phosphatase Function. Cells 2023; 12:cells12030513. [PMID: 36766855 PMCID: PMC9914555 DOI: 10.3390/cells12030513] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/19/2022] [Accepted: 09/23/2022] [Indexed: 02/09/2023] Open
Abstract
Monocytes play a vital role in the development of cardiovascular diseases. Type 2 diabetes mellitus (T2DM) is a major CVD risk factor, and T2DM-induced aberrant activation and enhanced migration of monocytes is a vital pathomechanism that leads to atherogenesis. We recently reported the upregulation of SHP-2 phosphatase expression in mediating the VEGF resistance of T2DM patient-derived monocytes or methylglyoxal- (MG, a glucose metabolite and advanced glycation end product (AGE) precursor) treated monocytes. However, the exact mechanisms leading to SHP-2 upregulation in hyperglycemic monocytes are unknown. Since inflammation and accumulation of AGEs is a hallmark of T2DM, we hypothesise that inflammation and AGE-RAGE (Receptor-for-AGEs) signalling drive SHP-2 expression in monocytes and blockade of these pathways will repress SHP-2 function. Indeed, monocytes from T2DM patients revealed an elevated SHP-2 expression. Under normoglycemic conditions, the serum from T2DM patients strongly induced SHP-2 expression, indicating that the T2DM serum contains critical factors that directly regulate SHP-2 expression. Activation of pro-inflammatory TNFα signalling cascade drove SHP-2 expression in monocytes. In line with this, linear regression analysis revealed a significant positive correlation between TNFα expression and SHP-2 transcript levels in T2DM monocytes. Monocytes exposed to MG or AGE mimetic AGE-BSA, revealed an elevated SHP-2 expression and co-treatment with an NFκB inhibitor or genetic inhibition of p65 reversed it. The pharmacological inhibition of RAGE was sufficient to block MG- or AGE-BSA-induced SHP-2 expression and activity. Confirming the importance of RAGE-NFκB signalling in regulating SHP-2 expression, the elevated binding of NFκB to the SHP-2 promoter-induced by MG or AGE-BSA-was reversed by RAGE and NFκB inhibition. Besides, we detected elevated RAGE levels in human and murine T2DM monocytes and monocytes exposed to MG or AGE-BSA. Importantly, MG and AGE-BSA treatment of non-T2DM monocytes phenocopied the aberrant pro-migratory phenotype of T2DM monocytes, which was reversed entirely by either SHP-2- or RAGE inhibition. In conclusion, these findings suggest a new therapeutic approach to prevent accelerated atherosclerosis in T2DM patients since inhibiting the RAGE-NFκB-SHP-2 axis impeded the T2DM-driven, SHP-2-dependent monocyte activation.
Collapse
Affiliation(s)
- Marc Dorenkamp
- Vascular Signalling, Molecular Cardiology, Department of Cardiology I—Coronary and Peripheral Vascular Disease, Heart Failure, University Hospital Münster, 48149 Münster, Germany
| | - Madina Nasiry
- Vascular Signalling, Molecular Cardiology, Department of Cardiology I—Coronary and Peripheral Vascular Disease, Heart Failure, University Hospital Münster, 48149 Münster, Germany
| | - Dilvin Semo
- Vascular Signalling, Molecular Cardiology, Department of Cardiology I—Coronary and Peripheral Vascular Disease, Heart Failure, University Hospital Münster, 48149 Münster, Germany
| | - Sybille Koch
- Vascular Signalling, Molecular Cardiology, Department of Cardiology I—Coronary and Peripheral Vascular Disease, Heart Failure, University Hospital Münster, 48149 Münster, Germany
| | - Ivonne Löffler
- Department of Internal Medicine III, University Hospital Jena, 07743 Jena, Germany
| | - Gunter Wolf
- Department of Internal Medicine III, University Hospital Jena, 07743 Jena, Germany
| | - Holger Reinecke
- Vascular Signalling, Molecular Cardiology, Department of Cardiology I—Coronary and Peripheral Vascular Disease, Heart Failure, University Hospital Münster, 48149 Münster, Germany
| | - Rinesh Godfrey
- Vascular Signalling, Molecular Cardiology, Department of Cardiology I—Coronary and Peripheral Vascular Disease, Heart Failure, University Hospital Münster, 48149 Münster, Germany
- Correspondence: ; Tel.: +49-251-83-57089; Fax: +49-251-83-55747
| |
Collapse
|
13
|
Advanced Glycation End-Products and Diabetic Neuropathy of the Retina. Int J Mol Sci 2023; 24:ijms24032927. [PMID: 36769249 PMCID: PMC9917392 DOI: 10.3390/ijms24032927] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/29/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Diabetic retinopathy is a tissue-specific neurovascular impairment of the retina in patients with both type 1 and type 2 diabetes. Several pathological factors are involved in the progressive impairment of the interdependence between cells that consist of the neurovascular units (NVUs). The advanced glycation end-products (AGEs) are one of the major pathological factors that cause the impairments of neurovascular coupling in diabetic retinopathy. Although the exact mechanisms for the toxicities of the AGEs in diabetic retinopathy have not been definitively determined, the AGE-receptor of the AGE (RAGE) axis, production of reactive oxygen species, inflammatory reactions, and the activation of the cell death pathways are associated with the impairment of the NVUs in diabetic retinopathy. More specifically, neuronal cell death is an irreversible change that is directly associated with vision reduction in diabetic patients. Thus, neuroprotective therapies must be established for diabetic retinopathy. The AGEs are one of the therapeutic targets to examine to ameliorate the pathological changes in the NVUs in diabetic retinopathy. This review focuses on the basic and pathological findings of AGE-induced neurovascular abnormalities and the potential therapeutic approaches, including the use of anti-glycated drugs to protect the AGE-induced impairments of the NVUs in diabetic retinopathy.
Collapse
|
14
|
Invernizzi A, Chhablani J, Viola F, Gabrielle PH, Zarranz-Ventura J, Staurenghi G. Diabetic retinopathy in the pediatric population: Pathophysiology, screening, current and future treatments. Pharmacol Res 2023; 188:106670. [PMID: 36681366 DOI: 10.1016/j.phrs.2023.106670] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023]
Abstract
Diabetic retinopathy (DR) is a sight threatening complication of diabetes mellitus (DM). The incidence of DR in the pediatric population has increased in the last two decades and it is expected to further rise in the future, following the increase in DM prevalence and obesity in youth. As early stages of the retinal disease are asymptomatic, screening programs are of extreme importance to guarantee a prompt diagnosis and avoid progression to more advanced, sight threatening stages. The management of DR comprises a wide range of actions starting from glycemic control, continuing with systemic and local medical treatments, up to para-surgical and surgical approaches to deal with the more aggressive complications. In this review we will describe the pathophysiology of DR trying to understand all the possible targets for currently available or future treatments. We will briefly consider the impact of screening techniques, screening strategies and their social and economic impact. Finally a large part of the review will be dedicated to medical and surgical treatments for DR including both currently available and under development therapies. Most of the available data in the literature on DR are focused on the adult population. The aim of our work is to provide clinicians and researchers with a comprehensive overview of the state of the art regarding DR in the pediatric population, considering the increasing numbers of this diseases in youth and the inevitable consequences that such a chronic disease could have if poorly managed in children.
Collapse
Affiliation(s)
- Alessandro Invernizzi
- Eye Clinic, Department of Biomedical and Clinical Science "Luigi Sacco", Luigi Sacco Hospital, University of Milan, Milan, Italy; The University of Sydney, Save Sight Institute, Discipline of Ophthalmology, Sydney Medical School, Sydney, New South Wales, Australia.
| | - Jay Chhablani
- UPMC Eye Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Francesco Viola
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy; Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Pierre Henry Gabrielle
- Department of Ophthalmology, University Hospital, 14 rue Paul Gaffarel, 21079 Dijon, France
| | - Javier Zarranz-Ventura
- Institut Clínic of Ophthalmology (ICOF), Hospital Clínic, Barcelona, Spain; August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | - Giovanni Staurenghi
- Eye Clinic, Department of Biomedical and Clinical Science "Luigi Sacco", Luigi Sacco Hospital, University of Milan, Milan, Italy
| |
Collapse
|
15
|
Kaushik A, Sangtani R, Parmar HS, Bala K. Algal metabolites: Paving the way towards new generation antidiabetic therapeutics. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102904] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Impact of Advanced Glycation End products (AGEs) and its receptor (RAGE) on cancer metabolic signaling pathways and its progression. Glycoconj J 2022; 38:717-734. [PMID: 35064413 DOI: 10.1007/s10719-021-10031-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/26/2021] [Accepted: 11/30/2021] [Indexed: 02/07/2023]
|
17
|
Papanas N, Stamatiou I, Papachristou S. Carpal Tunnel Syndrome in Diabetes Mellitus. Curr Diabetes Rev 2022; 18:e010921196025. [PMID: 34468300 DOI: 10.2174/1573399817666210901114610] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 06/21/2021] [Accepted: 06/24/2021] [Indexed: 11/22/2022]
Abstract
The aim of the present brief review was to discuss carpal tunnel syndrome (CTS) in diabetes mellitus (DM). Generally, CTS is more common in DM, especially in subjects with coexisting diabetic polyneuropathy (DPN) and/or long DM duration. There is no agreement if it is more frequent in type 1 or type 2 DM. The precise underlying mechanisms are not entirely clear but appear to involve hyperglycaemia-induced median nerve oedema, increased sensitivity to exogenous trauma and nerve myelin ischaemia and axonal degeneration. More recently, increased vascular endothelial growth factor (VEGF) and advanced glycation endproducts (AGEs) appear to also play an important role. Median nerve conduction study remains the cornerstone of CTS diagnosis in DM, being more sensitive than clinical examination. CTS can be treated medically or surgically. The latter appears now to be equally effective in subjects with vs. without DM in terms of recurrence rates and quality of life.
Collapse
Affiliation(s)
- Nikolaos Papanas
- Diabetes Centre, Second Department of Internal Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Iliana Stamatiou
- Diabetes Centre, Second Department of Internal Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Stella Papachristou
- Diabetes Centre, Second Department of Internal Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| |
Collapse
|
18
|
Valle MS, Russo C, Malaguarnera L. Protective role of vitamin D against oxidative stress in diabetic retinopathy. Diabetes Metab Res Rev 2021; 37:e3447. [PMID: 33760363 DOI: 10.1002/dmrr.3447] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 02/01/2021] [Accepted: 02/15/2021] [Indexed: 02/06/2023]
Abstract
Diabetic retinopathy (DR) is a microvascular complication of diabetes mellitus. There is much evidence showing that a high level of mitochondrial overproduction of reactive oxygen species in the diabetic retina contributes in modifying cellular signalling and leads to retinal cell damage and finally to the development of DR pathogenesis. In the last few decades, it has been reported that vitamin D is involved in DR pathogenesis. Vitamin D, traditionally known as an essential nutrient crucial in bone metabolism, has also been proven to be a very effective antioxidant. It has been demonstrated that it modulates the production of advanced glycosylated end products, as well as several pathways including protein kinase C, the polyol pathway leading to the reduction of free radical formation. It prevents the translocation of nuclear factor kappa B, preventing the inflammatory response, acting as an immunomodulator, and modulates autophagy and apoptosis. In this review, we explore the molecular mechanisms by which vitamin D protects the eye from oxidative stress, in order to evaluate whether vitamin D supplementation may be useful to mitigate the deleterious effects of free radicals in DR.
Collapse
Affiliation(s)
- Maria Stella Valle
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Cristina Russo
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Lucia Malaguarnera
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| |
Collapse
|
19
|
Yamazaki Y, Wake H, Nishinaka T, Hatipoglu OF, Liu K, Watanabe M, Toyomura T, Mori S, Yoshino T, Nishibori M, Takahashi H. Involvement of multiple scavenger receptors in advanced glycation end product-induced vessel tube formation in endothelial cells. Exp Cell Res 2021; 408:112857. [PMID: 34600900 DOI: 10.1016/j.yexcr.2021.112857] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/16/2021] [Accepted: 09/28/2021] [Indexed: 01/01/2023]
Abstract
Toxic advanced glycation end products (toxic AGEs) derived from glycolaldehyde (AGE3) have been implicated in the development of diabetic vascular complications such as retinopathy characterised by excessive angiogenesis. Different receptor types, such as receptor for AGEs (RAGE), Toll like receptor-4 and scavenger receptors, are expressed in endothelial cells and contribute to AGE-elicited alteration of cell function. In the present study, we examined the involvement of AGE-related receptors on AGE-induced angiogenesis in endothelial cells. The effects of pharmacological inhibitors or receptor neutralizing antibodies on AGE3-induced tube formation were investigated using the in vitro Matrigel tube formation assay in b.End5 cells (mouse endothelial cells). AGE3-induced signalling pathways and receptor expression changes were analysed by Western blot analysis and flow cytometry, respectively. Both FPS-ZM1, a RAGE inhibitor, and fucoidan, a ligand for scavenger receptors, suppressed AGE3-induced tube formation. Cocktails of neutralizing antibodies against the scavenger receptors CD36, CD163 and LOX-1 prevented AGE3-induced tube formation. AGE3 activated mTOR signalling, resulting in facilitation of tube formation. Activation of the AGE-RAGE pathway also led to the upregulation of scavenger receptors. Taken together, our findings suggest that the scavenger receptors CD36, CD163 and LOX-1 in conjunction with the RAGE receptor work together to mediate toxic AGE-induced facilitation of angiogenesis.
Collapse
Affiliation(s)
- Yui Yamazaki
- Department of Pharmacology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka, 589-8511, Japan
| | - Hidenori Wake
- Department of Pharmacology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka, 589-8511, Japan
| | - Takashi Nishinaka
- Department of Pharmacology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka, 589-8511, Japan.
| | - Omer Faruk Hatipoglu
- Department of Pharmacology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka, 589-8511, Japan
| | | | - Masahiro Watanabe
- Department of Pharmacology, School of Pharmacy, Shujitsu University, 1-6-1 Nishigawara, Naka-ku, Okayama, Japan
| | - Takao Toyomura
- Department of Pharmacology, School of Pharmacy, Shujitsu University, 1-6-1 Nishigawara, Naka-ku, Okayama, Japan
| | - Shuji Mori
- Department of Pharmacology, School of Pharmacy, Shujitsu University, 1-6-1 Nishigawara, Naka-ku, Okayama, Japan
| | - Tadashi Yoshino
- Department of Pathology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Okayama, Japan
| | | | - Hideo Takahashi
- Department of Pharmacology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka, 589-8511, Japan
| |
Collapse
|
20
|
Kong W, Lyu C, Liao H, Du Y. Collagen crosslinking: effect on structure, mechanics and fibrosis progression. Biomed Mater 2021; 16. [PMID: 34587604 DOI: 10.1088/1748-605x/ac2b79] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 09/29/2021] [Indexed: 02/07/2023]
Abstract
Biophysical properties of extracellular matrix (ECM), such as matrix stiffness, viscoelasticity and matrix fibrous structure, are emerging as important factors that regulate progression of fibrosis and other chronic diseases. The biophysical properties of the ECM can be rapidly and profoundly regulated by crosslinking reactions in enzymatic or non-enzymatic manners, which further alter the cellular responses and drive disease progression. In-depth understandings of crosslinking reactions will be helpful to reveal the underlying mechanisms of fibrosis progression and put forward new therapeutic targets, whereas related reviews are still devoid. Here, we focus on the main crosslinking mechanisms that commonly exist in a plethora of chronic diseases (e.g. fibrosis, cancer, osteoarthritis) and summarize current understandings including the biochemical reaction, the effect on ECM properties, the influence on cellular behaviors, and related studies in disease model establishment. Potential pharmaceutical interventions targeting the crosslinking process and relevant clinical studies are also introduced. Limitations of pharmaceutical development may be due to the lack of systemic investigations related to the influence on crosslinking mechanism from micro to macro level, which are discussed in the last section. We also propose the unclarified questions regarding crosslinking mechanisms and potential challenges in crosslinking-targeted therapeutics development.
Collapse
Affiliation(s)
- Wenyu Kong
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, People's Republic of China
| | - Cheng Lyu
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, People's Republic of China
| | - Hongen Liao
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, People's Republic of China
| | - Yanan Du
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, People's Republic of China
| |
Collapse
|
21
|
Senavirathna L, Ma C, Chen R, Pan S. Proteomic Investigation of Glyceraldehyde-Derived Intracellular AGEs and Their Potential Influence on Pancreatic Ductal Cells. Cells 2021; 10:cells10051005. [PMID: 33923186 PMCID: PMC8145644 DOI: 10.3390/cells10051005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/14/2021] [Accepted: 04/23/2021] [Indexed: 02/07/2023] Open
Abstract
Glyceraldehyde-derived advanced glycation end products (AGEs) play an important role in the pathogenesis of many diseases including cancer. Accumulation of intracellular AGEs could stimulate cancer induction and facilitate cancer progression. We evaluated the toxic effect of glyceraldehyde-derived intracellular AGEs on normal and malignant pancreatic ductal cells by assessing the cell viability, toxicity, and oxidative stress, followed by proteomic analysis. Our functional studies showed that pancreatic cancer cells (PANC-1 and MIA PaCa-2) were more resistant to glyceraldehyde treatment compared to normal pancreatic ductal epithelial cells (HPDE), while cytotoxicity effects were observed in all cell types. Furthermore, using 13C isotopic labeled glyceraldehyde, the proteomic data revealed a dose-dependent increment of the number of glycation adducts in both these cell types. HPDE cells showed a higher number of intracellular AGEs compared to cancer cells. At a molecular level, the glycations in the lysine residues of proteins showed a concurrent increase with the concentration of the glyceraldehyde treatment, while the arginine glycations appeared to be less affected by the glyceraldehyde doses. Further pathway analysis of these glycated proteins suggested that the glycated proteins participate in important biological processes that are major hallmarks of cancer initiation and progression, including metabolic processes, immune response, oxidative stress, apoptosis, and S100 protein binding.
Collapse
Affiliation(s)
- Lakmini Senavirathna
- The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (L.S.); (C.M.)
| | - Cheng Ma
- The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (L.S.); (C.M.)
| | - Ru Chen
- Division of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA;
| | - Sheng Pan
- The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (L.S.); (C.M.)
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Correspondence:
| |
Collapse
|
22
|
Yang J, Miao X, Yang FJ, Cao JF, Liu X, Fu JL, Su GF. Therapeutic potential of curcumin in diabetic retinopathy (Review). Int J Mol Med 2021; 47:75. [PMID: 33693955 PMCID: PMC7949626 DOI: 10.3892/ijmm.2021.4908] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 02/11/2021] [Indexed: 02/06/2023] Open
Abstract
Diabetic retinopathy (DR) is a type of retinal microangiopathy caused by diabetes mellitus. It has become the leading cause of blindness among working individuals worldwide. DR is becoming increasingly common among younger diabetic patients and there is a need for lifelong treatment. The pathogenic mechanisms of DR are influenced by a number of factors, such as hyperglycemia, hyperlipidemia, inflammatory response and oxidative stress, among others. Currently, the treatment methods for DR mainly include retinal photocoagulation, vitrectomy, or anti‑vascular endothelial growth factor (VEGF) therapy. However, these methods have some disadvantages and limitations. Therefore, it is a matter of great interest and urgency to discover drugs that can target the pathogenesis of DR. Since ancient times, traditional Chinese medicine practitioners have accumulated extensive experiences in the use of Chinese herbal medicine for the prevention and treatment of diseases. In the theory of traditional Chinese medicine, curcumin has the effects of promoting blood circulation and relieving pain. A number of studies have also demonstrated that curcumin has multiple biological activities, including exerting anti‑apoptotic, anti‑inflammatory, antioxidant and antitumor properties. In recent years, studies have also confirmed that curcumin can prevent a variety of diabetic complications, including diabetic nephropathy (DN). However, the preventive and curative effects of curcumin on DR and its mechanisms of action have not yet been fully elucidated. The present review aimed to explore the therapeutic potential of curcumin in diabetes mellitus and DR.
Collapse
Affiliation(s)
- Jian Yang
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Xiao Miao
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Feng-Juan Yang
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Jin-Feng Cao
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Xin Liu
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Jin-Ling Fu
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Guan-Fang Su
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| |
Collapse
|
23
|
Costa TJ, Barros PR, Arce C, Santos JD, da Silva-Neto J, Egea G, Dantas AP, Tostes RC, Jiménez-Altayó F. The homeostatic role of hydrogen peroxide, superoxide anion and nitric oxide in the vasculature. Free Radic Biol Med 2021; 162:615-635. [PMID: 33248264 DOI: 10.1016/j.freeradbiomed.2020.11.021] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/08/2020] [Accepted: 11/19/2020] [Indexed: 02/07/2023]
Abstract
Reactive oxygen and nitrogen species are produced in a wide range of physiological reactions that, at low concentrations, play essential roles in living organisms. There is a delicate equilibrium between formation and degradation of these mediators in a healthy vascular system, which contributes to maintaining these species under non-pathological levels to preserve normal vascular functions. Antioxidants scavenge reactive oxygen and nitrogen species to prevent or reduce damage caused by excessive oxidation. However, an excessive reductive environment induced by exogenous antioxidants may disrupt redox balance and lead to vascular pathology. This review summarizes the main aspects of free radical biochemistry (formation, sources and elimination) and the crucial actions of some of the most biologically relevant and well-characterized reactive oxygen and nitrogen species (hydrogen peroxide, superoxide anion and nitric oxide) in the physiological regulation of vascular function, structure and angiogenesis. Furthermore, current preclinical and clinical evidence is discussed on how excessive removal of these crucial responses by exogenous antioxidants (vitamins and related compounds, polyphenols) may perturb vascular homeostasis. The aim of this review is to provide information of the crucial physiological roles of oxidation in the endothelium, vascular smooth muscle cells and perivascular adipose tissue for developing safer and more effective vascular interventions with antioxidants.
Collapse
Affiliation(s)
- Tiago J Costa
- Pharmacology Department, Ribeirao Preto Medical School, University of São Paulo, Brazil.
| | | | - Cristina Arce
- Department of Biomedical Sciences, University of Barcelona School of Medicine and Health Sciences, Barcelona, Spain; Institut d'Investigacions Biomédiques August Pi i Sunyer (IDIBAPS)-University of Barcelona, Barcelona, Spain; Institut de Nanociencies i Nanotecnologia (IN2UB), University of Barcelona, Barcelona, Spain
| | | | - Júlio da Silva-Neto
- Pharmacology Department, Ribeirao Preto Medical School, University of São Paulo, Brazil
| | - Gustavo Egea
- Department of Biomedical Sciences, University of Barcelona School of Medicine and Health Sciences, Barcelona, Spain; Institut d'Investigacions Biomédiques August Pi i Sunyer (IDIBAPS)-University of Barcelona, Barcelona, Spain; Institut de Nanociencies i Nanotecnologia (IN2UB), University of Barcelona, Barcelona, Spain
| | - Ana Paula Dantas
- Institut Clínic del Tòrax, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Rita C Tostes
- Pharmacology Department, Ribeirao Preto Medical School, University of São Paulo, Brazil
| | - Francesc Jiménez-Altayó
- Department of Pharmacology, Therapeutics and Toxicology, Neuroscience Institute, School of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain.
| |
Collapse
|
24
|
Niwa H, Kurimoto SI, Kubota T, Sekiguchi M. Macrocarquinoids A-C, new meroterpenoids from Sargassum macrocarpum. J Nat Med 2021; 75:194-200. [PMID: 32974814 DOI: 10.1007/s11418-020-01449-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 09/13/2020] [Indexed: 01/11/2023]
Abstract
The production and accumulation of advanced glycation end products (AGEs) have been implicated in diabetes and diabetic complication. This study was conducted as a search for an AGE inhibitor from brown alga, Sargassum macrocarpum. Separation and purification were performed using AGEs inhibitory activity as an index, yielding isolation of 11 meroterpenoids, of which 3 were new compounds: macrocarquinoids A (1), B (6), and C (9). Their structures were elucidated using NMR spectral analysis with 2D techniques. All tested compounds showed AGEs inhibitory activity. Particularly, macrocarquinoid C (9) possessed the strongest activity (IC50: 1.0 mM) of isolated compounds. This activity was stronger than that of aminoguanidine (positive control).
Collapse
Affiliation(s)
- Hiromi Niwa
- Faculty of Bioresources and Environmental Science, Ishikawa Prefectural University, Nonoichi, Ishikawa, 921-8836, Japan
| | | | - Takaaki Kubota
- Showa Pharmaceutical University, Machida, Tokyo, 194-8543, Japan
| | - Mitsuhiro Sekiguchi
- Faculty of Bioresources and Environmental Science, Ishikawa Prefectural University, Nonoichi, Ishikawa, 921-8836, Japan.
| |
Collapse
|
25
|
Aragonès G, Rowan S, G Francisco S, Yang W, Weinberg J, Taylor A, Bejarano E. Glyoxalase System as a Therapeutic Target against Diabetic Retinopathy. Antioxidants (Basel) 2020; 9:antiox9111062. [PMID: 33143048 PMCID: PMC7692619 DOI: 10.3390/antiox9111062] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/25/2020] [Accepted: 10/27/2020] [Indexed: 12/14/2022] Open
Abstract
Hyperglycemia, a defining characteristic of diabetes, combined with oxidative stress, results in the formation of advanced glycation end products (AGEs). AGEs are toxic compounds that have adverse effects on many tissues including the retina and lens. AGEs promote the formation of reactive oxygen species (ROS), which, in turn, boost the production of AGEs, resulting in positive feedback loops, a vicious cycle that compromises tissue fitness. Oxidative stress and the accumulation of AGEs are etiologically associated with the pathogenesis of multiple diseases including diabetic retinopathy (DR). DR is a devastating microvascular complication of diabetes mellitus and the leading cause of blindness in working-age adults. The onset and development of DR is multifactorial. Lowering AGEs accumulation may represent a potential therapeutic approach to slow this sight-threatening diabetic complication. To set DR in a physiological context, in this review we first describe relations between oxidative stress, formation of AGEs, and aging in several tissues of the eye, each of which is associated with a major age-related eye pathology. We summarize mechanisms of AGEs generation and anti-AGEs detoxifying systems. We specifically feature the potential of the glyoxalase system in the retina in the prevention of AGEs-associated damage linked to DR. We provide a comparative analysis of glyoxalase activity in different tissues from wild-type mice, supporting a major role for the glyoxalase system in the detoxification of AGEs in the retina, and present the manipulation of this system as a therapeutic strategy to prevent the onset of DR.
Collapse
Affiliation(s)
- Gemma Aragonès
- Laboratory for Nutrition and Vision Research, USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02155, USA; (G.A.); (S.R.); (S.G.F.); (W.Y.); (J.W.)
| | - Sheldon Rowan
- Laboratory for Nutrition and Vision Research, USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02155, USA; (G.A.); (S.R.); (S.G.F.); (W.Y.); (J.W.)
- Department of Ophthalmology, Tufts University School of Medicine, Boston, MA 02155, USA
- Friedman School of Nutrition and Science Policy, Tufts University, Boston, MA 02155, USA
| | - Sarah G Francisco
- Laboratory for Nutrition and Vision Research, USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02155, USA; (G.A.); (S.R.); (S.G.F.); (W.Y.); (J.W.)
| | - Wenxin Yang
- Laboratory for Nutrition and Vision Research, USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02155, USA; (G.A.); (S.R.); (S.G.F.); (W.Y.); (J.W.)
| | - Jasper Weinberg
- Laboratory for Nutrition and Vision Research, USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02155, USA; (G.A.); (S.R.); (S.G.F.); (W.Y.); (J.W.)
| | - Allen Taylor
- Laboratory for Nutrition and Vision Research, USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02155, USA; (G.A.); (S.R.); (S.G.F.); (W.Y.); (J.W.)
- Department of Ophthalmology, Tufts University School of Medicine, Boston, MA 02155, USA
- Friedman School of Nutrition and Science Policy, Tufts University, Boston, MA 02155, USA
- Correspondence: (A.T.); (E.B.); Tel.: +617-556-3156 (A.T.)
| | - Eloy Bejarano
- Laboratory for Nutrition and Vision Research, USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02155, USA; (G.A.); (S.R.); (S.G.F.); (W.Y.); (J.W.)
- Universidad Cardenal Herrera-CEU, CEU Universities, 46115 Valencia, Spain
- Correspondence: (A.T.); (E.B.); Tel.: +617-556-3156 (A.T.)
| |
Collapse
|
26
|
Dariya B, Nagaraju GP. Advanced glycation end products in diabetes, cancer and phytochemical therapy. Drug Discov Today 2020; 25:1614-1623. [PMID: 32652310 DOI: 10.1016/j.drudis.2020.07.003] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 06/04/2020] [Accepted: 07/03/2020] [Indexed: 02/08/2023]
Abstract
The irreversible glycation and oxidation of proteins and lipids produces advanced glycation end products (AGEs). These modified AGEs are triggered to bind the receptor for AGE (RAGE), thereby activating its downstream signaling pathways, such as nuclear factor (NF)-κB and phosphoinositide 3-kinase (PI3K)/Akt, ultimately leading to diabetes and cancers. In this review, we focus on the interaction of AGE-RAGE and their associated pathways. We also consider the activity of phytochemicals, such as genistein and curcumin, that trap dicarbonyl compounds including methylglyoxal (MG) and glyoxalase that arise from multiple pathways to block AGE formation and prevent its interaction with RAGE.
Collapse
Affiliation(s)
- Begum Dariya
- Department of Biosciences and Biotechnology, Banasthali University, Banasthali, Rajasthan 304022, India
| | - Ganji Purnachandra Nagaraju
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
27
|
Tanaka K, Yamagata K, Kubo S, Nakayamada S, Sakata K, Matsui T, Yamagishi SI, Okada Y, Tanaka Y. Glycolaldehyde-modified advanced glycation end-products inhibit differentiation of human monocytes into osteoclasts via upregulation of IL-10. Bone 2019; 128:115034. [PMID: 31421252 DOI: 10.1016/j.bone.2019.115034] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 07/17/2019] [Accepted: 08/06/2019] [Indexed: 12/22/2022]
Abstract
Diabetes patients are at high risk of bone fracture due to accumulation of advanced glycation end products (AGEs) and low bone turnover. Although AGEs inhibit osteoblast functions, little is known about their roles in regulation of human osteoclast differentiation. The aim of this study was to determine the roles of AGEs in regulation of human osteoclast differentiation. Human CD14+ monocytes collected from healthy individuals were stimulated in vitro with conventional cytokines to induce osteoclast differentiation. Simultaneously, glucose-modified AGEs-BSA (Glu-AGEs-BSA) and glycolaldehyde-modified AGEs-BSA (Glyco-AGEs-BSA) were added to analyze their role in regulation of osteoclast differentiation. Human CD14+ cells expressed endogenous receptor for AGE (RAGE). Stimulation with Glyco-AGEs-BSA, but not Glu-AGEs-BSA, reduced the number of tartrate-resistant acid phosphatase-positive cells in a dose-dependent manner and suppressed mRNA expression of nuclear factor of activated T-cells 1 and cathepsin K. Glyco-AGEs-BSA up-regulated pro-inflammatory cytokines and anti-inflammatory cytokine IL-10. The addition of IL-10-neutralizing antibodies abrogated the suppressive effect of Glyco-AGEs-BSA on osteoclast differentiation. Stimulation of Glyco-AGE-BSA resulted in nuclear factor (NF)-κB phosphorylation, and addition of an inhibitor of κB kinase suppressed IL-10 production. We conclude that Glyco-AGEs-BSA inhibited human osteoclast differentiation through induction of IL-10 expression via NF-κB. It can be assumed that AGE bioaccumulation in diabetic patients increases the risk of bone fracture, through inhibition of osteoclast differentiation, reduction of bone turnover, and disruption of bone remodeling.
Collapse
Affiliation(s)
- Kenichi Tanaka
- The First Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Japan, Kitakyushu 807-8555, Japan
| | - Kaoru Yamagata
- The First Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Japan, Kitakyushu 807-8555, Japan
| | - Satoshi Kubo
- The First Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Japan, Kitakyushu 807-8555, Japan
| | - Shingo Nakayamada
- The First Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Japan, Kitakyushu 807-8555, Japan
| | - Kei Sakata
- The First Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Japan, Kitakyushu 807-8555, Japan; Mitsubishi Tanabe Pharma Corporation, Yokohama 227-0033, Japan
| | - Takanori Matsui
- Department of Pathophysiology and Therapeutics of Diabetic Vascular Complications, Kurume University School of Medicine, Kurume, Fukuoka 830-0011, Japan
| | - Sho-Ichi Yamagishi
- Department of Pathophysiology and Therapeutics of Diabetic Vascular Complications, Kurume University School of Medicine, Kurume, Fukuoka 830-0011, Japan
| | - Yosuke Okada
- The First Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Japan, Kitakyushu 807-8555, Japan
| | - Yoshiya Tanaka
- The First Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Japan, Kitakyushu 807-8555, Japan.
| |
Collapse
|
28
|
Bahrambeigi S, Rahimi M, Yousefi B, Shafiei-Irannejad V. New potentials for 3-hydroxy-3-methyl-glutaryl-coenzymeA reductase inhibitors: Possible applications in retarding diabetic complications. J Cell Physiol 2019; 234:19393-19405. [PMID: 31004363 DOI: 10.1002/jcp.28682] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 03/25/2019] [Accepted: 04/05/2019] [Indexed: 12/12/2022]
Abstract
The prevalence of diabetes mellitus is increasing all over the world and it is apparent that treatment of diabetic complications has the same importance as primary diabetes treatment and glycemic control. Diabetic complications occur as a result of prolonged hyperglycemia and its consequences, such as advanced glycation end products and reactive oxygen species. Impairment of lipid profile is also contributed to worsening diabetic complications. Therefore, it seems that the application of lipid-lowering agents may have positive effects on reversing diabetic complications besides glycemic control. Statins, a group of lipid-lowering compounds, have been shown to exert antioxidant, immunomodulatory, anti-inflammatory, and antiproliferative properties beyond their lipid-lowering effects. Furthermore, they have been reported to improve diabetic complications with different pathways. In this review, we will discuss the clinical importance, molecular biology of the most important microvascular/macrovascular diabetic complications, possible application of statins and their mechanism of action in retarding these complications.
Collapse
Affiliation(s)
- Saman Bahrambeigi
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Mahdi Rahimi
- Ageing Research Institute, Physical Medicine and Rehabilitation Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bahman Yousefi
- Ageing Research Institute, Physical Medicine and Rehabilitation Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahid Shafiei-Irannejad
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
29
|
Nawaz IM, Rezzola S, Cancarini A, Russo A, Costagliola C, Semeraro F, Presta M. Human vitreous in proliferative diabetic retinopathy: Characterization and translational implications. Prog Retin Eye Res 2019; 72:100756. [PMID: 30951889 DOI: 10.1016/j.preteyeres.2019.03.002] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 03/26/2019] [Accepted: 03/28/2019] [Indexed: 02/07/2023]
Abstract
Diabetic retinopathy (DR) is one of the leading causes of visual impairment in the working-age population. DR is a progressive eye disease caused by long-term accumulation of hyperglycaemia-mediated pathological alterations in the retina of diabetic patients. DR begins with asymptomatic retinal abnormalities and may progress to advanced-stage proliferative diabetic retinopathy (PDR), characterized by neovascularization or preretinal/vitreous haemorrhages. The vitreous, a transparent gel that fills the posterior cavity of the eye, plays a vital role in maintaining ocular function. Structural and molecular alterations of the vitreous, observed during DR progression, are consequences of metabolic and functional modifications of the retinal tissue. Thus, vitreal alterations reflect the pathological events occurring at the vitreoretinal interface. These events are caused by hypoxic, oxidative, inflammatory, neurodegenerative, and leukostatic conditions that occur during diabetes. Conversely, PDR vitreous can exert pathological effects on the diabetic retina, resulting in activation of a vicious cycle that contributes to disease progression. In this review, we recapitulate the major pathological features of DR/PDR, and focus on the structural and molecular changes that characterize the vitreal structure and composition during DR and progression to PDR. In PDR, vitreous represents a reservoir of pathological signalling molecules. Therefore, in this review we discuss how studying the biological activity of the vitreous in different in vitro, ex vivo, and in vivo experimental models can provide insights into the pathogenesis of PDR. In addition, the vitreous from PDR patients can represent a novel tool to obtain preclinical experimental evidences for the development and characterization of new therapeutic drug candidates for PDR therapy.
Collapse
Affiliation(s)
- Imtiaz M Nawaz
- Department of Molecular and Translational Medicine, University of Brescia, Italy
| | - Sara Rezzola
- Department of Molecular and Translational Medicine, University of Brescia, Italy
| | - Anna Cancarini
- Department of Ophthalmology, University of Brescia, Italy
| | - Andrea Russo
- Department of Ophthalmology, University of Brescia, Italy
| | - Ciro Costagliola
- Department of Medicine and Health Sciences, University of Molise, Campobasso, Italy
| | | | - Marco Presta
- Department of Molecular and Translational Medicine, University of Brescia, Italy.
| |
Collapse
|
30
|
Kosmopoulos M, Drekolias D, Zavras PD, Piperi C, Papavassiliou AG. Impact of advanced glycation end products (AGEs) signaling in coronary artery disease. Biochim Biophys Acta Mol Basis Dis 2019; 1865:611-619. [PMID: 30611860 DOI: 10.1016/j.bbadis.2019.01.006] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 12/10/2018] [Accepted: 01/02/2019] [Indexed: 02/08/2023]
Abstract
Coronary artery disease remains the leading cause of mortality in adult diabetic population with however, a high predominance also in non-diabetic subjects. In search of common molecular mechanisms and metabolic by-products with potential pathogenic role, increased advanced glycation end products (AGEs) present a critical biomarker for CAD development in both cases. Interaction of AGEs with their transmembrane cell receptor, RAGE in endothelial and smooth muscle cells as well as in platelets, activates intracellular signaling that leads to endothelial injury, modulation of vascular smooth muscle cell function and altered platelet activity. Furthermore, tissue accumulation of AGEs affects current treatment approaches being involved in stent restenosis. The present review provides an update of AGE-induced molecular mechanisms involved in CAD pathophysiology while it discusses emerging therapeutic interventions targeting AGE reduction and AGE-RAGE signaling with beneficial clinical outcome.
Collapse
Affiliation(s)
- Marinos Kosmopoulos
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Dimitrios Drekolias
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Phaedon D Zavras
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Christina Piperi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece.
| | - Athanasios G Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece.
| |
Collapse
|
31
|
Potential mechanisms underlying the protective effects of salvianic acid A against atherosclerosis in vivo and vitro. Biomed Pharmacother 2019; 109:945-956. [DOI: 10.1016/j.biopha.2018.10.147] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 10/16/2018] [Accepted: 10/24/2018] [Indexed: 12/31/2022] Open
|
32
|
Yamagishi SI, Matsui T. Role of Hyperglycemia-Induced Advanced Glycation End Product (AGE) Accumulation in Atherosclerosis. Ann Vasc Dis 2018; 11:253-258. [PMID: 30402172 PMCID: PMC6200622 DOI: 10.3400/avd.ra.18-00070] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 06/25/2018] [Indexed: 12/12/2022] Open
Abstract
There is a growing body of evidence that cumulative hyperglycemic exposure plays a central role in the development and progression of atherosclerotic cardiovascular disease in diabetic patients. Monosaccharides, such as glucose, fructose, and glyceraldehyde can react non-enzymatically with amino groups of proteins, lipids, nucleic acids to form senescent macromolecules termed advanced glycation end products (AGEs), whose formation and accumulation has been known to progress in diabetic patients, especially in those with a long history of disease. The sustained accumulation of AGEs could contribute to the phenomenon of metabolic memory or legacy effects observed in long-term follow-up clinical studies of diabetic patients. AGE modification alters the structural integrity and function of various types of macromolecules, and interaction of AGEs with a receptor for AGEs (RAGE) has been shown to evoke inflammatory and thrombotic reactions. Therefore, the AGE-RAGE axis is a novel therapeutic target of atherosclerotic cardiovascular disease in diabetic patients. In this paper, we briefly review the pathological role of AGEs and their receptor RAGE system in atherosclerotic cardiovascular disease, including peripheral artery disease and discuss the clinical utility of measuring AGEs in evaluating the severity of atherosclerosis in patients with diabetes.
Collapse
Affiliation(s)
- Sho-ichi Yamagishi
- Department of Pathophysiology and Therapeutics of Diabetic Vascular Complications, Kurume University School of Medicine, Kurume, Fukuoka, Japan
| | - Takanori Matsui
- Department of Pathophysiology and Therapeutics of Diabetic Vascular Complications, Kurume University School of Medicine, Kurume, Fukuoka, Japan
| |
Collapse
|
33
|
Haritoglou C, Maier M, Augustin A. Pathophysiology of diabetic macular edema – a background for current treatment modalities. EXPERT REVIEW OF OPHTHALMOLOGY 2018. [DOI: 10.1080/17469899.2018.1520634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
| | - Mathias Maier
- Department of Ophthalmology, Klinikum rechts der Isar, Technische Universität München, München, Germany
| | - Albert Augustin
- Department of Ophthalmology, Städtisches Klinikum Karlsruhe, Karlsruhe, Germany
| |
Collapse
|
34
|
Li P, Chen D, Cui Y, Zhang W, Weng J, Yu L, Chen L, Chen Z, Su H, Yu S, Wu J, Huang Q, Guo X. Src Plays an Important Role in AGE-Induced Endothelial Cell Proliferation, Migration, and Tubulogenesis. Front Physiol 2018; 9:765. [PMID: 29977209 PMCID: PMC6021521 DOI: 10.3389/fphys.2018.00765] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 05/31/2018] [Indexed: 01/10/2023] Open
Abstract
Advanced glycation end products (AGEs), produced by the non-enzymatic glycation of proteins and lipids under hyperglycemia or oxidative stress conditions, has been implicated to be pivotal in the development of diabetic vascular complications, including diabetic retinopathy. We previously demonstrated that Src kinase played a causative role in AGE-induced hyper-permeability and barrier dysfunction in human umbilical vein endothelial cells (HUVECs). While the increase of vascular permeability is the early event of angiogenesis, the effect of Src in AGE-induced angiogenesis and the mechanism has not been completely revealed. Here, we investigated the impact of Src on AGE-induced HUVECs proliferation, migration, and tubulogenesis. Inhibition of Src with inhibitor PP2 or siRNA decreased AGE-induced migration and tubulogenesis of HUVECs. The inactivation of Src with pcDNA3/flag-SrcK298M also restrained AGE-induced HUVECs proliferation, migration, and tube formation, while the activation of Src with pcDNA3/flag-SrcY530F enhanced HUVECs angiogenesis alone and exacerbated AGE-induced angiogenesis. AGE-enhanced HUVECs angiogenesis in vitro was accompanied with the phosphorylation of ERK in HUVECs. The inhibition of ERK with its inhibitor PD98059 decreased AGE-induced HUVECs angiogenesis. Furthermore, the inhibition and silencing of Src suppressed the AGE-induced ERK activation. And the silencing of AGEs receptor (RAGE) inhibited the AGE-induced ERK activation and angiogenesis as well. In conclusions, this study demonstrated that Src plays a pivotal role in AGE-promoted HUVECs angiogenesis by phosphorylating ERK, and very likely through RAGE-Src-ERK pathway.
Collapse
Affiliation(s)
- Peixin Li
- Key Laboratory for Shock and Microcirculation Research of Guangdong Province, Department of Pathophysiology, Southern Medical University, Guangzhou, China
| | - Deshu Chen
- Key Laboratory for Shock and Microcirculation Research of Guangdong Province, Department of Pathophysiology, Southern Medical University, Guangzhou, China
| | - Yun Cui
- Key Laboratory for Shock and Microcirculation Research of Guangdong Province, Department of Pathophysiology, Southern Medical University, Guangzhou, China
| | - Weijin Zhang
- Key Laboratory for Shock and Microcirculation Research of Guangdong Province, Department of Pathophysiology, Southern Medical University, Guangzhou, China
| | - Jie Weng
- Key Laboratory for Shock and Microcirculation Research of Guangdong Province, Department of Pathophysiology, Southern Medical University, Guangzhou, China
| | - Lei Yu
- Key Laboratory for Shock and Microcirculation Research of Guangdong Province, Department of Pathophysiology, Southern Medical University, Guangzhou, China
| | - Lixian Chen
- Key Laboratory for Shock and Microcirculation Research of Guangdong Province, Department of Pathophysiology, Southern Medical University, Guangzhou, China
| | - Zhenfeng Chen
- Key Laboratory for Shock and Microcirculation Research of Guangdong Province, Department of Pathophysiology, Southern Medical University, Guangzhou, China
| | - Haiying Su
- Key Laboratory for Shock and Microcirculation Research of Guangdong Province, Department of Pathophysiology, Southern Medical University, Guangzhou, China
| | - Shengxiang Yu
- Key Laboratory for Shock and Microcirculation Research of Guangdong Province, Department of Pathophysiology, Southern Medical University, Guangzhou, China
| | - Jie Wu
- Key Laboratory for Shock and Microcirculation Research of Guangdong Province, Department of Pathophysiology, Southern Medical University, Guangzhou, China
| | - Qiaobing Huang
- Key Laboratory for Shock and Microcirculation Research of Guangdong Province, Department of Pathophysiology, Southern Medical University, Guangzhou, China
| | - Xiaohua Guo
- Key Laboratory for Shock and Microcirculation Research of Guangdong Province, Department of Pathophysiology, Southern Medical University, Guangzhou, China
| |
Collapse
|
35
|
Siddiqui K, Joy SS, Nawaz SS, Al Otaibi MT, Al-Rubeaan K. Angiopoietin-2 level as a tool for cardiovascular risk stratification in hypertensive type 2 diabetic subjects. Postgrad Med 2018; 130:402-408. [DOI: 10.1080/00325481.2018.1469370] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Khalid Siddiqui
- Strategic Center for Diabetes Research, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Salini Scaria Joy
- Strategic Center for Diabetes Research, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Shaik Sarfaraz Nawaz
- Strategic Center for Diabetes Research, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | | | - Khalid Al-Rubeaan
- Strategic Center for Diabetes Research, College of Medicine, King Saud University, Riyadh, Saudi Arabia
- University Diabetes Center, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
36
|
Rescigno T, Tecce MF, Capasso A. Protective and Restorative Effects of Nutrients and Phytochemicals. Open Biochem J 2018; 12:46-64. [PMID: 29760813 PMCID: PMC5906970 DOI: 10.2174/1874091x01812010046] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 04/02/2018] [Accepted: 04/03/2018] [Indexed: 12/11/2022] Open
Abstract
Intoroduction: Dietary intake fundamentally provides reintegration of energy and essential nutrients to human organisms. However, its qualitative and quantitative composition strongly affects individual’s health, possibly being either a preventive or a risk factor. It was shown that nutritional status resulting from long-term exposition to specific diet formulations can outstandingly reduce incidences of most common and most important diseases of the developed world, such as cardiovascular and neoplastic diseases. Diet formulations result from different food combinations which bring specific nutrient molecules. Numerous molecules, mostly but not exclusively from vegetal foods, have been characterized among nutritional components as being particularly responsible for diet capabilities to exert risk reduction. These “bioactive nutrients” are able to produce effects which go beyond basic reintegration tasks, i.e. energetic and/or structural, but are specifically pharmacologically active within pathophysiological pathways related to many diseases, being able to selectively affect processes such as cell proliferation, apoptosis, inflammation, differentiation, angiogenesis, DNA repair and carcinogens activation. Conclusion: The present review was aimed to know the molecular mechanisms and pathways of activity of bioactive molecules; which will firstly allow search for optimal food composition and intake, and then use them as possible therapeutical targets and/or diagnostics. Also, the present review discussed the therapeutic effect of both nutrients and phytochemicals.
Collapse
Affiliation(s)
- Tania Rescigno
- Department of Pharmacy, University of Salerno, Fisciano (SA), Italy
| | - Mario F Tecce
- Department of Pharmacy, University of Salerno, Fisciano (SA), Italy
| | - Anna Capasso
- Department of Pharmacy, University of Salerno, Fisciano (SA), Italy
| |
Collapse
|
37
|
Choi E, Oh J, Lee D, Lee J, Tan X, Kim M, Kim G, Piao C, Lee M. A ternary-complex of a suicide gene, a RAGE-binding peptide, and polyethylenimine as a gene delivery system with anti-tumor and anti-angiogenic dual effects in glioblastoma. J Control Release 2018; 279:40-52. [PMID: 29660374 DOI: 10.1016/j.jconrel.2018.04.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 03/13/2018] [Accepted: 04/11/2018] [Indexed: 12/20/2022]
Abstract
The receptor for advanced glycation end-products (RAGE) is involved in tumor angiogenesis. Inhibition of RAGE might be an effective anti-angiogenic therapy for cancer. In this study, a cationic RAGE-binding peptide (RBP) was produced as an antagonist of RAGE, and a ternary-complex consisting of RBP, polyethylenimine (2 kDa, PEI2k), and a suicide gene (pHSVtk) was developed as a gene delivery system with dual functions: the anti-tumor effect of pHSVtk and anti-angiogenic effect of RBP. As an antagonist of RAGE, RBP decreased the secretion of vascular-endothelial growth factor (VEGF) in activated macrophages and reduced the tube-formation of endothelial cells in vitro. In in vitro transfection assays, the RBP/PEI2k/plasmid DNA (pDNA) ternary-complex had higher transfection efficiency than the PEI2k/pDNA binary-complex. In an intracranial glioblastoma animal model, the RBP/PEI2k/pHSVtk ternary-complex reduced α-smooth muscle actin expression, suggesting that the complex has an anti-angiogenic effect. In addition, the ternary-complex had higher pHSVtk delivery efficiency than the PEI2k/pHSVtk and PEI25k/pHSVtk binary-complexes in an animal model. As a result, the ternary-complex induced apoptosis and reduced tumor volume more effectively than the PEI2k/pHSVtk and PEI25k/pHSVtk binary-complexes. In conclusion, due to its dual anti-tumor and anti-angiogenesis effects, the RBP/PEI2k/pHSVtk ternary-complex might be an efficient gene delivery system for the treatment of glioblastoma.
Collapse
Affiliation(s)
- Eunji Choi
- Department of Bioengineering, College of Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Jungju Oh
- Department of Bioengineering, College of Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Dahee Lee
- Department of Bioengineering, College of Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Jaewon Lee
- Department of Bioengineering, College of Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Xiaonan Tan
- Department of Bioengineering, College of Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Minkyung Kim
- Department of Bioengineering, College of Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Gyeungyun Kim
- Department of Bioengineering, College of Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Chunxian Piao
- Department of Bioengineering, College of Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Minhyung Lee
- Department of Bioengineering, College of Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea.
| |
Collapse
|
38
|
Tsai YC, Lee CS, Chiu YW, Lee JJ, Lee SC, Hsu YL, Kuo MC. Angiopoietin-2, Renal Deterioration, Major Adverse Cardiovascular Events and All-Cause Mortality in Patients with Diabetic Nephropathy. Kidney Blood Press Res 2018; 43:545-554. [PMID: 29642068 DOI: 10.1159/000488826] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 03/28/2018] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS Diabetic nephropathy is the leading cause of end-stage renal disease and accounts for 30∼40% of patients requiring maintenance dialysis, thereby increasing the burden on health insurance programs. Diabetic nephropathy is also the strongest predictor of cardiovascular morbidity and mortality. The aim of this study was to examine whether angiopoietin-2 (Angpt2), a modulator of endothelial function, affects the clinical outcomes of diabetic patients. METHODS This study enrolled 236 patients with diabetes mellitus with estimated glomerular filtration rate (eGFR) < 60ml/min/1.73m2 from January 2006 to December 2011, who were followed until June 2017. Clinical outcomes included renal outcomes (commencing dialysis and rapid decline in renal function (eGFR decline > 3 ml/min per 1.73 m2/year)), major adverse cardiovascular events (MACEs), and all-cause mortality. RESULTS Over a mean follow-up period of 3.9±2.7 years, 135 (57.2%) patients commenced dialysis, 106 (44.9%) had rapid decline in renal function, and 50 (21.2%) had MACEs or died from all-causes. Log-formed Angpt2 was significantly associated with increased risks of commencing dialysis (HR: 3.91, 95% CI: 1.56-9.76), rapid renal function decline (OR: 6.81, 95% CI: 1.06-43.88), and MACEs or all-cause mortality (HR: 6.34, 95% CI: 1.18-33.97) in the adjusted analysis. Patients in the highest quartile had hazard ratios of 2.90 and 3.11 for commencing dialysis and rapid renal function decline, respectively, compared to those in the lowest quartile after adjustments. Similar significant dose-response results were found in composite outcomes of either MACEs or all-cause mortality. CONCLUSION Angpt2 is an independent predictor of adverse clinical outcomes in diabetic patients. Further studies are needed to identify the pathogenic role of Angpt2 in renal deterioration and cardiovascular complications of diabetes mellitus.
Collapse
Affiliation(s)
- Yi-Chun Tsai
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Division of General Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Division of Nephrology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Faculty of Renal Care, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chee-Siong Lee
- Division of General Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Division of Cardiology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Yi-Wen Chiu
- Division of Nephrology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Faculty of Renal Care, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jia-Jung Lee
- Division of Nephrology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Faculty of Renal Care, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Su-Chu Lee
- Division of Nephrology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Ya-Ling Hsu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Mei-Chuan Kuo
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Division of Nephrology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Faculty of Renal Care, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
39
|
Choi J, Lee MK, Oh KH, Kim YS, Choi HY, Baek SK, Jung KY, Woo JS, Lee SH, Kwon SY. Interaction Effect between the Receptor for Advanced Glycation End Products (RAGE) and High-Mobility Group Box-1 (HMGB-1) for the Migration of a Squamous Cell Carcinoma Cell Line. TUMORI JOURNAL 2018; 97:196-202. [DOI: 10.1177/030089161109700211] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Aims and background The receptor for advanced glycation end products (RAGE) is a multiligand cell surface receptor of the immunoglobulin superfamily and a newly recognized invasion-related gene. High mobility group box-1 (HMGB-1) is a 30-kD protein binding to RAGE and acting as a transcription-factor-like protein that regulates the expression of several genes. In this study, the interaction effect between RAGE and HMGB-1 on the migration of SCC7 cells was investigated along with the inhibitory effect of the drug nifedipine on this interaction effect. Methods and study design Ten surgical specimens from patients with squamous cell carcinoma (SCC) of the head and neck and a SCC7 cell line were stained using immunohistochemical and immunocytochemical methods. Reverse transcriptase-polymerase chain reaction (RT-PCR) was used to detect RAGE expression in SCC7 cells; Western blot analysis was used to detect HMGB-1 expression in SCC7 cells. An in vitro migration assay (Boyden chamber migration assay) was used for evaluating the interaction effect between RAGE and HMGB-1 on the migration of SCC7 cells. HMGB-1 and various concentrations of nifedipine were tested for their effect on SCC7 cell migration with in vitro migration assays. Results and conclusions RAGE and HMGB-1 were expressed in almost all human head and neck SCC tissues and in SCC7 cells as detected by immunostaining. The migration assay showed that the interaction between RAGE and HMGB-1 increased SCC7 migration activity depending on the level of HMGB-1, and nifedipine inhibited the interaction effect between RAGE and HMGB-1 on SCC7 cells in a dose-dependent manner. The interaction between RAGE and HMGB-1 could be closely associated with metastasis of SCC of the head and neck. Nifedipine may have an inhibitory effect on tumor metastasis.
Collapse
Affiliation(s)
- June Choi
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University Medical Center, Ansan City, Gyunggi-Do
| | - Min Koo Lee
- Department of Physiology, Korea University College of Medicine, Seoul, Korea
| | - Kyoung Ho Oh
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University Medical Center, Ansan City, Gyunggi-Do
| | - Yeon Soo Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University Medical Center, Ansan City, Gyunggi-Do
| | - Han Young Choi
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University Medical Center, Ansan City, Gyunggi-Do
| | - Seung Kuk Baek
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University Medical Center, Ansan City, Gyunggi-Do
| | - Kwang Yoon Jung
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University Medical Center, Ansan City, Gyunggi-Do
| | - Jeong-Soo Woo
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University Medical Center, Ansan City, Gyunggi-Do
| | - Seung Hoon Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University Medical Center, Ansan City, Gyunggi-Do
| | - Soon Young Kwon
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University Medical Center, Ansan City, Gyunggi-Do
| |
Collapse
|
40
|
Wang QH, Lv SW, Guo YY, Duan JX, Dong SY, Wang QS, Yu FM, Su H, Kuang HX. Pharmacological Effect of Caulophyllum robustum on Collagen-Induced Arthritis and Regulation of Nitric Oxide, NF- κB, and Proinflammatory Cytokines In Vivo and In Vitro. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2017; 2017:8134321. [PMID: 29456573 PMCID: PMC5804361 DOI: 10.1155/2017/8134321] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 08/08/2017] [Accepted: 09/10/2017] [Indexed: 11/19/2022]
Abstract
Caulophyllum robustum Maxim (C. robustum) has commonly been used as traditional Chinese medicine for the treatment of rheumatic pain and rheumatoid arthritis (RA) in China. This paper first investigated the anti-inflammation effect of C. robustum extraction (CRME) on RAW264.7 cells stimulated by lipopolysaccharide (LPS) and gene expression levels of inflammatory factors. Moreover, we first evaluated the anti-RA effects of CRME using collagen-induced arthritis (CIA) in DBA/1J mice, and the incidence, clinical score, and joint histopathology were evaluated. The levels of IL-1, IL-6, TNF-α, and PGE2 inflammatory factors in sera of mice were detected by enzyme-linked immunosorbent assay. The expression of NF-κB p65 in the joint was tested by immune histochemical technique. The results showed that, compared with the model group, CRME significantly improved symptoms of the arthritis index, limb swelling, and histological findings by decreasing synovial membrane damage, the extent of inflammatory cell infiltration, and the expansion of capillaries in CIA mice. The results also showed that CRME can reduce the levels of IL-1, IL-6, TNF-α, and PGE2 and inhibit the expression of NF-κB p65. All these results indicated the anti-inflammatory efficacy of CRME as a novel botanical extraction for the treatment of RA.
Collapse
Affiliation(s)
- Qiu-hong Wang
- Heilongjiang University of Chinese Medicine, Harbin 150040, China
- Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Shao-wa Lv
- Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Yu-yan Guo
- Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Ji-xin Duan
- Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Shu-yu Dong
- Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Qiu-shi Wang
- Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Feng-ming Yu
- Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Hong Su
- Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Hai-xue Kuang
- Heilongjiang University of Chinese Medicine, Harbin 150040, China
| |
Collapse
|
41
|
Koyama H, Yamamoto H, Nishizawa Y. Endogenous Secretory RAGE as a Novel Biomarker for Metabolic Syndrome and Cardiovascular Diseases. Biomark Insights 2017. [DOI: 10.1177/117727190700200021] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Receptor for advanced glycation end-products (RAGE) is known to be involved in both micro- and macrovascular complications in diabetes. Among numerous truncated forms of RAGE recently described, the C-terminally truncated form of RAGE has received much attention. This form of RAGE, carrying all of the extracellular domains but devoid of the trans-membrane and intracytoplasmic domains, is released outside from cells, binds ligands including AGEs, and is capable of neutralizing RAGE signaling on endothelial cells in culture. This form of RAGE is generated as a splice variant and is named endogenous secretory RAGE (esRAGE). Adenoviral overexpression of esRAGE reverses diabetic impairment of vascular dysfunction, suggesting that esRAGE may be an important inhibitor of RAGE signaling in vivo and potentially be useful for prevention of diabetic vascular complications. An ELISA system to measure plasma esRAGE was recently developed, and the pathophysiological roles of esRAGE have begun to be unveiled clinically. Plasma esRAGE levels are decreased in patients with several metabolic diseases including type 1 and type 2 diabetes, metabolic syndrome and hypertension. In cross-sectional analysis, plasma esRAGE levels are inversely correlated with carotid or femoral atherosclerosis. In an observational cohort of patients with end-stage renal disease, cumulative incidence of cardiovascular death was significantly higher in subjects with lower plasma esRAGE levels. These findings suggest that plasma esRAGE may act as a protective factor against and a novel biomarker for the occurrence of metabolic syndrome and cardiovascular diseases.
Collapse
Affiliation(s)
- Hidenori Koyama
- Department of Metabolism, Endocrinology and Molecular Medicine, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan
| | - Hiroshi Yamamoto
- Department of Biochemistry and Molecular Vascular Biology, Kanazawa University Graduate School of Medical Science, Kanazawa 920–8640, Japan
| | - Yoshiki Nishizawa
- Department of Metabolism, Endocrinology and Molecular Medicine, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan
| |
Collapse
|
42
|
Amino Carbonylation of Epidermal Basement Membrane Inhibits Epidermal Cell Function and Is Suppressed by Methylparaben. COSMETICS 2017. [DOI: 10.3390/cosmetics4040038] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
43
|
Pandey MK, Gupta SC, Nabavizadeh A, Aggarwal BB. Regulation of cell signaling pathways by dietary agents for cancer prevention and treatment. Semin Cancer Biol 2017; 46:158-181. [PMID: 28823533 DOI: 10.1016/j.semcancer.2017.07.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 07/05/2017] [Accepted: 07/12/2017] [Indexed: 12/17/2022]
Abstract
Although it is widely accepted that better food habits do play important role in cancer prevention and treatment, how dietary agents mediate their effects remains poorly understood. More than thousand different polyphenols have been identified from dietary plants. In this review, we discuss the underlying mechanism by which dietary agents can modulate a variety of cell-signaling pathways linked to cancer, including transcription factors, nuclear factor κB (NF-κB), signal transducer and activator of transcription 3 (STAT3), activator protein-1 (AP-1), β-catenin/Wnt, peroxisome proliferator activator receptor- gamma (PPAR-γ), Sonic Hedgehog, and nuclear factor erythroid 2 (Nrf2); growth factors receptors (EGFR, VEGFR, IGF1-R); protein Kinases (Ras/Raf, mTOR, PI3K, Bcr-abl and AMPK); and pro-inflammatory mediators (TNF-α, interleukins, COX-2, 5-LOX). In addition, modulation of proteasome and epigenetic changes by the dietary agents also play a major role in their ability to control cancer. Both in vitro and animal based studies support the role of dietary agents in cancer. The efficacy of dietary agents by clinical trials has also been reported. Importantly, natural agents are already in clinical trials against different kinds of cancer. Overall both in vitro and in vivo studies performed with dietary agents strongly support their role in cancer prevention. Thus, the famous quote "Let food be thy medicine and medicine be thy food" made by Hippocrates 25 centuries ago still holds good.
Collapse
Affiliation(s)
- Manoj K Pandey
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, USA.
| | - Subash C Gupta
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Ali Nabavizadeh
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, USA
| | | |
Collapse
|
44
|
Giurdanella G, Lazzara F, Caporarello N, Lupo G, Anfuso CD, Eandi CM, Leggio GM, Drago F, Bucolo C, Salomone S. Sulodexide prevents activation of the PLA2/COX-2/VEGF inflammatory pathway in human retinal endothelial cells by blocking the effect of AGE/RAGE. Biochem Pharmacol 2017; 142:145-154. [PMID: 28651842 DOI: 10.1016/j.bcp.2017.06.130] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Accepted: 06/21/2017] [Indexed: 12/13/2022]
Abstract
Diabetic retinopathy is characterized by the breakdown of endothelial blood-retinal barrier. We tested the hypothesis that sulodexide (SDX), a highly purified glycosaminoglycan composed of 80% iduronylglycosaminoglycan sulfate and 20% dermatan sulfate, protects human retinal endothelial cells (HREC) from high glucose (HG)-induced damage, through the suppression of inflammatory ERK/cPLA2/COX-2/PGE2 pathway, by blocking the effect of advanced glycation end-products (AGEs). HREC were treated with HG (25mM) or AGEs (glycated-BSA, 2mg/ml) for 48h, with or without SDX (60μg/ml) or aflibercept (AFL, 40μg/ml), a VEGF-trap. SDX protected HREC from HG-induced damage (MTT and LDH release) and preserved their blood-retinal barrier-like properties (Trans Endothelial Electrical Resistance and junction proteins, claudin-5, VE-cadherin and occludin, immunofluorescence and immunoblot) as well as their angiogenic potential (Tube Formation Assay). Both HG and AGEs increased phosphoERK and phospho-cPLA2, an effect counteracted by SDX and, less efficiently, by AFL. Both HG and exogenous VEGF (80ng/ml) increased PGE2 release, an effect partially reverted by SDX for HG and by AFL for VEGF. Analysis of NFκB activity revealed that HG increased the abundance of p65 in the nuclear fraction (nuclear translocation), an effect entirely reverted by SDX, but only partially by AFL. SDX, AFL and SDX+AFL protected HREC even when added 24h after HG. These data show that SDX protects HREC from HG damage and suggest that it counteracts the activation of ERK/cPLA2/COX-2/PGE2 pathway by reducing AGE-related signaling and downstream NFκB activity. This mechanism, partially distinct from VEGF blockade, may contribute to the therapeutic effect of SDX.
Collapse
Affiliation(s)
- Giovanni Giurdanella
- Department of Biomedical and Biotechnological Sciences, School of Medicine, Catania, Italy
| | - Francesca Lazzara
- Department of Biomedical and Biotechnological Sciences, School of Medicine, Catania, Italy
| | - Nunzia Caporarello
- Department of Biomedical and Biotechnological Sciences, School of Medicine, Catania, Italy
| | - Gabriella Lupo
- Department of Biomedical and Biotechnological Sciences, School of Medicine, Catania, Italy
| | | | - Chiara M Eandi
- Institut de la Vision, UMRS_968 Inserm/Université Pierre et Marie Curie, Equipe 14, Paris, France; Department of Surgical Sciences, Eye Clinic, University of Torino, Torino, Italy
| | - Gian Marco Leggio
- Department of Biomedical and Biotechnological Sciences, School of Medicine, Catania, Italy; Center for Research in Ocular Pharmacology - CERFO, University of Catania, Catania, Italy
| | - Filippo Drago
- Department of Biomedical and Biotechnological Sciences, School of Medicine, Catania, Italy; Center for Research in Ocular Pharmacology - CERFO, University of Catania, Catania, Italy
| | - Claudio Bucolo
- Department of Biomedical and Biotechnological Sciences, School of Medicine, Catania, Italy; Center for Research in Ocular Pharmacology - CERFO, University of Catania, Catania, Italy
| | - Salvatore Salomone
- Department of Biomedical and Biotechnological Sciences, School of Medicine, Catania, Italy; Center for Research in Ocular Pharmacology - CERFO, University of Catania, Catania, Italy.
| |
Collapse
|
45
|
Takeuchi M, Takino JI, Sakasai-Sakai A, Takata T, Tsutsumi M. Toxic AGE (TAGE) Theory for the Pathophysiology of the Onset/Progression of NAFLD and ALD. Nutrients 2017; 9:E634. [PMID: 28632197 PMCID: PMC5490613 DOI: 10.3390/nu9060634] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 06/06/2017] [Accepted: 06/16/2017] [Indexed: 02/06/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) and alcoholic liver disease (ALD) are among the most common causes of chronic liver diseases in the westernized world. NAFLD and ALD are frequently accompanied by extrahepatic complications, including hepatocellular carcinoma and cardiovascular diseases, which have a negative impact on patient survival. The chronic ingestion of an excessive daily diet containing sugar/high-fructose corn syrup increases the level of the fructose/glucose metabolite, glyceraldehyde (GA), while the chronic consumption of an excessive number of alcoholic beverages increases the level of the alcohol metabolite, acetaldehyde (AA) in the liver. GA and AA are known to react non-enzymatically with the ε- or α-amino groups of proteins, thereby generating advanced glycation end-products (AGEs, GA-AGEs, and AA-AGEs, respectively) in vivo. The interaction between GA-AGEs and the receptor for AGEs (RAGE) alters intracellular signaling, gene expression, and the release of pro-inflammatory molecules and also elicits the production of reactive oxygen species by human hepatocytes and hepatic stellate cells, all of which may contribute to the pathological changes associated with chronic liver diseases. We herein discuss the pathophysiological roles of GA-AGEs and AA-AGEs (toxic AGEs, TAGE) and a related novel theory for preventing the onset/progression of NAFLD and ALD.
Collapse
Affiliation(s)
- Masayoshi Takeuchi
- Department of Advanced Medicine, Medical Research Institute, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Kahoku, Ishikawa 920-0293, Japan.
| | - Jun-Ichi Takino
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Hiroshima International University, 5-1-1, Hirokoshingai, Kure, Hiroshima 737-0112, Japan.
| | - Akiko Sakasai-Sakai
- Department of Advanced Medicine, Medical Research Institute, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Kahoku, Ishikawa 920-0293, Japan.
| | - Takanobu Takata
- Department of Advanced Medicine, Medical Research Institute, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Kahoku, Ishikawa 920-0293, Japan.
| | - Mikihiro Tsutsumi
- Department of Hepatology, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Kahoku, Ishikawa 920-0293, Japan.
| |
Collapse
|
46
|
Tahara A, Tahara N, Yamagishi SI, Honda A, Igata S, Nitta Y, Bekki M, Nakamura T, Sugiyama Y, Sun J, Takeuchi M, Shimizu M, Yamazaki H, Fukami K, Fukumoto Y. Ratio of serum levels of AGEs to soluble RAGE is correlated with trimethylamine-N-oxide in non-diabetic subjects. Int J Food Sci Nutr 2017; 68:1013-1020. [PMID: 28434257 DOI: 10.1080/09637486.2017.1318117] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Trimethylamine (TMA), an intestinal microflora-dependent metabolite formed from phosphatidylcholine- and L-carnitine-rich food, such as red meat, is further converted to trimethylamine-N-oxide (TMAO), which could play a role in cardiometabolic disease. Red meat-derived products are one of the major environmental sources of advanced glycation end products (AGEs) that may also contribute to the pathogenesis of cardiometabolic disorders through the interaction with receptor for AGEs (RAGE). However, the relationship among AGEs, soluble form of RAGE (sRAGE) and TMAO in humans remains unclear. Non-diabetic subjects underwent a physical examination, determination of blood chemistry and anthropometric variables, including AGEs, sRAGE, TMA and TMAO. Multiple regression analyses revealed that HbA1c, uric acid and AGEs were independently associated with log TMA, whereas log AGEs to sRAGE ratio and statin non-use were independently correlated with log TMAO. Our present findings indicated that AGEs to sRAGE ratio was correlated with log TMAO, a marker of cardiometabolic disorders.
Collapse
Affiliation(s)
- Atsuko Tahara
- a Department of Medicine, Division of Cardiovascular Medicine , Kurume University School of Medicine , Kurume , Japan
| | - Nobuhiro Tahara
- a Department of Medicine, Division of Cardiovascular Medicine , Kurume University School of Medicine , Kurume , Japan
| | - Sho-Ichi Yamagishi
- b Department of Pathophysiology and Therapeutics of Diabetic Vascular Complications , Kurume University School of Medicine , Kurume , Japan
| | - Akihiro Honda
- a Department of Medicine, Division of Cardiovascular Medicine , Kurume University School of Medicine , Kurume , Japan
| | - Sachiyo Igata
- a Department of Medicine, Division of Cardiovascular Medicine , Kurume University School of Medicine , Kurume , Japan
| | - Yoshikazu Nitta
- a Department of Medicine, Division of Cardiovascular Medicine , Kurume University School of Medicine , Kurume , Japan
| | - Munehisa Bekki
- a Department of Medicine, Division of Cardiovascular Medicine , Kurume University School of Medicine , Kurume , Japan
| | - Tomohisa Nakamura
- a Department of Medicine, Division of Cardiovascular Medicine , Kurume University School of Medicine , Kurume , Japan
| | - Yoichi Sugiyama
- a Department of Medicine, Division of Cardiovascular Medicine , Kurume University School of Medicine , Kurume , Japan
| | - Jiahui Sun
- a Department of Medicine, Division of Cardiovascular Medicine , Kurume University School of Medicine , Kurume , Japan
| | - Masayoshi Takeuchi
- c Department of Advanced Medicine, Medical Research Institute , Kanazawa Medical University , Ishikawa , Japan
| | - Makiko Shimizu
- d Laboratory of Drug Metabolism and Pharmacokinetics , Showa Pharmaceutical University , Tokyo , Japan
| | - Hiroshi Yamazaki
- d Laboratory of Drug Metabolism and Pharmacokinetics , Showa Pharmaceutical University , Tokyo , Japan
| | - Kei Fukami
- e Department of Medicine, Division of Nephrology , Kurume University School of Medicine , Kurume , Japan
| | - Yoshihiro Fukumoto
- a Department of Medicine, Division of Cardiovascular Medicine , Kurume University School of Medicine , Kurume , Japan
| |
Collapse
|
47
|
Kumar Pasupulati A, Chitra PS, Reddy GB. Advanced glycation end products mediated cellular and molecular events in the pathology of diabetic nephropathy. Biomol Concepts 2016; 7:293-309. [PMID: 27816946 DOI: 10.1515/bmc-2016-0021] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 09/18/2016] [Indexed: 05/15/2025] Open
Abstract
Diabetic nephropathy (DN) is a major cause of morbidity and mortality in diabetic patients and a leading cause of end-stage renal disease (ESRD). Degenerative changes such as glomerular hypertrophy, hyperfiltration, widening of basement membranes, tubulointerstitial fibrosis, glomerulosclerosis and podocytopathy manifest in various degrees of proteinuria in DN. One of the key mechanisms implicated in the pathogenesis of DN is non-enzymatic glycation (NEG). NEG is the irreversible attachment of reducing sugars onto free amino groups of proteins by a series of events, which include the formation of Schiff's base and an Amadori product to yield advanced glycation end products (AGEs). AGE modification of client proteins from the extracellular matrix induces crosslinking, which is often associated with thickening of the basement membrane. AGEs activate several intracellular signaling cascades upon interaction with receptor for AGEs (RAGE), which manifest in aberrant cellular responses such as inflammation, apoptosis and autophagy, whereas other receptors such as AGE-R1, AGE-R3 and scavenger receptors also bind to AGEs and ensue endocytosis and degradation of AGEs. Elevated levels of both serum and tissue AGEs are associated with adverse renal outcome. Increased evidence supports that attenuation of AGE formation and/or inhibition of RAGE activation manifest(s) in improving renal function. This review provides insights of NEG, discusses the cellular and molecular events triggered by AGEs, which manifest in the pathogenesis of DN including renal fibrosis, podocyte epithelial-mesenchymal transition and activation of renin-angiotensin system. Therapies designed to target AGEs, such as inhibitors of AGEs formation and crosslink breakers, are discussed.
Collapse
|
48
|
Abstract
Advanced glycation end products constitute a complex group of compounds derived from the nonenzymatic glycation of proteins, lipids, and nucleic acids formed endogenously, but also from exogenous supplies such as tobacco smoking (glycotoxins). Accumulating evidence underlies the beneficial effect of the dietary restriction of glycotoxins in animal studies and also in patients with diabetic complications and metabolic diseases. Composition of infant formulas and their processing methods render an extraordinary favorable milieu for the formation of glycotoxins, and the content of glycotoxins in infant formula exceeds that of breast milk by hundred folds. Data from a limited number of short-term small studies in healthy infants do not provide direct evidence of acute negative health effects of glycotoxins in early infancy. However, the effects in sensitive groups on the state of future health in adulthood remain unclear.
Collapse
Affiliation(s)
- Tufan Kutlu
- Department of Pediatrics, Gastroenterology, Division of Hepatology Gastroenterology and Nutrition, İstanbul University Cerrahpaşa School of Medicine, İstanbul, Turkey
| |
Collapse
|
49
|
Abstract
The clinical manifestations, underlying pathology and aetiology of human diabetic neuropathy are varied and complex. Much data has been generated from preclinical models to provide a conceptual framework for the cause and treatment of human diabetic neuropathy. Despite this there remains much debate and controversy on the pathophysiology of the condition. Furthermore, many of the interventions reaching phase III clinical trials have failed to prove effective. To date we have no evidence-based and effective treatment(s) for human diabetic neuropathy.
Collapse
Affiliation(s)
- Rayaz Malik
- Department of Medicine, Manchester Royal Infirmary, Oxford Road, Manchester, M13 9WL, UK,
| |
Collapse
|
50
|
Adams JN, Martelle SE, Raffield LM, Freedman BI, Langefeld CD, Hsu FC, Maldjian JA, Williamson JD, Hugenschmidt CE, Carr JJ, Cox AJ, Bowden DW. Analysis of advanced glycation end products in the DHS Mind Study. J Diabetes Complications 2016; 30:262-8. [PMID: 26739237 PMCID: PMC4761276 DOI: 10.1016/j.jdiacomp.2015.11.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 11/16/2015] [Accepted: 11/29/2015] [Indexed: 12/11/2022]
Abstract
AIMS Human studies of links between advanced glycation end-products (AGEs) and disease phenotypes are less common than studies of animal and cell models. Here, we examined the association of total AGEs with diabetes risk factors in a predominately type 2 diabetes (T2D) affected cohort. METHODS AGEs were measured using an enzyme linked immunosorbant assay in 816 individuals from the DHS Mind Study (n=709 T2D affected), and association analyses were completed. RESULTS Total AGEs were associated with estimated glomerular filtration rate (p=0.0054; β=-0.1291) and coronary artery calcification (p=0.0352; β=1.1489) in the entire cohort. No significant associations were observed when individuals with T2D were analyzed separately. In individuals without T2D, increased circulating AGEs were associated with increased BMI (p=0.02, β=0.138), low density lipoproteins (p=0.046, β=17.07) and triglycerides (p=0.0004, β=0.125), and decreased carotid artery calcification (p=0.0004, β=-1.2632) and estimated glomerular filtration rate (p=0.0018, β=-0.1405). Strong trends were also observed for an association between AGEs and poorer cognitive performance on the digit symbol substitution test (p=0.046, β=-6.64) and decreased grey matter volume (p=0.037, β=-14.87). CONCLUSIONS AGEs may play an important role in a number of phenotypes and diseases, although not necessarily in interindividual variation in people with T2D. Further evaluation of specific AGE molecules may shed more light on these relationships.
Collapse
Affiliation(s)
- Jeremy N Adams
- Center for Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Winston - Salem, NC, USA
| | - Susan E Martelle
- Center for Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Winston - Salem, NC, USA
| | - Laura M Raffield
- Center for Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Winston - Salem, NC, USA
| | - Barry I Freedman
- Department of Internal Medicine, Nephrology, Wake Forest School of Medicine, Winston - Salem, NC, USA
| | - Carl D Langefeld
- Department of Biostatistical Sciences, Wake Forest University Health Sciences, Winston Salem, North Carolina
| | - Fang-Chi Hsu
- Department of Biostatistical Sciences, Wake Forest University Health Sciences, Winston Salem, North Carolina
| | - Joseph A Maldjian
- Radiologic Sciences and Advanced NeuroScience Imaging (ANSIR) Laboratory, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Jeff D Williamson
- Department of Internal Medicine, Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston - Salem, NC, USA
| | - Christina E Hugenschmidt
- Department of Internal Medicine, Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston - Salem, NC, USA
| | - J Jeffery Carr
- Center for Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Winston - Salem, NC, USA
| | - Amanda J Cox
- Molecular Basis of Disease, Griffith University, Southport, QLD, Australia
| | - Donald W Bowden
- Center for Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Winston - Salem, NC, USA.
| |
Collapse
|