1
|
Thurston R, Zantop V, Park KS, Maid H, Seitz A, Heinrich MR. pH-Dependent Conformational Switching of Amide Bonds─from Full trans to Full cis and Vice Versa. Org Lett 2022; 24:3488-3492. [PMID: 35544347 DOI: 10.1021/acs.orglett.2c00938] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Strategies enabling the pH-dependent conformational switching of amide bonds from trans to cis, and vice versa, are yet limited in the sense that, in a suitable pH range, one rotamer may be stabilized to a large extent while the complementary pH range only leads to a mixture of isomers. By exploiting the effects of steric demand and the interaction of the amide carbonyl with a positive charge, we herein present the first examples for reversible pH-dependent switching from full trans to full cis.
Collapse
Affiliation(s)
- Ryan Thurston
- Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Pharmaceutical Chemistry, Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany
| | - Viviane Zantop
- Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Pharmaceutical Chemistry, Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany
| | - Kristen Sodam Park
- Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Pharmaceutical Chemistry, Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany
| | - Harald Maid
- Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Organic Chemistry II, Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany
| | - Anke Seitz
- Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Pharmaceutical Chemistry, Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany
| | - Markus R Heinrich
- Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Pharmaceutical Chemistry, Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany
| |
Collapse
|
2
|
Park HS, Kang YK. Puckering transition of the proline residue along the pseudorotational path: revisited. NEW J CHEM 2021. [DOI: 10.1039/d1nj01361k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Puckering transitions of the proline residue for Ac-Pro-X with trans and cis prolyl peptide bonds were explored along the pseudorotation phase angle using DFT methods in the gas phase and in water.
Collapse
Affiliation(s)
- Hae Sook Park
- Department of Nursing
- Cheju Halla University
- Cheju 63092
- Republic of Korea
| | - Young Kee Kang
- Department of Chemistry
- Chungbuk National University
- Cheongju
- Republic of Korea
| |
Collapse
|
3
|
Park HS, Kang YK. Which DFT levels of theory are appropriate in predicting the prolyl cis–trans isomerization in solution? NEW J CHEM 2019. [DOI: 10.1039/c9nj02946j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
DFTs were assessed for the conformational preferences of the peptides containing Pro and its derivatives in chloroform and water.
Collapse
Affiliation(s)
- Hae Sook Park
- Department of Nursing
- Cheju Halla University
- Cheju 63092
- Republic of Korea
| | - Young Kee Kang
- Department of Chemistry
- Chungbuk National University
- Cheongju
- Republic of Korea
| |
Collapse
|
4
|
Thakkar BS, Svendsen JSM, Engh RA. Density Functional Studies on Secondary Amides: Role of Steric Factors in Cis/Trans Isomerization. Molecules 2018; 23:molecules23102455. [PMID: 30257481 PMCID: PMC6222500 DOI: 10.3390/molecules23102455] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 09/21/2018] [Accepted: 09/21/2018] [Indexed: 11/16/2022] Open
Abstract
Cis/trans isomerization of amide bonds is a key step in a wide range of biological and synthetic processes. Occurring through C-N amide bond rotation, it also coincides with the activation of amides in enzymatic hydrolysis. In recently described QM studies of cis/trans isomerization in secondary amides using density functional methods, we highlighted that a peptidic prototype, such as glycylglycine methyl ester, can suitably represent the isomerization and complexities arising out of a larger molecular backbone, and can serve as the primary scaffold for model structures with different substitution patterns in order to assess and compare the steric effect of the substitution patterns. Here, we describe our theoretical assessment of such steric effects using tert-butyl as a representative bulky substitution. We analyze the geometries and relative stabilities of both trans and cis isomers, and effects on the cis/trans isomerization barrier. We also use the additivity principle to calculate absolute steric effects with a gradual increase in bulk. The study establishes that bulky substitutions significantly destabilize cis isomers and also increases the isomerization barrier, thereby synergistically hindering the cis/trans isomerization of secondary amides. These results provide a basis for the rationalization of kinetic and thermodynamic properties of peptides with potential applications in synthetic and medicinal chemistry.
Collapse
Affiliation(s)
- Balmukund S Thakkar
- Department of Chemistry, UiT The Arctic University of Norway, N-9037 Tromsø, Norway.
| | | | - Richard A Engh
- Department of Chemistry, UiT The Arctic University of Norway, N-9037 Tromsø, Norway.
| |
Collapse
|
5
|
Escobar L, Díaz-Moscoso A, Ballester P. Conformational selectivity and high-affinity binding in the complexation of N-phenyl amides in water by a phenyl extended calix[4]pyrrole. Chem Sci 2018; 9:7186-7192. [PMID: 30288237 PMCID: PMC6149442 DOI: 10.1039/c8sc03034k] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 07/31/2018] [Indexed: 12/14/2022] Open
Abstract
We report the synthesis of a tetrapyridinium phenyl extended calix[4]pyrrole receptor that shows high binding affinity and selectivity for the complexation of the cis-conformers of N-phenyl amides in water.
We describe the synthesis of a tetrapyridinium phenyl extended calix[4]pyrrole that is soluble in neutral water solution at mM concentrations. We show that, in pure water, the synthesized calix[4]pyrrole receptor selectively binds the cis-(E) conformers of secondary N-phenyl-amides and tertiary N-methyl-N-phenyl-formamide with binding affinities larger than 103 M–1. The conformational selectivity is remarkable owing to the energetic preference of amides to adopt the trans-(Z) conformation in solution. In this respect, we used two binding models for the mathematical analyses of the titration data and calculated apparent and intrinsic binding constants. The combined action of hydrogen bonding and the hydrophobic effect that operates in the binding of the amides in water is responsible for the large affinities displayed by the receptor.
Collapse
Affiliation(s)
- L Escobar
- Institute of Chemical Research of Catalonia (ICIQ) , The Barcelona Institute of Science and Technology (BIST) , Av. Països Catalans, 16 , 43007-Tarragona , Spain . .,Universitat Rovira i Virgili , Departament de Química Analítica i Química Orgànica , c/Marcel·li Domingo, 1 , 43007-Tarragona , Spain
| | - A Díaz-Moscoso
- Institute of Chemical Research of Catalonia (ICIQ) , The Barcelona Institute of Science and Technology (BIST) , Av. Països Catalans, 16 , 43007-Tarragona , Spain .
| | - P Ballester
- Institute of Chemical Research of Catalonia (ICIQ) , The Barcelona Institute of Science and Technology (BIST) , Av. Països Catalans, 16 , 43007-Tarragona , Spain . .,ICREA , Pg. Lluís Companys, 23 , 08018-Barcelona , Spain
| |
Collapse
|
6
|
Thakkar BS, Svendsen JSM, Engh RA. Cis/Trans Isomerization in Secondary Amides: Reaction Paths, Nitrogen Inversion, and Relevance to Peptidic Systems. J Phys Chem A 2017; 121:6830-6837. [DOI: 10.1021/acs.jpca.7b05584] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Balmukund S. Thakkar
- Department of Chemistry, UiT The Arctic University of Norway, Tromsø-9037, Norway
| | | | - Richard A. Engh
- Department of Chemistry, UiT The Arctic University of Norway, Tromsø-9037, Norway
| |
Collapse
|
7
|
Properties of the Amide Bond Involving Proline 4,5-methanologues: an Experimental and Theoretical Study. Isr J Chem 2016. [DOI: 10.1002/ijch.201600106] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
8
|
Berger G, Vilchis‐Reyes M, Hanessian S. Structural Properties and Stereochemically Distinct Folding Preferences of 4,5‐
cis
and
trans
‐Methano‐
L
‐Proline Oligomers: The Shortest Crystalline PPII‐Type Helical Proline‐Derived Tetramer. Angew Chem Int Ed Engl 2015; 54:13268-72. [DOI: 10.1002/anie.201506208] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Indexed: 12/12/2022]
Affiliation(s)
- Gilles Berger
- Department of Chemistry, Université de Montréal, Station Centre‐Ville, C.P. 6128, Montreal, QC, H3C 3J7 (Canada)
- Faculty of Pharmacy, Laboratory of Pharmaceutical Chemistry, Université Libre de Bruxelles, Campus Plaine CP205/5, Université Libre de Bruxelles, Bd du Triomphe, 1050 Brussels (Belgium)
| | - Miguel Vilchis‐Reyes
- Department of Chemistry, Université de Montréal, Station Centre‐Ville, C.P. 6128, Montreal, QC, H3C 3J7 (Canada)
| | - Stephen Hanessian
- Department of Chemistry, Université de Montréal, Station Centre‐Ville, C.P. 6128, Montreal, QC, H3C 3J7 (Canada)
| |
Collapse
|
9
|
Berger G, Vilchis‐Reyes M, Hanessian S. Structural Properties and Stereochemically Distinct Folding Preferences of 4,5‐
cis
and
trans
‐Methano‐
L
‐Proline Oligomers: The Shortest Crystalline PPII‐Type Helical Proline‐Derived Tetramer. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201506208] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Gilles Berger
- Department of Chemistry, Université de Montréal, Station Centre‐Ville, C.P. 6128, Montreal, QC, H3C 3J7 (Canada)
- Faculty of Pharmacy, Laboratory of Pharmaceutical Chemistry, Université Libre de Bruxelles, Campus Plaine CP205/5, Université Libre de Bruxelles, Bd du Triomphe, 1050 Brussels (Belgium)
| | - Miguel Vilchis‐Reyes
- Department of Chemistry, Université de Montréal, Station Centre‐Ville, C.P. 6128, Montreal, QC, H3C 3J7 (Canada)
| | - Stephen Hanessian
- Department of Chemistry, Université de Montréal, Station Centre‐Ville, C.P. 6128, Montreal, QC, H3C 3J7 (Canada)
| |
Collapse
|
10
|
Di Martino GP, Masetti M, Cavalli A, Recanatini M. Mechanistic insights into Pin1 peptidyl-prolyl cis-trans isomerization from umbrella sampling simulations. Proteins 2014; 82:2943-56. [PMID: 25066180 DOI: 10.1002/prot.24650] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 06/25/2014] [Accepted: 07/15/2014] [Indexed: 12/22/2022]
Abstract
The peptidyl-proyl isomerase Pin1 plays a key role in the regulation of phospho(p)-Ser/Thr-Pro proteins, acting as a molecular timer of the cell cycle. After recognition of these motifs, Pin1 catalyzes the rapid cis-trans isomerization of proline amide bonds of substrates, contributing to maintain the equilibrium between the two conformations. Although a great interest has arisen on this enzyme, its catalytic mechanism has long been debated. Here, the cis-trans isomerization of a model peptide system was investigated by means of umbrella sampling simulations in the Pin1-bound and unbound states. We obtained free energy barriers consistent with experimental data, and identified several enzymatic features directly linked to the acceleration of the prolyl bond isomerization. In particular, an enhanced autocatalysis, the stabilization of perturbed ground state conformations, and the substrate binding in a procatalytic conformation were found as main contributions to explain the lowering of the isomerization free energy barrier.
Collapse
Affiliation(s)
- Giovanni Paolo Di Martino
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-Università di Bologna, Via Belmeloro 6, 40126, Bologna, Italy
| | | | | | | |
Collapse
|
11
|
Kang YK, Park HS. Conformational preferences of the 2-methylproline residue and its role in stabilizing β-turn and polyproline II structures of peptides. NEW J CHEM 2014. [DOI: 10.1039/c4nj00072b] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
12
|
Bessonov K, Vassall KA, Harauz G. Parameterization of the proline analogue Aze (azetidine-2-carboxylic acid) for molecular dynamics simulations and evaluation of its effect on homo-pentapeptide conformations. J Mol Graph Model 2012; 39:118-25. [PMID: 23261881 DOI: 10.1016/j.jmgm.2012.11.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 10/11/2012] [Accepted: 11/17/2012] [Indexed: 12/24/2022]
Abstract
We have parameterized and evaluated the proline homologue Aze (azetidine-2-carboxylic acid) for the gromos56a3 force-field for use in molecular dynamics simulations using GROMACS. Using bi-phasic cyclohexane/water simulation systems and homo-pentapeptides, we measured the Aze solute interaction potential energies, ability to hydrogen bond with water, and overall compaction, for comparison to Pro, Gly, and Lys. Compared to Pro, Aze has a slightly higher H-bonding potential, and stronger electrostatic but weaker non-electrostatic interactions with water. The 20-ns simulations revealed the preferential positioning of Aze and Pro at the interface of the water and cyclohexane layers, with Aze spending more time in the aqueous layer. We also demonstrated through simulations of the homo-pentapeptides that Aze has a greater propensity than Pro to undergo trans→cis peptide bond isomerization, which results in a severe 180° bend in the polypeptide chain. The results provide evidence for the hypothesis that the misincorporation of Aze within proline-rich regions of proteins could disrupt the formation of poly-proline type II structures and compromise events such as recognition and binding by SH3-domains.
Collapse
Affiliation(s)
- Kyrylo Bessonov
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Road East, Guelph, Ontario, Canada
| | | | | |
Collapse
|
13
|
Agmon IC. A model for the role of isomerization in nascent peptide movement through the ribosomal tunnel. FASEB J 2012; 26:2277-82. [DOI: 10.1096/fj.11-197657] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ilana C. Agmon
- Institute for Advanced Studies in Theoretical ChemistrySchulich Faculty of Chemistry, TechnionIsrael Institute of TechnologyHaifaIsrael
- Fritz Haber Research Center for Molecular DynamicsHebrew UniversityJerusalemIsrael
| |
Collapse
|
14
|
Peptide Bond cis/trans Isomerases: A Biocatalysis Perspective of Conformational Dynamics in Proteins. Top Curr Chem (Cham) 2011; 328:35-67. [DOI: 10.1007/128_2011_151] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
15
|
Byun BJ, Song IK, Chung YJ, Ryu KH, Kang YK. Conformational Preferences of X-Pro Sequences: Ala-Pro and Aib-Pro Motifs. J Phys Chem B 2010; 114:14077-86. [DOI: 10.1021/jp107200f] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Byung Jin Byun
- Department of Chemistry, Department of Biochemistry, and Database/Bioinformatics Laboratory, Chungbuk National University, Cheongju, Chungbuk 361-763, Republic of Korea
| | - Il Keun Song
- Department of Chemistry, Department of Biochemistry, and Database/Bioinformatics Laboratory, Chungbuk National University, Cheongju, Chungbuk 361-763, Republic of Korea
| | - Yong Je Chung
- Department of Chemistry, Department of Biochemistry, and Database/Bioinformatics Laboratory, Chungbuk National University, Cheongju, Chungbuk 361-763, Republic of Korea
| | - Keun Ho Ryu
- Department of Chemistry, Department of Biochemistry, and Database/Bioinformatics Laboratory, Chungbuk National University, Cheongju, Chungbuk 361-763, Republic of Korea
| | - Young Kee Kang
- Department of Chemistry, Department of Biochemistry, and Database/Bioinformatics Laboratory, Chungbuk National University, Cheongju, Chungbuk 361-763, Republic of Korea
| |
Collapse
|
16
|
Hu X, Zhang W, Carmichael I, Serianni AS. Amide cis-trans isomerization in aqueous solutions of methyl N-formyl-D-glucosaminides and methyl N-acetyl-D-glucosaminides: chemical equilibria and exchange kinetics. J Am Chem Soc 2010; 132:4641-52. [PMID: 20225805 DOI: 10.1021/ja9086787] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Amide cis-trans isomerization (CTI) in methyl 2-deoxy-2-acylamido-d-glucopyranosides was investigated by (1)H and (13)C NMR spectroscopy. Singly (13)C-labeled methyl 2-deoxy-2-formamido-d-glucopyranoside (MeGlcNFm) anomers provided standard (1)H and (13)C chemical shifts and (1)H-(1)H and (13)C-(13)C spin-coupling constants for cis and trans amides that are detected readily in aqueous solution. Equipped with this information, doubly (13)C-labeled methyl 2-deoxy-2-acetamido-d-glucopyranoside (MeGlcNAc) anomers were investigated, leading to the detection and quantification of cis and trans amides in this biologically important aminosugar. In comparison to MeGlcNFm anomers, the percentage of cis amide in aqueous solutions of MeGlcNAc anomers is small ( approximately 23% for MeGlcNFm versus approximately 1.8% for MeGlcNAc at 42 degrees C) but nevertheless observable with assistance from (13)C-labeling. Temperature studies gave thermodynamic parameters DeltaG degrees , DeltaH degrees , and DeltaS degrees for cis-trans interconversion in MeGlcNFm and MeGlcNAc anomers. Cis/trans equilibria depended on anomeric configuration, with solutions of alpha-anomers containing less cis amide than those of beta-anomers. Confirmation of the presence of cis amide in MeGlcNAc solutions derived from quantitative (13)C saturation transfer measurements of CTI rate constants as a function of solution temperature, yielding activation parameters E(act), DeltaG degrees (), DeltaH degrees (), and DeltaS degrees () for saccharide CTI. Rate constants for the conversion of trans to cis amide in MeGlcNFm and MeGlcNAc anomers ranged from 0.02 to 3.59 s(-1) over 31-85 degrees C, compared to 0.24-80 s(-1) for the conversion of cis to trans amide over the same temperature range. Energies of activation ranged from 16-19 and 19-20 kcal/mol for the cis --> trans and trans --> cis processes, respectively. Complementary DFT calculations on MeGlcNFm and MeGlcNAc model structures were conducted to evaluate the effects of an acyl side chain and anomeric structure, as well as C2-N2 bond rotation, on CTI energetics. These studies show that aqueous solutions of GlcNAc-containing structures contain measurable amounts of both cis and trans amides, which may influence their biological properties.
Collapse
Affiliation(s)
- Xiaosong Hu
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | | | | | | |
Collapse
|
17
|
Kang YK, Kang NS. Conformational preferences ofN-methoxycarbonyl proline dipeptide. J Comput Chem 2009; 30:1116-27. [DOI: 10.1002/jcc.21136] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
18
|
Glaves R, Baer M, Schreiner E, Stoll R, Marx D. Conformational Dynamics of Minimal Elastin-Like Polypeptides: The Role of Proline Revealed by Molecular Dynamics and Nuclear Magnetic Resonance. Chemphyschem 2008; 9:2759-65. [DOI: 10.1002/cphc.200800474] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
19
|
Mathieu S, Poteau R, Trinquier G. Estimating the "steric clash" at cis peptide bonds. J Phys Chem B 2008; 112:7894-902. [PMID: 18543981 DOI: 10.1021/jp711082d] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
To account for the scarcity of cis peptide bonds in proteins, especially in nonproline (or secondary amide) cases, a steric-clash argument is often put forward, in a scheme where the R lateral chains are facing parallel one another, and the backbone is kept in an "all- trans"-like arrangement. Although such a steric conflict can be partly relieved through proper adjustment of the backbone dihedral angles, one can try to estimate its associated energy cost. To this end, quantum-chemistry approaches using a differential-torsion protocol and bond-separation-energy analyses are applied to N-ethyl propionamide CH3-CH2-CO-NH-CH2-CH3, regarded as a model capable of exhibiting C beta...C beta interaction as in alanine succession. The calculations provide an increment of 9 kcal/mol, quite close to that obtained in the nearly isostere (gsg) rotamer of n-hexane (10 kcal/mol), suggesting the local effects induced by methyl-methyl contact are similar in both cases. Analogous treatments on larger radicals as encountered in leucine or phenylalanine dimers do not change this increment much, which therefore defines the basic reference per-plaque quota to be overcome along all- cis chains. Explicit modeling indicated it can be reduced by up to a factor of 4.
Collapse
Affiliation(s)
- Simon Mathieu
- Laboratoire de Chimie et Physique Quantique, IRSAMC, Université Paul-Sabatier, Toulouse Cedex 9, France
| | | | | |
Collapse
|
20
|
Kang YK, Park HS. Conformational Preferences of Pseudoproline Residues. J Phys Chem B 2007; 111:12551-62. [DOI: 10.1021/jp074128f] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Young Kee Kang
- Department of Chemistry, Chungbuk National University, Cheongju, Chungbuk 361-763, Republic of Korea, and Department of Radiotechnology, Cheju-halla College, Cheju 690-708, Republic of Korea
| | - Hae Sook Park
- Department of Chemistry, Chungbuk National University, Cheongju, Chungbuk 361-763, Republic of Korea, and Department of Radiotechnology, Cheju-halla College, Cheju 690-708, Republic of Korea
| |
Collapse
|
21
|
Valiaev A, Lim DW, Oas TG, Chilkoti A, Zauscher S. Force-Induced Prolyl Cis−Trans Isomerization in Elastin-like Polypeptides. J Am Chem Soc 2007; 129:6491-7. [PMID: 17469821 DOI: 10.1021/ja070147r] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Elastin-like polypeptides (ELPs) are stimulus-responsive polymers that contain repeats of five amino acids, Val-Pro-Gly-Xaa-Gly (VPGXG), where Xaa is a guest residue that can be any amino acid with the exception of proline. While studying the conformational mechanics of ELPs over a range of solvent conditions by single-molecule force spectroscopy, we noticed that some force-extension curves showed temperature-independent, extensional transitions that could not be fitted with a freely jointed chain or worm-like chain model. Here we show that the observed molecular elongation results from the force-induced peptidyl-prolyl cis-trans isomerization in prolines, which are repeated every fifth residue in the main chain of ELPs. Control experiments with poly(L-proline) demonstrate the similarity of the conformational transition between poly(L-proline) and ELPs. In contrast, the force-extension behavior of poly(L-lysine) showed no deviation in the relevant force range. Force-extension curves in hysteresis experiments showed an elongational difference between extension and relaxation pathways that suggests that the cis conformational state of the prolines could be exhausted on the time scale of the experiment. We present further computational evidence for this mechanism by Monte Carlo simulation of the force-extension behavior using an elastically coupled, two-state model. We believe ours is the first demonstration of force-induced prolyl cis-trans isomerization in proline-containing polypeptides. Our results suggest that single-molecule force spectroscopy could provide an alternate means to assay this important conformational transition in polypeptides.
Collapse
Affiliation(s)
- Alexei Valiaev
- Department of Mechanical Engineering and Materials Science, and Center for Biologically Inspired Materials and Materials Systems, Duke University, Durham, NC 27708, USA
| | | | | | | | | |
Collapse
|
22
|
Abstract
The conformational study on Ac-Ala-NHMe (the alanine dipeptide) and Ac-Pro-NHMe (the proline dipeptide) is carried out using ab initio HF and density functional methods with the self-consistent reaction field method to explore the differences in the backbone conformational preference and the cis-trans isomerization for the non-prolyl and prolyl residues in the gas phase and in the solutions (chloroform and water). For the alanine and proline dipeptides, with the increase of solvent polarity, the populations of the conformation tC with an intramolecular C(7) hydrogen bond significantly decrease, and those of the polyproline II-like conformation tF and the alpha-helical conformation tA increase, which is in good agreement with the results from circular dichroism and NMR experiments. For both the dipeptides, as the solvent polarity increases, the relative free energy of the cis conformer to the trans conformer decreases and the rotational barrier to the cis-trans isomerization increases. It is found that the cis-trans isomerization proceeds in common through only the clockwise rotation with omega' approximately +120 degrees about the non-prolyl and prolyl peptide bonds in both the gas phase and the solutions. The pertinent distance d(N...H-N(NHMe)) can successfully describe the increase in the rotational barriers for the non-prolyl and prolyl trans-cis isomerization as the solvent polarity increases and the higher barriers for the non-prolyl residue than for the prolyl residue, as seen in experimental and calculated results. By analysis of the contributions to rotational barriers, the cis-trans isomerization for the non-prolyl and prolyl peptide bonds is proven to be entirely enthalpy driven in the gas phase and in the solutions. The calculated cis populations and rotational barriers to the cis-trans isomerization for both the dipeptides in chloroform and/or water accord with the experimental values.
Collapse
Affiliation(s)
- Young Kee Kang
- Department of Chemistry and Basic Science Research Institute, Chungbuk National University, Cheongju, Chungbuk 361-763, South Korea.
| |
Collapse
|
23
|
Rasmussen B, Nkurunziza AJ, Witt M, Oketch-Rabah HA, Jaroszewski JW, Staerk D. Dovyalicin-type spermidine alkaloids from Dovyalis species. JOURNAL OF NATURAL PRODUCTS 2006; 69:1300-4. [PMID: 16989523 DOI: 10.1021/np060204e] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Phytochemical investigations of Dovyalis abyssinica, D. hebecarpa, and D. macrocalyx revealed two new spermidine-type alkaloids, dovyalicin E (3) and dovyalicin F (4), along with the previously described dovyalicin A (1), dovyalicin B (2), and dovyalicin C (5). In addition, a new phenol glucoside, 4-hydroxytremulacin (7), and the new 1,2-cyclohexanediol glucoside 9, as well as the known compounds methyl 1-hydroxy-6-oxocyclohex-2-enecarboxylate (6) and tremulacin (8), were isolated. The structures were established using homo- and heteronuclear two-dimensional NMR experiments and chiroptical methods. At ambient temperature, the N-disubstituted amide 4 exists as a mixture of cis and trans conformers. Variable-temperature (1)H NMR studies showed that time-averaged spectra are obtainable at 348 K, and the activation parameters determined for the rotation about the amide bond were DeltaH++ = 89 +/- 4.6 kJ/mol, DeltaS++ = 65 +/- 14 kJ/mol.K, and DeltaG++(298K) = 70 +/- 4.5 kJ/mol.
Collapse
Affiliation(s)
- Bonnie Rasmussen
- Department of Medicinal Chemistry, The Danish University of Pharmaceutical Sciences, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | | | | | | | | | | |
Collapse
|
24
|
Abstract
A conformational study on the terminally blocked proline oligopeptides, Ac-(Pro)(n)()-NMe(2) (n = 2-5), is carried out using the ab initio Hartree-Fock level of theory with the self-consistent reaction field method in the gas phase and in solutions (chloroform, 1-propanol, and water) to explore the preference and transition between polyproline II (PPII) and polyproline I (PPI) conformations depending on the chain length, the puckering, and the solvent. The mean differences in the free energy per proline of the up-puckered conformations relative to the down-puckered conformations for both diproline and triproline increases for the PPII-like conformations and decreases for the PPI-like conformations as the solvent polarity increases. These calculated results indicate that the PPII-like structures have preferentially all-down puckerings in solutions, whereas the PPI-like structures have partially mixed puckerings. The free energy difference per proline residue between the PPII- and PPI-like structures decreases as the proline chain becomes longer in the gas phase but increases as the proline chain becomes longer in solutions and the solvent polarity increases. In particular, our calculated results indicate that each of the proline oligopeptides can exist as an ensemble of conformations with the trans and cis peptide bonds in solutions, although the PPII-like structure with all-trans peptide bonds is dominantly preferred, which is reasonably consistent with the previously observed results. In diproline Ac-(Pro)(2)-NMe(2), the rotational barrier to the cis-to-trans isomerization for the first prolyl peptide bond increases as the solvent polarity increases, whereas the rotational barrier for the second prolyl peptide bond does not show the monotonic increase as the solvent polarity increases. When the rotational barriers for these two prolyl peptide bonds were compared, it could be deduced that the conformational transition from PPI with the cis peptide bond to PPII with the trans peptide bond is initiated at the C-terminus and proceeds to the N-terminus in water. This is consistent with the results from NMR experiments on polyproline in D(2)O but opposite to the results from enzymatic hydrolysis kinetics experiments on polyproline.
Collapse
Affiliation(s)
- Young Kee Kang
- Department of Chemistry and Basic Science Research Institute, Chungbuk National University, Cheongju, Chungbuk 361-763, South Korea.
| | | | | |
Collapse
|
25
|
Shen T, Hamelberg D, McCammon JA. Elasticity of peptide omega bonds. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2006; 73:041908. [PMID: 16711837 DOI: 10.1103/physreve.73.041908] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2005] [Indexed: 05/09/2023]
Abstract
We calculated the changes of the free energy profile of the peptidyl-prolyl torsional angle of the dipeptide valine-proline under pulling forces by simulations. Using a dynamic model built on the equilibrium properties of this system and previously studied dynamic properties of cis-trans isomerization of other dipeptides, we calculated the dynamic viscoelasticity of this degree of freedom. The results show significant differences between how thermal and mechanical forces alter the equilibrium and the dynamics of the isomerization transition. The former does not change the barrier heights but changes the prefactor of the kinetics owing to temperature effects, while the latter changes minima and thus the population. The force that is required to "excite" this degree of freedom is small. Compared to other systems, we found that this degree of freedom becomes already quite rigid at several hertz, which is a much lower value due to the high barrier of the cis-trans isomerization. We also found that the tensile elastic modulus of densely packed omega bonds is at the order of GPa, which is comparable to that of polymer materials. These results give mechanical properties of polyproline elasticity of a local nature and provide guidance for future experimental designs.
Collapse
Affiliation(s)
- Tongye Shen
- Department of Chemistry & Biochemistry, University of California-San Diego, La Jolla, CA 92093-0365, USA
| | | | | |
Collapse
|
26
|
Edlich F, Fischer G. Pharmacological targeting of catalyzed protein folding: the example of peptide bond cis/trans isomerases. Handb Exp Pharmacol 2005:359-404. [PMID: 16610367 DOI: 10.1007/3-540-29717-0_15] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Peptide bond isomerases are involved in important physiological processes that can be targeted in order to treat neurodegenerative disease, cancer, diseases of the immune system, allergies, and many others. The folding helper enzyme class of Peptidyl-Prolyl-cis/trans Isomerases (PPIases) contains the three enzyme families of cyclophilins (Cyps), FK506 binding proteins (FKBPs), and parvulins (Pars). Although they are structurally unrelated, all PPIases catalyze the cis/trans isomerization of the peptide bond preceding the proline in a polypeptide chain. This process not only plays an important role in de novo protein folding, but also in isomerization of native proteins. The native state isomerization plays a role in physiological processes by influencing receptor ligand recognition or isomer-specific enzyme reaction or by regulating protein function by catalyzing the switch between native isomers differing in their activity, e.g., ion channel regulation. Therefore elucidating PPIase involvement in physiological processes and development of specific inhibitors will be a suitable attempt to design therapies for fatal and deadly diseases.
Collapse
Affiliation(s)
- F Edlich
- Max-Planck Research Unit for Enzymology of Protein Folding, Halle/Saale, Germany
| | | |
Collapse
|